Algebra, Combinatorics and Number Theory

Hom-algebra structures

In this talk, an overview will be presented about hom-algebra structures, with focus on foundations and recent advances on graded (color) quasi Lie algebras, quasi-hom Lie algebras, hom-Lie algebras and related hom-algebra structures. These interesting algebraic structures appear for example when discretizing the differential calculus as well as in constructions of differential calculus on non-commutative spaces.

Domino tilings in dimension 3

In dimension 2, a domino is a $2\times 1$ rectangle. Domino tilings of quadriculated regions have been extensively studied, with several deep and famous results.

The corresponding problems in dimension 3 (or higher) appear to be almost without exception much harder. In dimension 2, it is known, for instance, that for any quadriculated disk any two tilings can be joined by a finite sequence of flips: a flip consists in lifting two adjacent dominos and placing them back after a quarter turn rotation.

Playing puzzles on complicated surfaces

This talk will be about a project aiming to illustrate geometry through puzzles. The puzzles are played on surfaces, and have natural configuration graphs with a geometry of their own. These graphs are reminiscent of combinatorial graphs used in the study of moduli spaces of surfaces which can be visualised in similar ways.

The puzzles were created together with Paul Turner, and brought to life together with Mario Gutierrez and Reyna Juarez.

 

Eigenvalue multiplicities of group elements in irreducible representations of simple linear algebraic groups

Let $k$ be an algebraicallly closed field of characteristic $p\geq 0$ and let $G$ be a linear algebraic group of rank $\ell\geq 1$ over $k$. Let $V$ be a rational finite-dimensional $kG$-module and let $V_g(\mu)$ denote the eigenspace corresponding to the eigenvalue $\mu\in k^*$ of $g \in G$ on $V$. We set $\nu_G(V)=\min\{\dim(V)-\dim(V_g(\mu))| g \in G \setminus Z(G), \mu \in k^*\}$.

On the number of conjugacy classes of a permutation group

Let $G$ be a subgroup of $S_n$. What can be said on the number of conjugacy classes of $G$, in terms of $n$?

I will review many results from the literature and give examples. I will then present an upper bound for the case where $G$ is primitive with nonabelian socle. This states that either $G$ belongs to explicit families of examples, or the number of conjugacy classes is smaller than $n/2$, and in fact, it is $o(n)$. I will finish with a few questions. Joint work with Nick Gill. 

 

A stronger version of Neumann's BFC-theorem

A celebrated theorem of B. H. Neumann states that if $G$ is a group in which all conjugacy classes are finite with bounded size, then the derived group $G'$  is finite.  In this talk we will discuss a stronger version of  Neumann's result and some consequences for finite and profinite groups.  Based on a joint work with Pavel Shumyatsky.

 

 

A graph-theoretic approach to Wilf's conjecture

This talk concerns numerical semigroups, i.e. cofinite submonoids $S$ of $\mathbb{N}$. Wilf's conjecture (1987) on numerical semigroups $S$ states that $e \cdot \ell \ge c$, where $e$ is the embedding dimension of $S$ and $\ell$ is the number of elements of $S$ which are smaller than its conductor $c$. We shall present the main ideas of a recently published proof of Wilf's conjecture in the particular case $e \ge m/3$, where $m$ is the smallest nonzero element of $S$. Asymptotically, most numerical semigroups seem to satisfy $e \ge m/3$ as the genus goes to infinity.