
SIMPLE CONJUGACY INVARIANTS FOR BRAIDS

MICHAL̷ MISIUREWICZ AND ANA RODRIGUES

Abstract. We define simple conjugacy invariants of braids, which we call turn-
ing numbers, and investigate their properties. Since our motivation comes from
the investigation of periodic orbits of orientation preserving disk homeomorphisms,
turning numbers work best for braids with the cyclic permutation, especially for
positive permutation cyclic braids.

1. Introduction

Our main motivation is the study of braid types of periodic orbits of orientation
preserving disk homeomorphisms.

Let 𝑓 and 𝑔 be orientation preserving disk homeomorphisms with periodic orbits
𝑃 and 𝑄 respectively (for simplicity, we will consider only orbits contained in the
interior of the disk). Two such pairs (𝑓, 𝑃 ) and (𝑔,𝑄) are equivalent if 𝑓 is conjugate
(in the dynamical systems meaning) to some 𝑔 via a homeomorphism that maps 𝑃
to 𝑄 and 𝑔 is isotopic to 𝑔 relative to 𝑄 (that is, via an isotopy that fixes the points
of 𝑄). Equivalence classes are called braid types ([5]) or patterns ([8], [9]).

Thus, basically we are looking at the mapping classes of the homeomorphism rel-
ative to the periodic orbit. There is a well known connection with braids, explaining
the name “braid types.” Take the suspension flow of the homeomorphism with a
periodic orbit 𝑃 and then the trajectory of any point 𝑥 ∈ 𝑃 (cut at the level 0) can
be identified with a braid. Since we pass from a 3-dimensional picture, where the
points of the orbit are in the interior of the disk, to a basically 2-dimensional one,
where they are ordered on an interval, the braid corresponding to an orbit is defined
only up to an algebraic conjugacy (that is, the conjugacy in the braid group; we will
refer to it just as conjugacy). Therefore, in order to study braid types with the tools
of the braid theory, we need some effective invariants of braid conjugacies.

There is a forcing relation on braid types [5]. A braid type 𝐴 forces braid type 𝐵
if every orientation preserving disk homeomorphism exhibiting 𝐴 has to exhibit 𝐵.
This relation is a partial ordering [5].

According to the Nielsen-Thurston classification [11], if 𝑓 is an orientation preserv-
ing disk homeomorphism and 𝑃 is a periodic orbit, then there is a homeomorphism
𝑔, isotopic to 𝑓 relative to 𝑃 (so in particular, 𝑔∣𝑃 = 𝑓 ∣𝑃 ), which is one of the three
types:

(a) finite order (we will call it twist),
(b) pseudo-Anosov,
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(c) reducible.

When studying forcing, it is important to know what type our orbit is. If it is a twist,
then it does not force anything except a fixed point (and itself). If it is reducible,
the problem of forcing can be also reduced to the study of forcing by two simpler
orbits. Therefore we need to relate invariants of conjugacy of braids to the above
classification.

From this point of view one useful invariant is known: the exponent sum (or wraith)
es(𝐵) of 𝐵 (we define it later). The new invariants that we will define here, turning
numbers, are refinements of the exponent sum.

Because of our motivation, we will concentrate mainly on the braids with cyclic
permutations. We will call them cyclic braids.

In the sequel, we will assume that the reader knows the basic notions of the braid
theory. For an exposition on braids see, for example, [2], [3] or [6].

In Section 2 we define the turning numbers of a braid and we prove the main result
of this paper, that turning numbers are invariants of conjugacy. In Section 3 we define
extensions of braids by other braids and show how to compute their turning numbers.
In Section 4 we relate turning numbers with braids that come from periodic orbits
of interval maps. In Section 5 we investigate turning numbers for twist braids and
connect our results with those of [10]. In Section 6 we investigate connections between
the first and the second turning numbers. In Section 7 we give an example of two
relatively simple braids which have the same turning numbers but are not conjugate.

2. Definition and basic properties

Let 𝐵 be a braid with 𝑛 strands (an element of the 𝑛-th braid group) and permu-
tation 𝜏 (that is, the 𝑖-th strand joins 𝑖 in the bottom with 𝜏(𝑖) at the top; we assume
that the strands go up – this is because of the suspension model). For each crossing
of two strands we define its sign in a standard way: it is ±1 depending on whether
the left strand goes over the right one or vice versa. To fix notation, assume that in
the former case it is +1, and in the latter case −1. We also agree that a strand does
not cross itself. Now for 𝑘 = 1, 2, . . . , 𝑛− 1 we define 𝑇𝑘(𝑖) as the sum of signs of the
crossings between the 𝑖-th and 𝜏𝑘(𝑖)-th strands. Finally, we define the 𝑘-th turning
number of 𝐵 as

TN𝑘(𝐵) =
1

2

𝑛∑
𝑖=1

𝑇𝑘(𝑖).

Theorem 2.1. For each 𝑘, the 𝑘-th turning number of a braid is well defined.

Proof. In order to prove it, we have to show that the Artin relations preserve the
numbers 𝑇𝑘(𝑖). However, those relations do not change the number or signs of cross-
ings of any given pair of strands, so the collection of the numbers 𝑇𝑘(𝑖) remains the
same (although the 𝑖’s can be permuted). □
Lemma 2.2. Turning numbers are integers.

Proof. If 𝜏𝑘(𝑖) − 𝑖 and 𝜏𝑘+1(𝑖) − 𝜏(𝑖) have the same signs, then the 𝑖-th and 𝜏𝑘(𝑖)-
th strands cross at even number of points (this number may be 0), so 𝑇𝑘(𝑖) is even.
Similarly, if those signs are opposite, then 𝑇𝑘(𝑖) is odd. Finally, 𝜏𝑘(𝑖) = 𝑖 is equivalent
to 𝜏𝑘+1(𝑖) = 𝜏(𝑖) and then 𝑇𝑘(𝑖) = 0; we count it as “the same signs.” Set 𝑎(𝑖) = 0
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if 𝜏𝑘(𝑖) − 𝑖 ≥ 0 and 𝑎(𝑖) = 1 if 𝜏𝑘(𝑖) − 𝑖 < 0. Then 𝑇𝑘(𝑖) ≡ 𝑎(𝑖) − 𝑎(𝜏(𝑖)) modulo 2.
Since 𝜏 is a cyclic permutation, we get modulo 2

𝑛∑
𝑖=1

𝑇𝑘(𝑖) ≡
𝑛∑

𝑖=1

𝑎(𝑖) −
𝑛∑

𝑖=1

𝑎(𝜏(𝑖)).

However, the right-hand side above is 0, so
∑𝑛

𝑖=1 𝑇𝑘(𝑖) is even. □
Lemma 2.3. If a braid 𝐵 is cyclic then the 𝑘-th and (𝑛− 𝑘)-th turning numbers of
𝐵 are equal. Moreover, for every 𝑖 the (𝑖𝑛+ 𝑘)-th and 𝑘-th turning numbers of 𝐵 are
equal.

Proof. A crossing of the 𝑖-th and 𝜏𝑘(𝑖)-th strands is also a crossing of the 𝜏𝑘(𝑖)-th
and 𝜏𝑛−𝑘(𝜏𝑘(𝑖))-th strands. This proves the first statement. The second one follows
from the fact that 𝜏 𝑖𝑛+𝑘 = 𝜏𝑘. □

The exponent sum (or wraith) es(𝐵) of 𝐵 is defined as the sum of signs of all
crossings in 𝐵.

Theorem 2.4. If a braid 𝐵 with 𝑛 strands is cyclic then we have

es(𝐵) =

𝑛−1∑
𝑘=1

TN𝑘(𝐵).

Proof. If we take the sum of the numbers 𝑇𝑘(𝑖) over 𝑘 = 1, . . . , 𝑛−1 and 𝑖 = 1, . . . , 𝑛,
we get 2 es(𝐵), because in the sum every crossing is counted twice (as the crossing of
of the 𝑖-th and 𝜏𝑘(𝑖)-th strands and as the crossing of the 𝜏𝑘(𝑖)-th and 𝜏𝑛−𝑘(𝜏𝑘(𝑖))-th
strands). However, this sum is also equal to 2

∑𝑛−1
𝑘=1 TN𝑘(𝐵). □

In the next proof we will be using multiplication in the braid and permutation
groups [6]. To avoid misunderstandings, let us fix the notation now. We will use the
opposite order than for composition of functions. That is, if 𝜎 and 𝜏 are permutations,
then (𝜎𝜏)(𝑖) = 𝜏(𝜎(𝑖)). Similarly, if 𝐴 and 𝐵 are braids, then 𝐴𝐵 will be the braid
which we get by following first the strands of the braid 𝐴, and then the strands of
the braid 𝐵.

Theorem 2.5. For each 𝑘, the 𝑘-th turning number of a braid is an invariant of
conjugacy.

Proof. To prove that TN𝑘 is an invariant of conjugacy, consider the braid 𝐶 =
𝐷−1𝐵𝐷, where a braid 𝐷 has permutation 𝜎. Then the permutation of 𝐶 is 𝜎−1𝜏𝜎.
To distinguish the numbers 𝑇𝑘(𝑖) for 𝐵 and 𝐶 let us add corresponding superscripts.
We have (𝜎−1𝜏𝜎)𝑘 = 𝜎−1𝜏𝑘𝜎, so 𝑇𝐶

𝑘 (𝑖) is equal to the sum of the signs of the crossings
of the 𝑖-th and 𝜎−1𝜏𝑘𝜎(𝑖)-th strands of 𝐶. Those crossings are of three types: the
crossings of the 𝑖-th and 𝜎−1𝜏𝑘𝜎(𝑖)-th strands of 𝐷−1, the crossings of the 𝜎−1(𝑖)-th
and 𝜎−1𝜏𝑘(𝑖)-th strands of 𝐵, and the crossings of the 𝜎−1𝜏(𝑖)-th and 𝜎−1𝜏𝑘+1(𝑖)-th
strands of 𝐷. Respectively, the sum over 𝑖 that gives us TN𝑘(𝐶) can be written as
the sum of three sums. The second of those three sums is clearly TN𝑘(𝐵). The sum
of the first and third sums is 0, because the crossings of the 𝑖-th and 𝜎−1𝜏𝑘𝜎(𝑖)-th
strands of 𝐷−1 are in one-to-one correspondence with the crossings of the 𝜎−1(𝑖)-th
and 𝜎−1𝜏𝑘(𝑖)-th strands of 𝐷, but have opposite signs. Thus, TN𝑘(𝐶) = TN𝑘(𝐵). □
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Theorem 2.6. If 𝐵 is a cyclic braid with 𝑛 strands then for each 𝑘 and 𝑚 we have
TN𝑘(𝐵

𝑚) = 𝑚TN𝑘𝑚(𝐵).

Proof. We can think of 𝐵𝑚 as 𝑚 copies of 𝐵 stacked upon one another, forming 𝑚
levels. Each crossing occurs on some level. The permutation of 𝐵𝑚 is 𝜏𝑚. Thus,
counting the crossings occurring at a given level and contributing to TN𝑘(𝐵

𝑚) is the
same as counting the crossings for 𝐵, contributing to TN𝑘𝑚(𝐵). There are 𝑚 levels,
so we get TN𝑘(𝐵

𝑚) = 𝑚TN𝑘𝑚(𝐵). □

Note that when applying the above theorem, we can take 𝑘𝑚 modulo 𝑛, since the
𝑘-th and ℓ-th turning numbers are the same if 𝑘 − ℓ is divisible by 𝑛.

3. Extensions

As we mentioned in the introduction, one of the possibilities in the Nielsen-Thurston
classification of periodic orbits is that the orbit is reducible. In such a case the
structure of the orbit (call it 𝑃 ) is as follows. Up to isotopy rel. 𝑃 , one can find a
system of disks that are permuted by the map and 𝑃 is contained in their union. In
each disk the number of elements of 𝑃 is the same, and it is larger than 1 but smaller
than the period of 𝑃 (in particular, this is impossible if the period of 𝑃 is a prime
number). Then we can consider two orbits: the outer one (call it 𝑅) is obtained by
collapsing each disk to a point; the inner one (call it 𝑄) is obtained by looking at
one disk and taking the smallest iterate of the homeomorphism that maps this disk
back to itself. In such a case one calls 𝑃 an extension of 𝑅 by 𝑄, and similarly, the
braid type of 𝑃 is the extension of the braid type of 𝑅 by the braid type of 𝑄. For
more information, see [8] or [9].

Translating this idea to the language of braids, for braids 𝐵 and 𝐶, where 𝐵 is
cyclic, we can produce an extension of 𝐵 by 𝐶 as follows (see Figure 1). We replace

extension of     by

B

B C C

Figure 1. Construction of an extension.

each strand of 𝐵 by a wide “tape” and insert into each tape some braid (skewed,
because the top and the bottom of the tape are disjoint). Each of the braids in the
tapes has the same number of strands, so we can multiply them in the order given
by the permutation of 𝐵. In other words, we follow the tape from the bottom to the
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top. then we jump vertically down, etc., until we get back to the place from which
we started. The braid that we get this way should be 𝐶.

Note that we have some freedom in the construction, but all braids obtained as an
extension of 𝐵 by 𝐶 are conjugate. Therefore we will use the name “extension of 𝐵
by 𝐶” for any braid conjugate to the ones obtained in the above construction.

Now we will show how to compute turning numbers of an extension of 𝐵 by 𝐶 from
the turning numbers of 𝐵 and 𝐶.

Theorem 3.1. Let 𝐵 be a cyclic braid with 𝑛 strands, 𝐶 a braid with 𝑟 strands, and
let 𝐷 be an extension of 𝐵 by 𝐶. If 𝑘 is divisible by 𝑛 then TN𝑘(𝐷) = TN𝑘/𝑛(𝐶).
Otherwise, TN𝑘(𝐷) = 𝑟TN𝑘(𝐵). Moreover, es(𝐷) = 𝑟2 es(𝐵) + es(𝐶).

Proof. We may assume that 𝐷 is the braid produced in the construction described
earlier in this section. Consider first the case when 𝑘 is divisible by 𝑛. Then each
crossing of strands number 𝑖 and 𝜏𝑘(𝑖), where 𝜏 is the permutation of 𝐷, occurs inside
of a tape. Therefore it can be identified with the crossing of some strands number 𝑗
and 𝜂𝑘/𝑛(𝑗) of 𝐶 (where 𝜂 is the permutation of 𝐶), with the same sign. This is a
one-to-one correspondence, and therefore TN𝑘(𝐷) = TN𝑘/𝑛(𝐶).

Consider now the case when 𝑘 is not divisible by 𝑛. Then each crossing of strands
number 𝑖 and 𝜏𝑘(𝑖) comes from a crossing of tapes, so it comes from the crossing of
some strands number 𝑗 and 𝜁𝑘(𝑗) of 𝐵 (where 𝜁 is the permutation of 𝐵), with the
same sign. There are 𝑟 strands of 𝐷 in a tape, so each such 𝑗 works for 𝑟 different
numbers 𝑖. Therefore TN𝑘(𝐷) = 𝑟TN𝑘(𝐵).

To compute es(𝐷), observe that counting with signs, there are 𝑟2 es(𝐵) crossings
of strands of 𝐷 that belong to different tapes, and es(𝐶) crossings of strands that
belong to the same tape. □

4. Connection with interval maps

If 𝑓 is a continuous interval map with a periodic orbit 𝑃 then a homeomorphism of
a “thick interval,” which is homeomorphic to a disk, can be associated to it. Let us
call the corresponding periodic orbit of this homeomorphism 𝑃 ′. The interval defines
the natural ordering on 𝑃 , so when considering a braid associated to 𝑃 ′, we have a
natural choice of a braid. This braid is a positive permutation braid ([7], [10]), that
is a braid with all crossings positive and each pair of strands crossing at most once.
Its permutation (which is the same as the permutation of the points of the orbit 𝑃
of the interval map) is cyclic. We will call those braids positive permutation cyclic
(ppc) braids. Note that a positive permutation braid is uniquely determined by its
permutation.

For a periodic orbit 𝑃 of an interval map 𝑓 , draw its picture by putting an arrow
for every 𝑝 ∈ 𝑃 above the interval if 𝑓(𝑝) < 𝑝, and below if 𝑓(𝑝) > 𝑝 (see Figure 2;
Figure 3 explains the connection with the graph of an interval map). This defines a
piecewise smooth closed curve. When we go around it, note what the vector normal
to the curve does (to make its movement continuous, smoothen the curve in a natural
way). Denote the winding number of this vector around the origin by 𝑚.

It is clear that 𝑚 is equal to the number of times the arrow reverses its direction
as we follow the curve, divided by 2. Observe that the strands of the braid obtained
from (𝑓, 𝑃 ) corresponding to 𝑝 and 𝑓(𝑝) intersect if and only if the directions of the
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Figure 2. Two orbits of period 7 for interval maps.

arrows from 𝑝 to 𝑓(𝑝) and from 𝑓(𝑝) to 𝑓 2(𝑝) are opposite. This shows that the first
turning number of this braid is 𝑚.

This fact motivates the name “turning number,” since the first turning number
just counts how many times the curve defined above turns around.

Let us make another interesting observation. This number, one half of the number
of times the arrows from 𝑝 to 𝑓(𝑝) and from 𝑓(𝑝) to 𝑓 2(𝑝) have opposite directions
as 𝑝 runs over 𝑃 , is exactly the over-rotation number of 𝑃 [4].

For positive cyclic braids we can get more information about turning numbers, and
even more is available for ppc braids.

Lemma 4.1. Let 𝐵 be a braid with 𝑛 strands and cyclic permutation 𝜏 . If strands
number 𝑗 and 𝑖 do not cross then 𝑗 − 𝑖 and 𝜏(𝑗) − 𝜏(𝑖) have the same sign. If
additionally we assume that 𝐵 is a ppc braid then we have equivalence: strands number
𝑗 and 𝑖 do not cross if and only if 𝑗 − 𝑖 and 𝜏(𝑗) − 𝜏(𝑖) have the same sign.

Proof. The first part is obvious. The second one follows from the first one and the
fact that two strands in a ppc braid cross at most once. □
Theorem 4.2. Let 𝐵 be a positive cyclic braid with 𝑛 strands. Then TN𝑘(𝐵) is
positive for 𝑘 = 1, 2, . . . , 𝑛− 1. If additionally we assume that 𝐵 is a ppc braid then
TN𝑘(𝐵) ≤ ⌊𝑛/2⌋.
Proof. Let 𝜏 be the permutation of 𝐵. Since 𝐵 is positive, TN𝑘(𝐵) ≥ 0 for all 𝑘.
By Lemma 4.1, if 𝑇𝑘(𝑖) = 0 then the signs of 𝑖 − 𝜏𝑘(𝑖) and 𝜏(𝑖) − 𝜏𝑘+1(𝑖) are the
same. Since 𝜏 is cyclic, we get the sign of 𝑗 − 𝜏𝑘(𝑗) the same for all 𝑗. However,
for 𝑘 = 1, 2, . . . , 𝑛 − 1, if 𝑗 is the leftmost point, 𝜏𝑘(𝑗) is to its right and if 𝑗 is the
rightmost point, 𝜏𝑘(𝑗) is to its left, a contradiction. Hence, TN𝑘(𝐵) cannot be 0.

If 𝐵 is a ppc braid then 𝑇𝑘(𝑖) ≤ 1 for all 𝑖, so we get TN𝑘(𝐵) ≤ 𝑛/2. However, by
Lemma 2.2 TN𝑘(𝐵) is an integer, so we get TN𝑘(𝐵) ≤ ⌊𝑛/2⌋. □

5. Twist braids

Let 𝐹 be the rotation of the unit disk by the angle 2𝜋𝑚/𝑛, where 𝑚 and 𝑛 are
coprime. Then all periodic orbits of 𝐹 in the interior of the disk (except its center) are
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(a) (b)

(c) (d)

Figure 3. How to get a picture of an orbit from the graph of an
interval map: (a) Draw the graph, mark the orbit and draw the usual
cobweb for this orbit. (b) Apply the symmetry with respect to the
diagonal and the clockwise rotation by 45 degrees. (c) Remove the
graph and mark the points of the orbit on the (former) diagonal. (d)
smoothen the curves joining marked points and make them arrows,
upper ones pointing left and lower ones pointing right.

twist orbits of period 𝑛. We call them 𝑚/𝑛-twists, and the corresponding braids 𝑚/𝑛-
twist braids (for a given 𝑚 and 𝑛 there are many such braids, but by the definition,
they are all conjugate). It is well known that in this way we get all braid types that
correspond to the finite order maps in the Thurston’s classification (it follows, for
instance, from Theorem 12.5 of [8]).

The most natural 1/𝑛-twist braid is the ppc braid with the permutation 𝜏 for which
𝜏(𝑖) = 𝑖+1 for 𝑖 = 1, 2, . . . , 𝑛−1 and 𝜏(𝑛) = 1 (look at the second orbit at Figure 2).
We will denote this braid by 𝐵1/𝑛. Using the standard generators 𝜎1, . . . , 𝜎𝑛−1 of the
𝑛-th braid group, we can write 𝐵1/𝑛 = 𝜎𝑛−1 . . . 𝜎2𝜎1.

Composing disk maps sharing the same finite set as a periodic orbit (although the
map on this orbit may be different) corresponds to the multiplication of braids. Thus,
if 𝑚 and 𝑛 are coprime, the braid 𝐵𝑚/𝑛 = 𝐵𝑚

1/𝑛 is an 𝑚/𝑛-twist braid. If 2𝑚 < 𝑛 (we
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always assume that 𝑚 is positive), then it is easy to see that it looks as follows. First
𝑛−𝑚 strands go from 𝑖 to 𝑖+𝑚 (𝑖 = 1, . . . , 𝑛−𝑚) as straight segments. The last 𝑚
strands go from 𝑖 to 𝑖+ 𝑚− 𝑛, but are twisted together by the full positive rotation
(by 360 degrees; we do not want to use the word “twist” here, since we are using it
with a slightly different meaning).

Let us conjugate this braid via the positive half-rotation (by 180 degrees) on the
last 𝑚 strands. That is, we first apply the negative half-rotation on the last 𝑚
strands, then 𝐵𝑚/𝑛, and then the positive half-rotation on the last 𝑚 strands. The
first negative half-rotation will untwist partially the last 𝑚 strands, so there will be
only one crossing between each pair of them. However, the positive half-rotation will
twist the strands from 𝑛− 2𝑚+ 1 through 𝑛−𝑚, so again there will be one crossing
between each pair of them. Thus, we can think of three bands of strands. The first
one consists of 𝑛− 2𝑚 strands and it goes in a monotone way (without crossings) by
𝑚 to the right (remember that the strands are going up). The second band consists
of 𝑚 strands, the whole band goes to the right by 𝑚, but it is half-twisted. The third
band consists also of 𝑚 strands and is half-twisted; the whole band goes by 𝑛 −𝑚
to the left. We denote this braid by 𝐶𝑚/𝑛; it is a ppc braid. In Figure 4 we show
the braids 𝐶3/7 and 𝐶1/7, corresponding to the twist orbits from Figure 2. Since each
pair of strands crosses at most at one point, it is convenient to draw the strands as
segments of straight lines (as we already did when defining extensions).

Figure 4. Braids 𝐶3/7 and 𝐶1/7.

Let us compute the turning numbers of 𝐵𝑚/𝑛. By Theorem 2.5, the turning numbers
will be the same for all other 𝑚/𝑛-twist braids.

Theorem 5.1. All turning numbers (from the first to (𝑛 − 1)-st) of an 𝑚/𝑛-twist
braid are equal to 𝑚.

Proof. The structure of 𝐵1/𝑛 is so simple, that the verification of TN𝑘(𝐵1/𝑛) = 1 for
𝑘 = 1, . . . , 𝑛− 1 is straightforward. Thus, by Theorem 2.6, we get TN𝑘(𝐵𝑚/𝑛) = 𝑚.
By the definition, each 𝑚/𝑛-twist braid is conjugate to 𝐵𝑚/𝑛, so by Theorem 2.5 its
turning numbers are equal to 𝑚. □

Now we see that if 2𝑚 > 𝑛 then by Theorems 5.1 and 2.4 es(𝐵𝑚/𝑛) ≥ 𝑛(𝑛− 1)/2,
so no 𝑚/𝑛-twist braid can be a ppc braid.

Lemma 5.2. If a ppc braid with 𝑛 strands has the first turning number 1, then its
exponent sum is 𝑛− 1.
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Proof. Let 𝐵 be a ppc braid with 𝑛 strands and with the first turning number 1. Let
𝜏 be its permutation. Then, by Lemma 4.1, there are only two numbers 𝑖 ∈ {1, . . . , 𝑛}
such that 𝜏−1(𝑖) − 𝑖 and 𝑖 − 𝜏(𝑖) have opposite signs. Those 𝑖’s have to be 1 and 𝑛.
Therefore, there is 𝑘 < 𝑛 such that

1 < 𝜏(1) < 𝜏 2(1) < ⋅ ⋅ ⋅ < 𝜏𝑘(1) = 𝑛 and 𝑛 > 𝜏(𝑛) > 𝜏 2(𝑛) > ⋅ ⋅ ⋅ > 𝜏𝑛−𝑘(𝑛) = 1.

This means that in a picture like Figure 4, over each gap between 𝑗-th and (𝑗 + 1)-st
points we see one strand going to the right and one going to the left. This proves
that there are 𝑛− 1 crossings, so es(𝐵) = 𝑛− 1. □

Observe that since we are assuming here that the braid is cyclic, there must be a
crossing in each gap as above, or, in other words, if we write a braid as a word in
generators 𝜎𝑖, each generator has to appear in this word.

Now we will use the results of the paper [10]. Since not everything that is proven
there is stated as a theorem (some things important to us are hidden in the proofs of
Theorems 2, 3 and 5), we will restate those results in a form useful to us. By Δ𝑛 we
denote the positive half-rotation on all 𝑛 strands. In order to obtain a knot from a
braid we join the top and the bottom of each strand, this is, we “close” the braid [6].

Theorem 5.3 ([10]). Let 𝐵 be a ppc braid with 𝑛 strands. Then

(a) If 𝐵 closes to the unknot then es(𝐵) = 𝑛 − 1; if 𝐵 closes to a trefoil, then
es(𝐵) = 𝑛 + 1.

(b) If es(𝐵) = 𝑛− 1 then 𝐵 is conjugate to 𝜎1𝜎2 . . . 𝜎𝑛−1.
(c) If es(𝐵) = 𝑛 + 1 then 𝐵 is conjugate to 𝜎3

1𝜎2 . . . 𝜎𝑛−1.
(d) If es(𝐵) = 𝑛(𝑛 − 1)/2 − ⌊(𝑛 − 1)/2⌋ then 𝐵 is conjugate to the braid 𝐸𝑛 =

Δ𝑛𝜎
−1
1 𝜎−1

2 . . . 𝜎−1
⌊(𝑛−1)/2⌋ (see Figure 5).

Figure 5. Braids 𝐸7 and 𝐸8.

Remark 5.4. In [10], it is stated without proof that the number from (d) above is
the maximal possible exponent sum of a ppc braid. To see that a ppc braid with this
exponent sum exists, one can just compute the exponent sum of 𝐸𝑛 (which we will
do later).

However, one has to check that a larger exponent sum cannot occur. If 𝑛 is odd,
this follows immediate from our Theorems 2.4 and 4.2. To give a general proof, note
that a ppc braid can be written as Δ𝑛𝜎

−1
𝑖1
𝜎−1
𝑖2

. . . 𝜎−1
𝑖𝑟

(see [7]). The permutation of

Δ𝑛 consists of ⌊(𝑛+ 1)/2⌋ cycles. Each 𝜎−1
𝑖𝑗

can reduce the number of cycles at most

by 1. Thus, 𝑟 ≥ ⌊(𝑛+ 1)/2⌋ − 1 = ⌊(𝑛− 1)/2⌋, and therefore the exponential sum of
our braid is at most 𝑛(𝑛− 1)/2 − ⌊(𝑛− 1)/2⌋.
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Now we can strengthen statements (b)-(d) of Theorem 5.3.

Theorem 5.5. Let 𝐵 be a ppc braid with 𝑛 strands. Then the following conditions
are equivalent:

(a) es(𝐵) = 𝑛− 1,
(b) TN1(𝐵) = 1,
(c) TN1(𝐵) = TN2(𝐵) = ⋅ ⋅ ⋅ = TN𝑛−1(𝐵) = 1,
(d) 𝐵 is a 1/𝑛-twist braid.

Proof. (a)⇒(d). By Theorem 5.3 (b), 𝐵 is conjugate to 𝜎1𝜎2 . . . 𝜎𝑛−1. By Theo-
rems 5.1 and 2.4, 𝐵1/𝑛 has exponent sum 𝑛 − 1, so by Theorem 5.3 (b) it is also
conjugate to 𝜎1𝜎2 . . . 𝜎𝑛−1. Thus, 𝐵 is conjugate to 𝐵1/𝑛, so it is a 1/𝑛-twist braid.

(d)⇒(c). Follows from Theorem 5.1.
(c)⇒(b). Obvious.
(b)⇒(a). This is Lemma 5.2. □

Theorem 5.6. Let 𝐵 be a ppc braid with 𝑛 strands. Then the following conditions
are equivalent:

(a) es(𝐵) = 𝑛 + 1,
(b) TN1(𝐵) = TN𝑛−1(𝐵) = 2 and TN2(𝐵) = ⋅ ⋅ ⋅ = TN𝑛−2(𝐵) = 1.
(c) 𝐵 is conjugate to 𝜎3

1𝜎2 . . . 𝜎𝑛−1.

Proof. (a)⇒(c). This is Theorem 5.3 (c).
(c)⇒(b). By Theorem 5.1, TN1(𝐵1/𝑛) = TN2(𝐵1/𝑛) = ⋅ ⋅ ⋅ = TN𝑛−1(𝐵1/𝑛) = 1.

Compared to 𝐵1/𝑛, we have in 𝜎3
1𝜎2 . . . 𝜎𝑛−1 two more crossings, between strands

number 2 and 1 = 𝜏(2) (where 𝜏 is the permutation of this braid). This adds 1 to
the first and (𝑛− 1)-st turning numbers.

(b)⇒(a). Follows from Theorem 2.4. □
Theorem 5.7. Let 𝐵 be a ppc braid with 𝑛 strands. If 𝑛 is odd then the following
conditions are equivalent:

(a) es(𝐵) = (𝑛− 1)2/2,
(b) TN1(𝐵) = TN2(𝐵) = ⋅ ⋅ ⋅ = TN𝑛−1(𝐵) = (𝑛− 1)/2,
(c) 𝐵 is a 𝑛−1

2
/𝑛-twist braid.

If 𝑛 is even then the following conditions are equivalent:

(a’) es(𝐵) = ((𝑛− 1)2 + 1)/2,
(b’) if 1 ≤ 𝑘 ≤ 𝑛− 1 then TN𝑘(𝐵) = 𝑛/2 for 𝑘 odd and TN𝑘(𝐵) = 𝑛/2 − 1 for 𝑘

even.
(c’) 𝐵 is an extension of 𝐵1/2 by 𝐵(𝑛/2−1)/(𝑛/2).

Proof. Note first that if 𝑛 is odd then 𝑛(𝑛− 1)/2 − ⌊(𝑛− 1)/2⌋ = (𝑛− 1)2/2, and if
𝑛 is even then 𝑛(𝑛− 1)/2 − ⌊(𝑛− 1)/2⌋ = ((𝑛− 1)2 + 1)/2.

(a)⇒(c). By Theorem 5.3 (d), 𝐵 is conjugate to 𝐸𝑛. By Theorems 5.1 and 2.4,
𝐵𝑛−1

2
/𝑛 has exponent sum (𝑛 − 1)2/2, so by Theorem 5.3 (d) it is also conjugate to

𝐸𝑛. Thus, 𝐵 is conjugate to 𝐵𝑛−1
2

/𝑛, so it is a 𝑛−1
2
/𝑛-twist braid.

(c)⇒(b). Follows from Theorem 5.1.
(b)⇒(a). Follows from Theorem 2.4.
Now we consider the case of 𝑛 even. Let us start with showing that 𝐸𝑛 is an

extension of 𝐵1/2 by 𝐵(𝑛/2−1)/(𝑛/2). Since Δ𝑛 is an extension of 𝐵1/2 by Δ2
𝑛/2, the braid
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𝐸𝑛 is an extension of 𝐵1/2 by the braid 𝐷 = Δ2
𝑛/2𝜎

−1
1 𝜎−1

2 . . . 𝜎−1
𝑛/2−1 = Δ2

𝑛/2𝐵
−1
1/(𝑛/2)

(cf. Figure 5). Since Δ2
𝑛/2 = 𝐵

𝑛/2
1/(𝑛/2), we get 𝐷 = 𝐵

𝑛/2−1
1/(𝑛/2) = 𝐵(𝑛/2−1)/(𝑛/2). Thus, 𝐸𝑛

is an extension of 𝐵1/2 by 𝐵(𝑛/2−1)/(𝑛/2).
(a’)⇒(c’). In view of what we proved above, this is Theorem 5.3 (d).
(c’)⇒(b’). Follows from Theorems 5.1, 2.4 and 3.1.
(b’)⇒(a’). Follows from Theorem 2.4. □

Motivated by Theorems 5.5 and 5.7, we state the following conjecture.

Conjecture 5.8. Let 𝑚,𝑛 be positive coprime integers with 2𝑚 < 𝑛 and let 𝐵 be
a ppc braid with 𝑛 strands and with TN1(𝐵) = TN2(𝐵) = ⋅ ⋅ ⋅ = TN𝑛−1(𝐵) = 𝑚.
Then 𝐵 is an 𝑚/𝑛-twist braid.

6. First and second turning numbers

In this section we will explain how to compute easily the first and second turning
numbers for the ppc braids and how to compare them. Let 𝐵 be a ppc braid with
𝑛 > 2 strands and permutation 𝜏 . We can think of 𝜏 as walking on {1, 2, . . . , 𝑛},
sometimes to the right, sometimes to the left, and with varying step length. We
compare two first steps we make from 𝑖 ∈ {1, 2, . . . , 𝑛}. If we move in the same
direction, that is 𝜏(𝑖) − 𝑖 and 𝜏 2(𝑖) − 𝜏(𝑖) have the same signs, we assign to 𝑖 the
symbol 𝑜. If we move in opposite directions, that is 𝜏(𝑖) − 𝑖 and 𝜏 2(𝑖) − 𝜏(𝑖) have
opposite signs, we compare the lengths of those two steps. If the second step is shorter
than the first one, that is, ∣𝜏 2(𝑖)− 𝜏(𝑖)∣ < ∣𝜏(𝑖)− 𝑖∣, then we assign to 𝑖 the symbol 𝑠.
If the second step is longer than the first one, that is, ∣𝜏 2(𝑖) − 𝜏(𝑖)∣ > ∣𝜏(𝑖) − 𝑖∣, then
we assign to 𝑖 the symbol ℓ. Now, when we follow our 𝜏 -orbit (that is, consider 𝜏𝑘(1),
𝑘 = 0, 1, . . . , where 𝑘 is taken modulo 𝑛), we get a circular sequence of symbols 𝑜, 𝑠, ℓ
of length 𝑛. We call this sequence the code of 𝜏 (or of 𝐵).

Theorem 6.1. The number of symbols 𝑠 and ℓ (together) in the code of a ppc braid
𝐵 is equal to 2 TN1(𝐵).

Proof. Symbols 𝑠 and ℓ are assigned exactly to those 𝑖’s for which there is a crossing
between the 𝑖-th and 𝜏(𝑖)-th strand. □

Theorem 6.2. The number of blocks 𝑠ℓ in the code of a ppc braid 𝐵 is equal to
TN1(𝐵) − 𝑇𝑁2(𝐵).

Proof. Let us find out for which pairs of symbols assigned to 𝑖 and 𝜏(𝑖) the numbers
𝜏 3(𝑖)− 𝜏(𝑖) and 𝜏 2(𝑖)− 𝑖 have opposite signs. According to Lemma 4.1, those are the
𝑖’s for which the strands number 𝑖 and 𝜏 2(𝑖) cross each other, so the number of those
𝑖’s is equal to 2𝑇𝑁2(𝐵). A direct inspection (see Figure 6) shows that this happens
for the pairs (blocks of length 2) 𝑜ℓ, 𝑠𝑜, 𝑠𝑠, ℓℓ.

In other words, in order to compute 2𝑇𝑁2(𝐵) we go around the code and count
how many times we encounter blocks 𝑜ℓ, 𝑠𝑜, 𝑠𝑠, ℓℓ. Since these are all pairs whose
first element is 𝑠 or the second element is ℓ, except the pair 𝑠ℓ, we have to add the
number of 𝑠’s and ℓ’s in the code and subtract twice the number of the blocks 𝑠ℓ in
the code. Thus, in view of Theorem 6.1, 2𝑇𝑁2(𝐵) is equal to 2 TN1(𝐵) minus twice
the number of the blocks 𝑠ℓ in the code. □
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oo os ol ol

so so ss sl

lo ls ls ll

Figure 6. Various blocks of length 2 in the code of 𝐵.

Corollary 6.3. If 𝐵 is a ppc braid then 𝑇𝑁2(𝐵) ≤ 𝑇𝑁1(𝐵). Moreover, the equality
holds if and only if there are no blocks 𝑠ℓ in the code of 𝐵.

7. Experimental results

Computations show that for ppc braids with up to 7 strands, two braids with the
same turning numbers are always conjugate. Unfortunately, there is a counterexample
to this statement for braids with 8 strands. Both braids corresponding to the periodic
orbits from Figure 7 have the same turning numbers: 3, 1, 2, 1, 2, 1, 3, but they are
not conjugate.

Figure 7. Two orbits of period 8 with the same turning numbers but
different braid types.
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To see that the braids are not conjugate, one can find their pseudo-Anosov rep-
resentations, using the methods of [1] or [8] (see also [9]). Corresponding Markov
partitions give transition matrices that allow us to estimate their entropies.

The first matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
0 0 1 1 1 1 0
0 0 0 0 0 1 0
0 0 0 0 0 1 1
0 0 0 0 1 1 1
0 0 0 1 0 0 0
1 1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and the second matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0 0
1 1 1 1 0 0 0
0 0 0 0 1 1 0
1 2 0 0 0 0 0
2 2 0 1 1 1 1
0 0 0 0 0 1 1
1 1 0 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The cube of the second matrix has the minimal row sum 21, so the topological
entropy of any orientation preserving disk homeomorphism exhibiting the second orbit
is at least 1

3
log 21. On the other hand, the cube of the first matrix has the maximal

row sum 15, so there is an orientation preserving disk homeomorphism exhibiting the
second orbit with topological entropy less than or equal to 1

3
log 15.
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