STATISTICAL STABILITY OF EQUILIBRIUM STATES FOR
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ABSTRACT. We consider families of multimodal interval maps with polynomial
growth of the derivative along the critical orbits. For these maps Bruin and Todd
have shown the existence and uniqueness of equilibrium states for the potential
pt : x +— —tlog|Df(x)|, for ¢ close to 1. We show that these equilibrium states
vary continuously in the weak™ topology within such families. Moreover, in the
case t = 1, when the equilibrium states are absolutely continuous with respect to
Lebesgue, we show that the densities vary continuously within these families.

1. INTRODUCTION

One of the main goals in the study of Dynamical Systems is to understand how the
behaviour changes when we perturb the underlying dynamics. In this paper, we
examine the persistence of statistical properties of a multimodal interval map (I, f).
In particular we are interested in the behaviour of the Cesaro means % ZZ;& wo fk(x)
for a potential ¢ : I — R for ‘some’ points x, as n — oo. If the system possesses an
invariant physical measure p, then part of this statistical information is described
by p since, by definition of physical measure, there is a positive Lebesgue measure
set of points x € I such that

. 1 n—1 N
plx) = 7}1_)%5,;)90# (z) :/cp dy.
If for nearby dynamics these measures are proven to be close, then the Cesaro
means do not change much under small deterministic perturbations. This motivated
Alves and Viana [AV] to propose the notion of statistical stability, which expresses
the persistence of statistical properties in terms of the continuity of the physical
measures. A precise definition will be given in Section 1.1

However, the study of Cesaro means is not confined to the analysis of these mea-
sures. We can consider the encoding of these statistical properties by ‘multifractal
decomposition’, see [P] for a general introduction. Given a € R, we define the sets

By :={z€l:9(x)=a}, B :={ze€l:p(z) does not exist}.

2000 Mathematics Subject Classification. 37D35, 37C75, 37TE05, 37D25.
Key words and phrases. Equilibrium states, statistical stability, thermodynamic formalism, in-
terval maps.
JMF is partially supported by POCI/MAT/61237/2004 and MT is supported by FCT grant
SFRH/BPD/26521/2006. Both authors are supported by FCT through CMUP.
1



2 JORGE MILHAZES FREITAS AND MIKE TODD

Then the multifractal decomposition in this case is

I=BU (LQJBQ>.

Understanding the nature of this decomposition gives us information about the
statistical properties of the system. This can be studied via ‘equilibrium states’.
See [PW] for a fuller account of these ideas, where the theory is applied to subshifts
of finite type.

To define equilibrium states, given a potential ¢ : I — R, we define the pressure of
© to be

P(p) = Sup{hu +/so du},

where this supremum is taken over all invariant ergodic probability measures. Here
h,, denotes the metric entropy of the system (I, f, ). Any measure p which ‘achieves
the pressure’, i.e. h, + [ du = P(p), is called an equilibrium state for (I, f, ).

In this paper for a given map f, we are interested in the equilibrium state u; of the
‘natural’ potential ¢; : © +— —tlog|Df| for different values of ¢. This theory was
developed by Ledrappier [L], Bruin and Keller [BK] and then latterly by Pesin and
Senti [PSe] and Bruin and the second author [BT3|. For ¢t = 1 there is an equilibrium
state u1 which is a physical measure. In this setting, we also refer to this measure as
an absolutely continuous invariant measure (acip) since it is absolutely continuous
with respect to Lebesgue. This measure is supported on By(,,) where A(u1) is
the Lyapunov exponent of the acip. For a given value of «, close to A(u1), there
is an equilibrium state u; supported on B,, for some t close to 1. Therefore, to
understand the statistics of the system with potential @1, it is useful to study the
properties of the relevant equilibrium states. Note also that these ideas extend to
equilibrium states of other potentials, see [BT3] for example. We would also like to
point out the theory presented in this paper extends to Manneville-Pommeau maps,
see Remark 6.2.

Our main goal is to show that the equilibrium states vary continuously with f.

1.1. Statement of results. Here we establish our setting and make our statements
more precise. Let Crit denote the set of critical points. We say that ¢ € Crit is a
non-flat critical point of f if there exists a diffeomorphism g, : R — R with g.(0) =0
and 1 < £, < oo such that for z close to ¢, f(z) = f(c) % |pe(x — ¢)|. The value
of /. is known as the critical order of c¢. Throughout, H, will be the collection of
C? interval maps which have finitely many branches, negative Schwarzian (that is,
1/v/|Df| is convex away from critical points), only non-flat critical points all with
fixed order £. Moreover, for simplicity, we assume that maps in this class have no
points of inflection and are transitive.

We will consider families of maps in H, which satisfy the following conditions. The
first one is the Collet-Eckmann condition:

(1) There exist C,a > 0 such that |Df"(f(c))| = Ce*" for all ¢ € Crit.
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Secondly we consider maps satisfying a polynomial growth condition.
(2) There exist C, 3 > 0 such that |Df"(f(c))| > Cn® for all ¢ € Crit.

We will take a map fo € F where we suppose that all maps in F satisfy either (1)
or (2). We will sometimes denote these families as F.(C, o) or F,(C, ) respectively
in order to clarify the constants involved.

We will consider equilibrium states for maps in these families. Suppose first that
maps in F satisfy (1). Then by [BT2|, there exists an open interval Ur C R
containing 1 and depending on « and £ so that for f € F and t € Ur the potential
ore o« — —tlog|Df(x)| has a unique equilibrium state p = py. If instead we
assume that maps in F satisfy (2) then we have the same result but instead U is
of the form (¢, 1] where t+ depends on 3 and ¥.

We choose our family F and fix ¢t € Ur and denote ¢r; by ;. We fix fo € F and
suppose that {f,}, C F has ||fn — follc2 — 0 as n — co. We let pu,, = iy, + denote
the corresponding equilibrium state for each n with respect to the potential ¢y, .
We say that pg is statistically stable if a weak®™ limit poo of {1y} is equal to pg.

Theorem A. Let F C Hy be a family satisfying (1) or (2) with potentials vy as
above. Then, for every fizred t € Ur and f € F, the equilibrium state py; as above
is statistically stable within the family F, i.e., the map F > f — pyy is continuous
in the weak® topology.

Although the definition of statistical stability involves convergence of measures in
the weak* topology, when we are dealing with acips, it makes sense to consider a
stronger type of stability due to Alves and Viana [AV]: we say that f is strongly
statistically stable in the family F if for all € > 0 there exists § > 0 such that for

d
(3) IIf = gllc2 < ¢ implies / py  diyg

where m denotes Lebesgue measure, g € F, and py and pg denote the acips for f

dm < e,
dm  dm
and g respectively. As a byproduct of the proof of Theorem A we also obtain:

Theorem B. Let F C Hy be a family satisfying (1) or (2). Then, for every f € F,
the acip piy is statistically stable in the strong sense, see (3).

This result generalises the one in [F], where strong statistical stability was proved
for Benedicks-Carleson quadratic maps, which are unimodal and satisfy condition
(1). The issue of continuous variation of physical measures for unimodal maps was
previously addressed in [Ts, RS, Th]. Statistical stability of physical measures (in
the strong sense) was also obtained in [A, AV] for non-uniformly expanding maps.
This was also considered, under some additional robustness assumptions, in [Ar].
In the non-hyperbolic invertible setting, statistical stability was also studied in [V]
for diffeomorphisms with dominated splitting and in [ACF] for Hénon maps of the
Benedicks-Carlseon type.

1.2. Structure of the paper. In Section 2, we build inducing schemes for each f €
F and show that the construction can be shadowed for nearby dynamics. Although
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other methods could be used to build the inducing schemes, we used Hofbauer
towers which are explained in more detail in Appendix A. In Section 3, we introduce
some thermodynamic formalism, discuss the existence and uniqueness of equilibrium
states and study their properties, especially their Gibbs property. In Section 4 we
show that the weak® limit of Gibbs measures is also a Gibbs measure. Section 5
is devoted to showing that the induced measures on the tower vary continuously
with f € F. Finally, in Section 6 we show that the continuity of the measures
survives the saturation of the induced measures into the original equilibrium states,
completing the proof of Theorem A. We finish that section by showing that the
choice of inducing schemes and the uniformity properties of the family F proved
along the way allow us to use the results of [AV] to obtain Theorem B.

The main new step in this paper is to notice that the invariant measures on our
inducing schemes are Gibbs states. This allows us to pass information from the
limiting inducing scheme to other nearby inducing schemes. In this way we can
avoid the techniques of [AV] which used convergence in the sense of (3). Those
techniques can not be applied in this setting since, unless ¢ = —log |Df]|, we are
not considering acips, and thus Lebesgue measure has no relevance.

In this paper we write z = BTy to mean % < % < B. Also for A € (0,00) and
an interval J, we let AJ be the interval sharing the same centre as J and having
size A|J|. For an interval J and a sequence of intervals {J, },, we write J, — J as

n — oo if the convergence is in the Hausdorff metric.

Acknowledgements: We would like to thank Henk Bruin for his comments on an
early version of this paper.

2. CHOICE OF INDUCING SCHEMES

We will denote the fixed map f in Theorems A and B by fy and take a sequence
{fn}n such that ||f, — follc2 — 0. An attractor for fp is a transitive union of
cyclically permuted intervals. For simplicity we will assume that this attractor is
unique.

In this section we use the theory of Hofbauer towers developed by Hofbauer and
Keller [H, HK, K] to produce inducing schemes as described in [B]. We also show
how the inducing schemes move with n. Note that we could also have used other
methods to make these inducing schemes, see [BLS] for example.

We let Q) 1 be the natural partition into maximal closed intervals on which f,’j is
diffeomorphic. We will denote members of Q,, ;. by X,, .. Note that for X, z, X;%k €
On k. with X, 1. # X;L,k‘ then X,, 1, N X;%k consists of at most one point.

Qp,1 consists of #Crit,, + 1 intervals. For n large enough this is equal to #Critg 4 1.

Thus for all n large enough we can label the intervals in Q,, 1 from left to right as

X1 X#lCritOH
X

il . So here Xfu — X6,1 as n — oo. We let the k-itinerary of a

point © € I\ U.cCrit Uocj<r J 7 (¢) to be a sequence (o, ...,xx) where z; = i €
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{1,...,Crito + 1} whenever f(z) € X§ ;. For k' > k, we define the k-itinerary of a
K -cylinder X,, j» to be the k-itinerary of the midpoint of X, s/

Given k£ > 1, we fix a numbering X67k. For 7,k > 1 and n large enough there is

a corresponding cylinder Xg’k which has same k-itinerary as X67k. Indeed for n
large enough this cylinder will be unique. So we change i’ to i. By Lemma 2.2,
X:Lk — Xf)’k as n — o0o. Then we can directly compare properties of XB’ . and X%,k
in a canonical way.

We next define the Hofbauer tower. We let

jn = |_| |_| fr’f(Xn,k)/ ~

k>1 Xn,kegn,k

where fF(X, 1) ~ fF(Xon) if fFXnr) = f¥(Xup). Let D, be the collection of
domains of fn and m, : fn — I be the inclusion map. A point T € fn can be
represented by (z, D) where & € D for D € D,, and © = m,(&).

The map fn : I — I is defined as

f(i') = f(va) = (f(m)7D/)
if there are cylinder sets X, O X, x4+1 such that x € f¥(X,411) C fE(Xpn) = D
and D' = f*1(X,, x41). In this case, we write D — D', giving (D,,, —) the structure
of a directed graph. It is easy to check that there is a one-to-one correspondence
between cylinder sets X,, . € Q, 1 and k-paths Dy — --- — D, starting at the base

of the Hofbauer tower. For each R € N, let fff be the compact part of the Hofbauer
tower defined by

IE=1{D e D, : there exists a path Dy — --- — D of length r < R}
The map 7, acts as a semiconjugacy between fn and f,: m, o f‘n = fn 0 .
We will use the method of [B] we next show how Hofbauer towers allow us to define
inducing schemes. We fix § > 0. Then for A C I we let A’ = (1 + §)A. We define

A=A@)={Dnx"Y(A): D e D, x(D)> A}

The following lemma is left to the reader.
Lemma 2.1. For Xé,k € Qo as above there ewists N > 1 such that for n > N,
there exists X;, € Qp i so that X . — Xo,x- Moreover, X}, - — X 1, in the sense
that for any R, X%,k NIk — X%,k N IE in the Hausdorff metric.

. . T
Asin [B], we consider the first return map Fy; :U; R/ — X, | where Fy;, = f ok
n,k ’ n,k
for a return time r¢, which is constant on each R?. This gives an inducing scheme
n,k .
FX; W URI — X,k With inducing time i, where on each R/, i, is a constant
J
X,
such that m,(2) = z. Let (XY, ,)° denote the set of points for which Fy: is defined
’ n,k

for all time.

> 1. Asin [B], for z € UR/, TX;k(w) is given by TXZ;C(:%) for any z € X;k
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Lemma 2.2. For all x € I there exists n; — oo and a cylinder X%,k containing x

so that (X;j’k)OO = Xf%k, and for all y € (Xf)’k)oo, FXQ k(y) — Fng(y) as j — oo.
s :

We postpone the proof of this lemma to the appendix. From here on we will replace
the sequence {f,}, with the one given in the lemma.
Remark 2.3. It is common to suppose that an ‘inducing interval’ to be chosen to be

‘nice’ in the sense of Martens: an interval A is nice in this sense if f™(0A)N ,()4: 0
for allm > 1. The key property that the inducing scheme then has is as follows. If
x € A has a neighbourhood A, such that f : A, — A is a homeomorphism, then
A, C A. The theory of inducing schemes can then be applied. Our intervals X,, j,
are not nice in this sense, but the key property still holds. This can be proved using
the structure of cylinder sets.

3. PRESSURE

If (X,T) is a dynamical system with potential ® : X — R, then the measure m is
&-conformal if

m(T(A)) = /A e~ ®@) dm()

whenever T': A — T(A) is one-to-one. In other words, dm o T'(z) = e~ ®*@dm(z).
We define the transfer operator for the potential ® as

Lag(y) = Y. e*Wyly).
T(y)=z
Assume that §; = {C’l}Z is a countable Markov partition of X such that T : C{ — X
is injective for each Cj € ;.

Suppose that (X, T, ®) is topologically mixing. For every C{ € §; and n > 1 let
Zn(2,C1) = Yo €@l (w),

Trhr=zx
where @, (z) = Z;:& ® o Fi(z). We define
(4) Va(®) := sup sup [®(z) — D(y)],

Cn€Sn z,yeSy

where S,, = V?:_& T—7(81) is the n-join of the Markov partition S;. We say that ®
has summable variations if 3 -, V,(¥) < co. Under this condition, we set By :=
exp (X pske1 Va(¥)). As in [Sal], we define the Gurevich pressure of ® as

o1 i
Pg(®) = Jim. - log Z,,(®, CY).
This limit exists since log Z,, (¥, C}) is almost superadditive:

log Z, (¥, CY) + log Z (¥, C}) < log Z 14, (¥, C}) + By

Therefore, P (¥) = sup,, L log Z, (¥, C}) > —co. By the mixing condition, P () is
independent of the choice of C¢. To simplify the notation, we will often suppress the
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dependence of Z,(®,C%) on C%. Furthermore, if ||Lg1]|oc < oo then Pg(®) < oo,
see Chapter 2 of [Sal].

Assume now that T : X — X is the full shift. That is T : C% — X is bijective for
all 1.

We say that p is a Gibbs measure if there exists K < oo such that for all Cy € Sk,

1 1(Cr)
K S dr-ire@ S K

for any x € C,,. Here ®py(z) := ®(F*H(2)) + - + ®(z).

Theorem 3.1 ([Sa3]). If (X, T, ®) is the full shift, 37~ Vo (®) < 00 and Pg(®) <
oo then @ has an invariant Gibbs measure. Moreover the Gibbs measure g has the
following properties

(@) If hyy (T) < 00 or — [ ®dpe < oo then pe is the unique equilibrium state
(in particular, P(®) = hy, (T) + [x © dus);

(b) The Variational Principle holds, i.e., Pg(®) = P(®) (= hu, (T)+ [ ® dus);

(c) po is finite and pe = pe dme where Lops = Ape and Lyme = Ame for
A =el6® e me(TA) = [,e®7182 dmg;

(d) This pg is unique and mg is the unique (® — log \)-conformal probability
measure.

Note that because pg is a Gibbs measure, 1 (C?) > 0 for every cylinder set CZ, € S,,,
n € N.

iuk and
Fyo= Fxi . As in [BT2] we set ¢, = ¢y, — P(py,) and get inducing schemes

From Lemma 2.2, we have inducing schemes (Cy, o, Fy, ®F,) for C,o = X

(Cnos Fn,VE,). Moreover we get Pg(V,) = 0 and equilibrium states pp, = pw,
and pu, = py for (Cp 0, Fn, ¥y) and (I, fr, 1y) respectively. Note that an equilibrium
state for 1, is also an equilibrium state for ¢y, .

We denote a k-cylinder of F, by C,, ;, and the collection of these cylinders by Py, ;.
We denote W,, := U and W, 1 (2) = U, (FF1(2)) + -+ + U, (). We will write
Wl to mean W, (z) for an arbitrarily chosen = € C}, ;. The variation V, x(¥y,) is
defined as in (4).

Remark 3.2. We define the distortion constants By as By above. By [BT2,
Lemma 7| there exist 0 < X(6,t) < 1 and C(8) > 0 so that eV+(Y=) < C(5)N(8,1)".
Then there exist C'(5) > 0 and N'(8,t) so that By, = By(0,t) < C"(8)N(0,t)*. There-
fore By, is independent of n.

For use later, we define Zo(0,,) := 3, 5P ¥n,

Following Sarig in [Sa3], any constant H,, with H, > (supp,)? where p, is as in
Theorem 3.1(c) has the following property. For any C,, x € Py,
1 pF, (Cok)

<
H,By = e¥Yn.k(@)—kPa(¥)

< HnBO
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for any = € C,, ;. Moreover by [BT2], Pg(¥) = 0. We are allowed to take a uniform
distortion constant By for all of our maps F;, by our choice of C,, o. It is important
here to replace H,, with a uniform constant H. We consider how H,, was obtained.
For this lemma and its proof we fix f = f,, so dropping any extra notation. Note
that the bound used in [Sa3, p1754] is not sufficient for us since it depends on the
measure of a cylinder, which can be different for different n.

Lemma 3.3. Vy(logpy) < 2log By and the Gibbs constant can be chosen to be
H; = Bj.

Proof. According to [Sal, (3.12)], Vi(log pw) < log By. We use this to show Vj(log pg)
is uniformly bounded above. Take x1, 22 € Co. Let y1;, y2,; be the unique points in
¢ such that F(y1;) = 21 and F(y2;) = z2. Then since Lypy = py,

e " pu () < > eV supgeci pu ()
> Fyp=an €72 pu(y2) | 5 Mrecy V@)
1

P\If(ml)
pw(z2)

< ByB;.
inf, cor pu(a)

Therefore the first part of the lemma is finished. There must exist x1,x2 € Cy with
pu(z1) < 1 and pg(xy) > 1: otherwise in the first case up(Co) > 1, and in the
second case pup(Co) < 1. So setting Hy := Bj we have H; > (sup py)?, so we are
finished. H

For use later, we let Hr := Bé.

4. GIBBS PROPERTY FOR THE WEAK* LIMIT OF GIBBS MEASURES

By passing to a subsequence if necessary, we may assume that pp  is a weak™ limit
of {uF,},. From the previous section and a uniqueness argument from [MU], we
know that if we prove that ur _ satisfies the Gibbs property and is invariant, then
1r, = pr,- This section is devoted to proving that mpg_ has the Gibbs property
which will allow us to conclude that g has the Gibbs property also.

Lemma 4.1. For a fized family F = F.(C,«a) or F = F,(C, B) satisfying (1) or
(2) respectively, there exists C' > 0 so that for all N > 1,

pp, AT > N} < C'e™ or pup, {1, > N} < C'"N~F respectively .

Proof. In the proof of Proposition 2 of [BT2], the correspondence between our in-
ducing scheme and the one considered in [BLS] is given, which allows to conclude
that the estimates for the tail of our inducing scheme are given by the ones in [BLS].
A careful reading of [BLS] reveals that the constants involved in the tail estimates
depend only on constants which are uniform on the respective families F.(C, ) and
fp(C, ﬁ) O

As a consequence of this lemma, for a given family F we can choose k = kr : N —
[0, 1] to be the function so that pg, {7, > so} < k(so) for any F,, € F and k(sp) — 0
as sg — 00.
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We next make conditions on our inducing schemes, so that only some of those in
Lemma 2.2 will be appropriate choices. We select our inducing schemes so that the
1-cylinders accumulate on each other. In particular so that a cylinder with a small
inducing time is accumulated by 1-cylinders with larger and larger inducing times.

By construction, f7 (89X, )N )O(mk: () for all 1 < j < k. However, we will fix an 4
so that for each n large enough, the cylinder Xf%k has fﬂ;(aXfl’ ) N oXE k= = () for
all 1 < 5 < k also. It is easy to show that this property can be satlsﬁed for our
class of maps. We denote C,, o to be the cylinder Xfl 1> Which is fixed for the rest of
this paper up to the appendix. The maps F;, = FX1 are defined as above. Recall
that we P, o := {Cp 0}, and define P, to be the set of k-cylinders for the inducing

scheme F,,. This construction means that ij, C”l = ( for all i; # iy for all
large n. We exploit this property in Remark 4.2. We may assume that this property
actually holds for all n.

Let 7¢ & be the kth inducing time on a cylinder Cn s Le. fTn k( n. ') = Cppo. Asin
Section 2, after possibly relabelling, for Ci 0k there exists N = N (k:, i) > 1 so that
for n > N there is a cylinder C!,  so that TO k = Tpy and these two intervals have
the same itinerary up to time 7'07 i by fo and f, respectively. We say that for n > IV,
Ch . 1s matched; or similarly that C) , is matched. In this case, C} , — Cj, as
n — oo.

Remark 4.2. Given ¢ 2 1, fpr all M > 1 there exists 7 > 0 and N > 1 so that
for-alln > N, (1+n)Cj, 1\ C}, 1 only intersects 1-cylinders with 7, > M. To show
this, we start by choosmg N so large that {C{l’1 : 75 < M} are matched for all
> N. Now let n : mln]#’ sy d(Cal,C{M). By the setup, n > 0. Now we
may increase N so that n > N implies C],; N (1+3)Ch, = C] | for all j with
j < M. This means that n has the property required.
Lemma 4.3. For all e > 0 there exists ip > 1 and N > 1 such that C} 1 1s matched

for all 1 < i < i for alln > N, and furthermore n > N implies up, (UDl0 L 1) <
€.

Proof. Let sg be so that r(sg) < e. So so depends only on € and F as in Lemma 4.1.
We choose ig so that T4 > sp for all ¢ > 7p. Similarly to Remark 4.2, we can choose
N so large that C%’l are matched for all 1 < ¢ < 4 and that 77 > sp for all ¢ > g

and all n > N. Tt then follows that i, (Ui,

Ciz,l) < ¢ as required. O

In the following lemmas we repeatedly use the conformal property of mp,. This
allows us to compare behaviour at small scales with that at large scale.

Lemma 4.4. For all e > O for allig > 1 there exists n > 0, such that for all k >
any CO,k € Po, with FY (007 ) = Ch, and 1 <i < has

T ((1 il 77)%”“) < By (1 + 6) and 2 ((ﬁ) Cé’k) > !
mr, (Ch ) 4 iy (Cf ) Bo(1+3)
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Proof. Let sy > 1 be such that

k(s0) < = < min mpg, (Ch 1)>

8 \1<i<io

For the upper bound, let 7’ > 0 be such that the set ;<;<;, (14 Bon')Cf ; \ Cf ; con-
tains only cylinders Cfy ; with 7§ > so. Then mpg, ((1+Bon)Ch;) < (1+ 5) mr, (Ch 1)
for 1 <1 < 1p.

For k > 1, we use distortion and conformality to reduce the problem to the 1-
cylinders’ case just considered. Assume for k& > 1 that Fé“il(C{) p) = C671. Since

(1+n) Cg) ;. 18 in the same k£ — 1-cylinder as Cg w» for i is sufficiently small, bounded
distortion implies that

FyH (1 +1) €y ) © (14 Bon')Cy,.
Using the conformal property of mp, and bounded distortion we have

. ] U j
mFO ((1 —|— Bon/) Céyl) S f(1+77’)cf),k e 0,k—1 deO S 1 mFO ((1 —|— n’) C‘ak)
mpg, (Cé,1> - fCﬁ K e~Yor-t dmp, ~ By '

mFE (Cg),]g)
Hence, by the choice of ' above, we have

mp, (1+7)Ch ) <3 <1+ 5)
; x Do -]
mFo(Cg),]g) 4

For the lower bound, let 31 1 be such that s(s1) < §. Then we choose 0 <7 <7/’

so that the set Cop \ 7 + B o only contains 1-cylinders CO 1 with 7¢ > s1. This implies

i (r5hs) Con) 31§ iy

For k£ > 1 we use the a distortion argument similar to the one above. Bounded
distortion implies that

1 . 1
k ]
ko (<1+77> CO”{) - <1+Bo77) Cop-

Using the conformal property of mp, and bounded distortion we have

MFo ((1‘*‘3077) Co 0> < f(1+n)cj e e < By (mFO <(ﬁ) Cé’k)) .

mp, (Coo) 7 Jog e7Or dmr, me, (CY )

Hence, by the choice of 1 above, we have

My (<1+n) Cék’) S 1
mFo(Co,k) " By (1+ %) ‘




STATISTICAL STABILITY OF EQUILIBRIUM STATES FOR INTERVAL MAPS 11

Notice that the above proof can be used to show in particular that for the 1-cylinders
considered above,

o (0 () )
mFo(Cg,l) T+ %

Proposition 4.5. For alle >0, A € (0,1), ko > 1 and sequences (i1, . . . ,ig,) € NF0
there exists Ng > 1 such that for alln > Ng, 1 < k < ko and 1 <@ < ig, we have

1 mpg, (Cf),k)

S < Bi(1
B§(1+5) Yo,k () 0( +¢)

for all x € )\Cf)’k.

Proof. The following claim is left to the reader.

Claim 1. For alle > 0, kg > 1 and sequences (i1, . . . ,iko)‘ € NFo there exists No > 1
such that for alln > No, 1 < k < ky and 1 < 17 < g, C’;L,k‘ 18 matched. Moreover,

for these cylinders, each set FF=1( ;k) is matched.

We next make the following claim.
Claim 2. For alle > 0, A € (0,1), ko > 1 and sequences (i1, ..., iy,) € NF there
exists N1 > Ny such that for allm > N1, 1 <k < kg and 1 <1 < i,

; 1 i

1+ . mr, | (1) Cn
mg, (( 7?) n,k) < By (1+5) and (<1+n> k:) > 1 _
mr,(C;, 1) 4 mr, (Cy, k) By (1+ %)

Proof. The proof of the claim is the same as for Lemma 4.4 except that we need to
take F), sufficiently close to Fj so that the cylinders CZ, ;. considered in Lemma 4.4

have almost exactly the same properties as those Cé i considered here. U

A simple consequence of these claims is that for all e > 0, A € (0,1), ko > 1
and sequences (i1,...,1k,) € Nko there exists No > Nj such that for all n > Na,
1<k <kyand 1 <0 < iy, C:z,k € Py i is matched and

mp, (Ct
L Fa ?,k) <BO<1+>.
By (1 + Z) meg, (Cn,k) 4

Here we take some Ny > Nj so that C&k C(1+ n)Cﬁ;k and CZM C(1+ n)C&k for

all Cgl ;. as in the statement of the proposition.

The Gibbs property for mp,, which follows directly from conformality, means that
mpg, (C;Lk) = BT eV»+@) for all x € C;Lk Now we can take N3 so large that

1

(1+%) i

< e¥nk@—Yor(r) <1 4

W
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for all x € Cf%k N C%,k for the cylinders Ci,k under consideration. To complete the

proof of the lemma, we possibly increase Ny again to ensure that CﬁL’ 6N 067 i C )\Cé’ i
for all the cylinders we consider. O

Combining Lemma 3.3 and Proposition 4.5 we have that yr_ must have the Gibbs
property with uniform constant. That is:

Corollary 4.6. For all k and all Co . € Po k.,

1 < MFw<Cék)

< 2
HrBj(1+¢) S eYor(z) T HzBy(1+ ),

for all x € Cé),k’

We will need the following lemma later.

Lemma 4.7. For alle > 0 and ig > 1 there exists N = N(¢) > 1 such that n > N
implies

KE, <@ (Cﬁl,lACal)) <e.

1=0

Proof. Combining the arguments in the proof of Lemma 4.4, the paragraph following
it and Claim 2 in the proof of Proposition 4.5 we have n > 0, 1o > 1 and N’ > 1
such that for n > N,

3

mr, ((1 + n)Cn,k \ ka) y MF, Cn,k \ ( : <

1+mn) ioHr

for all 1 <4 < ig. Recall that Hx is the constant from Lemma 3.3. Moreover, there
exists N > N’ such that n > N implies

Cn,lACO,l - (1 =+ n)cn,k’\ (1 _’_777)

for all 1 < ¢ < ig. Therefore, n > N implies
meg, n18C0 ) S oo
i=0 Hr

The lemma follows from Lemma 3.3, substituting pp, (= hr,mpg,) for mg, in the
above equation. O

5. INVARIANCE OF THE WEAK* LIMIT

We may assume, as in the beginning of Section 4, that pp_ is the weak® limit of the
sequence {45, },,. In the previous section we saw that pp_ is Gibbs. The purpose of
this section is to show that up is Fp-invariant. Before that, we prove the following
technical lemma that will be useful in the remaining arguments.
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Lemma 5.1. For alli € N and every continuous g : C’é,l — R we have

/g.lca1 dur, — /g.lc(i1 dur.,.

Proof. We can extend g continuously to 80671, and for every x € I\ 08,17 define
b'(x) as the point of dC} ; closest to .

Observing that ¢ = g — g=, where g (z) = max{0,g(z)} > 0 and g~ (z) =

max{0, —g(x)} > 0, we may assume without loss of generality that g > 0. Also,
since, by Corollary 4.6, up,, is a Gibbs measure, we have up, (9Cf ;) = 0, which

implies that f@\acé,l g dup, = f@gdupoo = f08,1 g dup,, .

Let Uy, = {x € I : dist(x,Cj ;) < 1/k}. Clearly Uy is an open neighbourhood of@'71

and by the regularity of up,, it follows that pup, (U \ Cf ;) = (k) — 0 as k — oo.
Define h: I — R as

0 if x ¢ Uk
i d(z,I\U] : i
ha) = § 90 (2) i € U\ Gy
g(x) if z € C'é’l

Notice that h is continuous and, for every x € I, we have g(a:)lcél(x) < h(x) <

max, g(x) and h(z) — g(:c)lcé’l(x) > 0 only if z € Uy \@ Consequently,

using the weak* convergence of pur, to pup,, it follows

/glcgﬂldm < /h dpr, —— /h dpr, < /glcé1 dprp,. + €(k) max g(x).

wGCéyl

Letting k — oo we get [ glcg ld,u r <[ 9105 ldu r..- The opposite inequality follows
similarly. 7 ’ O

Lemma 5.2. ur is Fy-invariant.

Proof. The Fy-invariance of up, is equivalent to

/SOOFO dpr,, =/<P dpr,,

for every continuous ¢: I — R. Given any ¢: I — R continuous we have by
hypothesis

/gpdan—>/g0dqu as n — oo.
On the other hand, since pp, is an F,-invariant probability measure, we have
/cp dup, = /(<p oF,) dup, for every n > 0.

So, it suffices to prove that

(5) /((pan) dpr, — /(QOOFO) dur, as n — oo.
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We have
/(@ o) dup, — /(s@ o Fy) dur,,| <

‘/(cpan) dur, —/(sooFo) dur, |+ ‘/(woFo) dur, —/(woFo) dup.,

Observing that ¢ o Fjy is continuous on each C’éjl, we easily deduce from Lemma 5.1
and Lemma 4.3 that the second term in the sum above is close to zero for large n.

The only thing we are left to prove is that the first term in the sum above converges
to 0 when n tends to co. That term is bounded above by

(6) /|goan—gooF0‘ dur, .
Take any € > 0. Using Lemma 4.1, take N > 1 such that
Z lan(C’fz,l) <e.
TE>N
We write the integral in (6) as
(7) Z/l }QOOF (pOF0|d,U,Fn+ Z/ |g00F spoF0|d'an
TL >N TL SN
The first sum in (7) is bounded by 2¢||¢||s. Let us now estimate the second sum in

(7).
Using Lemma 4.3, we take ny sufficiently large so that for all n > n; and every
cylinder Cy, ; with 7, < N there is a matching cylinder Cf ; with 7, = 75. Moreover,
using Lemma 4.7, we may assume that n; is large enough so that n > n; implies
Z MFn(CfLJACé,l) <e.
TIEN
For every i such that 72 < N we have

/. \eoan—sooFo!dan</_ , \«pOf;S—QOOfOTS\dan
c, Ch NG 4

n,l
+/_ JpoFy — o Fy| dug,.
[0 \C’éy1

Since f, — fo in the C* topology, there is ny € N such that for n > ng

Z/z ; “POJN —SOOfon dpr, <e.
LN mC
On the other hand, for n > ny
Yol lpoFu—wo Ry dur, < 2@l
7N /a1t

Thus we have for n > max{nj, na}

/|<POF @o Fyl dup, <e(4fpllo +1).

This proves the result since € > 0 was arbitrary. O
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Since pp,_ is an invariant Gibbs measure, uniqueness of such measures, [MU, Theo-
rem 3.2], implies up,_ = pr,.
Remark 5.3. Observe that the whole sequence pp, converges in the weak™ topology
to pp,. This is because any subsequence {,upn} admits a convergent subsequence
vJ
{an, } , whose weak® limit, pr. , is Gibbs and Fy-invariant, by Corollary 4.6 and
ZJ' .
J

Lemma 5.2. Hence, by uniqueness, up, — [LF,, in the weak™ topology, which clearly
i

implies the statement.

6. CONTINUOUS VARIATION OF EQUILIBRIUM STATES

So far, we managed to prove that if f, — fo, then the induced Gibbs measures
converge in the weak™ topology, ie, ur, — pr,. We define the saturation of pur by

oo Ti—1

(8) EDIDIN A (e

i=1 k=0
Observe that, for some fixed t € Ugr, the unique equilibrium state of f,, for the
potential —tlog |Df,| is such that u, = I, /,u}n (I), for every n > 0. Consequently,
the proof of Theorem A will be complete once we prove:

Proposition 6.1. For every continuous g : I — 1,
/g duf, —— /9 dpy, -

Proof. First observe that as I is compact, g is uniformly continuous and ||g|cc < o0.

Let € be given. We look for ng € N sufficiently large so that for every n > ng

/gdu?n—/gdu}o <e
Recalling (8) we may write for any integer N
-1 -1
who= > > (F)e(ur,|Chy) +nyp, and pjy = > D (F5)(ur | Co1) + g

77;7‘71 . i1 .
where 1)y, = Yoo n Sy (F3)«(1r,]Cra) and g, = oy Y00 (f6) (1R | Ch -
Using Lemma 4.1 we pick N large enough so that n > N implies

N, (L) + g, (1) <e/2.
Using Lemma 4.3, we take n; sufficiently large so that for all n > n; and every
cylinder Cy, ; with 7, < N there is a matching cylinder Cf ; with 7, = 75. Let Sy
denote the number of 1-cylinders such that 7/ < N. To complete the proof of the
2

proposition, for every i such that 72 < N and k < 7, we must find a sufficiently
large no so that for every n > ns

€

B [(go ey, dur, — [(90 fE)cy, dun| < 55
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We split E into Eq, E5 and E3 presented in respective order:

B<|[ (0o s~ (g0 )] 10y dur,

+ ‘/(9 ) [10;;71 - 10371} dpr,

+ ‘/(Qof(’f)lcgyldﬂFn - /(gofég)lcg,lduFo

Since
E, </’(90fff)—(90fé“)‘ dpr,,

we choose ny large enough so that for every n > ny we have ‘(g ofF) —(go f(’f)‘ <

e . .
55y order to obtain F; <

£
6SN°
Now,
Ey < ||glloptr, (sz,lACé,l)'

Using Lemma 4.7, we take ny large enough so that for all n > ns we have Ey < ﬁ.

Regarding the last term, Lemma 5.1 allows us to conclude that if ns is sufficiently
large then for all n > ny we have F3 < ﬁ. O

Proof of Theorem B. Alves and Viana, in [AV], give some abstract conditions for
statistical stability of physical measures in the strong sense, that is, convergence
of densities in the sense of (3). Our inducing schemes and their properties put
us trivially in the setting of Alves and Viana, meaning that both F.(C,«) and
Fp(C, 3) meet the requirements of the family I/ of [AV]. Moreover, Lemma 4.7 and
Lemma 4.1 imply that conditions U; and Us of [AV] are satisfied, respectively. Since
the constants involved in all estimates are taken uniformly on F.(C, «) or F,(C, ),
then condition Us also holds. Consequently, by [AV, Therorem A], we have that the
map

d
Fofr— oy
dm
is continuous as in (3), where F stands for either F.(C, a) or F,,(C, #) and m denotes
Lebesgue measure. O

Remark 6.2. Note that the theory presented here extends to Manneville-Pommeau
maps f: x+— x4+ T (mod 1) for o € (0,1). Given such a map, and a potential
o = —tlog |Df|, it is straightforward to prove an equivalent of [BT2, Theorem 1],
yielding an equilibrium state py fort € [0,1] for some § < 0. One main difference in
proving statistical stability for these measures is that in the proofs of Proposition 4.5
and Lemma 4.7 for example, to estimate the measure of sets C%)’kAC;7k we can no
longer assume that no two cylinders for the inducing schemes are adjacent. Above,
this property enabled us to estimate Cé,kACi;,k using the measure of 1-cylinders.
However, when, as in the Manneville-Pommeau case, we do not have this property,
we can use the measure of k-cylinders to give us the required estimates instead.
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APPENDIX A. HOFBAUER TOWERS

In this appendix we prove Lemma 2.2. We first need some more theory about
Hofbauer towers.

For the moment fix n and so we suppress it in the notation. We let I7 denote the
transitive component of I. More precisely, I7 consists of a union of elements of D
and there is a point & € I7 so that {J,, f¥(2) = I7. The existence of this (maximal)
component is implicit in works of Hofbauer and Raith, see also [BT2| for a self
contained proof and references.

We next consider how to ‘lift’ measures to the towers. Let ¢ := 71”5(1) where Dy is the

lowest level in ] ,80 L : I — Dy is an inclusion map. Given a probability measure m,
let m% = m o ™! be a probability measure on Dy. Let

1 k—1
~ko_ ~0 F—j
mo = - m- o .
k J»Zo !

We let m be a vague limit of this sequence. This is a generalisation of weak® limit
for non-compact sets: for details, see [K]. In general it is important to ensure that
m # 0. It is known, see for example [BT2| that if m is an ergodic invariant measure
with positive Lyapunov exponent then 1 o 7=t = m.

We say that = reaches n-large scale at time j if there is a neighbourhood U > z
such that f/ : U — (z —n,z + n) is a diffeomorphism (note that we do not require
bounded distortion here). As in [MeS], if f € H, then dj := sup,¢; |Xg[z]| has
dr, — 0 as k — 00. The following lemma uses the idea of [BT1, Lemma 9], where it
was done for complex maps.

Lemma A.1. Let f € H and m be a probability measure. If n,0 € (0,1] are such
that m-a.e. point goes to n-large scale with frequency 0 then there exists R depending
only on 1,0 and how dy, decreases with k, such that m(I7) > 6.

Proof. Let R € N be such that for all z € I, we have |Xg[z]| < n. This implies that
if d(&,0Dz) > 1 then 7~ (Xg[r(2)]) N Dz € D;. Therefore, if - € I reaches 7)-large
scale at time j, then for 7 := «(z), 7} (Xgr(f’(z))) N D5y € Dz From the way
the Hofbauer tower is constructed, this implies that f7 tR(3) e I, Fix ¢ > 0. Then
there exists kg = ko(x,e) € N so that k > ko implies

1 5 . 0
— <jJ cfi(z) e I —
k#{o j<k:fiz)e }>1+5
Let N be so large that m{x € I : ko(z,e) < N} > 1 —¢. Then

im0 im0 (251 (1)

for all £ > pN. Since € > 0 was arbitrary, we have m(fR) > 0. g
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Proof of Lemma 2.2. Following the ideas of [BT2, Theorem 3] we can show that if
An is chosen in I -7 then there is a first return map to A which has domains dense in
A,,. For our purposes here, we need to show that we can choose a domain A, In T
with 2 € m,(A,) so that there is a subsequence {n;}; with Anj — Ag as j — co. So
the essential thing to prove is that we can choose a uniform R so that fnj N ff # (.
From there, a compactness argument implies that we can pick such a fl . Once we
can prove that there is such flnj we can choose szj so that (1 + 5)X’ C ﬂn(An]).

Hence X;k is always in the transitive part of its Hofbauer tower. It is easy to see
that this results in inducing schemes with Fy: k(x) — Fxi k(a:) as j — oo for all
nj, 3

x € (X ;). The fact that (Xf@j’k)oo = Xizj,k follows as in [BT2, Theorem 3].

Let v, be the acip found in [BLS]. By Lemma A.1, there exists ¢ > 0 and R € N
so that o, (I ) > ¢ for all n. Here ¢ and R depend only what scale is reached with
what frequency, and the way the cylinders shrink. We claim that every map in F
goes to uniform large scale with uniform frequency. Adding this to the fact that for
n large enough, the cylinders shrink sufficiently similarly for us to be able to apply
Lemma A.1, the lemma is proved.

The claim can be proved using [BLS]. There, inducing schemes G,, : [J, — Q,
are constructed for some §2,. Here G,, = f™ for an inducing time r,. We can take
N = ‘Q"|. This is uniformly bounded below. To check this fact we refer to [BLS,
Lemma 4.2] where the sets 2,, are constructed. Then observe that once a map fy is
fixed the construction of the corresponding €2 involves a finite number of iterations
and constants that can be taken uniformly within the families considered. This
means that one can mimic the construction for a neighbouring map f,, and hence
obtain an interval uniformly close to the original €2g. By the Ergodic Theorem, the

frequency
1 ,
lim —+# {0 <j<k:3U>szxst. f1:U—Q,isa diffeomorphism}
k—oo k

for a v,-typical point z is bounded below by ﬁ where vg, is the measure
n Gn

for the inducing scheme. Hence we need only to show that [r, dvg, is uniformly
bounded above for all f,, € F, which follows from Lemma 4.1. d
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