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Abstract. We consider families of multimodal interval maps with polynomial
growth of the derivative along the critical orbits. For these maps Bruin and Todd
have shown the existence and uniqueness of equilibrium states for the potential
ϕt : x 7→ −t log |Df(x)|, for t close to 1. We show that these equilibrium states
vary continuously in the weak∗ topology within such families. Moreover, in the
case t = 1, when the equilibrium states are absolutely continuous with respect to
Lebesgue, we show that the densities vary continuously within these families.

1. Introduction

One of the main goals in the study of Dynamical Systems is to understand how the
behaviour changes when we perturb the underlying dynamics. In this paper, we
examine the persistence of statistical properties of a multimodal interval map (I, f).
In particular we are interested in the behaviour of the Cesaro means 1

n

∑n−1
k=0 ϕ◦fk(x)

for a potential ϕ : I → R for ‘some’ points x, as n →∞. If the system possesses an
invariant physical measure µ, then part of this statistical information is described
by µ since, by definition of physical measure, there is a positive Lebesgue measure
set of points x ∈ I such that

ϕ(x) := lim
n→∞

1
n

n−1∑

k=0

ϕ ◦ fk(x) =
∫

ϕ dµ.

If for nearby dynamics these measures are proven to be close, then the Cesaro
means do not change much under small deterministic perturbations. This motivated
Alves and Viana [AV] to propose the notion of statistical stability, which expresses
the persistence of statistical properties in terms of the continuity of the physical
measures. A precise definition will be given in Section 1.1

However, the study of Cesaro means is not confined to the analysis of these mea-
sures. We can consider the encoding of these statistical properties by ‘multifractal
decomposition’, see [P] for a general introduction. Given α ∈ R, we define the sets

Bα := {x ∈ I : ϕ(x) = α}, B′ := {x ∈ I : ϕ(x) does not exist}.

2000 Mathematics Subject Classification. 37D35, 37C75, 37E05, 37D25.
Key words and phrases. Equilibrium states, statistical stability, thermodynamic formalism, in-

terval maps.
JMF is partially supported by POCI/MAT/61237/2004 and MT is supported by FCT grant

SFRH/BPD/26521/2006. Both authors are supported by FCT through CMUP.

1



2 JORGE MILHAZES FREITAS AND MIKE TODD

Then the multifractal decomposition in this case is

I = B′ ∪
(⋃

α

Bα

)
.

Understanding the nature of this decomposition gives us information about the
statistical properties of the system. This can be studied via ‘equilibrium states’.
See [PW] for a fuller account of these ideas, where the theory is applied to subshifts
of finite type.

To define equilibrium states, given a potential ϕ : I → R, we define the pressure of
ϕ to be

P (ϕ) := sup
{

hµ +
∫

ϕ dµ

}
,

where this supremum is taken over all invariant ergodic probability measures. Here
hµ denotes the metric entropy of the system (I, f, µ). Any measure µ which ‘achieves
the pressure’, i.e. hµ +

∫
ϕ dµ = P (ϕ), is called an equilibrium state for (I, f, ϕ).

In this paper for a given map f , we are interested in the equilibrium state µt of the
‘natural’ potential ϕt : x 7→ −t log |Df | for different values of t. This theory was
developed by Ledrappier [L], Bruin and Keller [BK] and then latterly by Pesin and
Senti [PSe] and Bruin and the second author [BT3]. For t = 1 there is an equilibrium
state µ1 which is a physical measure. In this setting, we also refer to this measure as
an absolutely continuous invariant measure (acip) since it is absolutely continuous
with respect to Lebesgue. This measure is supported on Bλ(µ1) where λ(µ1) is
the Lyapunov exponent of the acip. For a given value of α, close to λ(µ1), there
is an equilibrium state µt supported on Bα, for some t close to 1. Therefore, to
understand the statistics of the system with potential ϕ1, it is useful to study the
properties of the relevant equilibrium states. Note also that these ideas extend to
equilibrium states of other potentials, see [BT3] for example. We would also like to
point out the theory presented in this paper extends to Manneville-Pommeau maps,
see Remark 6.2.

Our main goal is to show that the equilibrium states vary continuously with f .

1.1. Statement of results. Here we establish our setting and make our statements
more precise. Let Crit denote the set of critical points. We say that c ∈ Crit is a
non-flat critical point of f if there exists a diffeomorphism gc : R→ R with gc(0) = 0
and 1 < `c < ∞ such that for x close to c, f(x) = f(c) ± |ϕc(x − c)|`c . The value
of `c is known as the critical order of c. Throughout, H` will be the collection of
C2 interval maps which have finitely many branches, negative Schwarzian (that is,
1/

√|Df | is convex away from critical points), only non-flat critical points all with
fixed order `. Moreover, for simplicity, we assume that maps in this class have no
points of inflection and are transitive.

We will consider families of maps in H` which satisfy the following conditions. The
first one is the Collet-Eckmann condition:

There exist C, α > 0 such that |Dfn(f(c))| > Ceαn for all c ∈ Crit.(1)
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Secondly we consider maps satisfying a polynomial growth condition.

There exist C, β > 0 such that |Dfn(f(c))| > Cnβ for all c ∈ Crit.(2)

We will take a map f0 ∈ F where we suppose that all maps in F satisfy either (1)
or (2). We will sometimes denote these families as Fe(C,α) or Fp(C, β) respectively
in order to clarify the constants involved.

We will consider equilibrium states for maps in these families. Suppose first that
maps in F satisfy (1). Then by [BT2], there exists an open interval UF ⊂ R
containing 1 and depending on α and ` so that for f ∈ F and t ∈ UF the potential
ϕf,t : x 7→ −t log |Df(x)| has a unique equilibrium state µ = µf . If instead we
assume that maps in F satisfy (2) then we have the same result but instead UF is
of the form (tF , 1] where tF depends on β and `.

We choose our family F and fix t ∈ UF and denote ϕf,t by ϕf . We fix f0 ∈ F and
suppose that {fn}n ⊂ F has ‖fn − f0‖C2 → 0 as n →∞. We let µn = µfn,t denote
the corresponding equilibrium state for each n with respect to the potential ϕfn .
We say that µ0 is statistically stable if a weak∗ limit µ∞ of {µn}n is equal to µ0.

Theorem A. Let F ⊂ H` be a family satisfying (1) or (2) with potentials ϕf,t as
above. Then, for every fixed t ∈ UF and f ∈ F , the equilibrium state µf,t as above
is statistically stable within the family F , i.e., the map F 3 f → µf,t is continuous
in the weak∗ topology.

Although the definition of statistical stability involves convergence of measures in
the weak∗ topology, when we are dealing with acips, it makes sense to consider a
stronger type of stability due to Alves and Viana [AV]: we say that f is strongly
statistically stable in the family F if for all ε > 0 there exists δ > 0 such that for

(3) ‖f − g‖C2 < δ implies
∫ ∣∣∣∣

dµf

dm
− dµg

dm

∣∣∣∣ dm < ε,

where m denotes Lebesgue measure, g ∈ F , and µf and µg denote the acips for f
and g respectively. As a byproduct of the proof of Theorem A we also obtain:

Theorem B. Let F ⊂ H` be a family satisfying (1) or (2). Then, for every f ∈ F ,
the acip µf is statistically stable in the strong sense, see (3).

This result generalises the one in [F], where strong statistical stability was proved
for Benedicks-Carleson quadratic maps, which are unimodal and satisfy condition
(1). The issue of continuous variation of physical measures for unimodal maps was
previously addressed in [Ts, RS, Th]. Statistical stability of physical measures (in
the strong sense) was also obtained in [A, AV] for non-uniformly expanding maps.
This was also considered, under some additional robustness assumptions, in [Ar].
In the non-hyperbolic invertible setting, statistical stability was also studied in [V]
for diffeomorphisms with dominated splitting and in [ACF] for Hénon maps of the
Benedicks-Carlseon type.

1.2. Structure of the paper. In Section 2, we build inducing schemes for each f ∈
F and show that the construction can be shadowed for nearby dynamics. Although
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other methods could be used to build the inducing schemes, we used Hofbauer
towers which are explained in more detail in Appendix A. In Section 3, we introduce
some thermodynamic formalism, discuss the existence and uniqueness of equilibrium
states and study their properties, especially their Gibbs property. In Section 4 we
show that the weak∗ limit of Gibbs measures is also a Gibbs measure. Section 5
is devoted to showing that the induced measures on the tower vary continuously
with f ∈ F . Finally, in Section 6 we show that the continuity of the measures
survives the saturation of the induced measures into the original equilibrium states,
completing the proof of Theorem A. We finish that section by showing that the
choice of inducing schemes and the uniformity properties of the family F proved
along the way allow us to use the results of [AV] to obtain Theorem B.

The main new step in this paper is to notice that the invariant measures on our
inducing schemes are Gibbs states. This allows us to pass information from the
limiting inducing scheme to other nearby inducing schemes. In this way we can
avoid the techniques of [AV] which used convergence in the sense of (3). Those
techniques can not be applied in this setting since, unless ϕ = − log |Df |, we are
not considering acips, and thus Lebesgue measure has no relevance.

In this paper we write x = B±y to mean 1
B 6 x

y 6 B. Also for λ ∈ (0,∞) and
an interval J , we let λJ be the interval sharing the same centre as J and having
size λ|J |. For an interval J and a sequence of intervals {Jn}n, we write Jn → J as
n →∞ if the convergence is in the Hausdorff metric.

Acknowledgements: We would like to thank Henk Bruin for his comments on an
early version of this paper.

2. Choice of inducing schemes

We will denote the fixed map f in Theorems A and B by f0 and take a sequence
{fn}n such that ‖fn − f0‖C2 → 0. An attractor for f0 is a transitive union of
cyclically permuted intervals. For simplicity we will assume that this attractor is
unique.

In this section we use the theory of Hofbauer towers developed by Hofbauer and
Keller [H, HK, K] to produce inducing schemes as described in [B]. We also show
how the inducing schemes move with n. Note that we could also have used other
methods to make these inducing schemes, see [BLS] for example.

We let Qn,k be the natural partition into maximal closed intervals on which fk
n is

diffeomorphic. We will denote members of Qn,k by Xn,k. Note that for Xn,k,X′n,k ∈
Qn,k with Xn,k 6= X′n,k then Xn,k ∩X′n,k consists of at most one point.

Qn,1 consists of #Critn +1 intervals. For n large enough this is equal to #Crit0 +1.
Thus for all n large enough we can label the intervals in Qn,1 from left to right as

X1
n,1, . . . ,X

#Crit0+1
n,1 . So here Xi

n,1 → Xi
0,1 as n → ∞. We let the k-itinerary of a

point x ∈ I \ ⋃
c∈Crit

⋃
06j6k f−j(c) to be a sequence (x0, . . . , xk) where xj = i ∈
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{1, . . . ,Crit0 + 1} whenever f j(x) ∈ Xi
0,1. For k′ > k, we define the k-itinerary of a

k′-cylinder Xn,k′ to be the k-itinerary of the midpoint of Xn,k′ .

Given k > 1, we fix a numbering Xi
0,k. For i, k > 1 and n large enough there is

a corresponding cylinder Xi′
n,k which has same k-itinerary as Xi

0,k. Indeed for n

large enough this cylinder will be unique. So we change i′ to i. By Lemma 2.2,
Xi

n,k → Xi
0,k as n →∞. Then we can directly compare properties of Xi

0,k and Xi
n,k

in a canonical way.

We next define the Hofbauer tower. We let

În :=
⊔

k>1

⊔

Xn,k∈Qn,k

fk
n(Xn,k)/ ∼

where fk
n(Xn,k) ∼ fk′

n (Xn,k′) if fk
n(Xn,k) = fk′

n (Xn,k′). Let Dn be the collection of
domains of În and πn : În → I be the inclusion map. A point x̂ ∈ În can be
represented by (x,D) where x̂ ∈ D for D ∈ Dn and x = πn(x̂).

The map f̂n : Î → Î is defined as

f̂(x̂) = f̂(x,D) = (f(x), D′)

if there are cylinder sets Xn,k ⊃ Xn,k+1 such that x ∈ fk
n(Xn,k+1) ⊂ fk

n(Xk,n) = D

and D′ = fk+1
n (Xn,k+1). In this case, we write D → D′, giving (Dn,→) the structure

of a directed graph. It is easy to check that there is a one-to-one correspondence
between cylinder sets Xn,k ∈ Qn,k and k-paths D0 → · · · → Dn starting at the base
of the Hofbauer tower. For each R ∈ N, let ÎR

n be the compact part of the Hofbauer
tower defined by

ÎR
n = t{D ∈ Dn : there exists a path D0 → · · · → D of length r 6 R}

The map πn acts as a semiconjugacy between f̂n and fn: πn ◦ f̂n = fn ◦ πn.

We will use the method of [B] we next show how Hofbauer towers allow us to define
inducing schemes. We fix δ > 0. Then for A ⊂ I we let A′ = (1 + δ)A. We define

Â = Â(δ) = t{D ∩ π−1(A) : D ∈ Dn, π(D) ⊃ A′}.
The following lemma is left to the reader.

Lemma 2.1. For Xi
0,k ∈ Q0,k as above there exists N > 1 such that for n > N ,

there exists Xi
n ∈ Qn,k so that Xi

n,k → Xi
0,k. Moreover, X̂i

n,k → X̂i
0,k, in the sense

that for any R, X̂i
n,k ∩ IR

n → X̂i
0,k ∩ IR

0 in the Hausdorff metric.

As in [B], we consider the first return map FX̂i
n,k

:
⋃

j R̂j → X̂i
n,k where FX̂i

n,k
= f̂

r
X̂i

n,k

for a return time rX̂i
n,k

which is constant on each R̂j . This gives an inducing scheme

FXi
n,k

:
⋃

Rj → Xi
n,k with inducing time τXi

n,k
where on each Rj , τXi

n,k
is a constant

τ j
Xi

n,k

> 1. As in [B], for x ∈ ⋃
Rj , τXi

n,k
(x) is given by rX̂i

n,k
(x̂) for any x̂ ∈ X̂i

n,k

such that πn(x̂) = x. Let (Xi
n,k)

∞ denote the set of points for which FXi
n,k

is defined
for all time.
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Lemma 2.2. For all x ∈ I there exists nj → ∞ and a cylinder Xi
0,k containing x

so that (Xi
nj ,k)∞ = Xi

nj ,k, and for all y ∈ (Xi
0,k)

∞, FXi
nj,k

(y) → FXi
0,k

(y) as j →∞.

We postpone the proof of this lemma to the appendix. From here on we will replace
the sequence {fn}n with the one given in the lemma.

Remark 2.3. It is common to suppose that an ‘inducing interval’ to be chosen to be
‘nice’ in the sense of Martens: an interval A is nice in this sense if fn(∂A)∩ ◦

A= ∅
for all n > 1. The key property that the inducing scheme then has is as follows. If
x ∈ A has a neighbourhood Ax such that fn : Ax → A is a homeomorphism, then
Ax ⊂ A. The theory of inducing schemes can then be applied. Our intervals Xn,k

are not nice in this sense, but the key property still holds. This can be proved using
the structure of cylinder sets.

3. Pressure

If (X,T ) is a dynamical system with potential Φ : X → R, then the measure m is
Φ-conformal if

m(T (A)) =
∫

A
e−Φ(x) dm(x)

whenever T : A → T (A) is one-to-one. In other words, dm ◦ T (x) = e−Φ(x)dm(x).
We define the transfer operator for the potential Φ as

LΦg(y) :=
∑

T (y)=x

eΦ(y)g(y).

Assume that S1 = {Ci
1}i is a countable Markov partition of X such that T : Ci

1 → X
is injective for each Ci

1 ∈ S1.

Suppose that (X, T,Φ) is topologically mixing. For every Ci
1 ∈ S1 and n > 1 let

Zn(Φ,Ci
1) :=

∑

T nx=x

eΦn(x)1Ci
1
(x),

where Φn(x) =
∑n−1

j=0 Φ ◦ F j(x). We define

(4) Vn(Φ) := sup
Cn∈Sn

sup
x,y∈Sn

|Φ(x)− Φ(y)|,

where Sn =
∨n−1

j=0 T−j(S1) is the n-join of the Markov partition S1. We say that Φ
has summable variations if

∑
n>1 Vn(Ψ) < ∞. Under this condition, we set Bk :=

exp
(∑

n>k+1 Vn(Ψ)
)
. As in [Sa1], we define the Gurevich pressure of Φ as

PG(Φ) := lim
n→∞

1
n

log Zn(Φ, Ci
1).

This limit exists since log Zn(Ψ,Ci
1) is almost superadditive:

log Zn(Ψ, Ci
1) + log Zk(Ψ,Ci

1) 6 log Zn+k(Ψ,Ci
1) + B1.

Therefore, PG(Ψ) = supn
1
n log Zn(Ψ, Ci

1) > −∞. By the mixing condition, PG(Ψ) is
independent of the choice of Ci

1. To simplify the notation, we will often suppress the
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dependence of Zn(Φ, Ci
1) on Ci

1. Furthermore, if ‖LΦ1‖∞ < ∞ then PG(Φ) < ∞,
see Chapter 2 of [Sa1].

Assume now that T : X → X is the full shift. That is T : Ci
1 → X is bijective for

all i.

We say that µ is a Gibbs measure if there exists K < ∞ such that for all Ck ∈ Sk,
1
K

6 µ(Ck)
eΦF,k(x)−kPG(Φ)

6 K

for any x ∈ Cn. Here ΦF,k(x) := Φ(F k−1(x)) + · · ·+ Φ(x).

Theorem 3.1 ([Sa3]). If (X,T,Φ) is the full shift,
∑

n>1 Vn(Φ) < ∞ and PG(Φ) <
∞ then Φ has an invariant Gibbs measure. Moreover the Gibbs measure µΦ has the
following properties

(a) If hµΦ(T ) < ∞ or − ∫
ΦdµΦ < ∞ then µΦ is the unique equilibrium state

(in particular, P (Φ) = hµΦ(T ) +
∫
X Φ dµΦ);

(b) The Variational Principle holds, i.e., PG(Φ) = P (Φ) (= hµΦ(T )+
∫
X Φ dµΦ);

(c) µΦ is finite and µΦ = ρΦ dmΦ where LΦρΦ = λρΦ and L∗ΦmΦ = λmΦ for
λ = ePG(Φ), i.e., mΦ(TA) =

∫
A eΦ−log λ dmΦ;

(d) This ρΦ is unique and mΦ is the unique (Φ − log λ)-conformal probability
measure.

Note that because µΦ is a Gibbs measure, µΦ(Ci
n) > 0 for every cylinder set Ci

n ∈ Sn,
n ∈ N.

From Lemma 2.2, we have inducing schemes (Cn,0, Fn, ΦFn) for Cn,0 = Xi
n,k and

Fn = FXi
n,k

. As in [BT2] we set ψn = ϕfn − P (ϕfn) and get inducing schemes
(Cn,0, Fn, ΨFn). Moreover we get PG(Ψn) = 0 and equilibrium states µFn = µΨn

and µn = µψ for (Cn,0, Fn, Ψn) and (I, fn, ψn) respectively. Note that an equilibrium
state for ψn is also an equilibrium state for ϕfn .

We denote a k-cylinder of Fn by Cn,k, and the collection of these cylinders by Pn,k.
We denote Ψn := ΨFn and Ψn,k(x) := Ψn(F k−1

n (x)) + · · · + Ψn(x). We will write
Ψi

n to mean ΨFn(x) for an arbitrarily chosen x ∈ Ci
n,1. The variation Vn,k(Ψn) is

defined as in (4).

Remark 3.2. We define the distortion constants Bn,k as Bk above. By [BT2,
Lemma 7] there exist 0 < λ(δ, t) < 1 and C(δ) > 0 so that eVk(Ψn) 6 C(δ)λ(δ, t)k.
Then there exist C ′(δ) > 0 and λ′(δ, t) so that Bk = Bk(δ, t) 6 C ′(δ)λ′(δ, t)k. There-
fore Bk is independent of n.

For use later, we define Z0(Ψn) :=
∑

i e
supΨi

n .

Following Sarig in [Sa3], any constant Hn with Hn > (sup ρn)2 where ρn is as in
Theorem 3.1(c) has the following property. For any Cn,k ∈ Pn,k,

1
HnB0

6 µFn(Cn,k)
eΨn,k(x)−kPG(Ψ)

6 HnB0
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for any x ∈ Cn,k. Moreover by [BT2], PG(Ψ) = 0. We are allowed to take a uniform
distortion constant B0 for all of our maps Fn by our choice of Cn,0. It is important
here to replace Hn with a uniform constant H. We consider how Hn was obtained.
For this lemma and its proof we fix f = fn, so dropping any extra notation. Note
that the bound used in [Sa3, p1754] is not sufficient for us since it depends on the
measure of a cylinder, which can be different for different n.

Lemma 3.3. V0(log ρΨ) 6 2 log B0 and the Gibbs constant can be chosen to be
Hf = B4

0 .

Proof. According to [Sa1, (3.12)], V1(log ρΨ) < log B1. We use this to show V0(log ρΨ)
is uniformly bounded above. Take x1, x2 ∈ C0. Let y1,i, y2,i be the unique points in
Ci

1 such that F (y1,i) = x1 and F (y2,i) = x2. Then since LΨρΨ = ρΨ,

∣∣∣∣
ρΨ(x1)
ρΨ(x2)

∣∣∣∣ =

∣∣∣∣∣

∑
Fy1=x1

eΨ(y1)ρΨ(y1)∑
Fy2=x2

eΨ(y2)ρΨ(y2)

∣∣∣∣∣ 6

∣∣∣∣∣∣∣

∑
i e

Ψi
supx∈Ci

1
ρΨ(x)

∑
i e

inf
x∈Ci

1
Ψ(x)

infx∈Ci
1
ρΨ(x)

∣∣∣∣∣∣∣
6 B0B1.

Therefore the first part of the lemma is finished. There must exist x1, x2 ∈ C0 with
ρΨ(x1) 6 1 and ρΨ(x2) > 1: otherwise in the first case µF (C0) > 1, and in the
second case µF (C0) < 1. So setting Hf := B4

0 we have Hf > (sup ρΨ)2, so we are
finished. ¤

For use later, we let HF := B4
0 .

4. Gibbs property for the weak∗ limit of Gibbs measures

By passing to a subsequence if necessary, we may assume that µF∞ is a weak∗ limit
of {µFn}n. From the previous section and a uniqueness argument from [MU], we
know that if we prove that µF∞ satisfies the Gibbs property and is invariant, then
µF∞ = µF0 . This section is devoted to proving that mF∞ has the Gibbs property
which will allow us to conclude that µF∞ has the Gibbs property also.

Lemma 4.1. For a fixed family F = Fe(C, α) or F = Fp(C, β) satisfying (1) or
(2) respectively, there exists C ′ > 0 so that for all N > 1,

µFn{τn > N} 6 C ′e−Nα or µFn{τn > N} 6 C ′N−β respectively .

Proof. In the proof of Proposition 2 of [BT2], the correspondence between our in-
ducing scheme and the one considered in [BLS] is given, which allows to conclude
that the estimates for the tail of our inducing scheme are given by the ones in [BLS].
A careful reading of [BLS] reveals that the constants involved in the tail estimates
depend only on constants which are uniform on the respective families Fe(C, α) and
Fp(C, β). ¤

As a consequence of this lemma, for a given family F we can choose κ = κF : N→
[0, 1] to be the function so that µFn{τn > s0} 6 κ(s0) for any Fn ∈ F and κ(s0) → 0
as s0 →∞.
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We next make conditions on our inducing schemes, so that only some of those in
Lemma 2.2 will be appropriate choices. We select our inducing schemes so that the
1-cylinders accumulate on each other. In particular so that a cylinder with a small
inducing time is accumulated by 1-cylinders with larger and larger inducing times.

By construction, f j
n(∂Xn,k)∩

◦
Xn,k= ∅ for all 1 6 j 6 k. However, we will fix an i

so that for each n large enough, the cylinder Xi
n,k has f j

n(∂Xi
n,k) ∩ ∂Xi

n,k = ∅ for
all 1 6 j 6 k also. It is easy to show that this property can be satisfied for our
class of maps. We denote Cn,0 to be the cylinder Xi

n,k, which is fixed for the rest of
this paper up to the appendix. The maps Fn = FXi

n,k
are defined as above. Recall

that we Pn,0 := {Cn,0}, and define Pn,k to be the set of k-cylinders for the inducing
scheme Fn. This construction means that Ci1

n,1 ∩ Ci2
n,1 = ∅ for all i1 6= i2 for all

large n. We exploit this property in Remark 4.2. We may assume that this property
actually holds for all n.

Let τ i
n,k be the kth inducing time on a cylinder Ci

n,k, i.e. f τ i
n,k(Ci

n,k) = Cn,0. As in
Section 2, after possibly relabelling, for Ci

0,k there exists N = N(k, i) > 1 so that
for n > N there is a cylinder Ci

n,k so that τ i
0,k = τ i

n,k and these two intervals have
the same itinerary up to time τ i

0,k by f0 and fn respectively. We say that for n > N ,
Ci

0,k is matched ; or similarly that Ci
n,k is matched. In this case, Ci

n,k → Ci
0,k as

n →∞.

Remark 4.2. Given i > 1, for all M > 1 there exists η > 0 and N > 1 so that
for all n > N , (1 + η)Ci

n,1 \ Ci
n,1 only intersects 1-cylinders with τn > M . To show

this, we start by choosing N so large that {Cj
n,1 : τ j

n 6 M} are matched for all
n > N . Now let η := 1

2 min
j 6=i, τ j

06M
d(Ci

0,1,C
j
0,1). By the setup, η > 0. Now we

may increase N so that n > N implies Cj
n,1 ∩

(
1 + η

2

)
Cj

0,1 = Cj
n,1 for all j with

τ j
0 6 M . This means that η has the property required.

Lemma 4.3. For all ε > 0 there exists i0 > 1 and N > 1 such that Ci
0,1 is matched

for all 1 6 i 6 i0 for all n > N , and furthermore n > N implies µFn

(⋃
i>i0 Ci

n,1

)
<

ε.

Proof. Let s0 be so that κ(s0) < ε. So s0 depends only on ε and F as in Lemma 4.1.
We choose i0 so that τ i

0 > s0 for all i > i0. Similarly to Remark 4.2, we can choose
N so large that Ci

n,1 are matched for all 1 6 i 6 i0 and that τ i
n > s0 for all i > i0

and all n > N . It then follows that µFn

(⋃
i>i0 Ci

n,1

)
< ε as required. ¤

In the following lemmas we repeatedly use the conformal property of mFn . This
allows us to compare behaviour at small scales with that at large scale.

Lemma 4.4. For all ε > 0 for all i0 > 1 there exists η > 0, such that for all k > 1,
any Cj

0,k ∈ P0,k with F k−1
0 (Cj

0,k) = Ci
0,1 and 1 6 i 6 i0 has

mF0

(
(1 + η)Cj

0,k

)

mF0(C
j
0,k)

6 B0

(
1 +

ε

4

)
and

mF0

((
1

1+η

)
Cj

0,k

)

mF0(C
j
0,k)

> 1
B0

(
1 + ε

4

) .
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Proof. Let s0 > 1 be such that

κ(s0) 6 ε

8

(
min

16i6i0
mF0(C

i
0,1)

)
.

For the upper bound, let η′ > 0 be such that the set
⋃

16i6i0(1+B0η
′)Ci

0,1\Ci
0,1 con-

tains only cylinders Ci
0,1 with τ i

0 > s0. Then mF0((1+B0η
′)Ci

0,1) 6
(
1 + ε

4

)
mF0(C

i
0,1)

for 1 6 i 6 i0.

For k > 1, we use distortion and conformality to reduce the problem to the 1-
cylinders’ case just considered. Assume for k > 1 that F k−1

0 (Cj
0,k) = Ci

0,1. Since
(1 + η)Cj

0,k is in the same k−1-cylinder as Cj
0,k, for η′ is sufficiently small, bounded

distortion implies that

F k−1
0

((
1 + η′

)
Cj

0,k

)
⊂ (1 + B0η

′)Ci
0,1.

Using the conformal property of mF0 and bounded distortion we have

mF0

(
(1 + B0η

′)Ci
0,1

)

mF0

(
Ci

0,1

) >

∫
(1+η′)Cj

0,k
e−Ψ0,k−1 dmF0

∫
Cj

0,k
e−Ψ0,k−1 dmF0

> 1
B0


mF0

(
(1 + η′) Cj

0,k

)

mF0(C
j
0,k)


 .

Hence, by the choice of η′ above, we have

mF0

(
(1 + η′)Cj

0,k

)

mF0(C
j
0,k)

6 B0

(
1 +

ε

4

)
.

For the lower bound, let s1 > 1 be such that κ(s1) < ε
8 . Then we choose 0 < η 6 η′

so that the set C0,0 \ C0,0

1+B0η only contains 1-cylinders Ci
0,1 with τ i

0 > s1. This implies

mF0

((
1

1+B0η

)
C0,0

)
> 1− ε

8 > 1

(1+ ε
4)

.

For k > 1 we use the a distortion argument similar to the one above. Bounded
distortion implies that

F k
0

((
1

1 + η

)
Cj

0,k

)
⊃

(
1

1 + B0η

)
C0,0.

Using the conformal property of mF0 and bounded distortion we have

mF0

((
1

1+B0η

)
C0,0

)

mF0 (C0,0)
6

∫(
1

1+η

)
Cj

0,k
e−Ψ0,k dmF0

∫
Cj

0,k
e−Ψ0,k dmF0

6 B0


mF0

((
1

1+η

)
Cj

0,k

)

mF0(C
j
0,k)


 .

Hence, by the choice of η above, we have

mF0

((
1

1+η

)
Cj

0,k

)

mF0(C
j
0,k)

> 1
B0

(
1 + ε

4

) .

¤
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Notice that the above proof can be used to show in particular that for the 1-cylinders
considered above,

mF0

(
Cj

0,1 \
(

1
1+η

)
Cj

0,1

)

mF0(C
j
0,1)

6 B0

1 + ε
4

.

Proposition 4.5. For all ε > 0, λ ∈ (0, 1), k0 > 1 and sequences (i1, . . . , ik0) ∈ Nk0

there exists N0 > 1 such that for all n > N0, 1 6 k 6 k0 and 1 6 i 6 ik, we have

1
B2

0(1 + ε)
6

mFn(Ci
0,k)

eΨ0,k(x)
6 B2

0(1 + ε)

for all x ∈ λCj
0,k.

Proof. The following claim is left to the reader.

Claim 1. For all ε > 0, k0 > 1 and sequences (i1, . . . , ik0) ∈ Nk0 there exists N0 > 1
such that for all n > N0, 1 6 k 6 k0 and 1 6 i 6 ik, Ci

n,k is matched. Moreover,
for these cylinders, each set F k−1

n (Ci
n,k) is matched.

We next make the following claim.

Claim 2. For all ε > 0, λ ∈ (0, 1), k0 > 1 and sequences (i1, . . . , ik0) ∈ Nk0 there
exists N1 > N0 such that for all n > N1, 1 6 k 6 k0 and 1 6 i 6 ik,

mFn((1 + η)Ci
n,k)

mFn(Ci
n,k)

6 B0

(
1 +

ε

4

)
and

mFn

((
1

1+η

)
Ci

n,k

)

mFn(Ci
n,k)

> 1
B0

(
1 + ε

4

) .

Proof. The proof of the claim is the same as for Lemma 4.4 except that we need to
take Fn sufficiently close to F0 so that the cylinders Ci

n,k considered in Lemma 4.4
have almost exactly the same properties as those Ci

0,k considered here. ¤

A simple consequence of these claims is that for all ε > 0, λ ∈ (0, 1), k0 > 1
and sequences (i1, . . . , ik0) ∈ Nk0 there exists N2 > N1 such that for all n > N2,
1 6 k 6 k0 and 1 6 i 6 ik, Ci

n,k ∈ Pn,k is matched and

1
B0

(
1 + ε

4

) 6
mFn(Ci

0,k)
mFn(Ci

n,k)
6 B0

(
1 +

ε

4

)
.

Here we take some N2 > N1 so that Cj
0,k ⊂ (1 + η)Cj

n,k and Cj
n,k ⊂ (1 + η)Cj

0,k for
all Cj

n,k as in the statement of the proposition.

The Gibbs property for mFn , which follows directly from conformality, means that
mFn(Ci

n,k) = B±
0 eΨn,k(x) for all x ∈ Ci

n,k. Now we can take N2 so large that

1(
1 + ε

4

) 6 eΨn,k(x)−Ψ0,k(x) 6 1 +
ε

4
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for all x ∈ Ci
n,k ∩ Ci

0,k for the cylinders Ci
n,k under consideration. To complete the

proof of the lemma, we possibly increase N2 again to ensure that Ci
n,k∩Ci

0,k ⊂ λCi
0,k

for all the cylinders we consider. ¤

Combining Lemma 3.3 and Proposition 4.5 we have that µF∞ must have the Gibbs
property with uniform constant. That is:

Corollary 4.6. For all k and all C0,k ∈ P0,k,

1
HFB2

0(1 + ε)
6

µF∞(Ci
0,k)

eΨ0,k(x)
6 HFB2

0(1 + ε),

for all x ∈ Ci
0,k.

We will need the following lemma later.

Lemma 4.7. For all ε > 0 and i0 > 1 there exists N = N(ε) > 1 such that n > N
implies

µFn

(
i0⋃

i=0

(
Ci

n,14Ci
0,1

))
6 ε.

Proof. Combining the arguments in the proof of Lemma 4.4, the paragraph following
it and Claim 2 in the proof of Proposition 4.5 we have η > 0, i0 > 1 and N ′ > 1
such that for n > N ′,

mFn

(
(1 + η)Ci

n,k \ Ci
n,k

)
, mFn

(
Ci

n,k \
Ci

n,k

(1 + η)

)
<

ε

i0HF

for all 1 6 i 6 i0. Recall that HF is the constant from Lemma 3.3. Moreover, there
exists N > N ′ such that n > N implies

Ci
n,14Ci

0,1 ⊂ (1 + η)Ci
n,k \

Ci
n,k

(1 + η)

for all 1 6 i 6 i0. Therefore, n > N implies

mFn

(
i0⋃

i=0

(
Ci

n,14Ci
0,1

))
6 ε

HF
.

The lemma follows from Lemma 3.3, substituting µFn(= hFnmFn) for mFn in the
above equation. ¤

5. Invariance of the weak∗ limit

We may assume, as in the beginning of Section 4, that µF∞ is the weak∗ limit of the
sequence {µFn}n. In the previous section we saw that µF∞ is Gibbs. The purpose of
this section is to show that µF∞ is F0-invariant. Before that, we prove the following
technical lemma that will be useful in the remaining arguments.
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Lemma 5.1. For all i ∈ N and every continuous g : Ci
0,1 → R we have

∫
g.1Ci

0,1
dµFn →

∫
g.1Ci

0,1
dµF∞ .

Proof. We can extend g continuously to ∂Ci
0,1, and for every x ∈ I \ Ci

0,1, define
bi(x) as the point of ∂Ci

0,1 closest to x.

Observing that g = g+ − g−, where g+(x) = max{0, g(x)} > 0 and g−(x) =
max{0,−g(x)} > 0, we may assume without loss of generality that g > 0. Also,
since, by Corollary 4.6, µF∞ is a Gibbs measure, we have µF∞(∂Ci

0,1) = 0, which
implies that

∫
Ci

0,1\∂Ci
0,1

g dµF∞ =
∫
Ci

0,1

gdµF∞ =
∫
Ci

0,1
g dµF∞ .

Let Uk = {x ∈ I : dist(x,Ci
0,1) < 1/k}. Clearly Uk is an open neighbourhood of Ci

0,1

and by the regularity of µF∞ it follows that µF∞(Uk \ Ci
0,1) = ε(k) → 0 as k → ∞.

Define h : I → R as

h(x) =





0 if x /∈ Uk

g(bi(x)) d(x,I\Uk)

d(x,I\Uk)+d(x,Ci
0,1)

if x ∈ Uk \ Ci
0,1

g(x) if x ∈ Ci
0,1

.

Notice that h is continuous and, for every x ∈ I, we have g(x)1Ci
0,1

(x) 6 h(x) 6
max

x∈Ci
0,1

g(x) and h(x) − g(x)1Ci
0,1

(x) > 0 only if x ∈ Uk \ Ci
0,1. Consequently,

using the weak∗ convergence of µFn to µF∞ , it follows
∫

g1Ci
0,1

dµFn 6
∫

h dµFn −−−→n→∞

∫
h dµF∞ 6

∫
g1

Ci
0,1

dµF∞ + ε(k) max
x∈Ci

0,1

g(x).

Letting k →∞ we get
∫

g1Ci
0,1

dµFn 6
∫

g1Ci
0,1

dµF∞ . The opposite inequality follows
similarly. ¤

Lemma 5.2. µF∞ is F0-invariant.

Proof. The F0-invariance of µF∞ is equivalent to
∫

ϕ ◦ F0 dµF∞ =
∫

ϕ dµF∞

for every continuous ϕ : I → R. Given any ϕ : I → R continuous we have by
hypothesis ∫

ϕ dµFn →
∫

ϕ dµF∞ as n →∞.

On the other hand, since µFn is an Fn-invariant probability measure, we have
∫

ϕ dµFn =
∫

(ϕ ◦ Fn) dµFn for every n > 0.

So, it suffices to prove that

(5)
∫

(ϕ ◦ Fn) dµFn →
∫

(ϕ ◦ F0) dµF∞ as n →∞.
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We have∣∣∣∣
∫

(ϕ ◦ Fn) dµFn −
∫

(ϕ ◦ F0) dµF∞

∣∣∣∣ 6
∣∣∣∣
∫

(ϕ ◦ Fn) dµFn −
∫

(ϕ ◦ F0) dµFn

∣∣∣∣ +
∣∣∣∣
∫

(ϕ ◦ F0) dµFn −
∫

(ϕ ◦ F0) dµF∞

∣∣∣∣ .

Observing that ϕ ◦F0 is continuous on each Ci
0,1, we easily deduce from Lemma 5.1

and Lemma 4.3 that the second term in the sum above is close to zero for large n.

The only thing we are left to prove is that the first term in the sum above converges
to 0 when n tends to ∞. That term is bounded above by

(6)
∫ ∣∣ϕ ◦ Fn − ϕ ◦ F0

∣∣ dµFn .

Take any ε > 0. Using Lemma 4.1, take N > 1 such that
∑

τ i
n>N

µFn(Ci
n,1) < ε.

We write the integral in (6) as

(7)
∑

τ i
n>N

∫

Ci
n,1

∣∣ϕ ◦ Fn − ϕ ◦ F0

∣∣ dµFn +
∑

τ i
n6N

∫

Ci
n,1

∣∣ϕ ◦ Fn − ϕ ◦ F0

∣∣ dµFn .

The first sum in (7) is bounded by 2ε‖ϕ‖∞. Let us now estimate the second sum in
(7).

Using Lemma 4.3, we take n1 sufficiently large so that for all n > n1 and every
cylinder Ci

n,1 with τ i
n 6 N there is a matching cylinder Ci

0,1 with τ i
n = τ i

0. Moreover,
using Lemma 4.7, we may assume that n1 is large enough so that n > n1 implies

∑

τ i
n6N

µFn(Ci
n,14Ci

0,1) < ε.

For every i such that τ i
n 6 N we have∫

Ci
n,1

∣∣ϕ ◦ Fn − ϕ ◦ F0

∣∣ dµFn 6
∫

Ci
n,1∩Ci

0,1

∣∣ϕ ◦ f
τ i
0

n − ϕ ◦ f
τ i
0

0

∣∣ dµFn

+
∫

Ci
n,1\Ci

0,1

∣∣ϕ ◦ Fn − ϕ ◦ F0

∣∣ dµFn .

Since fn → f0 in the Ck topology, there is n2 ∈ N such that for n > n2

∑

τ i
n6N

∫

Ci
n,1∩Ci

0,1

∣∣ϕ ◦ f τ i
n

n − ϕ ◦ f
τ i
n

0

∣∣ dµFn < ε.

On the other hand, for n > n1

∑

τ i
n6N

∫

Ci
n,14Ci

0,1

∣∣ϕ ◦ Fn − ϕ ◦ F0

∣∣ dµFn 6 2ε‖ϕ‖∞.

Thus we have for n > max{n1, n2}∫ ∣∣ϕ ◦ Fn − ϕ ◦ F0

∣∣ dµFn 6 ε
(
4‖ϕ‖∞ + 1

)
.

This proves the result since ε > 0 was arbitrary. ¤
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Since µF∞ is an invariant Gibbs measure, uniqueness of such measures, [MU, Theo-
rem 3.2], implies µF∞ ≡ µF0 .

Remark 5.3. Observe that the whole sequence µFn converges in the weak∗ topology
to µF0. This is because any subsequence

{
µFni

}
i

admits a convergent subsequence{
µFnij

}

j
, whose weak∗ limit, µF∞, is Gibbs and F0-invariant, by Corollary 4.6 and

Lemma 5.2. Hence, by uniqueness, µFnij
→ µF0, in the weak∗ topology, which clearly

implies the statement.

6. Continuous variation of equilibrium states

So far, we managed to prove that if fn → f0, then the induced Gibbs measures
converge in the weak∗ topology, ie, µFn → µF0 . We define the saturation of µF by

(8) µ∗f =
∞∑

i=1

τi−1∑

k=0

fk
∗

(
µF |Ci

1

)

Observe that, for some fixed t ∈ UF , the unique equilibrium state of fn for the
potential −t log |Dfn| is such that µn = µ∗fn

/µ∗fn
(I), for every n > 0. Consequently,

the proof of Theorem A will be complete once we prove:

Proposition 6.1. For every continuous g : I → I,∫
g dµ∗fn

−−−→
n→∞

∫
g dµ∗f0

.

Proof. First observe that as I is compact, g is uniformly continuous and ‖g‖∞ < ∞.

Let ε be given. We look for n0 ∈ N sufficiently large so that for every n > n0∣∣∣∣
∫

g dµ∗fn
−

∫
g dµ∗f0

∣∣∣∣ < ε

Recalling (8) we may write for any integer N

µ∗fn
=

∑

τ i
n6N

τ i
n−1∑

k=0

(fk
n)∗(µFn |Ci

n,1) + ηfn and µ∗f0
=

∑

τ i
06N

τ i
0−1∑

k=0

(fk
0 )∗(µF0 |Ci

0,1) + ηf0

where ηfn =
∑

τ i
n>N

∑τ i
n−1

k=0 (fk
n)∗(µFn |Ci

n,1) and ηf0 =
∑

τ i
0>N

∑τ i
0−1

k=0 (fk
0 )∗(µF0 |Ci

0,1).
Using Lemma 4.1 we pick N large enough so that n > N implies

ηfn(I) + ηf0(I) < ε/2.

Using Lemma 4.3, we take n1 sufficiently large so that for all n > n1 and every
cylinder Ci

n,1 with τ i
n 6 N there is a matching cylinder Ci

0,1 with τ i
n = τ i

0. Let SN

denote the number of 1-cylinders such that τ i
n 6 N . To complete the proof of the

proposition, for every i such that τ i
n 6 N and k < τ i

n, we must find a sufficiently
large n2 so that for every n > n2

E :=
∣∣∣∣
∫

(g ◦ fk
n)1Ci

n,1
dµFn −

∫
(g ◦ fk

0 )1Ci
0,1

dµF0

∣∣∣∣ <
ε

2SN
.
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We split E into E1, E2 and E3 presented in respective order:

E 6
∣∣∣∣
∫ [

(g ◦ fk
n)− (g ◦ fk

0 )
]
1Ci

n,1
dµFn

∣∣∣∣

+
∣∣∣∣
∫

(g ◦ fk
0 )

[
1Ci

n,1
− 1Ci

0,1

]
dµFn

∣∣∣∣

+
∣∣∣∣
∫

(g ◦ fk
0 )1Ci

0,1
dµFn −

∫
(g ◦ fk

0 )1Ci
0,1

dµF0

∣∣∣∣ .

Since

E1 6
∫ ∣∣∣(g ◦ fk

n)− (g ◦ fk
0 )

∣∣∣ dµFn ,

we choose n2 large enough so that for every n > n2 we have
∣∣∣(g ◦ fk

n)− (g ◦ fk
0 )

∣∣∣ 6
ε

6SN
in order to obtain E1 6 ε

6SN
.

Now,

E2 6 ‖g‖∞µFn(Ci
n,14Ci

0,1).

Using Lemma 4.7, we take n2 large enough so that for all n > n2 we have E2 6 ε
6SN

.

Regarding the last term, Lemma 5.1 allows us to conclude that if n2 is sufficiently
large then for all n > n2 we have E3 6 ε

6SN
. ¤

Proof of Theorem B. Alves and Viana, in [AV], give some abstract conditions for
statistical stability of physical measures in the strong sense, that is, convergence
of densities in the sense of (3). Our inducing schemes and their properties put
us trivially in the setting of Alves and Viana, meaning that both Fe(C, α) and
Fp(C, β) meet the requirements of the family U of [AV]. Moreover, Lemma 4.7 and
Lemma 4.1 imply that conditions U1 and U2 of [AV] are satisfied, respectively. Since
the constants involved in all estimates are taken uniformly on Fe(C,α) or Fp(C, β),
then condition U3 also holds. Consequently, by [AV, Therorem A], we have that the
map

F 3 f 7→ dµf

dm

is continuous as in (3), where F stands for either Fe(C, α) or Fp(C, β) and m denotes
Lebesgue measure. ¤

Remark 6.2. Note that the theory presented here extends to Manneville-Pommeau
maps f : x 7→ x + x1+α (mod 1) for α ∈ (0, 1). Given such a map, and a potential
ϕt := −t log |Df |, it is straightforward to prove an equivalent of [BT2, Theorem 1],
yielding an equilibrium state µt for t ∈ [δ, 1] for some δ < 0. One main difference in
proving statistical stability for these measures is that in the proofs of Proposition 4.5
and Lemma 4.7 for example, to estimate the measure of sets Ci

0,k4Ci
n,k we can no

longer assume that no two cylinders for the inducing schemes are adjacent. Above,
this property enabled us to estimate Ci

0,k4Ci
n,k using the measure of 1-cylinders.

However, when, as in the Manneville-Pommeau case, we do not have this property,
we can use the measure of k-cylinders to give us the required estimates instead.
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Appendix A. Hofbauer Towers

In this appendix we prove Lemma 2.2. We first need some more theory about
Hofbauer towers.

For the moment fix n and so we suppress it in the notation. We let ÎT denote the
transitive component of Î. More precisely, ÎT consists of a union of elements of D
and there is a point x̂ ∈ ÎT so that

⋃
k f̂k(x̂) = ÎT . The existence of this (maximal)

component is implicit in works of Hofbauer and Raith, see also [BT2] for a self
contained proof and references.

We next consider how to ‘lift’ measures to the towers. Let ι := π|−1
D0

where D0 is the
lowest level in Î, so ι : I → D0 is an inclusion map. Given a probability measure m,
let m̂0 = m ◦ ι−1 be a probability measure on D0. Let

m̂k :=
1
k

k−1∑

j=0

m̂0 ◦ f̂−j .

We let m̂ be a vague limit of this sequence. This is a generalisation of weak∗ limit
for non-compact sets: for details, see [K]. In general it is important to ensure that
m̂ 6≡ 0. It is known, see for example [BT2] that if m is an ergodic invariant measure
with positive Lyapunov exponent then m̂ ◦ π−1 = m.

We say that x reaches η-large scale at time j if there is a neighbourhood U 3 x
such that f j : U → (x− η, x + η) is a diffeomorphism (note that we do not require
bounded distortion here). As in [MeS], if f ∈ H` then dk := supx∈I |Xk[x]| has
dk → 0 as k →∞. The following lemma uses the idea of [BT1, Lemma 9], where it
was done for complex maps.

Lemma A.1. Let f ∈ H and m be a probability measure. If η, θ ∈ (0, 1] are such
that m-a.e. point goes to η-large scale with frequency θ then there exists R depending
only on η, θ and how dk decreases with k, such that m̂(ÎR) > θ.

Proof. Let R ∈ N be such that for all x ∈ I, we have |XR[x]| < η. This implies that
if d(x̂, ∂Dx̂) > η then π−1(XR[π(x̂)])∩Dx̂ b Dx̂. Therefore, if x ∈ I reaches η-large
scale at time j, then for x̂ := ι(x), π−1(XR(f j(x)))∩Df̂j(x̂) b Df̂j(x̂). From the way

the Hofbauer tower is constructed, this implies that f̂ j+R(x̂) ∈ ÎR. Fix ε > 0. Then
there exists k0 = k0(x, ε) ∈ N so that k > k0 implies

1
k
#

{
0 6 j < k : f̂ j(x̂) ∈ ÎR

}
>

θ

1 + ε
.

Let N be so large that m{x ∈ I : k0(x, ε) 6 N} > 1− ε. Then

m̂k(ÎR) =
1
k

k−1∑

j=0

m̂0 ◦ f̂−j(ÎR) > θ

(
p− 1

p

) (
1− ε

1 + ε

)

for all k > pN . Since ε > 0 was arbitrary, we have m̂(ÎR) > θ. ¤
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Proof of Lemma 2.2. Following the ideas of [BT2, Theorem 3] we can show that if
Ân is chosen in În,T then there is a first return map to Ân which has domains dense in
Ân. For our purposes here, we need to show that we can choose a domain Ân ⊂ În,T
with x ∈ πn(Ân) so that there is a subsequence {nj}j with Ânj → Â0 as j →∞. So
the essential thing to prove is that we can choose a uniform R so that În,T ∩ ÎR

n 6= ∅.
From there, a compactness argument implies that we can pick such a Ânj . Once we
can prove that there is such Ânj we can choose Xi

nj
so that (1 + δ)Xi

nj
⊂ πn(Ânj ).

Hence X̂i
n,k is always in the transitive part of its Hofbauer tower. It is easy to see

that this results in inducing schemes with FXi
nj,k

(x) → FXi
0,k

(x) as j → ∞ for all

x ∈ (Xi
0,k)

∞. The fact that (Xi
nj ,k)∞ = Xi

nj ,k follows as in [BT2, Theorem 3].

Let νn be the acip found in [BLS]. By Lemma A.1, there exists ε > 0 and R ∈ N
so that ν̂n(ÎR

n ) > ε for all n. Here ε and R depend only what scale is reached with
what frequency, and the way the cylinders shrink. We claim that every map in F
goes to uniform large scale with uniform frequency. Adding this to the fact that for
n large enough, the cylinders shrink sufficiently similarly for us to be able to apply
Lemma A.1, the lemma is proved.

The claim can be proved using [BLS]. There, inducing schemes Gn :
⋃

Ωi
n → Ωn

are constructed for some Ωn. Here Gn = f rn for an inducing time rn. We can take
ηn = |Ωn|

2 . This is uniformly bounded below. To check this fact we refer to [BLS,
Lemma 4.2] where the sets Ωn are constructed. Then observe that once a map f0 is
fixed the construction of the corresponding Ω0 involves a finite number of iterations
and constants that can be taken uniformly within the families considered. This
means that one can mimic the construction for a neighbouring map fn and hence
obtain an interval uniformly close to the original Ω0. By the Ergodic Theorem, the
frequency

lim
k→∞

1
k
#

{
0 6 j < k : ∃U 3 x s.t. f j : U → Ωn is a diffeomorphism

}

for a νn-typical point x is bounded below by 1∫
rn dνGn

where νGn is the measure

for the inducing scheme. Hence we need only to show that
∫

rn dνGn is uniformly
bounded above for all fn ∈ F , which follows from Lemma 4.1. ¤
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[Ar] V. Araújo, Semicontinuity of entropy, existence of equilibrium states and continuity of physical
measures, Discrete Contin. Dyn. Syst. 17 (2007) 371–386.

[B] H. Bruin, Induced maps, Markov extensions and invariant measures in one–dimensional dy-
namics, Commun. Math. Phys. 168 (1995) 571–580.



STATISTICAL STABILITY OF EQUILIBRIUM STATES FOR INTERVAL MAPS 19

[BK] H. Bruin, G. Keller, Equilibrium states for S–unimodal maps, Ergodic Theory Dynam. Sys-
tems 18 (1998) 765–789.

[BLS] H. Bruin, S. Luzzatto, S. van Strien, Decay of correlations in one–dimensional dynamics,
Ann. Sci. Ec. Norm. Sup. 36 (2003) 621–646.

[BT1] H. Bruin, M. Todd, Markov extensions and lifting measures for complex polynomials, Ergodic
Theory Dynam. Systems 27 (2007) 743–768.

[BT2] H. Bruin, M. Todd, Equilibrium states for interval maps: the potential −t log |Df |, Preprint
2006.

[BT3] H. Bruin, M. Todd, Equilibrium states for interval maps: potentials of bounded range,
Preprint 2007.

[F] J. Freitas, Continuity of SRB measure and entropy for Benedicks-Carleson quadratic maps,
Nonlinearity 18 (2005) 831–854.

[H] F. Hofbauer, The topological entropy of a transformation x 7→ ax(1 − x), Monath. Math. 90
(1980) 117–141.

[HK] F. Hofbauer, G. Keller, Ergodic properties of invariant measures for piecewise monotonic
transformations, Math. Z. 180 (1982) 119–140.

[K] G. Keller, Lifting measures to Markov extensions, Monatsh. Math. 108 (1989) 183–200.
[L] F. Ledrappier, Some properties of absolutely continuous invariant measures on an interval,

Ergodic Theory Dynam. Systems 1 (1981) 77–93.
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