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Abstract

For any locally inverse semigroup S there exists a maximal dense ideal
extension of S within the class LI of all locally inverse semigroups [13],
[14]. Here we realize this maximal dense ideal extension in terms of a
canonically constructed quotient of a regular Rees matrix semigroup over
an inverse semigroup.

1 Preliminaries

A regular semigroup S is said to be locally inverse if eSe is an inverse semigroup
for every idempotent e of S, or equivalently, if and only if Nambooripad’s natural
partial order < on S turns S into a partially ordered semigroup. We refer to
[6] as a general reference on semigroups and on locally inverse semigroups in
particular.

The content of several papers referred to presently provides ample justifi-
cation for the extensive study of the class LI of locally inverse semigroups in
the past two decades. The question on how to construct ideal extensions within
LI presents itself naturally and the very existence, for any given S € LI, of a
maximal dense ideal extension of S with LI is helpful. We refer to [18] for the
general background on ideal extensions of semigroups and all related concepts.

Given any S € LI there exists a natural embedding 7g : S — Q(S), s —
ms of S into the translational hull Q(S) of S, and S7g is referred to as the inner
part of Q(S). It was discovered in [14] that there is a largest locally inverse
subsemigroup Qr1(S) of Q(S) containing S7g as a subsemigroup. The order
ideals of (S, <) form a semigroup O(S) for the multiplication of complexes and
the mapping 75 which associates with every s € S the principal order ideal (s]
of s in (S, <) yields an embedding of .S into O(S) [13]. The idealizer of S7g in
O(S) contains a largest regular subsemigroup 7'(S) which contains Stg [13]. Tt
was found in [13], [14] that 7g : S — Qr1(S) and 75 : S — T'(S) are maximal
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dense ideal extensions of S within LI, and as such these ideal extensions are
equivalent. We shall have numerous occasions to refer to [13] and [14].

The principal result of Section 4 brings yet another model isomorphic to
T(S) or Qri(S) in terms of a regular Rees matrix semigroup over an inverse
semigroup. Rees matrix semigroups of this type were used in [3], [8], [9], [16]
and the basic notions will be recalled in Section 3. There we show that S can
be represented by such a Rees matrix semigroup if and only if the same is true
for T'(S) (or for Qp1(S)).

If S is an inverse semigroup then Q(S) = Qr1(S) = T'(S) is again an inverse
semigroup [18], [19], [22]. We shall assume that the reader is conversant with
these two approaches for constructing maximal dense ideal extensions of inverse
semigroups. In [22] T'(S) is seen as a subsemigroup of an inverse semigroup
C(S) which is itself contained in O(S). In Section 2 we mimic this setting for
locally inverse semigroups in general. We define the notion of a thread and let
C(S) be the set of all threads of the locally inverse semigroup S. Again then,
T(S) C C(S) C O(S), but unfortunately C(S) need not constitute a subsemi-
group of O(S). We find transparent necessary and sufficient conditions for C(.S)
to be a subsemigroup of O(S) and find that these conditions are satisfied for
some relevant subclasses of LI. More importantly, if C(S) is a subsemigroup of
O(S) then C(S) € LI, and so C(S) is structurally closer to S than the vastly
larger O(S). Another reason for considering C(.S) is for the sake of investigating
completions as in [22]; we shall not make any explorations in that direction.

We want to mention some notions which are maybe less familiar. If S is a
semigroup and A C S then the regular part Reg A of A consists of the a € A
for which there exists a’ € A such that a and a’ are pairwise inverse elements
of S. The set of idempotents of S is denoted by E(S). We follow Nambooripad
[10] in defining the quasi-orders w! and w” and the partial order w on E(S).
If S € LI and e € E(S) then we generally prefer to use < instead of w and
(e] instead of w(e). If e, f € E(S) for some S € LI then e A f is given by
wh(e)Nw!(f) = w(eA f) and (E(S), A) is said to be the pseudosemilattice of
S. We refer to [10] and [13] for the required background on pseudosemilattices.
We shall use the fact that for e, f € E(S), with S € LI, e A f = f Ae if and
only if ef = fe and then e A f = ef.

It remains to state the following useful results. We leave the proof to the
reader.

Theorem 1.1 Let S be a regular semigroup. Then S € LI if and only if every
mazximal subsemilattice of S is an order ideal of S.

Corollary 1.2 Let S € LI and F a subsemilattice of S. Then {e € E(S)|e <
f for some f € F} is a subsemilattice and an order ideal of S.

2 Threads

Let S be a locally inverse semigroup and H, H' pairwise inverse elements in
the semigroup O(S) of order ideals of S. Then we shall say that H and H' are



pairwise inverse threads of S if HH' and H'H are subsemilattices of S. If
this is the case then of course HH' and H'H are also order ideals of S. We
call H € O(S) a thread if for some H' € O(S), H and H' are pairwise inverse
threads. We denote the set of all threads of S by C(S).

We collect some information concerning threads from [13].

Result 2.1 Let S be a locally inverse semigroup.
(i) If H € C(S) then no distinct elements of S are L- or R-related in S.

(1i) For F € C(S), F is an idempotent of O(S) if and only if it is a subsemi-
lattice of S.

(191) Let H and H' be pairwise inverse threads and E = HH'. Then for every
a € H there exists a unique inverse a' of a which belongs to H' and the
mapping H — H', a — a' is an order isomorphism. For every e € E
there exist unique h € H and h' € H' such that hReLh', and then h and
h' are pairwise inverse elements of S with e = hh'.

Proof: Let H and H' be pairwise inverse threads and a € H. Then by Lemma
3.11 of [13] there exists an inverse a’ of a which belongs to H'. Assume that
b€ H and albin S. Then aa’Lba’ where both aa’ and ba' belong to the se-
milattice HH', whence aa’ = ba’. Thus a = ad’a = ba’a = b since a'a is an
idempotent in Ly. We proved that a thread cannot contain distinct L-related
elements. The statement (7) follows by duality.

The remaining statements follow from Lemmas 3.2 and 3.11 of [13]. ]

Threads were considered for inverse semigroups by B. M. Schein in [22].
Threads are there called permissible subsets. If S is an inverse semigroup
then C(S) is an inverse subsemigroup of O(S): for every H € C(S), H™! =
{a™'| a € H} is the unique inverse of H in C(S), and E(C(S)) = C(E(S)) is
simply the N-semilattice of all ideals of the semilattice E(S).

A thread of a completely simple semigroup is necessarily a singleton. More
in general, if H is a thread of a normal band of groups S, then H intersects
every D-class of S in at most one element. If the normal band of groups S
is a strong semilattice of completely simple semigroups S = [Y; Sa, @a,p] (in
the sense of Section IV.1 of [21]), then H is a thread of S if and only if (i)
|[HNS,| <1foreverya €Y, and (i) iffora € Y, a € SqNH, then ap, 3 € H
for every f < a in Y. Threads were considered for normal bands of groups by
M. Petrich in [20]. It was shown there (with a different notation) that C(S) is a
subsemigroup of O(S) which is again a normal band of groups: if H is a thread
of the normal band of groups S, then H~! = {a™'| a € H} is the inverse of H
within the maximal subgroup of C(S) which contains H.

Recall that if S is a locally inverse semigroup, then 75 : S — O(S), a —
(a] is a faithful representation of S. If S is an inverse semigroup or a normal band
of groups, then C(S) is a locally inverse semigroup of the same type, canonically
associated with the given S and moreover, C(S) is an oversemigroup of Sts.
More in general we have the following.



Theorem 2.2 Let S be a locally inverse semigroup such that C(S) is a sub-
semigroup of O(S). Then C(S) is a locally inverse semigroup and T(S) is the
reqular part of the idealizer of Sts in C(S).

Proof: If C(S) is a subsemigroup of O(S) then it is evidently a regular semi-
group. For any idempotent E of C(S), E is a subsemilattice and an order ideal of
S, and by Lemma 3.10 of [13], the idempotents of the local submonoid EC(S)FE
of C(S) are precisely the ideals of E. Therefore the idempotents of EC(S)E
commute and EC(S)E is an inverse semigroup, whence C'(.S) is a locally inverse
semigroup.

By Lemma 3.2 of [13], T'(S) C C(S). Therefore in particular C(S) is an
oversemigroup of S7s and T'(S) is the regular part of the idealizer of S7g in
c(9). ]

Unfortunately the subset C(S) of O(S) does not necessarily constitute a sub-
semigroup of O(S) for any given locally inverse semigroup S. This is already
not the case for completely 0-simple semigroups as we shall see later in this
section. We set out to find necessary and sufficient conditions for C(S) to be a
subsemigroup of O(S) and in Section 3 we shall see that these conditions apply
to the class of straight locally inverse semigroups.

We shall first investigate the structural peculiarities for regular semigroups
which are contained in C(.S).

Proposition 2.3 Let S be a locally inverse semigroup and T a regular subse-
migroup of O(S) such that T C C(S). Then

(1) T is a locally inverse semigroup,

(1) HRK in T if and only if there exists a bijection ¢ : H — K such that
hR hy for every h € H,

(tit) H< K inT if and only if H C K.

Proof: The proof of (i) follows the same argument as the first part of the proof
of Theorem 2.2 and again uses Lemma 3.10 of [13]. In Proposition 3.12 of [13]
we proved the above statements (i7) and (i7i) for T = T'(S). The proof given
there is valid for any regular subsemigroup T of C(S) and uses Result 2.1. =

Proposition 2.4 Let S be a locally inverse semigroup and T a regular subse-
migroup of O(S) such that T C C(S). The N-operation in the pseudosemilattice
of idempotents of T is given by: for E,F € E(T),

EANF={eNf|le€E, feF}.

An idempotent h of S belongs to E AN F if and only if there exist e € E and
f € F such that eRhL f.



Proof: Let E and F be idempotents of T" and consider the element E A F' in
the pseudosemilattice (E(T),A). By Result 2.1 E, F and E A F are each a
subsemilattice and an order ideal of S. We let h € E A F, thus in particular, h
is an idempotent of S, and h = eh for some e € E since EAF = E(EAF) in
T. Then h'R he < e in S, hence he € E since F is an order ideal. By duality we
conclude that every h € E A F' is R-related to some element of E and L-related
to some element of F.

Assume conversely that h is an idempotent and that eRh L f for some
e € E and f € F. We set out to prove that E(h] = (h]. We have E(h] € O(S),
h = eh € E(h] and thus (h] C E(h]. By Proposition 2.4 of [13], E(h] = Eh.
For g € E we have gh = g(h A g)h = g(e A g)h, where in the semilattice E,
gle A g) = ge = eg < e. Therefore gh < h in T. We conclude that E(h] = (h]
indeed. Using duality we thus see that if e R h L f for some e € E and f € F,
then (h] € w"(E) Nw!(F) = w(E A F), thus (k] < EA F in T. By Proposition
2.3 we then have that (h] C E A F and thus in particular that h € EA F.

We proved that

EANF={he E(S)|eRhLfforsomeec E, f € F}.
That
EANF={eNf|le€cE, feF}
now follows from Lemma 3.3 of [13]. ]

Theorem 2.5 Let S be a locally inverse semigroup. The following are equiva-
lent:

(1) C(S) is a subsemigroup of O(S),

(ii) for any idempotents E,F € C(S), {eANf|e€ E, f € F} is an idempotent
of C(S),

(1i1) S satisfies the conditions: for e, f,g,h € E(S),

ef=fe,eRgLAMRf = e=/f,

ef=fe,eLgRhLf — e=f.

Proof: (i) = (i) is immediate from Proposition 2.4.

Assume that (i7) holds and let e, f € E(S) such that ef = fe. Then E =
(e] U (f] is a subsemilattice and an order ideal of S, that is, an idempotent
of C(S). Let g,h € E(S) such that eRgLhR f in S. Then also (h] is an
idempotent of C'(S) and so, according to our assumption, {pAk|p € E,k < h}
is an idempotent of C'(S), that is, a subsemilattice and order ideal of S. Since
g = eANh, h = f A h belong to this semilattice and gLh, so g = h, whence
eRf, and since e and f commute, so e = f. Using duality we conclude that



Assume that (ii7) holds. Let E and F be idempotents of C(S) and G =
{eANfle€ E, f € F}. By Lemma 3.3 of [13], G € O(S) and G is a subpseudo-
semilattice of (E(S), A). Assume that g, h € G such that gLh. Again by Lemma
3.3 of [13] there exist e, e5 € E such that e;Rg and exRh. Then ejes = ese; and
e1 RgLhRes, hence e; = ey and thus also g = h. Using duality we have that
G cannot contain distinct L-related or R-related idempotents of S. Therefore
the subpseudosemilattice G of (E(S),A) is a subsemilattice of (E(S),A), and
of S. Since G is also an order ideal of S, it follows that G is an idempotent of
c(S).

Let H, K € C(S). We need to show that HK € C(S). Therefore, let H and
H' be pairwise inverse threads, K and K' be pairwise inverse threads, and put
E=KK'|F=HHand G={eANf|le€E,fe F}. We shall show that
HK and K'GH' are pairwise inverse threads. From the foregoing we already
know that G is an idempotent of C(S). From Lemma 3.3 of [13] we know that
EG = G = GF and therefore

(HGK)(K'GH'\(HGK) = HGK,  (K'GH')(HGK)(K'GH') = K'GH',

whence HGK and K'GH' are pairwise inverse elements of O(S). Furthermore,
(HGK)(K'GH') = HGH' and (K'GH')(HGK) = K'GK are idempotents of
o(9).

Let gb € GK for some g € G and b € K. By Result 2.1 there exists an
inverse b' of b which belongs to K', and by Lemma 3.3 of [13] there exists f € F'
such that fLg. We put h = bb' Ag = bb' A f € G. Since g, h € G with h € W!(g),
and since G is a semilattice, we have that h < g. Therefore gb = ghb = hb < b
and so gb € K since K is an order ideal. We proved that GK C K. Therefore
also K'GK C K'K. Here K'K is a subsemilattice of S since K and K’ are
pairwise inverse threads, whence K'GK is also a subsemilattice of S, and thus
K'GK is an idempotent of C'(S). In a dual way we find that HG C H and that
HGH' is an idempotent of C'(S). From the above it follows that HGK and
K'GH' are pairwise inverse threads.

In order to show that HK € C(S) it suffices to show that HK = HGK.
From HG C H it follows that HGK C HK. Let a € H, b € K, and apply
Result 2.1 to find an inverse a' of @ in H' and an inverse b’ of b in K'. Then
bb' Na'a € G and so ab = a(bb' Aa’'a)b € HGK. We conclude that HK = HGK,
as required. We proved that (iii) = (4). ]

We note that if .S is an inverse semigroup or a normal band of groups then
S obviously satisfies the condition of Theorem 2.5(ii4).
Some special cases occur when requiring stronger conditions.

Theorem 2.6 Let S be a locally inverse semigroup. Then

(1) C(S) =T(S) if and only if S satisfies the equivalent conditions of Theorem
2.5 and for every e € E(S), (€] is a dually well-ordered chain,

(#9) C(S) =T(S) = Sts if and only if every subsemilattice of S has a greatest
element.



Proof: Let C(S) =T(S). Since T'(S) is a subsemigroup of O(S), the equivalent
conditions of Theorem 2.5 are satisfied. For every e € E(S), all the ideals of the
semilattice (e] should be in T'(S), and therefore by Corollary 2.16 of [22], (e] is
a dually well-ordered chain.

To prove the converse, assume that S is a locally inverse semigroup which
satisfies the equivalent conditions of Theorem 2.5 and such that (e] is dually
well-ordered for all e € E(S). By Theorems 2.2 and 2.5 it suffices to show that
every idempotent of C(S) belongs to T'(S).

Let e € E(S) and F an idempotent of C'(S). Then in the pseudosemilattice of
idempotents of the locally inverse semigroup C'(.S) we have that ((e]AF)(e] < (e,
which by Proposition 2.3 entails that ((e] A F')(e] is an ideal of (e]. Since (e] is
dually well-ordered it follows that ((e] A F')(e] = (e'] for some e’ < e. Further,
(e] A FR(€'] in C(S) and so by Proposition 2.3 there exists g € (e] A F such
that gRe'. Clearly then (e] A F C w"(g), and since (e] A F' is a subsemilattice
and an order ideal of S we need to have (e] A F' = (g]. In a dual way we can
show that F' A (e] = (h] for some h € E(S). By Lemma 3.6 of [13] it follows
that F' € T'(S). We proved (i).

Let S be a locally inverse semigroup such that C(S) = S7s. Let L be a sub-
semilattice of S. Then by Corollary 1.2 L = {f € E(S)| f < g for some g € L}
is a subsemilattice and an order ideal of S, and thus L is an idempotent of C(S).
Since C(S) = Stg, L = (e] for some e € L, whence e is the greatest element of
L.

Assume that, conversely, every subsemilattice of S has a greatest element.
Let e, f,g,h € E(S) such that ef = fe and eRgLhR f. Since ef = fe,
we have that {e, f,ef} is a semilattice, and thus it has a greatest element.
Therefore, we may as well assume that f < e. Then hw"e since h'R f < e, so
fRhe < e. Since also eR gL h, so he Le. From he Le and he < e it follows
that he = e. Therefore fRe and f < e, thus f = e. In a dual way we can show
that if e, f,g,h € E(S) such that ef = fe and e LgRh L f, then e = f. By
Theorems 2.2 and 2.5 we conclude that C'(.S) is a locally inverse subsemigroup
of O(S), and by (i), C(S) = T(S). Hence Sts is an ideal of C(S), and using
Result 2.1(ii) we have that E(C(S)) = E(Sts). Therefore C(S) = Sts. We
proved (i7). ]

Theorem 2.6 generalizes Corollary 2.16 and Proposition 1.34 of [22]. A non-
trivial example of a locally inverse semigroup satisfying the condition of Theo-
rem 2.6(i7) is the four-spiral semigroup investigated in [4]. The final example
of [11] where the bicyclic semigroup is embedded into a bisimple idempotent
generated locally inverse semigroup using a standard device also yields count-
ably many examples of locally inverse semigroups satisfying the condition of
Theorem 2.6(i).

Corollary 2.7 For a completely 0-simple semigroup S, the following are equiv-
alent:

(1) C(S) is a subsemigroup of O(S),



(i) C(S) =T(5),
(iii) S does mot contain a copy of M°(3,G,2;P) (|G| =1, P = (}91)) nor

its dual, as a subsemigroup.

Proof: The conditions (i) and (iii) are equivalent by Theorem 2.5, and (%)
obviously implies (). If (i) holds, by Theorem 2.6(i), C(S) = T'(S) holds since
for every idempotent e of the completely 0-simple semigroup S, (e] is either a
trivial or a two element chain. [ |

Corollary 2.8 For a completely 0-simple semigroup S, C(S) = T(S) = Sts if
and only if S does not contain a copy of M°(2,G,2;P) (|G| =1, P = (§9))
as a subsemigroup.

Proof: The proof follows immediately from Theorem 2.6(i%). ]
Example: Let S = M°%(4,G,4; P) where |G| = 1 and

0 0

=

[l
[ =
—_ - O =

1
1
0

—_

Then S is a completely 0-simple semigroup where Sts # T'(S) # C(S). S is
idempotent-generated whereas T'(S) is not. S is locally a semilattice of groups
whereas T'(S) is not.

3 Rees matrix semigroups over inverse semi groups

A straight locally inverse semigroup S is a locally inverse semigroup for
which E(S) is the disjoint union of the maximal subsemilattices of S. From
[12], [15] we can derive further information about this important class of lo-
cally inverse semigroups. A locally inverse semigroup S is straight if and only
if the maximal inverse subsemigroups of S are pairwise disjoint. Let Lo and
Ry denote the two element left zero and right zero semigroup respectively. A
regular semigroup S is locally inverse if and only if S does not contain a copy of
L} nor of R}, and if this is the case, then S is straight if and only if moreover,
S does not contain a copy of L3 and R.

Let S be a straight locally inverse semigroup. The relations prz and prz
defined by, for a,b € S,

aprLzb = aSNbS #£0, (1)
aprzb <=  SanSb#0, (2)

are the least left zero semigroup and least right zero semigroup congruence on
S, respectively. We shall use the notation

S/prLz =1, S/prz = A, (3)



andfori e I, A € A
Si={se€S|sprz=1}, Syx={s€S|sprz=2A}, Sia=SNS. (4

Then pr.z N prz is the least rectangular band congruence, S/prLzNprz =2 I X A,
and S is a rectangular band I x A of the semigroups S;», ¢ € I, A € A. For
1€ I, A€ A, we put

E; = E(S;), Ex=E(S\), En=ENE,. (5)

Here the E;, are the maximal subsemilattices of S and the E;» SE;x = E;xSixFEix
are the maximal inverse subsemigroups of S. When dealing with a straight lo-
cally inverse semigroup S we shall always silently adopt the notation introduced
above.

The following is a reformulation of Lemma 7 of [15]. Theorem 2.5 allows us
to give a short independent proof.

Lemma 3.1 Let S be a straight locally inverse semigroup. Then
(1) C(S) is a straight locally inverse semigroup,

(79) for H € C(S) there exists a unique (i,\) € I x A such that H C S;, and
then

O(S) — Ix A, H— (i,)) (6)

is a surjective homomorphism which induces the least rectangular band
congruence on C(S),

(7i1) the E(C(S)xn) = C(E;y) are the mazimal subsemilattices of C(S).

Proof: Let e, f,g,h € E(S) such that ef = fe, eRgLhR f. Since ef = fe,
e, f € E; for some i € I, A € A, and since e RgLhR f we then have that
g,h € E;, for some p € A. Since gLh in the semilattice E;, it follows that
g = h. Then eRf in the semilattice F;y and so e = f. Using duality and
Theorem 2.5 we conclude that C(S) is a locally inverse semigroup. That the
C(E;») are the maximal subsemilattices of C(S) follows from Result 2.1(ii).
Consequently, C(S) is a straight locally inverse semigroup.

Let H and H' be pairwise inverse elements of C(S). From (iii) it follows that
there exist unique i,j € I and A, u € A such that HH' C E;;, and H'H C Ejy,
whence H € S;, for some unique ¢ € I and A € A. One readily obtains
that (6) is a homomorphism which induces a rectangular band congruence on
C(S). In each congruence class, the idempotents commute. Therefore, using
Lallement’s Lemma (Lemma 2.4.3 of [6]) one shows that this congruence relation

is the least rectangular band congruence. We are now also allowed to write
E(C(S);n) =C(E;\) for alli € I, X € A. |

We shall need the following result (see Lemma 3.6 of [13]).



Result 3.2 Let S be a locally inverse semigroup such that C(S) is again a lo-
cally inverse semigroup. If F € E(C(S)), then F' € E(T(S)) if and only if for
all e € E(S) there exist k,1 € E(S) such that (] AN F = (k] and F A (e] = (I].

For an inverse semigroup S the idempotents of C(S) are the order ideals
of the semilattice E(S), and for F' € E(C(S)) = C(E(S)) we have that F €
E(T(S)) if and only if for every e € E(S) there exists a k € E(S) such that
(e]AF = (k]. The elements of E(T(S)) = T(E(S)) are called the retract ideals
of the semilattice E(S) (see Lemma 2.8 of [22], or [16]). Here the A-operation
in E(C(S)) and in E(T(S)) is just the intersection.

Lemma 3.3 Let S be a straight locally inverse semigroup. Then
(1) T(S) is a straight locally inverse semigroup,

(79) for every H € T(S), there exists a unique (i, \) € I x A such that H C S,
and then

T(S)— IxA, H— (i,\) (7)

is a surjective homomorphism which induces the least rectangular band
congruence on T(S),

(151) the E(T(S)ix) are the mazimal subsemilattices of T(S) and E(T(S):x) C
T(E;»).

Proof: 1t is easy enough to show that a regular subsemigroup of a straight lo-
cally inverse semigroup is again a straight locally inverse semigroup. It thus
follows from Theorem 2.2 and Lemma 3.1 that T'(S) is a straight locally inverse
semigroup. For every (i, A) € I x A, C(S);x N T(S) is nonempty since S;x7s C
T(S);x and we see that T'(S) is a rectangular band I x A of the C(S);x NT'(S),
(1, \) € I x A. Tt is not difficult to see that (7) is the restriction to T'(S) of the
homomorphism (6) and that this homomorphism induces the least rectangular
band congruence on T'(S).

It remains to explain the inclusion in the statement (iii). From the above it
follows that T'(S)ix = C(S)ix NT(S). Thus if F € E(T(S);x), then by Lemma
3.1, F € E(C(S);n) = C(E;y), that is, F is an order ideal of the semilattice
FE;». From Result 3.2 it follows in particular that for every e € E;) there exists
f € E;y such that (e] A F = (f], and thus again by Result 3.2, F € T(E;y). =

When setting the statements of Lemmas 3.1 and 3.3 side by side one sees that
the similarity in not complete: the inclusion mentioned in Lemma 3.3(7i7) may
well be strict as we shall soon discover. In other words, if S is a straight locally
inverse semigroup, then not every retract ideal of a maximal subsemilattice of S
need to be an idempotent of T'(S). In Theorem 3.6 we characterize the straight
locally inverse semigroups S for which the inclusion of Lemma 3.3(ii7) is always
an equality.

In this section we shall be interested in a special class of straight locally
inverse semigroups. Let I [A] be a left [right] zero semigroup, V an inverse
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semigroup and @ = (wy;) a A X I-matrix with entries wy; which belong to the
translational hull (V) of V. On I x V x A define a multiplication by:

(i,S,)\)(j,t,M) = (iasw)\j t:/“‘)

We thus obtain a semigroup whose regular part we denote by RM(I,V, A; Q).
Using this notation we collect the following information from Proposition 1 of
[16].

Result 3.4 S =RM(I,V,A;Q) is a straight locally inverse semigroup, and

2

S ={(i,w; vwy N i €I, \,pe A, ve V)
The mapping
S—IxA, (i,8,\) — (i, N

is a surjective homomorphism which induces the least rectangular band congru-
ence on S. The mazimal subsemilattices of S are given by

E;y = E(Siy) = {(i,ew;il,)\) le€e E(V)} = {(z',(,u;i1 e, N ee E(V)}.

For a proper understanding of the above result recall that (V') is an inverse
semigroup, and for w € Q(V), w! is the inverse of w in (V). Some authors
(see e.g. [3], [8], [9]) take the entries of () in V itself. This amounts to taking
the wy; in the inner part Vrry of Q(V).

The semigroup RM(I,V, A; Q) of Result 3.4 is called a regular Rees ma-
trix semigroup over the inverse semigroup V. Not every straight locally
inverse semigroup has such a representation: those that have are characterized
in Theorem 7 of [16], and we give further characterizations in Theorem 3.6.
By Theorem 10 of [16], a locally inverse semigroup S can be represented as a
RM(I,V,A; Q) where @ has entries in V if and only if S is a locally inverse
semigroup whose maximal subsemilattices each have a greatest element. Such
is the case for C'(S) whenever S is a straight locally inverse semigroup, because
here each maximal subsemilattice of C'(E;y) has a greatest element FEj;y.

Lemma 3.5 Let S = RM(I,V,A; Q) be a regular Rees matriz semigroup over
the inverse semigroup V. For (i,\) € I x A, let v € Q(V) such that v < wy; in
Q(V). Then

{GG,ery™ N e € B(V)}
and
{i,77 e, N) e € B(V)}
are retract ideals of E;y, and conversely, every retract ideal of E;y can be written

in either such way.

11



Proof: The mapping
E; — E(V), (i,w;ile,)\) — wxiw;ile, e€ E(V)

is an isomorphism of E;, onto the subsemilattice wy;wy;' E(V) of E(V). Since
waiwy; B(V) is itself a retract ideal of E(V'), the retract ideals of wywy; E(V)
are precisely the retract ideals of E(V) which are contained in wy,wy; E(V),
that is, the retract ideals which are of the form e E(V), where ¢ < w,\iw;il in
Q(V). Therefore F is a retract ideal of E;y if and only if

F= {(ivw;ilsev/\) | S E(V)}

for some e < wa;il. Since ¢ < wxiw;il if and only if e = yy~! for some v < wy;
in Q(V), it follows that F' is a retract ideal of E;y if and only if

F={@.v"e.\)|e€ B(V)}

for some v < wy; in Q(V).
The other statement can be proved in a dual way. [ |

Theorem 3.6 For a straight locally inverse semigroup S the following are equi-
valent:

(1) S can be represented as a regular Rees matriz semigroup RM(I,V,A;Q)
over an inverse semigroup V where the entries of Q are in Q(V),

(ii) the mazimal subsemilattices of S are idempotents of T'(S),

(i31) the idempotents of T'(S) are the retract ideals of the mazimal subsemilatti-
ces of S,

(iv) for every (i, \) € IxA, the largest regular [inverse] subsemigroup of T(S);
is given by T(Ei\SE;)).

Proof: The equivalence of the statements (i) and (i7) follows from Result 3.2
and Theorem 7 of [16]. (ii7) implies (i7) trivially.

Assume that (7) holds. We may as well assume that S = RM(I,V,A; Q) is
asin (i), with @ = (wy;). Let F be any retract ideal of a maximal subsemilattice
of S and (j,a,u) € S. By Lemma 3.5,

F={@.v"e.\)|e€ B(V)}

for some (i,\) € I x A and for some 7 < wy;. Then (i,fy_lwxjaa_lw;jl, AN €EF
and

1

(i,’)/_ w/\jaa_lw;jlv)‘)(jvavl"’) = (ia'y_lw)\jaa/"‘)
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and so (i,7 'wyja, u)s C F(j,a,pn). Let (i, 'e,\) € F for some e € E(V).
Then

|
1,7 ew}\jaau)

-1 -1 -1
1,77 ew Wy wajaaT a, 1)

(i,7" e, N (g, a,p) =

1, y_lewAjaa_lw;jlwAja, )

i, yflewAjaa’lw;jl, N (G, a, i)
i, 'y*lwxjaa’lw;jl, A)(J,a, )
i,y lwyja, p).

IN

NN AN AN SN S

Therefore F(j,a,p) = (i,ywyrja, p)7s € STs, whence F((j,a,p)Ts) € Sts by
Proposition 2.4 of [13]. From this and its dual it follows that F' is in the idealizer
of Sts in O(S). By Result 2.1(i7) F' is an idempotent of O(S). Therefore F is
an idempotent of 7'(S). In view of Lemma 3.3(4i7) we may now conclude that
(#47) holds true. We proved that the statements (7), (i) and (ii) are equivalent.

Assume that (4i7) is satisfied. Then for (i,\) € I x A, E(T(S)ix) = T(Ei»)
and so by the remarks preceding Lemma 3.1, T'(E;»)T'(S)T(E;)) is the largest
regular [inverse] subsemigroup of T'(S);x. If

H e T(Ei\)T(S)T(Ey),

then H € O(E;»SE;)) and since H is in the idealizer of Sts in O(S), so H is
also in the idealizer of (E;\SE;)\)7s in O(E;xSE;)). The same holds true for
the inverse H~! of H in the inverse semigroup T(FE;»\)T(S)T(E;y). Therefore
H € T(E;»SE;)). If conversely H € T(E;»SE;)\), we may take the inverse
H~' of H in the inverse semigroup T(EixSE;)\) and obtain pairwise inverse
threads H and H ! of S. The idempotents HH ' and H ' H are retract ideals
of E;\ and so HH~! and H~!H are idempotents of T(S) by (iii). Therefore
H, H=! € T(S) by Proposition 2.10(i) of [14]. Obviously then,

H=(HH YH(H'H) € T(E\)T(S)T(E;»).

Thus T(E;zSE;x) = T(Eix)T(S)T(E;x). We proved that (447) implies (iv).
Assume that (iv) holds. Then for (i,A) € I x A, E;x € T(E;\SE;\) CT(S),
and we conclude that (i) holds. ]

Example: Let L be the four element semilattice {a,b,c,d} with a and b in-
comparable and d the identity element. Let R = {1,2} be a two-element right
zero semigroup and S be the right normal band (L x R) \ {(d,1)}. Then S
is a straight locally inverse semigroup which does not satisfy the equivalent
conditions of Theorem 3.6.

If S satisfies the equivalent conditions of Theorem 3.6 then each maximal
subsemilattice T'(E;y) of the straight locally inverse semigroup T'(S) contains a
greatest element E;y. Therefore by Theorem 10 of [16], T'(S) can be represented
as a regular Rees matrix semigroup over an inverse semigroup where the entries
of the sandwich matrix belong to this inverse semigroup. We set out to find
such a representation.

13



Lemma 3.7 Let S = RM(I,V,A;Q) be as in Result 3.4. For i,j € I and
Ap €A, let He C(V) be such that H C wy; wA]Vwmwml. Then the sets

K ={(j,v,p)|veH} (8)
and

K' = {(i, wmlvflw;jl,)\) |ve H} (9)

are pairwise inverse threads of S. Conversely, any pairwise inverse threads of
S can be so obtained.

Proof: Let H, K and K' be as stated above Let a = (j,v,u) € K for some
1,1

v € H and consider a’ = (i,w,; v™ wy; '')\) € K'. One readily verifies that
a and a' are pairwise inverse elements of S. Consequently K C KK'K and
K'CK'KK'.

Ifb = (j,w, u) € K for some w € H, then a’b = (3, wmlv’lw,/,t) € E;,, where

lw € E(V) since H € C(V). It follows that K'K C E;, and consequently
also K' C EWK’ If g = (4, w;lle w) € E;, for some e € E(V), then ga’ =
(i, w,; e wi t, A) since wyw,'v~! = v~!. Here ga’ € K' because ev™" € H™!
since H~! is an order ideal. We proved that K' = E;,K'. If ¢ < a' in S, then
¢ = ha' for some h < d'a € E;,, whence ¢ € E;, K' = K'. We proved that K’
is an order ideal of S. From K' C K'KK' C E;,K' = K' we also have that
K'= K'KK'. By duality we find that KK' C Ej,.

We have that K C KK'K C KE;,. For a = (j,u,u) € K and g =
(i, W, ‘e, 1) € E;, we have ag = (j,ve,u) € K since H € C(V). If follows
that K = KE;, and therefore also that K = KK'K. It is now easy to prove
that K is an order ideal of S. Consequently K K’ and K'K are order ideals of
the maximal subsemilattices F;y and E;, of S, respectively. We proved that K
and K’ are pairwise inverse threads.

To prove the converse, assume that K and K’ are pairwise inverse threads
of S. By Lemma 3.1(ii), K C S, and K' € S;» for some 4,j € I and some
Au € A, and then KK' C E;) and K'K C E;,. By Result 2.1(4ii) there
exists for every a € K a unique inverse a’ of a in K'. One readily verifies
that such pairwise inverse elements of S must be of the form a = (j,v, ) and
a = (i, wmlv 1w>\] ,)\) for some v € lew)\] Vwmwml. We let H consist of
the elements v € w)\] Whj Vwmw such that (j,v,u) € K. In view of Result

ni
2.1(¢it) we then have

K ={(,v,p)|veH}
and

K' = {(i, wmlv wy; L) ve H},

where H C wy; wA]Vwmw . It remains to prove that H C C(V).
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Let ve H and e <wvv™ " in V. Then ev € wA wA]Vwmw . Since
(j,ew;jl,/\) < (jyov~t wy; ') = (j,v,u)(i,w_ilv wy; '')\) e KK’
it follows that (j, ewy; ' )\) € KK' and therefore that
(j,ev, p) = (4, ew;jl,)\)(j,v,,u) € KK'K = K.

Thus ev € H, and so H is an order ideal of V.
Let v,w € H. Then (j,v,p) € K and (i,w), R wy; ')\ € K', and so

(Grvw ™ wif s A) = (v, ) (i wp w ™ wl ) N

belongs to KK' C E;. Therefore vw‘lw;jl = ew;jl for some e € E(V).
Consequently vw ! = vw’lw;jlwxj = ew;jlw)\j € E(V). From this and its dual

follows that HH—', H='H C E(V). Therefore H € C(V). [ |

Lemma 3.8 Let S = RM(I,V,A;Q) be as in Result 8.4. For i,j € I and
Ap € A, let H € T(V) such that H C wy; wMVwmwml. Then the sets K
and K' which are given by (8) and (9) are pairwise inverse elements of T(S).

Conversely, any pairwise inverse elements of T(S) can be so obtained.

Proof: By Proposition 2.10.(7) of [14] and Lemma 3.7, K and K' are pairwise
inverse elements of T'(S) if and only if K and K’ are given by (8) and (9) and
moreover, KK’ and K'K are idempotents of T'(S). In view of Theorem 3.6 and
duality it thus suffices to prove that if H, K and K' are as in the statement of
Lemma 3.7, then K'K is a retract ideal of E;, if and only if H ' H is a retract
ideal of E(V).

One verifies that

K'K ={(i,w,/e,n)| e € H'H} C E,,
and that
Ezu — wulw E(V)7 (iaw;ilf’ /’L) — wuiw;ilfa f € E(V)7

is an isomorphism which maps K'K onto H~'H. Since Wi, 'E(V) is itself
a retract ideal of E(V) it follows that H~'H is a retract ideal of E(V) if and
only if H—'H is a retract ideal of wmw;ilE(V), that is, if and only if K'K is a
retract ideal of Ej;,. [ ]

For a regular Rees matrix semigroup S = RM(I,V,A; Q) with Q = (wy;)
where the wy; are in the translational hull Q(V') of the inverse semigroup V we
put

HM' = E(V)(U)\Z = wME(V), P = (HM) (10)

Then for all (i,\) € I x A, Hy; € T(V) C C(V) and RM(I,T(V),A; P) and
RM(I,C(V),A; P) are regular Rees matrix semigroups over the inverse semi-
groups T'(V') and C(V), respectively.

We arrive at the main theorem of this section.

15



Theorem 3.9 Let S = RM(I,V,A;Q) be a regular Rees matriz semigroup
over the inverse semigroup V with entries wy; of @ in Q(V). Then with the
notation (10), the mappings

¢ :C(S) — RM(L,C(V),A; P), {5} x Hx {pu} — (j, H, p)
and

¢ T(S) — RM(I,T(V),A; P), {j} x Hx {u} — (j, H, 1)
are isomorphisms.

Proof: By Lemma 3.7, {j} x H x {u} € C(S) if and only if H € C(V) with
H = w;jlwAijmw;il for some i € I and A € A. By Result 3.4, (i,H,\) €
RM(I,C(V),A; P) if and only if H = H,;'H\;HH,,;H,;! for some i € I and
A € A. Since

i =H ' H\;HH,;H

-1
wy; wA]meww ;

it follows that the mapping ¢ is a bijection.
Let K1,K, € C(S) with K; = {i} x H; x {A\} and Ky = {j} x Hy x {u} for
some Hy, Hy € C(V). Then

K1 Ky = {(i,v1wxjv2, ) | v1 € Hy, v2 € Ho}

(K19)(Kap) = (i, Hi, M) (4, Ha, p) = (i, HiHxj Ha, 1)
where
HlH)\sz = le)\jHZ = {’Ulu})\j’l)Q | V1 € Hl, Vo € HQ}

Therefore ¢ is an isomorphism.
Using Lemma 3.8 one shows in a similar way that ¢ is an isomorphism. m

Corollary 3.10 Let S = RM(I,V,A; Q) be a reqular Rees matriz semigroup
over the inverse semigroup V with entries with entries of Q in Q(V'). Then with
the notation (10),

S — RM(L,T(V),A; P), (i,v,A) — (i, (v], A)
and
S — RM(L,QUV), A P), (i,0,A) — (i,70, )

are each a mazximal dense ideal extension of S within the class of all locally
Inverse Semigroups.
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A straight locally inverse semigroup S is called a perfect rectangular
band of inverse semigroups if, with the notation (1)-(5), each S;5 is an in-
verse semigroup and, S;3S;j, = Si, for all 4,j € I and A\, u € A. From [16] it
follows that this will be the case if and only if S has a representation of the
form RM(I,V, A; Q) where the entries of ) are in the group of units of Q(V).
By Theorem 3.9 it then follows that T'(S) is again a prefect rectangular band of
inverse semigroups. It is easy to show that an ideal of a perfect rectangular band
of inverse semigroups is again a perfect rectangular band of inverse semigroups.
We thus have

Corollary 3.11 A locally inverse semigroup S is a perfect rectangular band of
inverse semigroups if and only if the same is true for T(S).

4 A Rees matrix cover

In this section we return to general locally inverse semigroups. For every locally
inverse semigroup S we realize T'(S) = Qp1(S) as a homomorphic image of a
canonically constructed regular Rees matrix semigroup over an inverse semi-
group.

Let S be a locally inverse semigroup. We let U(S) be the set consisting of
the triples of the form (E,s, F') where E,F € E(T(S)) and s € S is such that
eRsLf for some e € E and f € F. On U(S) we define a multiplication by: for
(Er, 81, F1), (E2,52,Fy) € U(S), put (E1,s1, F1)(Es, 82, Fy) = (E1, 5182, F3).
We verify that this multiplication is well-defined. If e;Rs; for some e; € FEj,
then since R;, 5, < R, = R, there exists a unique g1 € Ry, s, such that g1 < e
and then g; € E; since E; is an order ideal of S. Therefore g1 Rs1s2 for some
g1 € FE1. In a dual way one finds that s;s2Lg- for some g € F5.

Let (E,s,F) € U(S) such that eRsLf for some e € E and f € F. There
exists an inverse s’ of s in S such that e = ss’ and f = s’s and one verifies that
((f1, ', (€]) is an inverse of (E, s, F) in U(S). Thus U(S) is a regular semigroup
which is also a subdirect product of the rectangular band E(T'(S))x E(T(S)) and
the semigroup S. Therefore U(.S) is a locally inverse semigroup and incidentally,
the existence variety of locally inverse semigroups (in the sense of [1], [2], [5],
[7]) generated by U(S) coincides with the existence variety generated by S as
long as the latter contains all rectangular bands.

With the notation of Proposition 2.4 we have

Lemma 4.1 For E,F € E(T(S)), {E} x (EAF) x {F} is a maximal subse-
milattice of U(S), and conversely, every mazimal subsemilattice of U(S) is of
this form.

Proof: Let L be a maximal subsemilattice of U(S). Since the projection

U(S) — E(T(S)) x E(T(S))
induces a rectangular band congruence, there exist E, F' € E(T(S)) such that
L consists of idempotents of the form (E, g, F)). Therefore by Proposition 2.4,
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L C{E}x (ENF)x{F}. Again by Proposition 2.4, EA F € E(T(S)) and
therefore E' A F is a subsemilattice of S. It follows that {E} x (EAF) x {F}
is a maximal subsemilattice of U(S). ]

Corollary 4.2 U(S) is a straight locally inverse semigroup.

Lemma 4.3 The locally inverse semigroup U(S) can be represented as a regu-
lar Rees matriz semigroup RM(I,V,A; Q) over an inverse semigroup V where
the entries of Q are in QV) and I = A = E(T(S5)).

Proof: In view of Theorem 3.6 it suffices to verify whether the maximal subse-
milattices of U(S) belong to T(U(S)). Let E, F, H, K € E(T(S)) and g € E(S)
such that (H,g,K) € U(S). By Proposition 2.4, EA F € E(T(S)) and so by
Lemma 3.6 of [13] there exists k € E(S) such that

{hANg|he ENF} = (k].
From this we infer that
{(E.hF)N(H,g,K)|h€ EANF} = ((E, k, K)]

in E(U(S)). Using Lemma 3.6 of [13] and duality we conclude that the maximal
subsemilattice {E} x (EAF) x {F'} of U(S) belongs to T'(U(S)) as required. m

Lemma 4.4 Let K and K' be pairwise inverse elements of T(S) and E, F €
E(T(S)) such that KK' CE and K'K C F. Then {E} x K x {F} € T(U(S))
and conversely, every element of T(U(S)) can be so obtained.

Proof: Let K, K', E and F be as stated. Then K, K' € O(S), from which we
derive that {E} x K x {F'}, {F} x K' x {E} are pairwise inverse elements of
O(U(S)). Since

({E} x K x {F})({F} x K' x{E}) ={E} x KK' x {E}
and
({F} x K' x {BY{E} x K x {F}) = {F} x K'K x {F}

are subsemilattices of U(S) it follows that these two elements of O(U(S)) are
pairwise inverse threads of U(S). By Lemma 3.6 of [13], KK’ is a retract ideal
of E and so {E} x KK' x {E} is a retract ideal of the maximal subsemilatti-
ce {E} x E x {E} of U(S). From Theorem 3.6 and Lemma 4.3 it follows that
{E}xKK'x{E} is an idempotent of T'(U(S)). By symmetry, {F} x K'K x {F'}
is an idempotent of T'(U(S)). From Theorem 2.2 and Lemma 3.1 it follows that
{E} x K x {F} and {F} x K' x {E} are pairwise inverse elements of T'(U(S)).

By Lemma 3.3(ii) and Corollary 4.2 every element of T'(U(S)) is of the form
{E} x K x {F'} for some appropriate subset K of {k € S| (E,k,F) € U(S)}.
Since the projection a of U(S) onto S is a surjective homomorphism it follows
from Corollary 4.4 of [13] that K = ({E} x K x {F})a € T(S). ]
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Corollary 4.5 Let a be the projection of U(S) onto S. Then TE(IS)CMTS can be
extended in a unique way to a homomorphisma : T(U(S)) — T(S). Moreover,
a is surjective.

Proof: From Corollary 4.4 of [13] and Lemma 4.4 we have that
a:TU(S) —T(S), {E} x Kx{F} — K

is the unique homomorphism which extends TE(ls) ats. It follows from Lemma
4.4 that @ is surjective. u

We are ready for the main theorem. In view of the fact that ng : S —
11(S) and 75 : S — T'(S) are equivalent ideal extensions and the alternatives
offered in the statement of Corollary 3.10, there are several variant statements
possible. We make one choice.

In the statement of the following theorem a will be the projection of U(.S)
onto S, ¢ : U(S) — RM(I,V,A;Q) a representation of U(S) as in Lemma
43 and 7 : RM(I,V,A;Q) — RM(1,Q(V),A; Q) the ideal extension as in
Corollary 3.10.

Theorem 4.6 Let S be a locally inverse semigroup. Then there exists a unique
homomorphism v : RM(I,Q(V),A; Q) — Qui(S) which makes the diagram

RM(I,Q(V),A; Q) —2— Qu1(S)

gl s

RMI,V,A;Q) —— S

¢ la
commutative. Moreover, 1 is surjective.

Proof: The proof follows immediately from Corollary 4.5 since on the one hand
om : U(S) — RM(I, V), A; Q) and 1y(s) : U(S) — T(U(S)) are equivalent
dense ideal extensions, and on the other hand 75 : S — T'(S) and 75 : S —
Qr1(S) are equivalent dense ideal extensions. ]

The surjective homomorphism ¢~ '« induces an isomorphism on every max-

imal inverse subsemigroup of RM(I,V,A; Q) and is therefore called a local
isomorphism. A similar statement can be made for ¢ and we leave the proof
of this nontrivial fact to the reader. The Rees matrix semigroups mentioned in
Theorem 4.6 are called Rees matrix covers for S and Qri(S). Rees matrix
covers for locally inverse semigroups have been constructed before (see e.g. [9],
[16]).
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