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Abstract

We construct a testing-function space, which is equipped with the topology that
is generated by Lν,p - multinorm of the differential operator

Ax = x2 − x
d

dx

[
x

d

dx

]
,

and its k-th iterates Ak
x, where k = 0, 1, . . . , and A0

xϕ = ϕ. Comparing with other
testing-function spaces we introduce in its dual the Kontorovich-Lebedev transfor-
mation for distributions with respect to a complex index. The existence, uniqueness,
imbedding and inversion properties are investigated. As an application we find a
solution of the Dirichlet problem for a wedge for the harmonic equation in terms of
the Kontorovich- Lebedev integral.

Keywords: Testing-function spaces, distributions, Kontorovich-Lebedev transform,
modified Bessel functions, Dirichlet problem for a wedge
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1 Introduction

Let R+ = (0, +∞), 2 ≤ p < ∞, ν > 0 and we consider a class Aν,p of complex-valued,
smooth functions ϕ(x) on R+ for which the following quantity

αk,ν,p(ϕ) = α0,ν,p(A
k
xϕ) =

(∫ ∞

0

∣∣Ak
xϕ

∣∣p xνp−1dx

)1/p

(1.1)
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is finite for each k ∈ N0. Here Ak
x, where k = 0, 1, . . . , is k-th iterate of the differential

operator

Ax = x2 − x
d

dx

[
x

d

dx

]
. (1.2)

As it is known operator (1.2) has an eigenfunction Ks(x), s = µ + iτ , which is the
modified Bessel function or the Macdonald function [1] of a complex index s and satisfies
the property

AxKs(x) = −s2Ks(x). (1.3)

It has the following asymptotic behaviour (cf. [1], [8])

Ks(z) =
( π

2z

)1/2

e−z[1 + O(1/z)], z →∞, (1.4)

and near the origin

Ks(z) = O
(
z−|µ|

)
, z → 0, (1.5)

K0(z) = O(log z), z → 0. (1.6)

The modified Bessel function can be represented for instance, by the integrals [1], [8]

Ks(z) =

∫ ∞

0

e−z cosh u cosh sudu =
1

2

∫ iδ+∞

iδ−∞
e−z cosh u+sudu, (1.7)

where Rez > 0, δ ∈ [
0, π

2

)
. Hence it is not difficult to show that Ks(z) is an even

entire function with respect to s and it is analytic in a right half-plane with respect to z.
Moreover by using (1.7) and relation (2.3.16.1) in [6, Vol. I] we obtain the estimate

|Ks(z)| ≤ e−δ|τ |
(

Rez + Imz tan δ

Rez − Imz tan δ

)µ/2

Kµ

(√
[Rez cos δ]2 − [Imz sin δ]2

)
, (1.8)

in the sector | arg z| < π
2
−δ, δ ∈ [

0, π
2

)
. In particular, putting δ = 0 we get the elementary

inequality |Ks(z)| ≤ Kµ(Rez), Rez > 0, s = µ + iτ .
The classical Kontorovich-Lebedev transform [8] is defined usually for a pure imaginary

index iτ by the integral

Kiτ [f ] =

∫ ∞

0

Kiτ (x)f(x)dx. (1.9)

If f ∈ Lν,p(R+), ν < 1, i.e. (cf. (1.1)) the norm

||f ||ν,p =

(∫ ∞

0

|f(x)|p xνp−1dx

)1/p

< ∞, (1.10)
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then it is shown in [8, Ch. 2] that (1.9) exists as a Lebesgue integral and Kiτ [f ] is bounded
from Lν,p(R+) into Lr(R+), where p, r ∈ [1,∞) has no dependence. Moreover (see [8], [9])
its inversion can be written in terms of the singular integral

f(x) =
2

π2
lim

ε→0+

1

x

∫ ∞

0

τ sinh(π − ε)τKiτ (x)Kiτ [f ]dτ, (1.11)

where the limit in (1.11) is understood with respect to the norm (1.10) in Lν,p(R+), 0 <
ν < 1.

In [12] it was first generalized the transformation (1.9) for distributions with compact
support and later on [2], [3], [5] it was studied in larger spaces of generalized functions. In
[4], [7] it was given an another approach to introduce the Kontorovich-Lebedev transform
for distributions.

Our goal is to prove that the class Aν,p is a testing-function space, which will gen-
eralize some known testing-function spaces (see [2], [3], [4]) related to the Kontorovich-
Lebedev transform. Furthermore, we will show that this space can be used to study the
Kontorovich-Lebedev transform of a complex index for distributions from the dual space
A′

ν,p into the space of analytic functions in a vertical strip. Our goal is also to study its
existence, uniqueness and inversion properties on a manner to be found in [13]. These
results are finally applied to give a solution of the Dirichlet problem for a wedge for the
Laplace equation in cylindrical coordinates, which is associated with operator (1.2) and
its iterations. We note that such a problem is considered, for instance in [11], where the
formal solution is found.

2 Properties of the space Aν,p and its dual

We begin to show that the class Aν,p is a testing function space, which is associated with
the multinorm (1.1). Indeed, it is easily seen that Aν,p is a linear space, each αk,ν is a
seminorm, and α0,ν,p is clearly a norm on Aν,p. We equip Aν,p as usual with the topology
that is generated by {αk,ν,p}∞k=0, and this makes Aν,p a countably multinormed space.
Since (∫ ∞

0

∣∣Ak
xϕ

∣∣p xνp−1dx

)1/p

=

(∫ ∞

0

(
1 + x2

) ∣∣Ak
xϕ

∣∣p xνp−1

1 + x2
dx

)1/p

≤ sup
x>0

(∣∣Ak
xϕ

∣∣xν +
∣∣Ak

xϕ
∣∣ xν+2

) (∫ ∞

0

x−1/p

1 + x2
dx

)1/p

≤ Cp

[
sup
x>0

(
xν

∣∣Ak
xϕ

∣∣)

+ sup
x>0

(
xν+2

∣∣Ak
xϕ

∣∣)
]

where Cp > 0 is a constant, then it follows that the space Aν,p contains functions from
spaces like in [2], [3], [12]. Under this formulation Aν,p turns to be a testing -function space
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[13]; this will be proved below. Furthermore, Aν,p is a subspace of the space Lν,p(R+) [8],
[9] and convergence in Aν,p implies convergence in Lν,p(R+).

Lemma 1. Aν,p is complete and therefore a Frechet space.
Proof. Let {ϕm}∞m=1 be a Cauchy sequence in Aν,p. Then, for each k and some

ν > 0 we have that {ϕm}∞m=1 is a Cauchy sequence in Lν,p(R+). By the completeness
of Lν,p(R+) there exists a function χ′k ∈ Lν,p(R+), which is the limit in Lν,p(R+) of
{Ak

xϕm}∞m=1. We will show that χ′k is almost everywhere on R+ equal to Ak
xχ0, where

χ0 ∈ Aν,p is independent of k.
Let x1 > 0 be a fixed point and x a variable point in R+. From (1.2) we have

x
d

dx

[
x

d

dx
Ak

xϕm

]
= x2Ak

xϕm − Ak+1
x ϕm. (2.1)

Hence dividing by x and integrating with respect to x over the interval [x1, x] we obtain

x
d

dx
Ak

xϕm =

∫ x

x1

(
xAk

xϕm − x−1Ak+1
x ϕm

)
dx + am, (2.2)

where am = x1

[
d
dx

Ak
xϕm

]
x=x1

is a constant.

Meanwhile by using the Hölder and Minkowski inequalities on the interval [x1, x] we
may write ∣∣∣∣

∫ x

x1

(
xAk

x (ϕm − ϕn)− x−1Ak+1
x (ϕm − ϕn)

)
dx

∣∣∣∣

≤
(∫ x

x1

x(1−ν+ 1
p)qdx

)1/q (∫ ∞

0

∣∣Ak
x (ϕm − ϕn)

∣∣p xνp−1dx

)1/p

+

(∫ x

x1

x−νq−1dx

)1/q (∫ ∞

0

∣∣Ak+1
x (ϕm − ϕn)

∣∣p xνp−1dx

)1/p

, (2.3)

where q = p
p−1

. Clearly the first integrals in the products on the right-hand side of (2.3)
are bounded smooth functions on every open interval I whose closure is compact in R+.
The second integrals converge to zero as m and n tend to infinity independently. This
shows that the left-hand side of (2.3) converges to zero uniformly on every such an interval
I. In the same manner returning to (2.2) it is not difficult to get the equality

Ak
xϕm =

∫ x

x1

dx

x

∫ x

x1

(
xAk

xϕm − x−1Ak+1
x ϕm

)
dx + am log

x

x1

+ bm, (2.4)

where bm = Ak
x1

ϕm is a constant. Since Ak
xϕm converges in Lν,p(I) for every I and the

iterated integral in (2.3) converges uniformly on I as m →∞ (cf. in (2.3)), we conclude
that the sequence {ψm}∞m=1, where ψm(x) = am log x

x1
+ bm converges in Lν,p(I). Further,

since the measure of the interval I is finite and p ≥ 2, it follows immediately that ψm(x)
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converges in Lν,2(I). Now by using the orthogonality properties of the latter Hilbert space
it is easily seen that coefficients am, bm tend to the limits, say a and b, correspondingly.
Consequently, ψm(x) and therefore Ak

xϕm converge uniformly on every I.
We denote by χk(x) the uniform limit of the sequence {Ak

xϕm}∞m=1, which is evidently
a continuous function on I. Moreover, this is true for any k. Therefore passing to the
limit in (2.4) when m →∞ we find

χk(x) =

∫ x

x1

dx

x

∫ x

x1

(
xχk(x)− x−1χk+1(x)

)
dx + a log

x

x1

+ b. (2.5)

Hence we obtain that χk(x) is a smooth function and making necessary differentiation in
(2.5) we derive that χk+1(x) = Axχk. Thus χk(x) = Ak

xχ0.
Meantime, χ′k(x) = χk(x) almost everywhere on I, since χk(x) is the uniform limit

on every I of the sequence {Ak
xϕm}∞m=1 and χ′k(x) is the limit in Lν,p(R+) of {Ak

xϕm}∞m=1.
Thus both Ak

xχ0 and χ′k(x) are in the same equivalence class in Lν,p(R+). It follows from
(1.1) that for every k and some ν αk,ν,p(χ0) = α0,ν,p(A

k
xχ0) < ∞ and

αk,ν,p(χ0 − ϕm) = α0,ν,p(A
k
xχ0 − Ak

xϕm) → 0,

as m →∞. Lemma 1 is proved.
Denoting by D(R+), E(R+) customary spaces of testing functions encountered in dis-

tribution theory [13] it is easily seen that D(R+) ⊂ Aν,p ⊂ E(R+). Since D(R+) is dense
in E(R+), we have that Aν,p is also dense in E(R+). The following lemma will be used in
the sequel.

Lemma 2. Let ϕ ∈ D(R+). Then ϕ can be represented by the Lebedev integral

ϕ(x) = lim
ε→0+

i

π2

∫ µ+i∞

µ−i∞
s sin(π − ε)s Ks(x)

∫ ∞

0

Ks(y)ϕ(y)
dy

y
ds, (2.6)

where the limit is understood as a convergence in Aν,p with 0 < ν < 1.
Proof. As we have seen above for each s the modified Bessel function Ks(z) is analytic

at least in the sector | arg z| < π
2
−δ, δ ∈ [

0, π
2

)
, which contains R+. Moreover, employing

the estimate (1.8) it is not difficult to establish under condition of the lemma the uniform
convergence of the outward integral (2.6) on every compact interval [x0, X0] ⊂ R+. Thus
denoting by

ϕε(x) =
i

π2

∫ µ+i∞

µ−i∞
s sin(π − ε)s Ks(x)

∫ ∞

0

Ks(y)ϕ(y)
dy

y
ds, (2.7)

we may repeatedly differentiate under the integral sign to obtain

Ak
xϕε =

i

π2

∫ µ+i∞

µ−i∞
s sin(π − ε)s Ak

xKs(x)

∫ ∞

0

Ks(y)ϕ(y)
dy

y
ds. (2.8)
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Hence invoking (1.3), we integrate by parts in the inner integral with respect to y, where
integrated terms are vanishing since ϕ ∈ D(R+). Thus we arrive at the equality

Ak
xϕε =

i

π2

∫ µ+i∞

µ−i∞
s sin(π − ε)s Ks(x)

∫ ∞

0

Ks(y)Ak
yϕ

dy

y
ds. (2.8)

Further, we change the order of integration in (2.8) by the Fubini theorem and we find

Ak
xϕε =

∫ ∞

0

K(x, y)Ak
yϕ

dy

y
. (2.9)

where we denote by

K(x, y) =
i

π2

∫ µ+i∞

µ−i∞
s sin(π − ε)s Ks(x)Ks(y)ds. (2.10)

We calculate integral (2.10) appealing to Cauchy’s theorem and shifting the contour of
integration to the imaginary axis. This is indeed possible since the integrand is analytic
with respect to s in the strip |Res| < |µ| and the following integral

∫ ±iB

µ±iB

s sin(π − ε)s Ks(x)Ks(y)ds → 0, |B| → ∞,

for each ε ∈ (0, π), x > 0, y ∈ supp Ak
yϕ via inequality (1.8). Then using relation

(2.16.51.8) in [6, Vol. II] we calculate the kernel (2.10) and we write (2.9) in the form

Ak
xϕε =

x sin ε

π

∫ ∞

0

K1((x
2 + y2 − 2xy cos ε)1/2)

(x2 + y2 − 2xy cos ε)1/2
Ak

yϕdy. (2.11)

To end the proof we appeal to the properties of the singular integral (2.11) (see in [8], [9],
[10]), which give the convergence Ak

xϕε to Ak
xϕ with respect to the norm in Lν,p(R+), 0 <

ν < 1, p ≥ 1 when ε → 0+. Thus we derive

αk,ν,p(ϕε − ϕ) = α0,ν,p(A
k
xϕε − Ak

xϕ) → 0, ε → 0 + .

Lemma 2 is proved.
As usual we denote by A′

ν,p the dual of Aν,p. It’s equipped with the weak topology
and represents a Hausdorff locally convex space of distributions. From the imbedding
above we obtain that E ′(R+) ⊂ A′

ν,p. Since Aν,p ⊂ Lν,p(R+) we imbed the dual space
L1−ν,q(R+), q = p

p−1
into A′

ν,p as a subspace of regular distributions. They act upon
elements ϕ from Aν,p according to

〈f, ϕ〉 :=

∫ ∞

0

f(x)ϕ(x)dx. (2.12)
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The continuity of the linear functional (2.12) on Aν,p follows from the fact that if {ϕm}∞m=1

converges in Aν,p to zero, then by the Hölder inequality

|〈f, ϕ〉| ≤ α0,1−ν,q(f)α0,ν,p(ϕm) → 0, m →∞.

We note that this imbedding of L1−ν,q(R+) into A′
ν,p is one-to-one. Indeed, if two members

f and g of L1−ν,q(R+) become imbedded at the same element of A′
ν,p, then 〈f, ϕ〉 = 〈g, ϕ〉

for every ϕ ∈ D(R+). But this will imply that f = g almost everywhere on R+ (cf.
in [13]). Finally from the general theory of continuous linear functionals on countably
multinormed spaces follows that each element f ∈ A′

ν,p there exists a nonnegative integer
r and a positive constant C such that

|〈f, ϕ〉| ≤ Cmax0≤k≤rαk,ν,p(ϕ) (2.13)

for every ϕ ∈ Aν,p. Here r, C depends on f but not on ϕ.

3 The Kontorovich-Lebedev Transformation

We introduce the Kontorovich-Lebedev transformation on distributions f ∈ A′
ν,p in a

similar way as in [12]. Namely, it is defined by

KL[f ](s) := 〈f, Ks(·)〉, s ∈ C. (3.1)

It is easily seen from (1.4), (1.5), (1.8), (1.10) that Ks(x) ∈ Lν,p(R+) when |Res| < ν.
Moreover it belongs to Aν,p under the same condition since via (1.3) we have |Ak

xKs(x)| =
|s|2k|Ks(x)|. Hence for regular distributions f ∈ L1−ν,q(R+) the Kontorovich -Lebedev
transformation Ks[f ] can be written in the form (2.12), which coincides with (1.9) when
s = iτ is a pure imaginary index. In this case we immediately obtain that Ks[f ] represents
an analytic function in the open vertical strip |Res| < ν (cf. in [8, Theorem 2.5]).

As in the classical case, the Kontorovich-Lebedev transformation (3.1) is an analytic
function in the strip of definition. More precisely, we have

Theorem 1. For each f ∈ A′
ν,p KL[f ](s) is analytic on the strip Ων := {s = Res +

iτ, |Res| < ν} and its derivative

F ′(s) :=
d

ds
KL[f ](s) =

〈
f,

∂

∂s
Ks(·)

〉
, s ∈ Ων . (3.2)

Furthermore, the following estimate is true

|KL[f ](s)| ≤ Cf,δ,p,νmax{1, |s|2r}e−(π/2−δ)|τ |, s ∈ Ων , (3.3)

where δ ∈ (
0, π

2

]
, r ∈ N and Cf,δ,p,ν > 0 is a constant.
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Proof. Let s be an arbitrary fixed point in Ων . We choose 0 < ν0 < ν such that
s, s + ∆s ∈ Ων0 , where ∆s is a complex increment such that |∆s| < r0. We show that
KL[f ](s) admits a derivative in each inner strip Ων0 . In view of our freedom to choose ν0

arbitrarily close to ν we will establish the analyticity of KL[f ](s) on Ων0 .
Since the modified Bessel function Ks(x) is an entire function of s then with ∆s 6= 0

we invoke the definition (3.1) of KL[f ](s) to write

KL[f ](s + ∆s)−KL[f ](s)

∆s
−

〈
f,

∂

∂s
Ks(·)

〉
= 〈f, Ψ∆s(·)〉 , (3.4)

where

Ψ∆s(x) =
1

∆s
[Ks+∆s(x)−Ks(x)]− ∂

∂s
Ks(x).

We will show that Ψ∆s(x) ∈ Aν,p so that (3.4) has a sense. Moreover, we will prove that
as |∆s| → 0 Ψ∆s(x) converges in Aν,p to zero. Because f ∈ A′

ν,p this will imply the
right-hand side of (3.4) tends to zero. Therefore in view of (3.4) we will get (3.2).

To do this we find a circle C with center at s and radius r1 where 0 < r0 < r1 <
min(ν0+Res, ν0−Res). Hence we may interchange differentiation on s with differentiation
on x and invoke Cauchy’s integral formulas. Taking into account (1.3) as a result we obtain

(−1)kAk
xΨ∆s =

(−1)k

∆s

[
Ak

xKs+∆s(x)− Ak
xKs(x)

]− (−1)k ∂

∂s
Ak

xKs(x)

=
1

∆s

[
(s + ∆s)2kKs+∆s(x)− s2kKs(x)

]− ∂

∂s

[
s2kKs(x)

]

=
1

2πi∆s

∫

C

(
1

t− s−∆s
− 1

t− s

)
t2kKt(x)dt− 1

2πi

∫

C

t2kKt(x)

(t− s)2
dt

=
∆s

2πi

∫

C

t2kKt(x)

(t− s−∆s)(t− s)2
dt

Hence via (1.1), (1.8) with the generalized Minkowski inequality and since |t− s−∆s| >
r1 − r0 > 0, |t− s| = r1, |t| < |s|+ r1 we deduce

αk,ν,p (Ψ∆s) ≤ |∆s|
2π

(|s|+ r1)
2k

(r1 − r0)r2
1

∫

C

(∫ ∞

0

Kp
Ret(x)xνp−1dx

)1/p

|dt|

≤ |∆s|(|s|+ r1)
2k

(r1 − r0)r1

(∫ ∞

0

Kp
ν0

(x)xνp−1dx

)1/p

= Bs,ν,p,k|∆s| → 0, |∆s| → 0,

where Bs,ν,p,k > 0 is a constant. Thus Ψ∆s(x) converges in Aν,p to zero.
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In order to prove (3.3) we recall inequalities (1.8), (2.13). Then via (3.2) we write

|KL[f ](s)| ≤ Cmax0≤k≤rαk,ν,p(Ks(x)) ≤ Ce−(π/2−δ)|τ |
(∫ ∞

0

Kp
Res(x sin δ)xνp−1dx

)1/p

×max0≤k≤r|s|2k ≤ Cf,δ,p,νmax{1, |s|2r}e−(π/2−δ)|τ |, s ∈ Ων .

Theorem 1 is proved.
We are ready to prove now an inversion theorem for the transformation (3.1). Indeed,

we have
Theorem 2. Let f ∈ A′

ν,p with 0 < ν < 1. Then

f(x) = lim
ε→0+

i

xπ2

∫ µ+i∞

µ−i∞
s sin(π − ε)sKs(x)KL[f ](s)ds, |µ| < ν, (3.5)

where the convergence is understood in D′(R+).
Proof. We observe that formula (3.5) means the following equality

〈f, ϕ〉 = lim
ε→0+

〈
i

·π2

∫ µ+i∞

µ−i∞
s sin(π − ε)sKs(·)KL[f ](s)ds, ϕ

〉
(3.6)

for every ϕ ∈ D(R+) having a support, let say, in the closed interval [a, b] ⊂ R+. By
using our discussions above it is easily seen that the integral with respect to s in (3.6) is
absolutely convergent for each ε > 0 and can be treated as a Riemann improper integral.
Furthermore with inequality (1.8) we show that the expression under the limit sign is a
regular distribution. Therefore it is equal to

i

π2

∫ b

a

y−1ϕ(y)

∫ µ+i∞

µ−i∞
s sin(π − ε)sKs(y)KL[f ](s)dsdy. (3.7)

Appealing to the Fubini theorem we change the order of integration in (3.7) and we write
it in the form

i

π2

∫ µ+i∞

µ−i∞
s sin(π − ε)sKL[f ](s)

∫ b

a

y−1ϕ(y)Ks(y)dyds

=
i

π2
lim

T→∞

∫ µ+iT

µ−iT

s sin(π − ε)sKL[f ](s)

∫ b

a

y−1ϕ(y)Ks(y)dyds. (3.8)

Invoking (3.1) and the Riemann sums technique (cf. in [7], [12], [13]) it is not difficult to
prove that

i

π2

∫ µ+iT

µ−iT

s sin(π − ε)sKL[f ](s)

∫ b

a

y−1ϕ(y)Ks(y)dyds = 〈f, ΘT,ε〉,
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where

ΘT,ε(x) =
i

π2

∫ µ+iT

µ−iT

s sin(π − ε)sKs(x)

∫ b

a

y−1ϕ(y)Ks(y)dyds

is an element of Aν,p. Meanwhile, we will show that ΘT,ε(x) → ϕε(x) in Aν,p as T →∞,
where ϕε(x) is defined by (2.7). Indeed, choosing 0 < δ < ε

2
we employ (1.3), (1.8) and

the generalized Minkowski inequality. Hence we have

αk,ν,p (ΘT,ε − ϕε) =
1

π2

(∫ ∞

0

xνp−1dx

∣∣∣∣
∫

|Ims|≥T

s sin(π − ε)sAk
xKs(x)

×
∫ b

a

y−1ϕ(y)Ks(y)dyds

∣∣∣∣
p
)1/p

≤ 1

π2

(∫ ∞

0

Kµ(x sin δ)xνp−1dx

)1/p

×
∫ b

a

y−1|ϕ(y)|Kµ(y sin δ)dy

∫

|Ims|≥T

|s|2k+1| sin(π − ε)s|e(−π+2δ)|Ims||ds|

≤ Cδ,ν,p

∫

|Ims|≥T

|s|2k+1e(2δ−ε)|Ims||ds| → 0, T →∞,

where Cδ,ν,p > 0 is a constant. Thus combining with (3.8) we arrived at the equality

i

π2

∫ µ+i∞

µ−i∞
s sin(π − ε)sKL[f ](s)

∫ b

a

y−1ϕ(y)Ks(y)dyds = 〈f, ϕε〉. (3.9)

To end the proof of the theorem we pass to the limit through (3.9) when ε → 0+. Hence
by using Lemma 2 we get (3.6) and we establish the inversion formula (3.5). Theorem 2
is proved.

By using Theorem 2 we can readily prove the uniqueness property for the Kontorovich-
Lebedev transformation (3.1).

Corollary 1. If KL[f ](s) = F (s) and KL[g](s) = G(s), s ∈ Ων , 0 < ν < 1 and if
F (s) = G(s), s ∈ Ων then f = g in the sense of equality in D′(R+).

Proof. Under conditions of the corollary f and g must assign the same value for each
ϕ ∈ D(R+). Thus by invoking Theorem 2 and equating f and g in (3.5) we immediately
obtain 〈f, ϕ〉 = 〈g, ϕ〉, which proves Corollary 1.

4 Dirichlet’s problem for a wedge

As an application let us consider Dirichlet’s problem for a wedge (r, θ) with the origin at
the apex and the sides of the wedge along the radial lines θ = 0 and θ = α (0 < α ≤ π).
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The problem for the interior of this wedge is to find a function uk(r, θ) that satisfies the
following harmonic equation

A∗
ru =

∂2u

∂θ2
, 0 < r < ∞, 0 < θ < α, (4.1)

where A∗
r is the adjoint operator to Ar

A∗
r = r2 − 1− 3r

∂

∂r
− r2 ∂2

∂r2
. (4.2)

We assume that u(r, θ) is twice differentiable with respect to θ in a sense of a conventional
derivative (cf. [13, Section 2.6]).

We impose the following boundary conditions:
1. As θ → 0+, u(r, θ) → f(r) in A′

ν,p, 0 < ν < 1, p ≥ 2 for any ϕ ∈ Aν,p ∩ Aν+1,p.
2. As θ → α−, u(r, θ) converges to zero in A′

ν,p for any ϕ ∈ Aν,p ∩ Aν+1,p.
This problem can be solved through an operational technique by the Kontorovich-

Lebedev transformation (3.1). Indeed, applying (3.1) to both sides of the equation (4.1)
and appealing to definitions of the adjoint operator and a conventional derivative we arrive
at the equality

〈u(·, θ), A·Ks(·)〉 − ∂2

∂θ2
〈u(·, θ), Ks(·)〉 = 0. (4.3)

Hence via (1.3) we obtain

s2KL[u(·, θ)](s) +
∂2

∂θ2
KL[u(·, θ)](s) = 0. (4.4)

Solving this differential equation find

KL[u(·, θ)](s) = A(s)eisθ + B(s)e−isθ, (4.5)

where the unknown functions A(s), B(s) do not depend on θ. To determine A and B
we first transform the boundary conditions. Indeed, since Ks(r) ∈ Aν,p ∩ Aν+1,p when
|Res| < ν, then invoking (4.5), (3.1) we have

lim
θ→0+

KL[u(·, θ)](s) = KL[f ](s) = A(s) + B(s), (4.6)

lim
θ→α−

KL[u(·, θ)](s) = 0 = A(s)eisα + B(s)e−isα. (4.7)

Combining with (4.5), (4.6), (4.7) and making elementary calculations we derive

KL[u(·, θ)](s) =
sin (s(α− θ))

sin αs
KL[f ](s). (4.8)
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Consequently, invoking Theorem 2 we obtain as our possible solution

u(r, θ) = lim
ε→0+

i

rπ2

∫ µ+i∞

µ−i∞
s sin(π − ε)s Ks(r)

sin (s(α− θ))

sin αs
KL[f ](s)ds, (4.9)

where |µ| < ν < 1. It is easily seen that the integrand in (4.9) is analytic on the strip Ων

(cf. (3.2)). Moreover, appealing to (1.8), (3.3) we get the uniform estimate on ε ∈ [0, π]
and −ν < µ < ν

∣∣∣∣s sin(π − ε)s Ks(r)
sin (s(α− θ))

sin αs
KL[f ](s)

∣∣∣∣ ≤ const.|τ |2a+1 exp ((2δ − θ)|τ |)

×Kµ(r0 sin δ), (4.10)

where τ = Ims, a > 0, 0 < 2δ < θ ≤ α, 0 < r0 < r < ∞. Therefore one can pass to the
limit under the integral sign in (4.9) when ε → 0+. Hence we write our solution in the
form

u(r, θ) =
i

rπ2

∫ µ+i∞

µ−i∞
s sin πs Ks(r)

sin (s(α− θ))

sin αs
KL[f ](s)ds. (4.11)

Our goal now is to prove that (4.11) is indeed a solution, which satisfies the differential
equation (4.1) and the corresponding boundary conditions. In order to verify that (4.11)
is a solution of (4.1) we use (4.10) and the fact that the integrand in (4.11) is analytic on
the strip Ων . Consequently, the differentiations may be interchanged with the integration.
Moreover, by straightforward calculations we see that the function

Ks(r)
sin (s(α− θ))

r sin αs

satisfies (4.1). Thus u(r, θ) is a solution of (4.1).
We turn now to the boundary conditions. First we show that ru(r, θ) ∈ Aν,p ∩

L1−ν,q(R+) for any 0 < θ ≤ α, q = p/(p − 1), 0 < ν < 1. Indeed, from the uniform
convergence of the integral (4.11) with respect to r ∈ R+ we see that ru(r, θ) is a smooth
function. Moreover, invoking (1.1), (1.8), (1.10), (3.3) and the generalized Minkowski
inequality we obtain the estimate

|| · u(·, θ)||ξ,ω ≤ const.

∫ ∞

−∞
|τ |2a+1 exp ((2δ − θ)|τ |) dτ

×
(∫ ∞

0

Kω
µ (r sin δ)rξω−1dr

)1/ω

< ∞, a > 0, ω > 1, |µ| < ξ, ξ > 0, (4.12)

for any θ, such that 0 < 2δ < θ ≤ α, where δ > 0 can be chosen as a sufficiently
small number. Thus, in particular ru(r, θ) ∈ Aν,p ∩ L1−ν,q(R+) with 0 < θ ≤ α, q =
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p/(p− 1), 0 < ν < 1. Furthermore for any ϕ ∈ Aν,p ∩ Aν+1,p via (2.12) we write

〈·u(·, θ), ϕ〉 = 〈u(·, θ), ·ϕ〉 =

∫ ∞

0

ru(r, θ)ϕ(r)dr =
i

π2

∫ ∞

0

ϕ(r)

∫ µ+i∞

µ−i∞
s sin πs Ks(r)

×sin (s(α− θ))

sin αs
KL[f ](s)ds dr =

i

π2

∫ µ+i∞

µ−i∞
s sin πs

∫ ∞

0

ϕ(r)Ks(r)dr

×sin (s(α− θ))

sin αs
KL[f ](s)ds, (4.13)

where the change of the order of integration in (4.13) is due to Fubini’s theorem, and this
fact can be easily motivated by (4.10), (4.12) with the Hölder inequality. Precisely we
appeal to the estimate

∫ µ+i∞

µ−i∞
|s sin πs|

∫ ∞

0

|ϕ(r)Ks(r)|
∣∣∣∣
sin (s(α− θ))

sin αs
KL[f ](s)ds

∣∣∣∣ dr

≤ α0,ν,p(ϕ)

∫ ∞

−∞
|τ |2a+1 exp ((2δ − θ)|τ |) dτ

(∫ ∞

0

Kq
µ(r sin δ)r(1−ν)q−1dr

)1/q

< ∞,

where q = p
p−1

, a > 0, 0 < δ < θ/2 and |µ| < min(1− ν, ν). Hence in a similar manner it

is not difficult to see that the latter iterated integral in (4.13) converges uniformly with
respect to θ on every interval β ≤ θ ≤ α, where β > 2δ > 0. Therefore we may take the
limit under the integral sign in (4.13) as θ → α− to get

lim
θ→α−

〈u(·, θ), ·ϕ〉 = 0.

Thus the second boundary condition is verified.
In order to verify the first boundary condition it is sufficient to show that for any

ϕ ∈ Aν,p ∩ Aν+1,p

lim
θ→0+

〈u(·, θ), ·ϕ〉 = 〈f, ·ϕ〉.

Since the integrand in (4.11) is analytic on Ων , we can put µ = 0 shifting the contour of
integration to the imaginary axis by using Cauchy’s theorem and its asymptotic behavior
at infinity. Hence after elementary substitutions we find

u(r, θ) =
1

rπ2

∫ ∞

−∞
τeπτ Kiτ (r)

sinh (τ(α− θ))

sinh ατ
KL[f ](iτ)dτ. (4.14)

Invoking the following relation

sinh (τ(α− θ))

sinh ατ
= e−τθ − e−τα sinh θτ

sinh ατ
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we obtain

r u(r, θ) =
1

π2

∫ ∞

−∞
τe(π−θ)τ Kiτ (r)KL[f ](iτ)dτ − 1

π2

∫ ∞

−∞
τe(π−α)τ

× Kiτ (r)
sinh θτ

sinh ατ
KL[f ](iτ)dτ.

Thus

〈u(·, θ), ·ϕ〉 =

∫ ∞

0

ru(r, θ)ϕ(r)dr =
1

π2

∫ ∞

−∞
τe(π−θ)τ KL[f ](iτ)

∫ ∞

0

ϕ(r)Kiτ (r)drdτ

− 1

π2

∫ ∞

−∞
τe(π−α)τ sinh θτ

sinh ατ
KL[f ](iτ)

∫ ∞

0

ϕ(r)Kiτ (r)drdτ. (4.15)

In the same manner as in the proof of Theorem 2 we substitute in (4.15) the value of
KL[f ](iτ) by formula (3.1) and we use the Riemann sums and their limits to treat integrals
with respect to τ . Finally we arrive at the following relations

1

π2

∫ ∞

−∞
τe(π−θ)τ KL[f ](iτ)

∫ ∞

0

ϕ(r)Kiτ (r)drdτ

=

〈
f,

1

π2

∫ ∞

−∞
τe(π−θ)τ Kiτ (·)

∫ ∞

0

ϕ(r)Kiτ (r)drdτ

〉
, (4.16)

1

π2

∫ ∞

−∞
τe(π−α)τ sinh θτ

sinh ατ
KL[f ](iτ)

∫ ∞

0

ϕ(r)Kiτ (r)drdτ

=

〈
f,

1

π2

∫ ∞

−∞
τe(π−α)τ sinh θτ

sinh ατ
Kiτ (·)

∫ ∞

0

ϕ(r)Kiτ (r)drdτ

〉
. (4.17)

Denoting by

ϕ1(y, θ) =
1

π2

∫ ∞

−∞
τe(π−θ)τ Kiτ (y)

∫ ∞

0

ϕ(r)Kiτ (r)drdτ,

we invert the order of integration by Fubini’s theorem and we calculate the integral with
respect to τ invoking the value of the kernel (2.10). As a result we deduce

ϕ1(y, θ) =
y sin θ

π

∫ ∞

0

K1((r
2 + y2 − 2ry cos θ)1/2)

(r2 + y2 − 2xy cos θ)1/2
rϕ(r)dr.

It is not difficult to see that ϕ1(y, θ) is an element of Aν,p for each θ ∈ (0, α] and it
converges to yϕ(y) in Aν,p when θ → 0+ (cf. (2.11)). Therefore from (4.16) we have

lim
θ→0+

〈f, ϕ1(·, θ)〉 = 〈f, ·ϕ1〉
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and to satisfy the first boundary condition we have to show that

lim
θ→0+

〈f, ϕ2(·, θ)〉 = 0, (4.18)

where

ϕ2(y, θ) =
1

π2

∫ ∞

−∞
τe(π−α)τ sinh θτ

sinh ατ
Kiτ (y)

∫ ∞

0

ϕ(r)Kiτ (r)drdτ.

Indeed, invoking (4.10) we prove that ϕ2(y, θ) is an element of Aν,p for each θ ∈ (0, α].
Moreover, since for each y > 0 and δ ∈ (

0, π
2

] ∩ (0, α) (see (1.8))

|ϕ2(y, θ)| ≤ const.K0(y sin δ)

∫ ∞

−∞
|τ |e(2δ−α)τ sinh θτ

sinh ατ
dτ

∫ ∞

0

|ϕ(r)|K0(r sin δ)dr < ∞,

we take into account that K0(y sin δ) ∈ Aν,p∩Aν+1,p and we write for all ϕ ∈ Aν,p∩Aν+1,p

the estimate

|〈f, ϕ2(·, θ)〉| ≤ const. |〈f, K0(· sin δ)〉|
∫ ∞

−∞
|τ |e(2δ−α)τ sinh θτ

sinh ατ
dτ → 0, θ → 0+

due to the dominated convergence theorem. Thus we we establish (4.18) and the first
boundary condition is satisfied.

References
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