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Abstract. Recently we investigated the family of double standard maps of the
circle onto itself, given by fa,b(x) = 2x + a + b

π sin(2πx) (mod 1). Similarly to
the family of Arnold standard maps of the circle, Aa,b(x) = x + a + b

2π sin(2πx)
(mod 1), if 0 < b ≤ 1 then any such map has at most one attracting periodic orbit.
The values of the parameters for which such orbit exists are grouped into Arnold
tongues. Here we study the shape of the boundaries of the tongues, especially close
to their tips. It turns out that the shape is fairly regular, mainly due to the real
analyticity of the maps.

1. Introduction

In the Dynamical Systems Theory, one of the best known families of maps is the
family of standard maps, called also Arnold maps. They are maps of the circle onto
itself, given by the formula

(1) Aa,b(x) = x+ a+
b

2π
sin(2πx) (mod 1)

(when we write “mod 1,” we mean that both the arguments and the values are taken
modulo 1). This family appeared in [1] and its study was useful in the creation of the
KAM Theory.

In [7], motivated by [2, 3, 4] and [6], we studied double standard maps, which are
obtained from the standard maps by replacing rotations of the circle by its doubling:

(2) fa,b(x) = 2x+ a+
b

π
sin(2πx) (mod 1).

The main feature of the family of standard maps is that the values of the parameters
for which there is an attracting periodic orbit are grouped into cusp-like sets, called
Arnold tongues. For the family of double standard maps the same is true, but with
some modifications (see Figure 1). Namely, the tongues do not begin at the level b = 0
and are ordered differently. Moreover, we do not know much about their shapes. For
the family of standard maps, the tongues are classified in a simple way by the rotation
numbers of attracting periodic orbits. For the family of double standard maps it is not
so obvious what points to consider as belonging to the same tongue. In [7] to do this
we used complexification of the maps. Then it was even not clear whether all tongues
are connected. Since in this paper we concentrate on the more local properties of
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Figure 1. Tongues for the families of standard (left) and double stan-
dard (right) maps.

tongues, we will consider a tongue to be a connected component of a tongue from [7].
That is, a tongue will be a connected component of the set of those pairs (a, b) with
0 ≤ b ≤ 1, for which fa,b has an attracting periodic orbit. Clearly, each tongue is
open in the cylinder T × [0, 1], where T = R/Z. The aim of this paper is to study
the boundaries of the tongues, and especially their tips (loosely speaking, their lowest
and perhaps highest points of tongues; for the precise definition see Section 2).

The paper is organized as follows. In Section 2 we recall the basic results proven
in [7] which will be used later, and define left and right boundaries and tips of tongues.
In Section 3 we prove the main technical result of the paper. In Section 4 we apply
the results of the preceding sections to get new information about the tongues for
the family of double standard maps. In Section 5 we show that getting more results
about the tongue tips for this family would require extracting new information from
the specific formula (2).

2. Tongue boundary

Let us fix the terminology concerning periodic orbits. We are working with real ana-
lytic increasing maps of the circle T. An orbit (x, f(x), . . . , fn−1(x)), where fn(x) = x,
of a map f will be called attracting if (fn)′(x) < 1, repelling if (fn)′(x) > 1, and neu-
tral if (fn)′(x) = 1. If a confusion is possible, we will call it differentiably attracting,
repelling and neutral. If there is ε > 0 such that fn(y) < y for y ∈ (x, x + ε), then
x will be called topologically attracting from the right. Similarly one defines periodic
orbits topologically attracting from the left, and topologically repelling from the right
(left). An orbit topologically attracting (repelling) from both sides is just topolog-
ically attracting (repelling). Note that since our map is analytic and not equal to
the identity (we can assume this because double standard maps have degree 2), each
periodic orbit is either topologically attracting or topologically repelling from each
side.

One of the main tools used to study tongues in the family of double standard maps
is the following theorem (Theorem 3.5 of [7]).

Theorem 2.1. If 0 ≤ b ≤ 1 then the double standard map fa,b, given by (2), has at
most one attracting or neutral periodic orbit.
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Case (a) Case (b) Case (c) Case (d)

Figure 2. Four cases from Lemma 2.3

The proof of this theorem involved conjugacy of fa,b via e2πix with a complex map

(3) ga,b(z) = e2πiaz2eb(z−
1
z ),

of the unit circle to itself. For this map any immediate basin of attraction of an
attracting or neutral periodic orbit has to contain a critical point, and there is only
one pair of critical points, symmetric (in the complex sense) with respect to the unit
circle. The map also preserves this symmetry and the theorem follows.

Since we are now interested in the topological types of the periodic orbits more
than in the differentiable ones, we will add one more property to the above theorem.

Lemma 2.2. A neutral periodic orbit mentioned in Theorem 2.1 cannot be topologi-
cally attracting from both sides.

Proof. If a neutral periodic orbit is topologically attracting from both sides, it has
at least two immediate basins of attraction that are not symmetric with respect
to each other (but each of them is symmetric itself). Thus, such situation is also
impossible. �

Another important tool from [7] is the monotone degree one circle map ϕa,b, which
semiconjugates fa,b with the doubling map D : x 7→ 2x (mod 1). It is used in one of
the key lemmas about the family of double standard maps (this is Lemma 4.1 of [7]).

Lemma 2.3. Assume that p is an attracting or neutral periodic point of fa,b of period
n. Let J be the set of all points x for which ϕa,b(x) = ϕa,b(p). Then J is either
a closed interval (modulo 1) or a singleton and fna,b|J is an orientation preserving
homeomorphism of J onto itself. The endpoints of J are fixed points of fna,b, and one
of the following four possibilities holds. In the first three cases J is an interval.

(a) The left endpoint of J is neutral, topologically attracting from the right and
topologically repelling from the left; the right endpoint of J is repelling; there
are no other fixed points of fna,b in J .

(b) The right endpoint of J is neutral, topologically attracting from the left and
topologically repelling from the right; the left endpoint of J is repelling; there
are no other fixed points of fna,b in J .

(c) Both endpoints of J are repelling; there is an attracting fixed point of fna,b in
the interior of J ; there are no other fixed points of fna,b in J .

(d) The set J consists of one neutral fixed point of fna,b, repelling from both sides.
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Let us look at the four possibilities carefully, distinguishing between differentiable
and topological properties. In Cases (a) and (b) one endpoint of J is neutral, so
the other one has to be (differentiably) repelling. In Case (c) the fixed point in
the interior of J is topologically attracting, so by Lemma 2.2 it is (differentiably)
attracting. Then the endpoints have to be (differentiably) repelling. In Case (d) the
fixed point is neutral, so “repelling” means here “topologically repelling.”

Our parameter space is T× [0, 1], and when we speak of the boundary of a tongue,
we mean the boundary relative to this space. In particular, if a tongue contains a
segment of the line b = 1, only the endpoints of this segment belong to the boundary
of the tongue.

Definition 2.4. We will say that a point (a, b) from a boundary of a tongue of period
n belongs to the left boundary of the tongue if there is ε > 0 such that (a+t, b) belongs
to the tongue for 0 < t < ε and does not belong to the tongue for −ε < t < 0.
Similarly, a point (a, b) from a boundary of a tongue of period n belongs to the right
boundary of the tongue if there is ε > 0 such that (a+ t, b) belongs to the tongue for
−ε < t < 0 and does not belong to the tongue for 0 < t < ε. Moreover, a point (a, b)
from a boundary of a tongue of period n is the tip of this tongue if there is ε > 0
such that (a+ t, b) does not belong to the tongue for −ε < t < ε.

In the classification of Lemma 2.3 if (c) is satisfied then the point (a, b) belongs to
a tongue of period n. If (a, b) belongs to a boundary of a tongue of period n then
fna,b has a neutral periodic point. Thus, one of the Cases (a), (b) or (d) holds. We
will investigate how those cases are related to the notions defined in Definition 2.4.
However, first we have to get more information about Case (d).

3. Tongue tips

Consider now a family of maps of an interval or a circle that looks locally more
or less like the family of double standard maps. We assume that the maps are real
analytic and that they depend on the parameters in a real analytic way. We will show
that if the dynamics of a map in this family locally looks like the one observed at the
tip of a tongue and the parameters belong to the closure of a tongue, then it is really
the tip. We will consider here only one parameter, whose change moves the graph of
the map up or down. Note that analyticity of the function plays an essential role in
the proof.

Lemma 3.1. Let U be a neighborhood of the origin in R2 and let G : U → R be a
real analytic function. Assume that

(4) G(0, x) < 0 for x < 0, G(0, 0) = 0, and G(0, x) > 0 for x > 0;

and that

(5)
∂G

∂t
(0, 0) 6= 0,

where t is the first variable. Then there are open intervals I, J containing 0 such that
I × J ⊂ U and for every t ∈ I is exactly one x ∈ J such that G(t, x) = 0. Moreover,
for those t and x, if t 6= 0 then ∂G

∂x
(t, x) > 0.
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Proof. By (5) we can apply the real analytic Implicit Function Theorem. Hence,
there exists a real analytic function ψ, defined in an open interval I containing 0,
such that G(ψ(x), x) = 0 for all x ∈ I. Moreover, these are the only solutions of the
equation G(t, x) = 0 in a small neighborhood of the origin. If ψ is constant, then,
since G(0, 0) = 0, it is 0, so G(0, x) = 0 for x close to 0. This contradicts (4). Thus,
ψ is not constant. Since ψ is analytic, this implies that if I is sufficiently small then

(a) ψ′(x) 6= 0 for all x ∈ I \ {0}.
Set J = ψ(I). We may assume that I is so small that furthermore

(b) J × I ⊂ U ;
(c) in J × I all solutions to G(t, x) = 0 are given by t = ψ(x);
(d) ∂G

∂t
has a constant sign in J × I.

Assume that the sign mentioned in (d) is +. Then, by (4), if G(t, x) = 0 then x
and t have opposite signs. By (a), in each component of I \ {0} the function ψ is
strictly monotone. Those two facts, together with ψ(0) = 0, imply that ψ is strictly
decreasing in I (in particular, ψ′(x) < 0 for all x ∈ I \{0}). Therefore, taking (c) into
account, we see that if t ∈ I then there is exactly one x ∈ J (namely, x = ψ−1(t))
such that G(t, x) = 0.

We have

0 =
d

dx
G(ψ(x), x) =

∂G

∂t
(ψ(x), x) · ψ′(x) +

∂G

∂x
(ψ(x), x),

so since ∂G
∂t
> 0 and ψ′(x) < 0, we get ∂G

∂x
(ψ(x), x) > 0 for all x ∈ I \ {0}.

If the sign mentioned in (d) is −, the proof is the same, except that if G(t, x) = 0
then x and t have the same signs, so ψ is strictly increasing and ψ′(x) > 0 for
x ∈ I \ {0}, and thus we reach the same conclusion. �

As a corollary we get the main result of this section.

Theorem 3.2. Let U be a neighborhood of the origin in R2 and let F : U → R
be a real analytic function. Set ft(x) = F (t, x). Assume that f0 has a topologically
repelling fixed point at x = 0 and that

(6)
∂F

∂t
(0, 0) 6= 0.

Then there are open intervals I, J containing 0 such that I × J ⊂ U and for every
t ∈ I the map ft has exactly one fixed point x ∈ J . Moreover, if t 6= 0 then this fixed
point is (differentiably) repelling.

Proof. Set G(t, x) = F (t, x)− x and apply Lemma 3.1. �

The interpretation of the conclusion of this theorem is that the point (0, 0) in the
parameter space can be neither in the interior of a tongue nor in its left or right
boundary. Thus, if it is in the closure of a tongue, it has to be its tip.

4. Applications of Theorem 3.2 to double standard maps

Now we will apply Theorem 3.2 to the family of double standard maps. To do this,
we have to know that the partial derivative of fna,b with respect to a is non-zero.
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Lemma 4.1. For any n ≥ 1, x ∈ T, we have

(7)
∂fna,b
∂a

(x) > 0.

Proof. Since fna,b(x) = fn−1
a,b (fa,b(x)), we have

∂fna,b
∂a

(x) =
∂fn−1

a,b

∂a
(fa,b(x)) + (fn−1

a,b )′(fa,b(x))
∂fa,b
∂a

(x).

By (2),
∂fa,b

∂a
(y) = 1 for every y, so by induction we obtain

∂fna,b
∂a

(x) =
n−1∑
k=0

(fka,b)
′(fn−ka,b (x)).

Since f ′a,b is nonnegative everywhere, so is (fka,b)
′. Moreover, if k = 0 then (fka,b)

′ ≡ 1.
This proves (7). �

Now we can return to the classification of the boundary points of tongues, given
by Lemma 2.3.

Theorem 4.2. In Case (a) of Lemma 2.3 the point (a, b) belongs to the left boundary
of a tongue of period n, in Case (b) to the right boundary of a tongue of period n,
and in Case (d) it is a tip of a tongue of period n.

Proof. Assume that (a, b) belongs to the boundary of a tongue of period n. Then fa,b
has a neutral periodic orbit of period n. There are only finitely many periodic orbits
of fa,b of period n and all of them except the neutral one are repelling. Therefore
in order to see whether under a small perturbation an attracting one appears, it is
enough to look at a small neighborhood of the neutral one.

In Case (a), since the left endpoint x of J is topologically attracting from the right
and topologically repelling from the left, in a small neighborhood of x the graph of
fna,b is below the diagonal, touching it at x. Thus, in view of Lemma 4.1, a small
decrease of a will make this fixed point disappear and a small increase of a will make
it bifurcate into an attracting and repelling fixed points of fna,b (this is a saddle-node
bifurcation). This means that (a, b) belongs to the left boundary of a tongue of period
n. Similarly, in Case (b) (a, b) belongs to the right boundary of a tongue of period n.
Finally, by Theorem 3.2, in Case (d) (a, b) is a tip of a tongue of period n. �

The above theorem has important consequences. Basically, it yields that the
tongues have regular, tongue-like shapes. The first corollary is immediate.

Corollary 4.3. Every point on the boundary of a tongue either belongs to its left or
right boundary or is its tip.

In particular, degeneracies like a horizontal segment contained in the boundary of
a tongue are ruled out.

Remember, that the definition of a tongue we adopted in this paper automatically
makes tongues connected.

Corollary 4.4. The intersection of every tongue with any horizontal line b = constant
is connected. In particular, every tongue is simply connected.
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Proof. If the intersection of a tongue of period n with a horizontal line is not con-
nected, then, since the tongue itself is connected, there is c such that the intersection
of the tongue with the horizontal line b = c contains a point (a, c) belonging to the clo-
sure of two different components of this intersection. In this situation small changes
of a in both directions produce an attracting periodic orbit of period n. Therefore
(a, c) is not a tip and does not belong to either left or right boundary of the tongue,
a contradiction. �

The next corollary follows immediately from Theorem 4.2 and Proposition 4.6 of [7]
(which states that whenever a piece of the boundary of a tongue consists of points for
which the Case (a) or (b) of Lemma 2.3 holds, it has slope with the absolute value at
least π).

Corollary 4.5. The left and right boundaries of a tongue have slope with the absolute
value at least π.

We can get even more information about the shape of a tongue at its tip.

Theorem 4.6. At a tip of a tongue the left and right boundaries are tangent to each
other.

Proof. Let (a0, b0) be a tip of a tongue of period n, and let x be the corresponding
neutral periodic point of period n of fa0,b0 . By Theorem 4.2, Case (d) of Lemma 2.3
applies to it. Fix this x and consider the function ψ(a, b) = fna,b(x). By Lemma 4.1,
∂ψ
∂a

> 0, and therefore the gradient vector v of ψ is non-zero. The only vectors
in direction of which the derivative of ψ is 0 are orthogonal to v. When moving
parameters a, b in the direction of any other vector, starting from (a0, b0), we get
immediately outside of the tongue by Theorem 3.2. Thus, v must be normal to both
left and right boundaries of the tongue at (a0, b0). Therefore, those boundaries are
tangent to each other. �

5. Questions and examples

There are at least two interesting open questions about the tips of the tongues for
the double standard family of maps. The first one is whether all tongue tips are at
the bottom of the tongues, or maybe there are tongues with the tips on both sides:
bottom and top. Such a tongue after rotation by 90 degrees resembles an eye rather
than a tongue (see Figure 3), so we will call it an eye. Thus, we are asking about the
existence of eyes in the double standard family.

Another question is about the order of contact of the left and right tongue bound-
aries at the tip. This is the same as asking about the rate with which the width of
the tongue decreases to 0 as we approach its tip. By the definition of the order of
contact, if this order is r then the rate is xr+1 (where x is the distance in the vertical
direction). For Arnold tongues in the family of standard maps the order of contact
depends on the rotation number of the tongue. If the rotation number is p/q (with
p and q coprime) then the order is q − 1 (see [1]). For the family of double standard
maps the situation is different. The generic order of contact is always 1/2, since the
tip of the tongue can be viewed in the generic case as a cusp bifurcation (see, e.g., [5]).
In [7] we checked that this is the order for the tongue of period 1. However, we do
not know whether the situation is generic for all tongue tips.
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Figure 3. An eye, turned by 90 degrees

Answering those two questions would probably require finding new properties of the
family of double standard maps, dependent on the specific formula (2). Here we will
present simple examples where the families of maps are analytic (even polynomial)
and the dependence on a is similar as for double standard family, but the answers
are not what we would expect (no eyes and generic tips). We want additionally
Theorem 2.1 and Lemma 2.2 to be satisfied locally in a neighborhood of a tongue tip.

Example 5.1. Consider the family of maps given by

ga,b(x) = x3 + x+ a+ 3xb(b− 1).

To find the boundary of the period 1 tongue, we have to solve the system of two
equations

(8)

{
ga,b(x) = x
g′a,b(x) = 1

Eliminating x from this system gives us

a = ±2
(
b(1− b)

)3/2
,

which is an eye (see Figure 3).

The tongue tips are at (0, 0) and (0, 1). Observe that ∂2

∂b ∂x
g0,0(0) < 0, while

∂2

∂b ∂x
g0,1(0) > 0. This explains why at (0, 0) the tongue tip points down, but at

at (0, 1) it points up.

Now we give examples of families of maps with various orders of contact between
the left and right tongue boundaries.

Example 5.2. Consider the family of maps given by

ga,b(x) = xn + x+ a− bxk,

with n ≥ 3 odd and 1 ≤ k < n. If k ≥ 3 is odd, then for small b > 0 the term −bxk
dominates the term xn as x → 0, so 0 is a neutral fixed point of ga,b topologically
attracting from both sides. This violates Lemma 2.2, so we will discard those cases
and assume that either k = 1 or k is even.

As in Example 5.1, to find the boundaries of the period 1 tongues, we have to solve
the system of equations (8). Thus, we solve the system

(9)

{
xn + a− bxk = 0
nxn−1 − bkxk−1 = 0
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Now the situation depends on k. Consider first the case k = 1. Then the second
equation of 9 gives us x = ± n−1

√
b/n. After plugging it into the first equation we

obtain

a = ±n− 1

n
n

n−1

b
n

n−1 .

This means that the order of contact of the left and right boundaries of the cusp is
n
n−1

− 1 = 1
n−1

. If n = 3, this is generic 1/2, but for larger n it is not generic.
Consider now the case of k even. The second equation of (9) has two solutions,

x = 0 and x = n−k
√
kb/n. Thus, we get formulas for the left and right boundaries of

the period 1 tongue:

a = 0 and a =
(n− k)k

k
n−k

n
n

n−k

b
n

n−k .

The order of contact is now n
n−k − 1 = k

n−k , so it is also not a generic case.

Observe that we have b = (n/k)xn−k. If k = 1 then n− k is even, so b can be only
nonnegative on the boundary of the tongue. However, for k even, n− k is odd, so b
can be both positive and negative. This means that instead of one tongue we get two
tongues, one pointing up and one pointing down, with a common tip. This is another
non-generic phenomenon.
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