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Abstract

We prove that a divergence-free and C1-robustly transitive
vector field has no singularities. Moreover, if the vector field is C4

then the linear Poincaré flow associated to it admits a dominated
splitting over M .
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1 Introduction and statement of the

results

It is well known that, in the C1-topology, robust transitivity of a dyna-
mical system defined on a compact manifold always implies some form of
(weak) hyperbolicity. In fact in the early 1980s Mañé ([15]) proved that a
C1-robustly transitive two-dimensional diffeomorphism is uniformly hy-
perbolic. Mañé’s Theorem was generalized first by Dı́az, Pujals and Ures
([10]) showing that C1-robustly transitive three-dimensional diffeomor-
phism are partially hyperbolic, and then by Bonatti, Dı́az and Pujals
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([7]) obtaining that a C1-robustly transitive diffeomorphism has domi-
nated splitting. In the symplectomorphism case Horita and Tahzibi ([14])
showed that C1-robust transitivity implies partial hyperbolicity in any
dimension.

Concerning the vector field context Doering ([12]) transposed Mañé’s
result to three-dimensional flows. Then, generalizing this result, Vivier
([19]) showed that, in any dimension, C1-robustly transitive vector fields
do not have singularities, and Bonatti, Gourmelon and Vivier ([9]) proved
that the linear Poincaré flow of a C1-robustly transitive vector field
admits a dominated splitting. In the three-dimensional and volume-
preserving case, Arbieto and Matheus ([1]) showed that a C1-robustly
transitive vector field is Anosov. Finally, Vivier ([20]) proved that any
Hamiltonian vector field defined on a four-dimensional sympletic mani-
fold and admitting a robustly transitive regular energy surface is hyper-
bolic on this energy surface.

In this paper we consider the conservative flows setting (or, equiv-
alently, the divergence-free vector fields scenario) and obtain the same
kind of results of Vivier and of Bonatti, Gourmelon and Vivier mentioned
above. Concerning the ergodic theoretical point of view we mention that,
using the Mañé, Bochi and Viana strategies ([16] and [5]), in [3] is proved
that generically conservative linear differential systems have, for almost
every point, zero Lyapunov exponents or else a dominated splitting.

Before stating precisely our results let us introduce some definitions.

Let M be a compact, connected and boundaryless smooth Rieman-
nian manifold of dimension n ≥ 4. We denote by µ the Lebesgue measure
induced by the Riemannian volume form on M . We say that a vector
field X is divergence-free if its divergence is equal to zero or equivalently
if the measure µ is invariant for the associated flow, X t, t ∈ R. In this
case we say that the flow is conservative or volume-preserving.

We denote by Xr
µ(M) (r ≥ 1) the space of Cr divergence-free vector

fields of M and endow this set with the usual C1-topology.
A vector field X is said to be transitive if its flow has a dense or-

bit in M . Moreover, X is C1-robustly transitive if there exists a C1-
neighbourhood of X in X1

µ(M) such that all its elements are transitive.
Let us now state our first result.

Theorem 1.1 Let X ∈ X1
µ(M) be a C1-robustly transitive vector field.

Then X has no singularities.
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We denote by Sing(X) the set of singularities of X and by R :=
M\Sing(X) the set of regular points. Given x ∈ R we consider its normal
bundle Nx = X(x)⊥ ⊂ TxM and define the linear Poincaré flow by
P t

X(x) := ΠXt(x)◦DX t
x where ΠXt(x) : TXt(x)M → NXt(x) is the projection

along the direction of X(X t(x)). Let Λ ⊂ R be an X t-invariant set and
N = N1 ⊕N2 ⊕ ...⊕Nk be a P t

X-invariant splitting over Λ such that all
the subbundles have constant dimension. We say that this splitting is an
`-dominated splitting for the linear Poincaré flow if there exists an ` ∈ N
such that, for all 0 ≤ i < j ≤ k and for all x ∈ Λ we have:

‖P `
X(x)|Nj

x
‖.‖(P `

X(x)|N i
x
)−1‖ ≤ 1

2
.

Previous result guaranties that a C1-robustly transitive vector field
has no singularities. Moreover, next theorem shows that if these vector
fields are of class C4 then they exhibit some type of weak hyperbolicity.

Theorem 1.2 Let X ∈ X4
µ(M) be a C1-robustly transitive vector field.

Then X has no singularities and the linear Poincaré flow of X admits a
dominated splitting over M .

We point out that this theorem requires that the C1-robustly tran-
sitive vector field X is of class C4 and not just of class C1 as it would
be expected. This hypothesis is a technical assumption needed to make
C1-conservative perturbations of the initial vector field X. Actually, the
proofs of Theorems 1.1 and 1.2 are based on the ones made by Vivier
([19]) and by Bonatti, Gourmelon and Vivier ([9]) but, as the perturba-
tions are made in the conservative class, we need to develop some appro-
priate C1 perturbation lemmas, namely a kind of conservative Franks’
lemma, and for that we need to begin with C4 regularity. We also re-
fer that one of the main tools to get these perturbation lemmas is the
Arbieto and Matheus Pasting Lemma ([1]).

Let us now state some corollaries of the two theorems above.
As, for r ≥ 2, Cr divergence-free vector fields are C1-dense in X1

µ(M)
(Zuppa, [21]) we obtain the following corollary.

Corollary 1.3 Let T be the open set of C1-robustly transitive vector
fields X ∈ X1

µ(M). There exists a C1-dense subset U of T such that if
X ∈ U then Sing(X) = ∅ and the linear Poincaré flow of X admits a
dominated splitting over M .
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Given a probability measure ν invariant for the flow X t we say that
ν is an ergodic measure for X if any measurable set that is invariant by
the flow has zero or full measure. Equivalently, ν is ergodic if, for every
observable continuous function ϕ : M → R and for ν-a.e. point x ∈ M ,
one has ∫

M

ϕ(z)dν(z) = lim
t→∞

1

t

∫ t

0

ϕ(Xs(x))ds.

We say that a Cr vector field X is C1-stably ergodic with respect to a
probability measure ν, r ≥ 1, if there exists a C1-neighbourhood of X, U ,
such that ν is an ergodic measure for Y , for all Y ∈ U . In this paper we
only consider ergodicity and stable ergodicity for the Lebesgue measure.

It is well known that, for conservative systems, ergodicity implies
transitivity. Therefore, as an immediate consequence of Theorem 1.2, we
get the following corollary.

Corollary 1.4 Let X ∈ X4
µ(M) be a C1-stably ergodic vector field. Then

Sing(X) = ∅ and the linear Poincaré flow of X admits a dominated
splitting over M .

Let X ∈ X1
µ(M) be a vector field without singularities and let E1 ⊕

E2... ⊕ Ek = N be a dominated splitting for the linear Poincaré flow
associated to X. We consider the integrated Jacobian of X restricted to
each Ei defined by

Σi(X) =

∫

M

log | det P 1
X(x)|Ei|dµ(x), i ∈ {1, 2, ..., k}.

In [4] we prove that a C1-stably ergodic vector field X, such that M \
Sing(X) is partially hyperbolic and all the singularities are linear hy-
perbolic, can be C1-approximated by a C2-divergence-free vector field Y
such that Σc(Y ) 6= 0, where Σc(Y ) denotes the integrated Jacobian of
Y restricted to the central subbundle Ec. Actually, Theorem 1.1 im-
plies that a C1-stably ergodic vector field does not have singularities.
We also remark that the proof given on [4] only requires the existence
of a dominated splitting. This fact was already observed in [2] in the
diffeomorphism context. Hence, Theorem 1 of [4] can be reformulated
as follows.

Corollary 1.5 Let X ∈ X1
µ(M) be a stably ergodic flow and E1⊕E2...⊕

Ek = N be a dominated splitting for the linear Poincaré flow of X over
M . Then X may be approximated, in the C1-topology, by Y ∈ X∞

µ (M)
for which Σi(Y ) 6= 0, for all i ∈ {1, 2, ..., k}.
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Note that if X ∈ X4
µ(M) then the previous result applies directly to

the dominated splitting given by Theorem 1.2.
We recall that a conservative vector field X is said to be nonuni-

formly hyperbolic if all the Lyapunov exponents are a.e. different from
zero. In particular if M is four dimensional, X ∈ X4

µ(M) is C1-stably er-
godic and admits a dominated splitting with three nontrivial subbundles
then the previous corollary assures that X can be C1-approximated by
a nonuniformly hyperbolic vector field.

If M is a four dimensional manifold and X ∈ X4
µ(M) is stably ergodic

then M admits a dominated splitting, E⊕F , for the linear Poincaré flow
associated to X. Since the vector field is divergence-free and has no sin-
gularities it is straightforward to see that the one-dimensional invariant
subbundle is hyperbolic and the other subbundle is hyperbolic in volume,
that is the splitting is a partially hyperbolic one. Therefore, using again
Zuppa’s Theorem ([21]), we obtain the following result.

Corollary 1.6 A C1-stably ergodic vector field X ∈ X1
µ(M4) can be C1-

approximated by a partially hyperbolic vector field.

This paper is organized as follows. In section 2 we state three re-
sults (Proposition 2.1, Proposition 2.2 and Proposition 2.4) and deduce
the theorems from the first two. Proposition 2.1 is an easy adaptation
of Proposition 4.1 of Vivier and we show that Proposition 2.4 implies
Proposition 2.2. In section 3 we obtain the perturbation lemmas needed
to prove Proposition 2.1 and Proposition 2.4 and, finally, in section 4 we
prove Proposition 2.4.

2 A tour on the proofs of the theorems

In this section we prove Theorems 1.1 and 1.2 following the strategy
used by Vivier in [19] and by Bonatti, Gourmelon and Vivier in [9] and
adapting some of their results to the conservative setting. For that we
begin by stating, in the divergence-free vector fields scenario, two main
results of the references above.

Proposition 2.1 Let X ∈ X1
µ(M) be a robustly transitive vector field

such that Sing(X) 6= ∅. Then there exists an arbitrarily C1-close vector
field Y ∈ X4

µ(M) such that the linear Poincaré flow of Y does not admit
any dominated splitting over M \ Sing(Y ).
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Proposition 2.2 Let X ∈ X4
µ(M) be a robustly transitive vector field.

Then there exists a dominated splitting for the linear Poincaré flow of X
over M \ Sing(X).

Let us now explain how we derive Theorems 1.1 and 1.2 from the previous
propositions.

Fix a robustly transitive vector field X ∈ X1
µ(M); let U be a C1 open

neigbourhood of X such that all Y ∈ U are transitive, hence robustly
transitive.

Let us assume that Sing(X) 6= ∅. Applying Lemma 3.3, we obtain
Y ∈ X∞

µ (M)∩U such that Sing(Y ) 6= ∅ and Y has at least ne hyperbolic
singularity. Therefore, by Proposition 2.1, we obtain a vector field Z ∈
X4

µ(M) ∩ U such that Sing(Z) 6= ∅ and the linear Poincaré flow of Z
does not admit any dominated splitting over M \ Sing(Z), which is in
contradiction with Proposition 2.2 applied to Z. Therefore Sing(X) = ∅,
which proves Theorem 1.1.

Now let X ∈ X4
µ(M) be a C1-robustly transitive vector field; the

previous argument shows that Sing(X) = ∅ and then Proposition 2.2
guarantees that M admits a dominated splitting for the linear Poincaré
flow of X, thus proving Theorem 1.2.

Proposition 2.1, up to a minor detail, is a consequence of Proposi-
tion 4.1 of [19]. To see this let us first recall that a singularity p of a
given vector field X is said to be a linear hyperbolic singularity if it is
a hyperbolic singularity and there exist smooth local coordinates that
conjugate X and DXp in a neighbourhood of p. In Lemma 3.3 we prove
that any X ∈ X1

µ(M) having a singularity p can be C1-approximated by
a vector field Y ∈ X∞

µ (M) such that p is a linear hyperbolic singularity
of Y . Since Y is a divergence-free vector field it follows that p is of the
saddle-type. Now Proposition 2.1 is a direct consequence of the following
result.

Proposition 2.3 (Proposition 4.1 of [19]) If Y ∈ X1(M) admits a linear
hyperbolic singularity of saddle-type, then the linear Poincaré flow of Y
does not admit any dominated splitting over M \ Sing(Y ).

Proposition 2.2 is a consequence of the following result, which is an
adaptation to the conservative setting of Corollary 2.22 of [9], whose
proof is postponed to section 4.
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Proposition 2.4 Let X ∈ X4
µ(M) be a C1-robustly transitive vector field

and let U be a small C1-neighbourhood of X. There exist `, % ∈ R+
0 such

that for any Y ∈ U and any periodic orbit x of Y t, of period π(x) ≥ %,
the linear Poincaré flow of Y admits an `-dominated splitting over the
Y t-orbit of x.

Let us explain how Proposition 2.2 is deduced from the previous re-
sult.

Fix a robustly transitive vector field X ∈ X4
µ(M) and let U be a C1-

neighbourhood of X as in the previous proposition and such that any C1

vector field Y ∈ U is also robustly transitive. Consider ` and % given by
Proposition 2.4.

Let x ∈ M be a point with dense X t-orbit. Using Pugh and Robin-
son’s volume-preserving closing lemma ([18]) we get a sequence of vector
fields Xn ∈ X4

µ(M), converging to X in the C1-topology, and, for each
n ∈ N, Xn has a periodic orbit Γn = Γn(t) of period πn such that
limn→+∞ Γn(0) = x. In particular limn→+∞ πn = +∞. Therefore, for
large n, we can apply Proposition 2.4 to conclude that there is an `-
dominated splitting for the linear Poincaré flow of Xn over the orbit Γn;
taking a subsequence if necessary, we can assume that the dimensions of

the invariant bundles do not depend on n. Finally, as
⋂

N(∪+∞
N Γn) = M ,

by well known results on dominated splittings (see for example [8]) it
follows that there exists an `-dominated splitting for the linear Poincaré
flow of X over M \ Sing(X).

3 Perturbation Lemmas

In this section we state and prove three perturbation lemmas needed
to obtain the main results of this article. In particular the Main Per-
turbation Lemma (Lemma 3.2) is a kind of Franks’ Lemma ([13]) for
conservative flows. As we mention before, for technical reasons, we re-
quired that the vector fields involved are of class C4. One of the main
tools to obtain this result is the Arbieto and Matheus Pasting Lemmas
([1]). We refer that their result and our Main Perturbation Lemma make
use of a key result of Dacorogna and Moser ([11]).

We fix a vector field X ∈ X4
µ(M), τ > 0, and a point p ∈ M such

that X t(p) 6= p, for all t ∈ [0, τ ]. Define Γ(p, τ) = {X t(p); t ∈ [0, τ ]}. In
the sequel up to a smooth conservative change of coordinates defined on
a neighbourhood of Γ(p, τ) (see [17]) we can assume that we are working
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on Rn and that 1
‖X(p)‖X(p) = ∂

∂x1
= v. Let W ⊂ Rn be the (n − 1)-

dimensional vectorial subspace orthogonal to the unitary vector v.
Given r > 0 let Br(p) denote the ball of radius r, centered at p and

contained in Np = X(p)⊥ = W . For r > 0 and δ > 0 define

T = T (p, τ, r, δ) =
⋃

t∈]−δ,τ+δ[

X t(Br(p)).

If r > 0 and δ > 0 are small enough the set T is an open neighbour-
hood of Γ(p, τ); by definition this neighbourhood is foliated by orbits of
the flow so we call it a flowbox.

We fix a linear isometry ιp : Np → W and choose a family {ιt}t∈]−δ,τ+δ[,
such that, for each t ∈]− δ, τ + δ[, ιt is a linear isometry from NXt(p) onto
W , ι0 = ιp, and this family is C1 on the parameter t.

Given q ∈ T , we write q = λqv + wq, where wq ∈ W and λq ∈ R.

Define `(t) =
∫ t

0
‖X(Xs(p))‖ds; there exists tq ∈] − δ, τ + δ[ such that

`(tq) = λq. We note that tp = 0.

Let us now define the Poincaré flow X̂ t associated to X on T .
For t such that tq + t ∈]− δ, τ + δ[ define

X̂ t(q) = `(tq + t)v + ι(tq+t) ◦ P t
X(Xs(p)) ◦ ι−1

tq (wq).

It is straightforward to see that X̂0 ≡ Id and that X̂ t+t′(q) = X̂ t(X̂ t′(q)),
when defined.

Let X̂ be the vector field associated to the flow X̂ t. X̂ is of class C2

and it is divergence-free. To see this we first recall the Liouville formula

exp

(∫ t

0

div(X̂(X̂s(q)))ds

)
= det DX̂ t(q).

Now a direct computation gives that the matrix of DX̂ t(q) relatively to
the decomposition Rn = W ⊕ 〈v〉 is

(
‖X(Xtq+t(p))‖
‖X(Xtq (p))‖ 0

∗ ιtq+t ◦ P t
X(X tq(p)) ◦ ι−1

tq

)
.

As X t is volume-preserving and the maps ιs are linear isometries we get

det DX̂ t(q) =
‖X(X tq+t(p))‖
‖X(X tq(p))‖ × det P t

X(X tq(p)) = 1, ∀t.
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Thus, according to Liouville’s formula, it follows that div(X̂) = 0.
We also observe that P t

X̂
(q) = ιtq+t ◦ P t

X(X tq(p)) ◦ ι−1
tq ; in particular

P t
X̂

(0) = ιt ◦ P t
X(p) ◦ ι−1

0 .

Lemma 3.1 Let X ∈ X4
µ(M), τ > 0, and p ∈ M such that X t(p) 6= p,

∀t ∈ [0, τ ]. There exists a C2-conservative change of coordinates Φ,
defined on a neighbourhood of Γ(p, τ), such that

X̂ = Φ∗X and Φ(X t(p)) = X̂ t(0), ∀t ∈ [0, τ ].

Proof: We recall that Φ∗X(y) = DΦΦ−1(y)X(Φ−1(y)). By Lemma 2.1
of [4] we know that there exists a conservative C2 diffeomorphism Ψ de-
fined on a flowbox containing Γ(p, τ) such that T = Ψ∗X, where T = ∂

∂x1
.

Exactly in the same way there exists a conservative C2 diffeomorphism
Ψ̂ defined on a flowbox containing Γ(0, τ) such that T = Ψ̂∗X̂.

Up to translations defined on the hyperplane 〈 ∂
∂x1
〉⊥ and shrinking

the neigbourhoods of the definition of these maps, we can assume that
Ψ(p) = 0 and that Ψ̂(0) = 0. Finally, we define Φ = Ψ̂−1 ◦Ψ. tu

Now let V, V ′ ⊂ Np, dim(V ) = j, 2 ≤ j ≤ n − 1, and Np = V ⊕ V ′.
A one-parameter linear family {At}t∈R associated to Γ(p, τ) and V is
defined as follows:

• At : Np → Np is a linear map, for all t ∈ R,

• At = Id, for all t ≤ 0, and At = Aτ , for all t ≥ τ ,

• At|V ∈ SL(j,R), and At|V ′ ≡ Id, ∀t ∈ [0, τ ], in particular we have
det(At) = 1, for all t ∈ R, and

• the family At is C∞ on the parameter t.

Lemma 3.2 (Main perturbation lemma)
Given ε > 0 and a vector field X ∈ X4

µ(M) there exists ξ0 = ξ0(ε,X)
such that ∀τ ∈ [1, 2], for any periodic point p of period greater than 2,
for any sufficient small flowbox T of Γ(p, τ) and for any one-parameter
linear family {At}t∈[0,τ ] such that ‖A′

tA
−1
t ‖ < ξ0, ∀t ∈ [0, τ ], there exists

Y ∈ X1
µ(M) satisfying the following properties

1. Y is ε-C1-close to X;

2. Y t(p) = X t(p), for all t ∈ R;
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3. P τ
Y (p) = P τ

X(p) ◦ Aτ , and

4. Y |T c ≡ X|T c.

Proof:
Using Lemma 3.1 we get a C2 change of coordinates Φ, defined in a

flowbox T = T (p, τ, r, δ) and such that Φ∗X = X̂ and Φ(X t(p)) = X̂ t(0),
∀t ∈ [0, τ ], where X̂ t is the Poincaré flow associated to X on T defined
above.

To obtain the vector field Y we first construct a C2 divergence-free
vector field Ŷ defined on Φ(T ) and such that

(a) Ŷ is ε̂-C1-close to X̂;

(b) Ŷ t(0) = X̂ t(0), when defined;

(c) P t
Ŷ
(0) = P t

X̂
(0) ◦Bt, where Bt = ιp ◦ At, t ∈ [0, τ ], and

(d) Ŷ |T̂ c ≡ X̂|T̂ c , where T̂2 = Φ(T (p, τ, r2, δ2)), for some 0 < r2 < r and
0 < δ2 < δ to be fixed.

The positive real number ε̂ depends only on Φ and T and assures that
if Z is ε̂-C1-close to X̂ on Φ(T ) then Φ−1∗(Z) is ε-C1-close to X on T .

Once we get Ŷ we define Ỹ = Φ−1∗(Ŷ ) and, as Ỹ ≡ X on T \
T (p, τ, r

2
, δ

2
), we consider Y = Ỹ on T and Y = X on T c. We observe

that we can only guaranty that Y is of class C1.
From this construction it follows immediately that items 1., 2. and

4. of the lemma are a direct consequence of conditions (a), (b) and (d)
on Ŷ , respectively.

To get item 3. we observe that our construction of Ŷ will imply
that P t

Ŷ
(p) = ιt ◦ P t

Ỹ
(p) ◦ ι−1

p where, recall, Ỹ = Φ−1∗(Ŷ ). Therefore, as

P t
X̂

(p) = ιt ◦ P t
X(p) ◦ ι−1

p and Bt = ιp ◦ At, from condition (c) we obtain
3..

Let us now explain how to construct the vector field Ŷ defined on
Φ(T ).

The linear variational equation associated to the linear Poincaré flow
of X̂ is

[P t
X̂

(0)]′ = (Π ◦DX̂X̂t(0))(P
t
X̂

(0)),

where ′ denotes the time derivative, D is the spacial derivative and Π is
the orthogonal projection onto NX̂t(0). To get Ŷ we begin by considering

an analogous linear variational equation associated to P t
Ŷ
(0) in order to
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obtain DŶ along the orbit of the point 0 and then define in a linear way
the flow Ŷ t.

Since we require that P t
Ŷ
(0) = P t

X̂
(0) ◦Bt we have that

[P t
Ŷ
(0)]′ = [P t

X̂
(0) ◦Bt]

′ = [P t
X̂

(0)]′ ◦Bt + P t
X̂

(0) ◦Bt
′

= (Π ◦DX̂X̂t(0))(P
t
X̂

(0)) ◦Bt + P t
X̂

(0) ◦Bt
′

=
[
Π ◦DX̂X̂t(0) + (P t

X̂
(0) ◦Bt

′) ◦ (B−1
t ◦ P−t

X̂
(X̂ t(0)))

]
◦ P t

Ŷ
(0).

This equation allows us to define, along the X̂ t orbit of 0, the infinitesimal
generator DX̂ +H of the desired perturbation, where HX̂t(0)(v) = ~0 and

Π ◦ HX̂t(0) = (P t
X̂

(0) ◦Bt
′) ◦ (B−1

t ◦ P−t

X̂
(X̂ t(0))) = Ct. (1)

With this definition the previous differential equation can be written
as:

u′(t) = Π ◦ (DX̂ +H)X̂t(0)(u(t)). (2)

Let P(λv, w) = (0, Ct(w)), where t is given by
∫ t

0
‖X̂(X̂s(0))‖ds = λ;

observe that
DwP(X̂ t(0)) = Π ◦ HX̂t(0), (3)

and that
DwP(X̂ t(0))(0, u) = Π ◦DPX̂t(0)(0, u). (4)

Now we define the C2 vector field Ŷ (q) = (X̂ + P)(q), for q ∈
Φ(T (p, τ, r1, δ1)), where 0 < r1 < r and 0 < δ1 < δ will be fixed. In
order to extend this vector field let us first prove that it is divergence-
free.

As Ŷ = X̂ + P and X̂ is divergence-free, using (3), (1) and the
definition of the maps Bt, it follows that

div(DŶ ) = div(DP) = tr(Ct) = tr(B′
t ◦B−1

t ) = tr(A′
t ◦ A−1

t ).

Now, as det(At) = 1,∀t ∈ R, the result follows observing that

0 = (det(At))
′ = tr(A′

tA
−1
t ) det(At) = tr(A′

tA
−1
t ).

Now, to extend Ŷ to a conservative vector field, we apply the Arbieto
and Matheus C1+α -Pasting Lemma (Theorem 3.1, [1]) which guaranties
that there are 0 < r1 < r2 < r and 0 < δ1 < δ2 < δ such that Ŷ has a
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divergence-free C2 extension to Φ(T (p, τ, r, δ)), that we also denote by
Ŷ , with Ŷ (q) = X̂(q), for all q ∈ Φ(T (p, τ, r, δ)) \ Φ(T (p, τ, r2, δ2)).

Let us now prove that this vector field Ŷ satisfies properties (a)-(d).
Condition (d) is a direct consequence of the way we made the exten-

sion of Ŷ . To get (b) just observe that

Ŷ (X̂ t(0)) = X̂(X̂ t(0)) + P
(∫ t

0

‖X̂(X̂s(0))‖ds,~0

)

= X̂(X̂ t(0)) + (0, Ct(~0)) = X̂(X̂ t(0)).

To get (c) let us first remark that the linear Poincaré flow of Ŷ at 0,
P t

Ŷ
(0), is the solution of the differential equation u′(t) = Π◦DŶŶ t(0)(u(t)).

By equations (4) and (3) we have that

Π ◦DŶŶ t(0)(u(t)) = Π ◦D(X̂ + P)X̂t(0) = Π ◦DX̂X̂t(0) + Π ◦ HX̂t(0).

Hence, by (1) and (2), we get that P t
Ŷ
(0) = P t

X̂
(0) ◦Bt.

To prove condition (a) we begin by observing that the Pasting Lemma
guaranties that given ε̂ there exists σ > 0 such that if the vector field Ŷ
we constructed is σ-C1 close to X̂ on Φ(T (p, τ, r1, δ1)) then its extension
to Φ(T (p, τ, r, δ)) is ε̂-C1 close to X̂, and to take r1 and δ1 smaller does
not change this C1 closeness. So let us prove that Ŷ is σ-C1 close to X̂
on T1 = Φ(T (p, τ, r1, δ1)) for sufficiently small r1, δ1 and ξ0.

Recalling that Ŷ = X̂ + P , that P(X̂ t(0),~0) = 0 and that P is
continuous, to choose r1 and δ1 small is enough to assure ‖Ŷ − X̂‖0 < σ
on T1.

We observe that the matrix of DP(λ,w) depends only on map Ct and
on real numbers

∣∣∣∣
∂[Ct(w)]i

∂t

∂t

∂λ
wi

∣∣∣∣ , i ∈ {1, ..., n− 1},

where w = (w1, ..., wn−1) and ‖w‖ < r1. By the definition of Ct (see (1)),
up to constants that depend only on X, its norm is given by

‖B′
t ◦B−1

t ‖ = ‖ιp ◦ A′
t ◦ A−1

t ◦ ι−1
p ‖ = ‖A′

t ◦ A−1
t ‖,

because the map ιp is an isometry. Hence, by the hypothesis, it is enough
to take ξ0 sufficiently small to get that ‖DP‖ < σ. This ends the proof
of the lemma. tu
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Lemma 3.3 Let p be a singularity of X ∈ X1
µ(M). For any ε > 0 there

exists Y ∈ X∞
µ (M), such that Y is ε-C1-close to X and p is a linear

hyperbolic singularity of Y .

Proof: Let (U, φ) be a conservative chart given by Moser’s Theorem
([17]) such that p ∈ U and φ(p) = 0. Let A = DXp and, for arbitrarily
small δ̃ > 0, choose a linear and hyperbolic isomorphism H = Hδ such
that ‖A−H‖ < δ. We fix small r > 0 such that B(0; r) ⊂ φ(U) and con-
sider the pull-back of H, Z = Zδ̃,r = (φ−1)∗H, defined on φ−1(B(0; r)).

For any small δ > 0 there are δ̃ > 0 and r > 0 such that X and Z
are δ-C1-close. Therefore a straightforward application of the C1-pasting
lemma (Theorem 3.2, [1]) to X and ε (which give a δ) guarantees that
there exists a vector field Y ∈ X∞

µ (M) such that Y is ε-C1-close to X and
Y |W = ZW , where W = φ−1(B(0; r

2
)). From the construction it follows

that p is a linear hyperbolic singularity of Y . tu

Lemma 3.4 Let X ∈ X1
µ(M) and assume that p ∈ M is a periodic

elliptic point of period π(p) > 1. Then, for any ε > 0 there exist Z ∈
X∞

µ (M) and a tubular neighbourhood U of the X t-orbit of p, such that Z
is ε-C1-close to X and U is Zt-invariant.

Proof:
Let p ∈ M is a periodic elliptic point of period π(p) > 1 of X and

denote its orbit by γ = Γ(p, π(p)). As p is elliptic all the eigenvalues of

the linear Poincaré map P
π(p)
X (p) : Np → Np have modulus one.

Let us first assume that the map P
π(p)
X (p) admits a basis formed by

eigenvectors. We consider the inner product defined on Np and associated
to this basis, that is the one that orthonormalizes the fixed basis. For
r > 0 let D(0; r) ⊂ Np denote the (n − 1)-disk centered at 0 ∈ Np and
of radius r for the distance associated to this inner product. Note that
D(0; r) is P

π(p)
X (p)-invariant.

Let Y be the divergence-free linear vector field associated to the flow
obtained by suspending P

π(p)
X (p) along γ; this vector field is defined in a

tubular neighbourhood of γ, U(r), which is homeomorphic to γ×D(0; r).
Given δ > 0 we can choose a small r such that X and Y are δ-C1-close

on U(r). Now, for fixed ε and an appropriate δ we apply the C1-pasting
lemma (Theorem 3.2, [1]) to get a vector field Z ∈ X∞

µ (M) such that X
and Z are ε-C1-close on M and Z|U = Y |U , where U = U( r

2
). It follows

from this construction that U is Zt-invariant.

13



Assume now that P
π(p)
X (p) does not admit a basis formed by eigenvec-

tors, that is there exists at least one eigenvalue whose multiplicity is big-
ger than the dimension of the associated eigenspace. Let us first explain
how to deal with the simplest case, that is when dim(M) = 3, P

π(p)
X (p)

has only one eigenvalue, say equal to 1, and the associated eigenspace is
one-dimensional. In this case we will perturb X in order to get complex
eigenvalues.

For that and exactly as before we begin by ε
2
-C1-approximate X by a

C∞ vector field Y linear in a neighbourhood of γ and such that P
π(p)
X (p) =

P
π(p)
Y (p). Now, there exists a basis of Np such that relatively to this basis

P
π(p)
Y (p) has matrix (

1 0
1 1

)
.

Consider the one-parameter linear family

At =

(
1 −δα(t)
0 1

)
,

where α(t) is a C∞-bump function, α(t) = 1, for all t ≥ 1, α(t) = 0, for
all t ≤ 0, and δ > 0 is arbitrarily small.

As ‖A′
t ◦ A−1

t ‖ ≤ δ|α′(t)|, choosing δ small enough we can apply
Lemma 3.2 to the arc Γ(p, 1) in order to obtain a new vector field Z ∈
X∞

µ (M), ε
2
-C1-close to Y , such that p is a periodic orbit of Z of period

π(p) and P 1
Z(p) = P 1

Y (p) ◦ A1 = P 1
X(p) ◦ A1. As

P
π(p)
Z (p) = P

π(p)−1
Z (Z1(p)) ◦ P 1

Z(p) = P
π(p)−1
X (X1(p)) ◦ P 1

X(p) ◦ A1,

it follows that the matrix of P
π(p)
Z (p) with respect to the basis we fixed

above is (
1 −δ
1 1− δ

)
.

Therefore p is an elliptic point of Z and P
π(p)
Z (p) has two complex eigen-

values. Moreover, it is clear that Z and X are ε-C1-close.
If the eigenvalue is equal to −1 we proceed in the same way consid-

ering the matrix

At =

(
1 δα(t)
0 1

)
.

Finally, to deal with the general case (several eigenvalues, real or
complex, whose multiplicity is greater than the dimension of the cor-
responding eigenspace) we just have to apply the previous argument a
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finite number of times in order to get a new vector field Z such that p is
a periodic elliptic orbit, of period π(p), and such that P

π(p)
Z (p) admits a

basis of eigenvectors. tu

4 Proof of Proposition 2.4

4.1 Conservative Linear Differential Systems

We begin this section by recalling some definitions introduced in [9].
Let X ∈ X1

µ(M) and consider a set Σ ⊂ M which is a countable
union of periodic orbits of X t. A Linear Differential System (LDS) is a
four-tuple A = (Σ, X t, NΣ, A?), where NΣ is the restriction to Σ of the
normal bundle of X over M \ Sing(X) and A? : Σ → GL(n − 1,R) is
a continuous map. In fact, for x ∈ Σ, A?

x is a linear map of Nx and
we identify this space with Rn−1. The natural LDS associated to the
dynamics of the vector field is obtained by taking A?

x = Π ◦DXx.
Given an LDS A = (Σ, X t, NΣ, A?) the linear variational equation

associated to it is

u̇(t, x) = A?(X t(x)) · u(t, x). (5)

The solution of (5) with initial condition u(0, x) = Id is, for each t
and x, a linear map Φt

A?(x) : Nx → NXt(x). The map A? is called the
infinitesimal generator of ΦA? ; it is easy to see that Φt

A?(x) = P t
X(x)

when the infinitesimal generator is Π ◦DX.
The LDS A = (Σ, X t, NΣ, A?) is bounded if there exists K > 0 such

that ‖A?
x‖ ≤ K, for all x ∈ Σ. The LDS A is said to be a large period

system if the number of orbits of Σ with period less or equal to τ is finite,
for any τ > 0.

We say that the LDS A is conservative if

| det Φt
A?(x)| = ‖X(x)‖

‖X(X t(x))‖ , ∀x ∈ Σ.

We observe that from Liouville’s formula it follows that

det Φt
A?(x) = exp

(∫ t

0

tr(A?(Xs(x)))ds

)
. (6)

A LDS B = (Σ, X t, NΣ, B?) is a conservative perturbation of a bounded
A if, for every ε > 0, ‖A?

x−B?
x‖ < ε, up to points x belonging to a finite
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number of orbits, and B is conservative. In view of (6) it follows that B
is conservative if and only if tr(B?) = tr(A?).

A direct application of the Gronwall inequality gives that

‖Φt
A?(x)− Φt

B?(x)‖ ≤ exp(K|t|)‖A?
x −B?

x‖.
In particular Φ1

B? is a perturbation of Φ1
A? in the sense introduced in [9]

for the discrete case.
A bounded LDS A is strictly without dominated decomposition if the

only invariant subsets of Σ that admit a dominated splitting for Φt
A? are

finite sets.
Let us now present a key result about linear differential systems which

is the conservative version of Theorem 2.2 of [9].

Theorem 4.1 Let A be a conservative, large period and bounded LDS. If
A is strictly without dominated decomposition then there exist a conserva-
tive perturbation B of A and an infinite set Σ′ ⊂ Σ which is X t-invariant
such that for every x ∈ Σ′ the linear map Φ

π(x)
B? (x) as all eigenvalues real

and with the same modulus (thus equal to 1 or to −1).

The perturbations used in the proof of Theorem 2.2 of [9] are rota-
tions and directional homotheties (diagonal linear maps for a fixed basis).
They are made in the linear cocycle setting and (discrete/continuous-
time) Franks’ Lemma allows to realize them as perturbations of a fixed
diffeomorphism or vector field. Once we have a dictionary to pass from
linear cocycles (discrete case) to conservative linear differential systems
(conservative continuous-time case) and we obtained the Main Pertur-
bation Lemma (Lemma 3.2) which allows to realize these kind of con-
servative perturbations of linear differential systems as conservative per-
turbations of vector fields, the proof given by Bonatti, Gourmelon and
Vivier can be carried on to our setting without additional obstructions.
Therefore, to illustrate how this can be done, we show how to perturb
along a periodic orbit of a conservative vector field in order to get real
eigenvalues for the linear Poincaré map in the period. This is obtained
by first making a conservative perturbation of the LDS associated to
the orbit and then, using the Main Perturbation Lemma, realize it as a
conservative perturbation of the vector field.

Lemma 4.2 Let X ∈ X4
µ(M) and fix small ε0 > 0. There exists π0 such

that for any periodic orbit x with period π(x) > π0 there is Y ∈ X1
µ(M)

satisfying
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• Y is ε0-C
1-close to X;

• Y t(x) = X t(x), ∀t ∈ R;

• all the eigenvalues of P
π(x)
Y are real, and

• Y is equal to X outside a small neighbourhood of the orbit of x.

Proof:
Let us fix a small δ > 0.
Let Rθ denote the rotation of angle θ in the plane. Lemma 6.6 of [6]

assures that there exists N = N(ε) ∈ N satisfying the following: for any
k > N and for any C1, C2,...,Ck ∈ SL(2,R) there are rotations Rθ1 ,
Rθ2 ,...,Rθk

, with |θj| < δ for all j ∈ {1, 2, ..., k}, such that the linear map

Ck ◦Rθk
◦ Ck−1 ◦Rθk−1

◦ ... ◦ C1 ◦Rθ1

has real eigenvalues.
Let us fix a periodic orbit γ and x ∈ γ with π(x) ≥ N . We assume

that P
π(x)
X (x) has a complex eigenvalue associated to a two dimensional

invariant subspace Vx ⊂ Nx. Assuming that π(x) = k ∈ N, we consider
the linear maps Cj : VXj−1(x) → VXj(x) defined by

Cj =
1

det(P 1
X(Xj−1(x))|Vj−1

)
P 1

X(Xj−1(x))|Vj−1
,

where Vj = P j
X(Vx) and j ∈ {1, 2, ...k}. If π(x) /∈ N we take k = [π(x)],

consider C1, ..., Ck−1 as before and define Ck : VXk−1(x) → VXπ(x)(x) = Vx

by

Ck =
1

det(P
1+π(x)−k
X (Xk−1(x))|Vk−1

)
P

1+π(x)−k
X (Xk−1(x))|Vk−1

.

In what follows, without loss of generality, we assume that π(x) = k ∈ N.
We observe that each Cj can be identified with a linear map of

SL(2,R) and that P
π(x)
X (x) = Ck ◦ Ck−1 ◦ ... ◦ C1. Therefore, Lemma

6.6 of [6] gives a family of rotations Rθ1 , Rθ2 ,...,Rθk
with the properties

described above.
Now we want to apply Lemma 3.2 to each arc Γ(Xj−1(x), 1) and to

the maps Cj and Rθj
. For that we consider V = Vj−1 and choose an ap-

propriate V ′
j−1 using the Jordan canonical form so that the perturbation
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we will construct do not change the other eigenvalues of P
π(x)
X . Then, for

each j ∈ {1, 2, ..., k}, we define the one-parameter linear family {Rj,t}t∈R
associated to Γ(Xj−1(x), 1) and Vj by

• Rj,t : NXj−1(x) → NXj−1(x) is a linear map, for all t ∈ R,

• Rj,t = Id, for all t ≤ 0, and Rj,t = Rj,1, for all t ≥ 1,

• Rj,t|V ′j ≡ Id, ∀t ∈ [0, 1], and

• Rj,t|Vj
= Rαj(t)θj

, where αj is a C∞ bump function with αj(t) = 0
for t ≤ 0, αj(t) = 1 for t ≥ 1, and 0 ≤ α′j(t) ≤ 2, for all t ∈ R.

A direct computation gives that ‖R′
j,t ◦ R−1

j,t ‖ = α′(t)θj ≤ 2ε. Therefore

we fix δ ≤ 1
2
ξ0(ε0/n,X), where n is the dimension of M and ξ0(ε0/n,X)

is given by Lemma 3.2; thus, applying this lemma we get divergence-
free vector fields Y1,...,Yk, each one ε0/n-C1-close to X and such that
P 1

Yj
(Xj−1(x)) = P 1

X(Xj−1(x)) ◦ Rθj
, for j ∈ {1, 2, ..., k}. It follows from

this construction that these vector fields glue together defining a C1

vector field Y ∈ X1
µ(M), ε0/n-C1-close to X, and such that

P
π(x)
Y (x)|Vx = (P 1

X(Xk−1(x)) ◦Rθk
) ◦ ... ◦ (P 1

X(x) ◦Rθ1)

= (Ck ◦Rθk
) ◦ (Ck−1 ◦Rθk−1

) ◦ ... ◦ (C1 ◦Rθ1),

therefore this linear map has real eigenvalues. Finally, we apply these
arguments at most [n

2
] times (corresponding to the maximal number of

two-dimensional eigenspaces associated to complex eigenvalues) to get
the vector field Y satisfying the conditions of the lemma. tu
Remark 4.1 In the previous lemma we can assure that the eigenval-
ues of P

π(x)
Y are all real and with different modulus. In fact this can be

achieved by adding small directional homotheties in the two-dimensional
vector spaces Vx.

4.2 Proof of Proposition 2.4

We first note that it is not difficult to see that once we obtain the con-
clusions of the proposition for a robustly transitive vector field X then
they also hold for Y in a small neighbourhood U of X with the same `
and %.
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So let us fix a robustly transitive X ∈ X4
µ(M) and a positive number ε

such that if Y ∈ X1
µ(M) and is ε-C1-close to X then it is robustly transi-

tive. We assume that the proposition does not hold for X. Therefore for
each ` ∈ N there exists a periodic point x`, with period π` = π(x`) ≥ `
and such that the orbit Γ(x`, π`) does not admit an `-dominated splitting.

Define
Σ =

⋃

`∈N
Γ(x`, π`),

and consider the linear differential system A = (Σ, X t, NΣ, Π◦DX), that
is A? = Π ◦DX . As M is compact and X is C1 A is bounded and, by
construction, it is conservative and a large period system.

Now we show that A is strictly without dominated decomposition.
In fact let us assume that there exists an X t-invariant and not finite set
Σ0 ⊂ Σ such that P t

X admits an L0 dominated splitting over Σ0, say
NΣ0 = E ⊕ F . It follows that there is L1 > L0 such that E ⊕ F is an
L-dominated splitting for the linear Poincaré map, for any L ≥ L1. As
Σ0 is not finite there exists `0 > L1 such that Σ1 = Γ(x`0 , π`0) ⊂ Σ0. The
set Σ1 is an X t-invariant subset of Σ0 therefore, by choice of L1, it admits
an L- dominated splitting for any L ≥ L1; by other side as π`0 ≥ `0 > L1

it follows that Σ1 does not admit an `0-dominated splitting, which is a
contradiction.

Now we can apply Theorem 4.1 in order to get a conservative pertur-
bation B of A and an infinite set Σ′ ⊂ Σ which is X t-invariant such that
for every x ∈ Σ′ the linear map Φ

π(x)
B? (x) as all eigenvalues real and with

the same modulus (thus equal to 1 or to −1). As B is a perturbation of A,
for any small η0 > 0 there exits x ∈ Σ′ such that ‖B?

Xt(x) −A?
Xt(x)‖ < η0,

for all t ∈ R. We observe that the period of x, π(x) tends to infinity as
η0 goes to zero.

Now we construct a new vector field Y ∈ X1
µ(M) such Y is ε-C1-close

to X, Y t(x) = X t(x), for all t ∈ R and P
π(x)
Y (x) = Φ

π(x)
B? (x), in particular

the linear Poincaré map P
π(x)
Y has only eigenvalues equal to 1 or −1.

Once we get this vector field we apply Lemma 3.4 to get a new vector
field Z ∈ X1

µ(M), arbitrarily C1-close to Y and having a Zt-invariant
tubular neighbourhood of the orbit of x, which contradicts the fact that
Y is robustly transitive thus ending the proof of Proposition 2.4.

Therefore it remains to explain how we obtain the mentioned vector
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field Y . Consider the arcs of trajectory

Γj =
⋃

t∈[0,1]

X t(Xj(x)), for j ∈ {0, ..., [π(x)]− 2},

and
Γ[π(x)]−1 =

⋃

t∈[0,1+π(x)−[π(x]]

X t(Xj(x)).

For j ∈ {0, ..., [π(x)] − 1} we write Φ1
B?(Xj(x)) = P 1

X(Xj(x)) ◦ Aj,

where Aj = (P 1
X(Xj(x)))

−1 ◦ Φ1
B?(Xj(x)), and consider a continuous

one-parameter family Ãj
t defined by

• Ãj
t = Id for t ≤ 0;

• Ãj
t = Aj for t ≥ 1 (for t ≥ 1 + π(x)− [π(x)], if j = [π(x)]− 1), and

• Ãj
t = (P t

X(Xj(x)))
−1 ◦ Φt

B?(Xj(x)), for 0 ≤ t ≤ 1 (or for 0 ≤ t ≤
1 + π(x)− [π(x)], if j = [π(x)]− 1).

We fix small δ̃ > 0 and consider Aj
t a one-parameter linear family (see

Section 3), arbitrarily close to Ãj
t , such that Aj

t = Id for t ≤ δ̃ and
Aj

t = Ãj
t for t ≥ 1 (or t ≥ 1 + π(x)− [π(x)], if j = [π(x)]− 1). Now, we

observe that ‖(Aj
t)
′(Aj

t)
−1‖ is of order

‖((P t
X(Xj(x)))−1 ◦ Φt

B?(Xj(x)))′ ◦ ((P t
X(Xj(x)))−1 ◦ Φt

B?(Xj(x)))−1‖,

therefore of order

O(x) = max
y∈Γ(x,π(x))

‖B?
y − A?

y‖.

As we mention before x ∈ Σ′ can be chosen such that O(x) is arbitrarily
small. Therefore, fixing 0 < δ < δ̃ and small r > 0, to each arc Γj we
apply Lemma 3.2 to get a new vector field Yj ∈ X1

µ(M), ε-C1-close to Y
and such that

1. Y t
j (x) = X t

j(x), ∀t ∈ R;

2. P 1
Yj

(Xj(x)) = Φ1
B?(Xj(x)), and

3. Yj|T c
j

= X|T c
j
, where Tj = T (Xj(x), τ, r, δ) and τ = 1 (or τ =

1 + π(x)− [π(x)] if j = [π(x)]− 1).
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Finally, as δ < δ̃, by construction it follows that

Yj|Tj∩Tj+1
= Yj+1|Tj∩Tj+1

, ∀j ∈ {0, 1, ..., [π(x)]− 1},
which, together with item 3. above, implies that these vector fields can be
glued to obtain a C1 vector field Y ∈ X1

µ(M), ε-C1-close to X and such
that Y |Tj

= Yj|Tj
, for all j ∈ {0, 1, ..., [π(x)] − 1}. Thus Y t(x) = X t(x),

for all t ∈ R and P
π(x)
Y (x) = Φ

π(x)
B? (x) as required. This ends the proof of

Proposition 2.4.
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Math. 158, 1 (2004), 33–104.

[7] C. Bonatti, L.J. Dı́az and E. Pujals, A C1-generic dichotomy for
diffeomorphisms: Weak forms of hyperbolicity or infinitely many
sinks or sources, Ann. Math, 158 (2005), 355–418.

[8] C. Bonatti, L. J. Dı́az and M. Viana, Dynamics beyond uniform
hyperbolicity, EMS 102, Springer 2005.

[9] C. Bonatti, N. Gourmelon and T. Vivier, Perturbations of the
derivative along periodic orbits. Ergod. Th. & Dynam. Sys. 26, 5
(2006), 1307–1337.

21



[10] L.J. Dı́az, E. Pujals and R. Ures, Partial hyperbolicity and robust
transitivity. Acta Math., 183, 1 (1999), 1–43.

[11] B. Dacorogna and J. Moser, On a partial differential equation
involving the jacobian determinant. Ann. Inst. Henri Poincaré,
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