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Abstract

By using classical uncertainty principles for the Fourier transform and com-
position properties of the Kontorovich-Lebedev transform, analogs of the Hardy,
Beurling, Cowling-Price, Gelfand-Shilov and Donoho-Stark theorems are obtained.
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1 Introduction

The Kontorovich-Lebedev transformation is defined as follows (cf. [8], [12], [15], [16], [17])

g(x) =

∫ ∞

0

Kix(y)f(y)dy, x > 0. (1.1)

Here Kµ(z) is the modified Bessel function [3], which is an independent solution of the
differential equation

z2d2u

dz2
+ z

du

dz
− (z2 + µ2)u = 0.
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When µ = ix, x ∈ R, z = y > 0 it is real valued and even with respect to x. If
f ∈ L2(R+; ydy) then g ∈ L2(R+; x sinh πxdx) (see [16], [17]) and the Parseval formula
holds ∞∫

0

x sinh πx|g(x)|2dx =
π2

2

∞∫

0

|f(y)|2ydy. (1.2)

In this case integral (1.1) converges in the mean square sense and can be written making
necessary truncations at zero and infinity. Moreover, the inverse transform has the form

yf(y) =
2

π2

∫ ∞

0

x sinh πxKix(y)g(x)dx, (1.3)

where integral (1.3) is in the mean square sense with the necessary truncation at infinity.
On the other hand, if f ∈ L1(R+; K0(y)dy), where K0(y) is the modified Bessel func-

tion of the index zero then inversion formula (1.3) can be interpreted at each Lebesgue
point of f (see in [15]) as

yf(y) =
4

π2
lim

α→π
2
−

∫ ∞

0

x sinh αx cosh
πx

2
Kix(y)g(x)dx. (1.4)

If also g ∈ L1(R+; x cosh πx
2

dx) one can pass to the limit in (1.4) under the integral sign
and we get (1.3) in Lebesgue integrable sense.

The modified Bessel function has the following asymptotic behaviour

Kµ(z) =
( π

2z

)1/2

e−z[1 + O(1/z)], z →∞, (1.5)

and near the origin

z|Reµ|Kµ(z) = 2µ−1Γ(µ) + o(1), z → 0, µ 6= 0, (1.6)

K0(z) = − log z + O(1), z → 0. (1.7)

Meanwhile, when x is restricted to any compact subset of R+ and τ tends to infinity we
have the following asymptotic [16, p. 20]

Kiτ (x) =

(
2π

τ

)1/2

e−πτ/2 sin

(
π

4
+ τ log

2τ

x
− τ

)
[1 + O(1/τ)] , τ →∞. (1.8)

The modified Bessel function can be represented by the integrals of the Fourier and Mellin
types [3], [10], Vol. I, [12], [15], [16]

Kµ(x) =

∫ ∞

0

e−x cosh u cosh µu du, (1.9)
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Kµ(x) =
1

2

(x

2

)µ
∫ ∞

0

e−t−x2

4t t−µ−1dt, (1.10)

sinh
πτ

2
Kiτ (x) =

∫ ∞

0

sin(x sinh u) sin τudu, (1.11)

cosh
πτ

2
Kiτ (x) =

∫ ∞

0

cos(x sinh u) cos τudu. (1.12)

The main aim of the paper is to establish the so-called uncertainty principles for the
operator (1.1), which say that a nonzero original and its image under transformation (1.1)
cannot be simultaneously too small in the pointwise or integrable decay. This comes as
a generalization of the classical Heisenberg uncertainty principle. It was extended to the
Fourier transform in [1], [4], [5], [7]. The corresponding principles have been proved also
for the Y -transform [9], the Dunkl transform [11] and recently for the Hankel transform
[14].

The structure of the paper is as follows: in Section 2 we will prove Hardy’s type
theorem for the Kontorovich-Lebedev transformation, which will drives us at the Hardy
uncertainty principle. Section 3 of the paper will be devoted to the Beurling, Cowling-
Price and Gelfand-Shilov theorems. Finally in Section 4 we will prove the Donoho-Stark
theorem.

2 Hardy uncertainty principle

Hardy’s classical theorem for the Fourier transform [5], [13] says that if |f(y)| ≤ Ce−ay2

and |(Fcf)(x)| ≤ Ce−
x2

4a , a > 0, then f(y) is a multiple of e−ay2
. Here C > 0 is a universal

constant, which is different in distinct places and

(Fcf)(x) =

√
2

π

∫ ∞

0

f(y) cos xydy, (2.1)

is the cosine Fourier transform.
Let us suppose that transformation (1.1) admits the following series expansion with

respect to an index of the modified Bessel functions

g(x) =
C

cosh(πx/2)

∞∑
n=0

αn

[
Ki(x

2
+n)

(a

2

)
+ Ki(x

2
−n)

(a

2

)]
, a > 0, (2.2)

where
∑∞

n=0 |αn| < ∞. We have

Theorem 1. Let g(x) satisfy (2.2) and |f(y)| ≤ Ce−
y2

4a . Then f(y) is a multiple of

e−
y2

4a .
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Proof. Taking (1.9) we find

Ki(x
2
+n)

(a

2

)
=

∫ ∞

0

e−
a
2

cosh u cos
(x

2
+ n

)
u du. (2.3)

Hence
∣∣∣Ki(x

2
+n)

(
a
2

)∣∣∣ ≤ K0

(
a
2

)
and clearly series (2.2) is uniformly convergent on R+.

Moreover, one can calculate the cosine Fourier transform of the function cosh(πx/2)g(x)
by changing the order of integration and summation. Indeed, invoking (2.3) we obtain

Fc(cosh(πt/2)g(t))(x) = C

∞∑
n=0

αn

∫ ∞

0

[
Ki(x

2
+n)

(a

2

)
+ Ki(x

2
−n)

(a

2

)]
cos(xt)dt

= C
∞∑

n=0

αn

∫ ∞

−∞
Ki( t

2
−n)

(a

2

)
eixtdt = Ce−

a
2

cosh 2x

∞∑
n=0

αne
2ixn. (2.4)

Therefore |Fc(cosh(πt/2)g(t))(x)| ≤ Ce−
a
2

cosh 2x = O
(
e−a sinh2 x

)
. Further, it is easily seen

under conditions of the theorem and asymptotic behaviour of the modified Bessel function
(1.5), (1.6), (1.7) that f ∈ L1(R+; K0(y)dy). Moreover, by virtue of the asymptotic for-
mula with respect to an index (1.8) we verify that g ∈ L1(R+; x cosh πx

2
dx). Consequently,

calling (1.3), (1.4) we arrive at the representation

yf(y) =
4

π2

∫ ∞

0

x sinh
πx

2
cosh

πx

2
Kix(y)g(x)dx. (2.5)

However, since sinh πx
2

Kix(y) is bounded for any y > 0 (see (1.8)) we take the represen-
tation (1.11) and substitute it in (2.5). As a result we obtain

yf(y) =
4

π2
lim

N→∞

∫ N

0

x cosh
πx

2
g(x)

∫ ∞

0

sin(y sinh u) sin xududx

=
4

π2
lim

N→∞

∫ N

0

x cosh
πx

2
g(x)

∫ ∞

0

sin(yv) sin(x log(v +
√

v2 + 1))
dvdx√
v2 + 1

.

Via Abel’s test we observe that the latter integral is uniformly convergent with respect
to x ∈ [0, N ]. Thus inverting the order of integration we come out with

yf(y) =
4

π2
lim

N→∞

∫ ∞

0

sin(yv)√
v2 + 1

∫ N

0

x cosh
πx

2
g(x) sin(x log(v +

√
v2 + 1))dxdv. (2.6)

Moreover, the integrability condition g ∈ L1(R+; x cosh πx
2

dx) and the Abel test allow us
to pass to the limit under the integra sign in (2.6). Hence returning to the old variables
we get

yf(y) =
4

π2

∫ ∞

0

sin(y sinh u)

∫ ∞

0

x cosh
πx

2
g(x) sin(ux)dxdu
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= − 4

π2

∫ ∞

0

sin(y sinh u)
d

du

∫ ∞

0

cosh
πx

2
g(x) cos(ux)dxdu. (2.7)

We note that the differentiation under the integral sign in (2.7) is motivated by the
uniform convergence by u ∈ R+ of the latter integral with respect to x. Hence integrating
by parts in (2.7) and eliminating the outer terms owing to the Riemann-Lebesgue lemma
we take into account (2.1) to derive the representation

f(y) =
2
√

2

π
√

π

∫ ∞

0

cos(y sinh u) cosh uFc(cosh(πt/2)g(t))(u)du. (2.8)

Hence invoking the above estimates and the value of an elementary integral we find for
any complex variable z, |z| = r,

|f(z)| < C

∫ ∞

0

cosh(r sinh u) cosh u|Fc(cosh(πt/2)g(t))(u)|du

≤ C

∫ ∞

0

cosh(r sinh u) cosh ue−a sinh2 udu = C

∫ ∞

0

cosh(rt)e−at2dt = Ce
r2

4a .

Thus f(
√

z) is an entire function, which is O(e
|z|
4a ) for all z ∈ C and f(

√
y) = O(e−

y
4a ), y ∈

R+. Therefore according to [13], Theorem 128 f(y) = Ce−
y2

4a . Theorem 1 is proved.
Corollary 1. Under conditions of Theorem 1

g(x) = C sech(πx/2)Kix/2

(a

2

)
= O(e−

3π
4

x), x → +∞.

Proof. Indeed, substituting the value f(y) = Ce−
y2

4a into (1.1) we just call the relation
2.16.8.3 from [10], Vol. 2 to get the result. The required asymptotic behavior at infinity
immediately follows from (1.8). Corollary 1 is proved.

Remark 1. As we see g(x) from the corollary admits the representation (2.2) with
α0 6= 0, αn = 0, n = 1, 2 . . . .

As a consequence we are ready to state an analog of the Hardy uncertainty principle
for the Kontorovich-Lebedev transformation (1.1).

Corollary 2. Let |f(y)| ≤ Ce−by2
, b > 1

4a
. Then f(y) = 0.

This principle can be formulated in terms of the composition Fc(cosh(πt/2)g(t)). Pre-
cisely, we have

Corollary 3. One cannot have both |f(y)| ≤ Ce−ay2
, a > 0 and |Fc(cosh(πt/2)g(t))(x)| ≤

Ce−b sinh2 x, b > 0, where ab > 1
4

and g is the Kontorovich-Lebedev transform (1.1) unless
f(y) = 0.

As a consequence of Theorem 1 and Corollary 1 we get
Corollary 4. Let |f(y)| ≤ Ce−ay2

, a > 0 and |Fc(cosh(πt/2)g(t))(x)| ≤ Ce−b sinh2 x, b >
0, where 0 < ab ≤ 1

4
. If |g(x)| ≤ Ce−cx, x > 0, c > 3π

4
, then f(y) = 0.
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3 Beurling, Cowling-Price and Gelfand-Shilov theo-

rems

The Beurling condition related to the cosine Fourier transform (2.1) says (cf. [7]), that if
∫

R+

∫

R+

|f(y)(Fcf)(x)|exydxdy < ∞, (3.1)

then f = 0.
Here we will prove an analog of the Beurling theorem for the Kontorovich-Lebedev

transformation (1.1).
Theorem 2. Let ∫

R+

∫

R+

|f(y)g(x)|Kx(y)dxdy < ∞. (3.2)

Then f = 0.
Proof. In fact, representation (1.9) for the modified Bessel function yields the in-

equality Kx(y) > K0(y). Consequently, condition (3.2) implies

∞ >

∫

R+

∫

R+

|f(y)g(x)|Kx(y)dxdy ≥
∫

R+

|f(y)|K0(y)dy

∫

R+

|g(x)|dx.

Therefore, f ∈ L1(R+; K0(y)dy), g(x) ∈ L1(R+; dx). The latter condition guarantees the
existence of the cosine Fourier transform of g. We will show that

(Fcg)(λ) =

√
π

2

∫ ∞

0

e−y cosh λf(y)dy. (3.3)

Indeed, denoting by h(λ) the right-hand side of (3.3) we find

∫

R+

|h(λ)| dλ ≤
√

π

2

∫

R+

∫

R+

e−y cosh λ|f(y)|dydλ =

√
π

2

∫

R+

|f(y)|K0(y)dy < ∞.

So h ∈ L1(R+; dλ) and (Fch)(x) can be now easily calculated by using (1.9) and Fubini’s
theorem. Thus we obtain

(Fch)(x) =

∫ ∞

0

cos xλ

∫ ∞

0

e−y cosh λf(y)dydλ =

∫ ∞

0

Kix(y)f(y)dy = g(x).

Since g ∈ L1(R+; dx) the inversion theorem for the cosine Fourier transform gives (Fcg)(λ) =
h(λ) and we establish equality (3.3).

Let us verify the Beurling condition (3.1) for g, Fcg. We have
∫

R+

∫

R+

|g(x)(Fcg)(λ)|exλdxdλ <
√

2π

∫

R+

∫

R+

|g(x)| cosh xλ
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×
∫ ∞

0

e−y cosh λ|f(y)|dydxdλ =
√

2π

∫

R+

∫

R+

|f(y)g(x)|Kx(y)dxdy < ∞.

Thus g = 0. Combining with (3.3) the latter condition yields

∫ ∞

0

e−y cosh λf(y)dy = 0, λ ∈ R+ (3.4)

for any f ∈ L1(R+; K0(y)dy). We will show that in this case f = 0. In fact, choosing any
λ0 > 1 we treat the left-hand side of equality (3.4) as the Laplace integral (Lf)(cosh λ),
where

(Lf)(z) =

∫ ∞

0

e−yzf(y)dy,

which is zero via (3.4) at least at the countable set of points satisfying the condition
cosh λn = λ0 + jn, j > 0, n = 0, 1, 2, . . . . Moreover, since (see (1.5), (1.7))

∫ ∞

0

e−y cosh λn|f(y)|dy < ∞, n = 0, 1, 2, . . . ,

then by virtue of [2], Chapter I we get that f(y) = 0 almost for all y ∈ R+, i.e. f = 0 in
the Lebesgue sense.

Theorem 2 is proved.
Let us prove an analog of the Gelfand-Shilov uncertainty principle for the transforma-

tion (1.1). Indeed, it was shown in [4] that if

∫

R+

|f(y)|e(ay)p/pdy < ∞,

∫

R+

|(Fcf)(x)|e(bx)q/qdx < ∞, (3.5)

with 1 < p, q < ∞, p−1 + q−1 = 1 and ab > 1/4, then f = 0.
We have accordingly
Theorem 3. Let 1 < p, q < ∞, p−1 + q−1 = 1, [q] be an integer part of q and

∫

R+

|f(y2)|e
(2([q]+1))!

4y2 dy < ∞,

∫

R+

|g(x)|exp/pdx < ∞. (3.6)

Then f = 0.
Proof. By using the Young inequality xy ≤ xp

p
+ yq

q
and representation (1.9) for the

modified Bessel function we derive

Kx(y) =

∫ ∞

0

e−y cosh u cosh xu du ≤
∫ ∞

0

e−y cosh u+xu du

≤ exp/p

∫ ∞

0

e−y cosh u+uq

q du = exp/p

(∫ 1

0

+

∫ ∞

1

)
e−y cosh u+uq

q du. (3.7)
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Meanwhile, ∫ 1

0

e−y cosh u+uq

q du < e

∫ 1

0

e−y cosh udu < eK0(y),

∫ ∞

1

e−y cosh u+uq

q du < ([q] + 1)

∫ ∞

1

e−y cosh u+u[q]+1

u[q]du.

Therefore an elementary inequality cosh u > u2([q]+1)

(2([q]+1))!
gives the following estimation of

the latter integral
∫ ∞

1

e−y cosh u+uq

q du < ([q] + 1)

∫ ∞

1

e−y cosh u+u[q]+1

u[q]du

< ([q] + 1)

∫ ∞

1

e−
yu2([q]+1)

(2([q]+1))!
+u[q]+1

u[q]du =

∫ ∞

1

e−
yv2

(2([q]+1))!
+vdv

<
C√
y
e(2([q]+1))!/(4y).

Combining with (3.7) and taking into account the asymptotic formulas (1.5), (1.7) we
obtain the estimate

e−xp/pKx(y) < eK0(y) +
C√
y
e(2([q]+1))!/(4y) <

C√
y
e(2([q]+1))!/(4y).

Consequently, with conditions (3.2), (3.6) it yields
∫

R+

∫

R+

|f(y)g(x)|Kx(y)dxdy < C

∫

R+

|g(x)|exp/pdx

∫

R+

|f(y)|e(2([q]+1))!/(4y) dy√
y

= C

∫

R+

|g(x)|exp/pdx

∫

R+

|f(y2)|e
(2([q]+1))!

4y2 dy < ∞.

Applying Theorem 2 we get the result. Theorem 3 is proved.
Finally in this section we establish the Cowling -Price theorem for the Kontorovich-

Lebedev transform (1.1). This will be an analog of the following result for the Fourier
transform (2.1) (cf. [1]): if 1 ≤ p, q < ∞ and

∣∣∣
∣∣∣eax2

f(x)
∣∣∣
∣∣∣
Lp(R+)

+
∣∣∣
∣∣∣ebλ2

(Fcf)(λ)
∣∣∣
∣∣∣
Lq(R+)

< ∞

with ab > 1/4, then f = 0.
We have
Theorem 4. If

∣∣∣
∣∣∣eax2

g(x)
∣∣∣
∣∣∣
Lp(R+)

< ∞,
∣∣∣
∣∣∣e6b2/y2

f(y2)
∣∣∣
∣∣∣
L1(R+)

< ∞, (3.8)
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where p ∈ [1,∞) and ab > 1/4, then f = 0.
Proof. Indeed, choosing a0, b0 such that 0 < a0 < a 0 < b0 < b, a0b0 > 1/4 we easily

find that a0x
2 + b0y

2 ≥ 2
√

a0b0xy ≥ xy. Furthermore, with the Hölder inequality it gives

∫

R+

|g(x)|ea0x2

dx ≤
∣∣∣
∣∣∣eax2

g(x)
∣∣∣
∣∣∣
Lp(R+)

∣∣∣
∣∣∣e−(a−a0)x2

∣∣∣
∣∣∣
Lp′ (R+)

< ∞,

where p′ is the conjugate exponent (p−1 + p′−1 = 1). Taking (3.2) we deduce similar to
(3.7)

∫

R+

∫

R+

|f(y)g(x)|Kx(y)dxdy <

∫

R+

|g(x)|ea0x2

dx

∫

R+

|f(y)|
∫ ∞

0

e−y cosh u+b0u2

dudy

< C
∣∣∣
∣∣∣eax2

g(x)
∣∣∣
∣∣∣
Lp(R+)

∫

R+

|f(y)|
(∫ 1

0

+

∫ ∞

1

)
e−y cosh u+b0u2

dudy.

But (∫ 1

0

+

∫ ∞

1

)
e−y cosh u+b0u2

du < CK0(y) + 2

∫ ∞

1

e−y u4

4!
+bu2

udu

= CK0(y) +

∫ ∞

1

e−y v2

4!
+bvdv < C

e6b2/y

√
y

.

Hence

∫

R+

∫

R+

|f(y)g(x)|Kx(y)dxdy < C
∣∣∣
∣∣∣eax2

g(x)
∣∣∣
∣∣∣
Lp(R+)

∫

R+

|f(y)|e
6b2/y

√
y

dy

= C
∣∣∣
∣∣∣eax2

g(x)
∣∣∣
∣∣∣
Lp(R+)

∣∣∣
∣∣∣e6b2/y2

f(y2)
∣∣∣
∣∣∣
L1(R+)

< ∞.

Thus Theorem 2 gives the result. Theorem 4 is proved.

4 Donoho-Stark theorem

As it is known in [17], when f ∈ L2(R+; ydy), then g ∈ L2(R+; x sinh πxdx) and vice versa.
Moreover, by virtue of (1.2) ||g||L2(R+;x sinh πxdx) = π√

2
||f ||L2(R+;ydy) and the Kontorovich-

Lebedev integrals (1.1), (1.3) can be interpreted accordingly in the mean convergence
sense with respect to the related norm

g(x) = l.i.m.N→∞

∫ N

1/N

Kix(y)f(y)dy, (4.1)
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f(y) =
2

π2
l.i.m.N→∞

∫ N

0

x sinh πx
Kix(y)

y
g(x)dx. (4.2)

Let X = [0, X], Y = [1/Y, Y ] the Lebesgue measurable sets and |X|, |Y| be their Lebesgue
measures. Denoting by PX the operator

(PXg)(x) =

{
g(x), if x ∈ X,

0, if x /∈ X,

we have
||g − PXg||L2(R+;x sinh πxdx) ≤ εX,

and this means that g is εX-concentrated on the set X. Plainly ||PX|| = 1. Another
auxiliary operator is given by the formula

(QYg)(x) =

∫

Y
Kix(y)f(y)dy,

where f is the reciprocal inverse Kontorovich-Lebedev transform (4.2). If h = QYg the
transform (4.2) ĥ(y) is equal to

ĥ(y) =

{
f(y), if y ∈ Y,

0, if y /∈ Y.

Meanwhile by Parseval’s equality (1.2) we find

∣∣∣
∣∣∣f − ĥ

∣∣∣
∣∣∣
L2(R+;ydy)

=

√
2

π
||g −QYg||L2(R+;x sinh πxdx) , (4.3)

and f is ε-concentrated on Y if, and only if, ||g −QYg||L2(R+;x sinh πxdx) ≤ ε. Moreover, one
can show that ||QY|| = 1.

Now we are ready to prove the following analog of the Donoho-Stark uncertainty
principle (cf. [6])

Theorem 5. Let g is εX-concentrated on X = [0, X] and its Kontorovich-Lebedev
reciprocity f is εY-concentrated on Y = [1/Y, Y ]. Then

|X|3/2 |Y| ≥ π7/4
√

24

Γ2(1/4)
(1− (ε2

X + ε2
Y)

1/2)2. (4.4)

Proof. Without loss of generality one can suppose that Y > 1. Since g is εX-
concentrated on X integral (1.3) exists as a Lebesgue integral and is uniformly conver-
gent with respect to y ∈ Y. Hence we calculate the following composition of operators
(PXQYg)(x). Indeed, we derive

(PXQYg)(x) =
2

π2
PX

∫

Y

Kix(y)

y

∫ ∞

0

t sinh πtKit(y)g(t)dtdy
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=
2

π2
PX

∫ ∞

0

t sinh πtg(t)

∫

Y
Kix(y)Kit(y)

dy

y
dt

=

∫ ∞

0

K(x, t)g(t)dt,

where

K(x, t) =

{
2
π2 t sinh πt

∫
YKix(y)Kit(y)dy

y
, if x < X,

0, if x ≥ X.

Further,

||PXQYg||L2(R+;x sinh πxdx) ≤ ||PXQY|| ||g||L2(R+;x sinh πxdx)

and the norm of composition PXQY does not exceed its Hilbert-Schmidt norm, which is
equal to (∫ ∞

0

∫ ∞

0

|K(x, t)|2x sinh πx

t sinh πt
dtdx

)1/2

.

Therefore,

||PXQY||2L2(R+;x sinh πxdx) ≤
∫ ∞

0

∫ ∞

0

|K(x, t)|2x sinh πx

t sinh πt
dtdx

=

∫ X

0

∫ ∞

0

|K(x, t)|2x sinh πx

t sinh πt
dtdx. (4.5)

But the inner integral with respect to t in (4.5) can be calculated by the Parseval equality

(1.2) regarding K(x,t)
t sinh πt

as the Kontorovich-Lebedev transform (1.1) of

ϕ(y) =

{
2
π2

Kix(y)
y

, if y ∈ Y,

0, if y /∈ Y.

Consequently, ∫ ∞

0

|K(x, t)|2 dt

t sinh πt
=

2

π2

∫

Y
K2

ix(y)
dy

y

and we come out with

||PXQY||2L2(R+;x sinh πxdx) ≤
2

π2

∫

X

∫

Y
x sinh πxK2

ix(y)
dy

y
dx. (4.6)

Let us estimate the right-hand side of (4.6). Applying twice the Schwarz inequality we
obtain

2

π2

∫

X

∫

Y
x sinh πxK2

ix(y)
dy

y
dx ≤ 2

π2

(
Y − 1

Y

)1/2 ∫

X
x sinh πx

(∫

Y
K4

ix(y)dy

)1/2

dx
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≤ 2

π2
√

3
|X|3/2

√
|Y|

(∫

X

∫

Y
sinh2 πxK4

ix(y)dydx

)1/2

.

On the other hand by relation 2.16.52.17 from [10], Vol. 2 and the Parseval equality for
the sine Fourier transform we find

∫ ∞

0

sinh2 πxK4
ix(y)dx =

π3

8

∫ ∞

0

J2
0 (2y sinh(u/2)) du,

where J0(z) is the Bessel function of the first kind. Consequently, invoking relation
2.12.31.2 from [10], Vol. 2 and the Hölder inequality we get

2

π2
√

3
|X|3/2

√
|Y|

(∫

X

∫

Y
sinh2 πxK4

ix(y)dydx

)1/2

≤ 1√
6π
|X|3/2

√
|Y|

(∫

Y

∫ ∞

0

J2
0 (2y sinh(u/2)) dudy

)1/2

=
1√
3π
|X|3/2

√
|Y|

×
(∫

Y

∫ ∞

0

J2
0 (v)

dvdy√
v2 + 4y2

)1/2

≤ |X|3/2
√
|Y|√

6π

(∫

Y

dy√
y

∫ ∞

0

J2
0 (v)

dv√
v

)1/2

=
Γ2(1/4)

2π7/4
√

6
|X|3/2

√
|Y|

(∫

Y

dy√
y

)1/2

≤ Γ2(1/4)

2π7/4
√

6
|X|3/2|Y|7/8

(∫

Y

dy

y2

)1/8

=
Γ2(1/4)

2π7/4
√

6
|X|3/2|Y|.

Thus combining with (4.5) we derive finally the inequality

||PXQY||L2(R+;x sinh πxdx) ≤ Γ(1/4)√
2
√

6π7/8
|X|3/4|Y|1/2.

Assuming that |X|3/4|Y|1/2 <

√
2
√

6π7/8

Γ(1/4)
we have ||PXQY||L2(R+;x sinh πxdx) < 1, and therefore,

I − PXQY is invertible in L2(R+; x sinh πxdx). Moreover,

||(I − PXQY)
−1|| ≤

∞∑
n=0

||PXQY||n ≤
∞∑

n=0

[
Γ(1/4)√
2
√

6π7/8
|X|3/4|Y|1/2

]n

=

√
2
√

6π7/8

√
2
√

6π7/8 − Γ(1/4)|X|3/4|Y|1/2
.

However,
I = PX + PR+\X = PXQY + PXQR+\Y + PR+\X
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and the orthogonality PX and PR+\X gives

||PXQR+\Yg||2L2(R+;x sinh πxdx) + ||PR+\Xg||2L2(R+;x sinh πxdx)

= ||PXQR+\Yg + PR+\Xg||2L2(R+;x sinh πxdx).

Taking into account that ||PX|| = 1 we find

||g||2L2(R+;x sinh πxdx) ≤ ||(I − PXQY)
−1||2||(I − PXQY)g||2L2(R+;x sinh πxdx)

≤
( √

2
√

6π7/8

√
2
√

6π7/8 − Γ(1/4)|X|3/4|Y|1/2

)2 [||PXQR+\Yg||2L2(R+;x sinh πxdx)

+||PR+\Xg||2L2(R+;x sinh πxdx)

] ≤
( √

2
√

6π7/8

√
2
√

6π7/8 − Γ(1/4)|X|3/4|Y|1/2

)2

× [||QR+\Yg||2L2(R+;x sinh πxdx) + ||PR+\Xg||2L2(R+;x sinh πxdx)

]
.

Now since g is εX-concentrated then ||PR+\Xg||L2(R+;x sinh πxdx) ≤ εX. Furthermore, since f is
εY-concentrated then owing to (4.3) ||QR+\Yg||L2(R+;x sinh πxdx) ≤ εY. Therefore considering
g of unit norm we arrive at the inequality

1 ≤
( √

2
√

6π7/8

√
2
√

6π7/8 − Γ(1/4)|X|3/4|Y|1/2

)2

(ε2
X + ε2

Y),

which is equivalent to (4.4). Theorem 5 is proved.
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Berlin (2005).
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