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ABSTRACT. We prove that a continuous endomorphisms of the
interval whose set of periods is the set of all powers of two, is

infinitely renormalizable.

1. INTRODUCTION

In this work we will denote by C°(I) the set of continuous map from
de compact interval I into itself. Let f € C°(I) be a map with zero
topological entropy and = € I. Smital has proven [7] that if the w-
limit set of x, w(x), is infinite, then f is infinitely renormalizable. V.
Jiménez Lépez showed [3] that if f is normal (see section 2) with set

of periods (of its periodic orbits)
P(f) ={2":i € No},
then there exists a point = € I such that w(x) is infinite. We obtain a

slight improvement of the result stated above.

Theorem 1. Let f € C°I). If P(f) = {2 : i € Ny}, then [ is

infinitely renormalizable.

We remark that if f is infinitely renormalizable, then P(f) 2 {2':
i € No}. Combining this claim with Sarkovskii Theorem and Smital

result we have:

Corollary 2. Let f € C°(I) be a map with zero topological entropy
and x € I. If w(z) is infinite, then P(f) ={2":i € Ny}.

2. PRELIMINARY DEFINITIONS AND RESULTS

For any n € Ny, we define f* inductively in Ny, by f° = id and
fr= fo fr7l. A point x is a periodic point (of period k) if f¥(x) =«
and if z, f(x), f?(x), ---, f*"(z) are distinct. The set

Ox) = {z, f(x),-, f*H(2)}
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is called periodic orbit (of period k). If n = 1, then z is a fized point
of f. We define w(z) as the set of accumulation of O(x). We say
that x is a recurrent point iff + € w(z). Periodic points are always
recurrent points and if x is recurrent, then any iterate x, = f"(z) is
also a recurrent point.

Consider the Sharkovskii ordering of the positive integers:
34547<99<41---<92-3492:592-7<92-91---<12%-3192%-512%-7<
22.99---92"-3492"-542"-7<12"-9<9--- 2% - - - <Q16<94 <92 < 1.
Let f € C°(I) and n,k € N. Sarkovskii showed that if n € P(f) and
n <k, then k € P(f) (see, e.g., [8]).

The next Proposition gives a sufficient condition for the existence of

periodic orbits of period 3. This result have an elementary proof.

Proposition 3. Let f € C°(I) and let R, S closed subintervals of I. If
the set RNS doesn’t contain fixed points of f and f(R)Nf(S) 2 RUS,
then 3 € P(f).

For A C I, Conv(A) denote the convex hull of A. We say that a
continous map f : I — [ is normal if for any k € N and any monotone

sequence (p,)nen of fixed points for f*, there is s € N such that

fk<conv{prapr+1}> = Conv{pmp?drl}-

Note that piecewise monotone maps are normal, as well as C! maps
(see [3]).

A continuous map f : I — [ is called renormalizable if there exists
an interval J C I and p > 2 satisfying:

(1) the intervals fi(J), i € {0,1,--- ,p— 1}, have disjoint interiors,
(2) f2(J) =J.

A map f € CYI) is infinitely renormalizable if there is an infinite
sequence J; D Jy D --- D J, 2 --- of nested intervals and a sequence
(an)nen of integers greater or equal to two such that, for each n € N,

(1) the intervals J,,, f(Jn), ,- -+, f®*~1(J,) have disjoint interi-
ors,
(2) forron(n) = Jn.
When more precision is required, we shall say that f is (a, ),en-infinitely
renormalizable. The sets f(.J,,), for 0 <i < ay---a, — 1 are called the

atoms of generation n of f.
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Let n € N, € > 0, (X, d) a compact metric space and f: X — X a

continuous map. We say that a set S C X is (n, €)-separated if
T,y €S, x#y= max d(f(z), f(y) > e
<j<n
Set
s(n, €, f) = max{#S : S C X is (n,€)-separated }.
Then, the limit
1
h(f) = lim Timsup 2856 S)
e—0T noio0o n
exists and we call h(f) the topological entropy of f.
For continuous maps on an interval, the next theorem connect en-

tropy with periodic orbits.

Theorem 4. ([1],[4]) Let f € C°(I). Then h(f) > 0 if and only if it

has a periodic point whose period is not a power of 2.

3. PROOF OF THE THEOREM 1

We prove the Theorem 1 applying inductively the next lemma.

Lemma 5. Let f : I — I be a C° interval map with zero entropy.
If f has a recurrent point xy such that #O(xog) > 3, then f is 2-

renormalizable.

Proof. We will define the class A of closed intervals J C I by

fycd

J€A<:>{
To € J

The closed set J, = ﬂ J is also in A relation C in the class A).

JeA
Since z9 € f(Jo), we see that f(Jy) € A, hence f(Jy) = Jo. We set

J() = [ao, bo]
We claim that f has a fixed point py € Jy, such that, for some 7 € N,

ap <z < po < Tiy1 < bo.

Since O(zo) C w(wo), (zn)n>0 cannot be a monotonic sequence. So
there is ¢ € N such that f(x;) = z;11 > x; and f(x;41) = Tipe < Tisg.
Therefore there exists a point py € (x;, r;11) for which f(po) = po.

If f(x) > po for all z € (ag, po) and f(x) < po for all z € (po, by), then

the lemma is proved. If is not the case there exists a point gy € (ag, by)
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such that go # po and f(qo) = f(po) = po. We assume that gy € (po, bo).
The other possibility is handled similarly.
Set

Ji = U f*([po; q0))-

n>0
Jy is an f-invariant set, that is to say f(J;) C J;. Moreover, since
po € f™([po, @), for all n € Ny, we have .J; is an interval. It follows by
the continuity of f that Jo = J; UdJ; is an f- invariant set.

The next step is to prove that J; C [ag, go]. Otherwise, there would
be a point y € (po,q) and n > 0 such that f"(y) > q. We get
J™([po, ) N f"([y, q0]) 2 [po; go], then f" has a periodic point of period
three, which imply that A(f) > 0, a contradiction.

Since Jo C [ag, qo] € Jo and f(J2) C Jy, the minimality of J, ensure
us that zg ¢ Jo. Consequently O(xg) N Jy = 0. Consider the class B of
intervals J C I such that

Jy CJC Uy
JeBe{ fycJ
O(xo)ﬂJ:@

The interval J; = U J belongs to B. It is the maximum element in

JeB
the class B for the relation C. Since Jj is closed and f is continuous,

it follows that
Jo CJ3C Jye f(J3) C s

We set 9.J5 = {ps,gs} (ps < g3)- If f(ps) € (ps,43) or flgs) € (p3, q3),
then there would be K € B such that J; C K, which contradicts the

definition of J3. Hence f(0J3) C 0Js. Since #O(zo) > 3, it follows
that O(z¢) N dJ3 = ) and so we have that J3 € B. Therefore J3 = Js.

We remark that, since x; € [ag, ps] and z;11 € [g3,b0], [([ao,ps]) N
(g3, bo] # 0 and. f([g3, bo]) N [ao, ps] # 0.

We claim that f(ps) = g3 and f(g3) = ps. Suppose f(gz) = gs.
By the maximality of J3, there is z € [g3,bo] such that f(z) > g3
(otherwise there would be a larger interval than J3, whose image by f
is contained in J3). Since the interval [gs, b] is not f- invariant, there
exists r € (g3, bp) such that f(r) = g3. The set L defined by

L= ()

n>0
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is an interval, because g3 is a fixed point of f. Since P(f) C {2 :
i € No}, we get L C [ag,r] € Jo. Thus, Ly = J3U L is an interval
f-invariant. Therefore f(L,) C L; and L; C .Jy, which implies that
O(xo) N Ly = . Tt follows that L, € B and J3 C Ly, a contradiction.
So f(q3) # g3. Since the boundary of J; is f-invariant, f(gq3) = p3. A
similar argument gives f(p3) = gs.

We now finish the proof of the lemma by proving that f([ag,ps]) =
g, bo] and f([g3, bo]) = [ao, ps]. Suppose f([g3,bo]) € [ao, ps]. It follows
that there is w € [g3, by such that f(w) > ps. Since f([g3, bo]) € [p3, bol,
there exists g3 < s < by with f(s) = p3. Next, consider

Ly = £*((ps. 5).

n>0

Then the set L3 is an interval, because, for all n € Ny, p3 € f™([ps, 5])
and L3 C [ag,s]. If is not the case, since f([ps,qs]) C [ps,qs], there
would be a point t € [g3, s] and m € N such that f™(¢) > s. Therefore
F™(gs, t]) 0 f™([t, s]) 2 [gs, s], which is impossible because h(f) = 0.
Hence Ls is an interval f- invariant and J5 C Ly C Jy. By the maximal-
ity of Jy, we have O(x) N Ls = (), but this contradicts the maximality
of J5. Then f([g3, bo]) € [ao, ps]. The inclusion f([ao,ps]) € g3, bo] can
be proved analogously. Since f(Jy) = Jo, Jo = J3 U [ag, ps] U [g3, bo] e
f(J3) C J3, we conclude the equality. O

Proof of Theorem 1. Since f has a periodic orbit of period four, by
the Lemma 5 we can find intervals Ky, K; with f(Ky) = Ky and f(K;) =
K.

Since P(f) = {2' : i € Ny}, we can apply Lemma 5 to the map
fﬁ{o : Ky — Kj in order to obtain two intervals Koo, Ko of a 2-

renormalization of f|2K : Ky — Ky. Fori=0,1and j =0,1
0
Kij = [ (Kop)

are the atoms of the second generation for a (2,2)-renormalization of
f
Applying inductively Lemma 5, we get that f is (2),en-infinitely

renormalizable. O
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