Dynamics of modular vector fields, Dwork family, and applications

Completed

About

This is a research plan for a collaborative work involving colleagues from Brazil, France and Portugal. Namely, the members of this project are the following: Brazil: H. Movasati (IMPA) and Y. Nikdelan (UERJ); France: J. Rebelo (IMT) and D. de la Rosa (IMT - graduate student); Portugal: H. Reis (UP). Among previous works directly related to the questions raised in this project, we may quote: [G], [AMSY], [RR], [Mov3], and [MN]. Ultimately the purpose of our project is to conduct a dynamical study of certain differential equations appearing in Mathematical-Physics (especially in Mirror Symmetry) as well as in some other contexts, including representations of $\mathfrak{sl}_2(\C)$ and Number Theory. We believe that a good dynamical understanding of the mentioned equations will have a few interesting applications, not least to the study of certain families of Calabi-Yau manifolds along with corresponding Mirror maps.   References: [AMSY]  M. Alim, H. Movasati, E. Scheidegger and S.-T. Yau, "Gauss-Manin connection in disguise: Calabi-Yau threefolds", Commun. Math. Phys., 344, 3 (2016), 889-914. [COGP]  P. Candelas, X.C. de la Ossa, P.S. Green and L. Parkes, "A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory", Nuclear Phys. B, 359, 1 (1991), 21-74. [D]  G. Darboux, "Sur la théorie des coordonnées curvilignes et les systémes orthogonaux", Ann Ecole Normale Supérieure, 7 (1878), 101-150. [Dwo1]  B. Dwork, "A deformation theory for the zeta function of a hypersurface", Proc. Internat. Congr. Mathematicians (Stockholm), (1962), 247-259 [Dwo2]  B. Dwork, "On the zeta function of a hypersurface III", Ann. of Math., 83, 2 (1966), 457-519. [G]  A. Guillot, "Sur les équations d'Halphen et les actions de SL2(C)", Publ. Math. Inst. Hautes Études Sci., 105 (2007), 221-294. [GR]  A. Guillot and J.C. Rebelo, "Semicomplete meromorphic vector fields on complex surfaces", J. reine angew. Math., 667 (2012), 27-65. [GMP]  B.R. Greene, D.R. Morrison and M.R. Plesser",Mirror manifolds in higher dimension",Comm. Math. Phys., 173 (1995), 559-598. [Hal]  G.H. Halphen, "Sur un systéme d'équations différetielles", C. R. Acad. Sci Paris, 92 (1881), 1101-1103. [Mov1]  H. Movasati, "Multiple Integrals and Modular Differential Equations",28th Brazilian Mathematics Colloquium, Instituto de Matemática Pura e Aplicada, IMPA, 2011. [Mov2]  H. Movasati, "Modular-type functions attached to mirror quintic Calabi-Yau varieties", Math. Zeit., 281, 3 (2015), 907-929. [Mov3]  H. Movasati, "Gauss-Manin connection in disguise: Calabi-Yau modular forms", to appear in Surveys of Modern Mathematics, IP, Boston [MN]  H. Movasati and Y. Nikdelan, "Gauss-Manin Connection in Disguise: Dwork-Family", arXiv:1603.09411 [math.AG]}, 2016. [Nik]  Y. Nikdelan, "Darboux-Halphen-Ramanujan vector field on a moduli of Calabi-Yau manifolds",Qual. Theory Dyn. Syst., 14, 1 (2015),71-100. [Ram]  S. Ramanujan, "On certain arithmetical functions", Trans. Cambridge Philos. Soc., 22 (1916),159-184. [R]  J.C. Rebelo, "Singularités des flots holomorphes",Ann. Inst. Fourier (Grenoble), 46, 2 (1996), 411-428. [RR]  J.C. Rebelo and H. Reis, "Uniformizing complex ODEs and applications", Revista Matematica Iberoamericana, 30, 3 (2014), 799-874.

Research Group
Duration
24months
Financial Support
13 500EUR
Start Date
End Date

Internal Coordinator

Integrated member
Assistant Professor
Faculdade de Economia da Universidade do Porto

External Coordinator

Internal Members

Financial Support

CIMI - Centre International de Mathématiques et d’Informatique de Toulouse

Partners

Institut de Mathématiques de Toulouse, France

Other Members

Julio Rebelo (IMT)
Hossein Movasati (IMPA)
Hossein Movasati (IMPA)
Hossein Movasati (IMPA)