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Abstract. We introduce a relative notion of the ’big images and preimages’-
property for random topological Markov chains. This then implies that a rel-
ative version of the Ruelle-Perron-Frobenius theorem holds with respect to
summable and locally Hölder continuous potentials.

1 Introduction

In this note we give a further contribution to the extension of thermodynamic formalism for
topological Markov chains to random transformations and, in particular, obtain a sufficient
condition for the existence of random conformal measures and random eigenfunctions of
the Ruelle operator which applies e.g. to a random full shift with countably many states. In
particular, we obtain an extension of the results for random subshifts of finite type obtained
by Bogenschütz, Gundlach and Kifer ([1, 7, 8]) to random shift spaces with countably many
states. For illustration, we also give applications to countable random matrices, that is we
deduce a Perron-Frobenius theorem and a sufficient condition for the existence of a station-
ary distribution for a countable-state Markov chain with random transition probabilities.

For deterministic dynamical systems the following results are known. Recall that it was
shown by Sarig ([12]) that the Ruelle-Perron-Frobenius theorem extends to deterministic
topological Markov chains with countably many states and locally Hölder continuous po-
tentials if and only if the system is positive recurrent. If the potential is summable, results
in this direction are obtained by imposing topological mixing conditions, ‘finite irreducibil-
ity’ or ‘finite primitivity’, on the shift space (see [9, 13]). Furthermore, if the topological

1991 Mathematics Subject Classification. Primary: 37D35; Secondary: 37H99.
Key words and phrases. random countable Markov shift, random bundle transformation, Ruelle-Perron-
Frobenius theorem, Markov chains with random transitions, finite primitivity, big images and preimages.
Acknowledgement. The author acknowledges support by FCT through grant SFRH/BPD/39195/2007 and the
Centro de Matemática da Universidade do Porto.

1



Markov chain is topologically mixing then these conditions coincide with the ‘big images
and preimages’-property introduced in [11] where it is shown that this condition is equiv-
alent to positive recurrence for summable potentials (see [11]). Note that these results are
advantageous in many applications since they can be, in contrast to positive recurrence,
verified easily.

The goal of this paper is to obtain an extension of these results to random bundle trans-
formations, that is we consider a commuting diagram (or fibered system)

X T−→ X
π ↓ ↓ π

Ω
θ−→ Ω,

where θ is an ergodic automorphism of the abstract probability space (Ω,P) and π is onto
and measurable. With Xω referring to π−1({ω}) the restriction Tω : Xω→ Xθω of T to fibers
then has a natural interpretation as a random transformation in a random environment. In
here, we consider the class of random topological Markov chains, that is X is a subset of
NN×Ω such that each fiber Xω has a random Markov structure (for details, see Section 2).

For the extension of the notion of big images and preimages (b.i.p.) to this setting,
we only require that a corresponding property holds for returns to subsets Ωbi and Ωbp of
positive measure in the base Ω. That is, for ω ∈Ωbi, there exists a finite union of cylinders
Fθω ⊂ Xθω such that Tω([a])∩Fθω 6= /0 for all cylinders [a] ⊂ Xω (big images) and, for
ω ∈Ωbp, there exists a finite union of cylinders F ′

θ−1ω
⊂ Xθ−1ω such that Tθ−1ω(F ′

θ−1ω
) = Xω

(big preimages), respectively. Note that this property is a purely topological property with
respect to the fibers.

We then consider topologically mixing systems equipped with a potential φ which is
locally Hölder continuous in the fibers. Our further analysis relies on the divergence at the
radius of convergence of a random power series whose coefficients are given by random
partition functions. Systems with this property will be called of divergence type. As a
first result we obtain in Theorem 3.4 that a system with summable potential and the b.i.p.-
property is of divergence type.

For systems of divergence type with summable potential, it then follows that a random
conformal measure exists (Theorem 4.3). That is, there there exists a family of probability
measures {µω} and a positive random variable λ : Ω→ R such that, for x ∈ Xω ,

dµθω ◦Tω/dµω(x) = λ (ω)ePG(φ)−φ(x),

where PG(φ) refers to the relative Gurevič pressure as introduced in [3]. The proof of this
statement relies on the construction of λ as the limit of the quotient of random power series
and the application of Crauel’s random Prohorov theorem (see [2]) to a family of random
measures. Note that the construction of this family of random measures is an adaption of
the construction in [3]. However, it turns out that the summability assumption significantly
simplifies the tightness argument compared to the proof in there.
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In particular, this result gives that λePG(φ) is the spectral radius of the dual of the ran-
dom Ruelle operator. For systems with the b.i.p.-property, the identification of λ as quotient
of random power series then gives rise to application of results in [3], that is the system
is positive recurrent and a relative version of the Ruelle-Perron-Frobenius theorem holds
(Corollary 4.6 and Theorem 4.7). As immediate consequences of these results, we obtain
a Perron-Frobenius theorem for random matrices (Corollary 4.9) and an application to ran-
dom stochastic matrices (Theorem 4.10).

2 Preliminaries

Let θ be an automorphism (i.e. bimeasurable, invertible and probability preserving) of the
probability space (Ω,F ,P), ` = `ω > 1 be a N∪{∞}-valued random variable and for a.e.
ω ∈Ω, let Aω =

(
αi j(ω), i < `ω , j < `θω

)
be a matrix with entries αi j(ω)∈ {0,1} such that

ω 7→ Aω is measurable and ∑ j<`θω
ai j(ω) > 0 for all i < `ω . For the random shift spaces

Xω = {x = (x0,x1, ...) : αxixi+1(θ
i
ω) = 1 ∀i = 0,1, ...},

the (random) shift map Tω : Xω → Xθω is defined by Tω : (x0,x1,x2...) = (x1,x2, ...). This
gives rise to a globally defined map T of X , where X := {(ω,x) : x ∈ Xω}, and T (ω,x) =
(θω,Tωx). In this situation, the pair (X ,T ) is referred to as a random countable topolog-
ical Markov chain. For n ∈ N, set T n

ω = Tθ n−1ω ◦ · · · ◦ Tθω ◦ Tω , and note that T n(ω,x) =
(θ nω,T n

ω x).
A finite word a = (x0,x1, . . . ,xn−1) ∈ Nn of length n is called ω-admissible, if xi < `θ iω

and αxixi+1(θ
iω) = 1, for i = 0, . . . ,n−1. In here, W n

ω denotes the set of ω-admissible words
of length n (in particular, W 1

ω = {a : a < `ω}) and, for a = (a0,a1, . . . ,an−1) ∈ Nn,

[a]ω = [a0,a1, ...,an−1]ω := {x ∈ Xω : xi = ai, i = 0,1, ...,n−1}

is called cylinder set. The set of those ω ∈Ω where the cylinder is nonempty will be denoted
by Ωa, that is

Ωa = {ω : [a]ω 6= /0}= {ω : a ∈W n
ω }.

Finally, W n refers to the set of words of length n defined by P(Ωa) > 0 for all a ∈W n. In
this paper, we exclusively consider topologically mixing random topological Markov chains.
That is, for a,b ∈W 1, there exists a N-valued random variable Nab = Nab(ω) such that for
n≥ Nab(ω), a≤W 1

ω and θ nω ∈Ωb it follows that [a]ω ∩ (T n
ω)−1[b]θ nω 6= /0.

As mentioned above we are interested in thermodynamic aspects of random topological
Markov chains with respect to locally Hölder continuous potentials. Therefore, recall that,
for a function φ : X → R, (ω,x) 7→ φ ω(x), the n-th variation is defined by

V ω
n (φ) = sup{|φ ω(x)−φ

ω(y)| : xi = yi, i = 0,1, . . . ,n−1}.

The function φ is referred to as a locally fiber Hölder continuous function with index k ∈ N
if there exists a random variable κ = κ(ω) ≥ 1 such that

∫
logκdP < ∞ and for all n ≥
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k, V ω
n (φ) ≤ κ(ω)rn. For abbreviation, such a function will be referred to as a k-Hölder

continous function. This then leads to the following elementary but useful estimate. For
n≤ m, x,y ∈ [a]ω for some a ∈W m

ω , and a (m−n+1)-Hölder continous function φ ,

|φ ω
n (x)−φ

ω
n (y)| ≤

n−1

∑
k=0
|φ θ kω(T k

ω(x))−φ
θ kω(T k

ω(y))| ≤
n−1

∑
k=0

V θ kω
m−k (φ)

≤
n−1

∑
k=0

κ(θ k
ω)rm−k ≤ ∑

k>m−n
κ(θ m−k

ω)rk = rm−n
∞

∑
k=1

κ(θ n−k
ω)rk.

Since logκ ∈ L1(P), we obtain (logκ)/n→ 0 as a consequence of the ergodic theorem.
So the radius of convergence of the series on the right hand side of the above estimate is
equal to 1 and, in particular, the right hand side is finite. Hence, for a locally fiber Hölder
continuous function with index less than or equal to (m−n+1), we obtain

(Bθ nω)−1 ≤ (Bθ nω)−rm−n ≤ eφ ω
n (x)−φ ω

n (y) ≤ (Bθ nω)rm−n ≤ Bθ nω , (1)

where Bω := exp∑
∞
k=1 κ(θ−kω)rk. Note that this definition differs from the one in [3] by

the choice of the element in the base - in here we replaced ω by θ nω . A further basic notion
is the (random) Ruelle operator Lφ associated to a potential (function) φ = (φ ω) : X → R,
which is defined by, for a function f : X → R,

Lω
φ f (θω,x) = ∑

y∈Xω ,Tω y=x
eφ ω (y) f (ω,y).

In here, we consider potentials φ satisfying some of the following additional assump-
tions.

(H1) The potential φ is 1-Hölder continuous, and
∫

logBωdP(ω) < ∞.

(H2) The potential φ is 2-Hölder continuous, and
∫

logBωdP(ω) < ∞.

(S1)
∫

logMωdP(ω) < ∞, where Mω := sup{Lω
φ
(1)(x) : x ∈ Xθω}.

(S2)
∫

logmωdP(ω) >−∞, where mω := inf{Lω
φ
(1)(x) : x ∈ Xθω}.

These assumptions might be seen as randomised versions of Hölder continuous (H1-2) and
summable potentials (S1-2), respectively. Recall that, if φ is locally fiber Hölder contin-
uous and κ is integrable, then (H1) holds (see [3]). Also note that (S1-2) is equivalent to
‖ logLω

φ
(1)‖ ∈ L1(P). Below, after introducing big images and preimages, we will give a

further Hölder condition (H∗) for which 1-Hölder continuity is only required on a subset of
Ω and 2-Hölder continuity else.
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3 Partition functions and big images and preimages

In this section, we introduce the notion of big images and preimages for random topological
Markov chains. Moreover, we discuss immediate consequences of this notion in terms
of estimates for the random version of the Gurevič partition functions. These estimates
will then be used to prove that the preimage function diverges at its radius of convergence
(Theorem 3.4).

In order to define the relevant objects, we now introduce the following notation. For
a,b ∈W 1, ω ∈Ωa and n ∈ N, set

W n
ω (a,b) := {(w0, . . . ,wn−1) ∈W n

ω : w0 = a,wn−1b ∈W 2
θ n−1ω

}.

Moreover, for w ∈ W n
ω , and m ≤ n, set exp(φ ω

m ([w])) := sup{exp(φ ω
m (x)) : x ∈ [w]ω}. As

an immediate consequence of (1) we have, for a k-Hölder continuous potential φ ,

0 < inf{exp(φ ω
n−k+1(x)) : x ∈ [w]ω} ≤ exp(φ ω

n−k+1([w])) < ∞ a.s. (2)

We now consider a fixed topologically mixing random Markov chain (X ,T ), a potential
φ satisfying (H2) and a ∈W 1. For ω ∈Ωa and n ∈ N, the n-th (random) Gurevič partition
function is defined by

Zω
n (a) := ∑

w∈W n
ω (a,a)

eφ ω
n ([wa]),

where we use the convention that Zω
n (a) = 0 if W n

ω (a,a) = /0. Note that this definition differs
from the one in [3]. In here, φ ω

n ([w]) is replaced by φ ω
n ([wa]) in order to obtain a partition

function applicable to 2-Hölder continuous potentials. Since (X ,T ) is topologically mix-
ing, it follows that Zω

n (a) > 0 for all n ≥ Naa(ω) with θ nω ∈ Ωa. Furthermore, given a
measurable family {ξω ∈ [a]ω : ω ∈Ω}, the n-th local preimage function is defined by

Z ω
n (a) := ∑

w∈W n
ω (a,a)

eφ ω
n (τw(ξθnω )) = Lω,n

φ
(1[a])(ξθ nω),

where τw refers to the inverse branch T n
ω([w]ω)→ [w]ω . In particular, if φ is 2-Hölder, then

(1) implies that Zω
n (a) ≥ Z ω

n (a) ≥ Zω
n (a)B−1

θ nω
. Moreover, the n-th preimage function is

defined by, for ω ∈Ω,

Z ω
n := ∑

w∈W n
ω

eφ ω
n (τw(ξθnω )) = Lω,n

φ
(1)(ξθ nω).

As a consequence of (S1), we have Z ω
n ≤Mω · · ·Mθ n−1ω < ∞. Finally, set

Aω
n := ∑

w∈W n
ω

eφ ω
n ([w]),

and note that 0 < Aω
n ≤ ∞. We now introduce the the relative Gurevič pressure PG(φ)

adapted to the situation under consideration. For Ω′ ⊂ Ω and ω ∈ Ω, set Jω(Ω′) := {n ∈
N : θ nω ∈ Ω′}, and choose N ∈ N such that Ω∗ := {ω ∈ Ωa : Naa(ω) ≤ N} is a set of
positive measure. The following proposition is a slight generalization of Theorem 3.2 in [3]
to 2-Hölder continuous (H2) and summable (S1) potentials.
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Proposition 3.1. For a mixing system (X ,T ) and a potential satisfying (H2) and (S1), the
limits

PG(φ) := lim
n→∞,

n∈Jω (Ω∗)

1
n

logZω
n (a) = lim

n→∞,
n∈Jω (Ω∗)

1
n

logZ ω
n (a)≥−∞

exist, are a.s. constant with respect to ω and independent of the choice of a and N.

Proof. Since most of the arguments can be found in [3] we only give a sketch of proof. For
a.e. ω ∈Ω∗ and m,n≥ N with θ mω,θ m+nω ∈Ω∗ it follows from (1) that

Z ω
m (a)Z θ mω

n (a)≤ Bθ mωZ ω
m+n(a). (3)

It is well known that the induced transformation θ̂ : Ω∗→Ω∗ given by

η : Ω
′→ N, ω → η(ω) := min{n ∈ N : θ

n
ω ∈Ω

′}
θ̂ : Ω

′→Ω
′, ω → θ

η(ω)
ω.

is an invertible, measure preserving, conservative and ergodic transformation with respect
to P restricted to Ω∗. Set ηk(ω) := ∑

k−1
l=0 η(θ̂ lω). It then follows from (3), for M ≥ N and

k, l ∈ N, that

− logZ ω

η(k+l)M(ω)(a)+ logZ ω

ηkM(ω)(a)+ logZ θ̂ kMω

ηlM(θ̂ kMω)(a)≤ logB
θ̂ kMω

.

Since Z ω
n (a) ≤ Z ω

n ≤ MωMθω · · ·Mθ n−1ω , it follows from (H2), (S1) and Kac’s theorem
that the almost subadditive ergodic theorem as stated in [5] is applicable to − logZ ω

· (a)
with respect to the measure preserving transformation θ̂ M. Since ηk/k converges by Birkhoff’s
ergodic theorem it follows that

f (ω) := lim
k→∞

1
ηkM(ω)

logZ ω

ηkM(ω)(a)

exists a.s., and is θ̂ M-invariant. It is now easy to see that this limit is independent from
the choice of M ≥ N and hence the limit is a constant function. In order to show that the
limit does exist along Jω(Ω∗) we now use a different argument as in [3]). For k > 3N set
ak := N + (k mod N). Then k− ak is a multiple of N, and 2N > ak ≥ N. In particular,

Z ω

ηak (ω)(a),Z θ̂
ak (ω)

ηk−ak (ω)(a) > 0. Hence, by (3),

1
ηk(ω)

log
(
Z ω

ηak (ω)(a)Z θ̂
ak (ω)

ηk−ak (ω)(a)
)
≤ 1

ηk(ω)
log
(

B
θ̂

ak (ω)Z
ω

ηk
(a)
)

.

By passing to the limit, we obtain that inf{(logZ ω
n (a)) : n ∈ Jω(Ω∗)} ≥ f (ω) a.s. The

other direction then follows by the same argument with bk = 2N− (k mod N) and using

Z
θ̂
−bk (ω)

ηbk (θ̂−bk (ω))
(a)Z ω

ηk−bk (ω)(a)≤ BωZ
θ̂
−bk (ω)

ηk (a).

The remaining assertions now follow from Zω
n (a)≥Z ω

n (a)≥ Zω
n (a)B−1

θ nω
and Step 2 in the

proof of Theorem 3.2 in [3].
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We now introduce the notion of big images and preimages. In here, we will write #B
for the cardinality of a set B. So assume that there exists Ωbi ⊂ Ω of positive measure, and
a family {I ω

bi ⊂W 1
ω : ω ∈Ωbi} such that

(i) #I ω
bi < ∞,

(ii) for each a ∈W 1
θ−1ω

, there exists b ∈I ω
bi such that ab ∈W 2

θ−1ω
.

We then say that (X ,T ) has the big image property. By choosing a subset of Ωbi, one may
assume without loss of generality that there exists a finite set Ibi such that I ω

bi ⊂ Ibi for
each ω ∈Ωbi.

Moreover, if there exists Ωbp ⊂ Ω of positive measure, and a family {I ω
bp ⊂ W 1

θ−1ω
:

ω ∈Ωbp} such that

(i) #I ω
bp < ∞,

(ii) for each a ∈W 1
ω , there exists b ∈I ω

bp such that ba ∈W 2
θ−1ω

,

then (X ,T ) is said to have the big preimage property. As above, one may assume without
loss of generality, that each I ω

bp is a subset of a globally defined finite set Ibp. If (X ,T ) is
topologically mixing and has the big image and big preimage property, then (X ,T ) is said
to have the (relative) b.i.p.-property.

Lemma 3.2. If (X ,T ) has the b.i.p.-property, then for a ∈ W 1 and almost every ω ∈ Ωa,
there exist αω ,βω ∈ N such that

(i) W n
ω (a,b) 6= /0, for all n≥ αω , and b ∈W 1

θ nω
,

(ii) W n
θ−nω

(b,a) 6= /0, for all n≥ βω , and b ∈W 1
θ−nω

.

Proof. In order to show the first assertion, set Nω := max{Nac(ω) : c ∈ Ibp}, and αω :=
min{n≥ Nω : θ n ∈Ωbp}. The second assertion follows by a similar construction.

The following Lemma now shows that the above partition and preimage functions are
proportional to each other along subsequences. In the proof of the result, we only will need
that φ ω is 1-Hölder for ω ∈ θ−1(Ωbi∪Ωbp). The precise condition is as follows.

(H∗) The potential φ has property (H2) and for a.e. ω ∈ θ−1(Ωbi∪Ωbp), we have V ω
1 (φ) <

∞.

Lemma 3.3. For (X ,T,φ) with b.i.p.-property, (H∗) and (S1-2), the following holds.

(i) For a.e. ω ∈Ωa, and k,n ∈ N with k ≥ αω , θ kω ∈Ωbp and θ k+nω ∈Ωa, there exists
1≤Cω(a,k) < ∞ such that

Z θ kω
n ≤Cω(a,k) Z ω

k+n(a).
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(ii) For a.e. ω ∈Ω, and n,k ∈ N with θ nω ∈Ωbi, θ k+nω ∈Ωa and k ≥ βθ nω , there exists
1≤ Dθ nω(a,k) < ∞ such that

Aω
n ≤ Bθ nωDθ nω(a,k)−1 Z ω

n+k.

Moreover, PG(φ) is finite and Cω(a,k) and Dω(a,k) are measurable.

Proof. In order to show the first assertion, note that the big preimage property combined
with Lemma 3.2 implies the existence of {v j ∈W k

ω : j = 1, . . . ,#I θ kω
bp } such that for each

b ∈W 1
θ kω

, there exists j ∈ {1, . . . ,#I θ kω
bp } with v jb ∈W k+1

ω . This then gives that

Z ω
k+n(a)≥

#I θkω
bp

∑
j=1

∑
w: v jw∈W k+n

ω

eφ ω
n+k(τv jw(ξ

θk+nω
))

≥
#I θkω

bp

∑
j=1

inf
{

eφ ω
k (x) : x ∈ [v j]ω

}
∑

w: v jw∈W k+n
ω

eφ θkω
n (τw(ξ

θk+nω
))

≥ inf
{

eφ ω
k (x) : x ∈ [v j]ω , j = 1, . . . ,#I ω

bp

}
Z ω

n =: (Cω(a,k))−1 Z ω
n .

Observe that Cω(a,k) > 0 which follows from (H∗) and (2). Moreover, by choosing e.g.
v1, . . .v#I ω

bp
to be minimal with respect to the lexicographic ordering, it follows that ω →

Cω(a,k) is measurable. Assertion (ii) follows by a similar argument, that is by

Z ω
n+k ≥

#I θnω
bi

∑
j=1

∑
w: wv j∈W n+k

ω

eφ ω
n+k(τw,v j (ξθn+kω

))

≥ Aω
n B−1

θ nω
exp(−V θ n−1ω

1 (φ))
#I θnω

bi

∑
j=1

inf
{

eφ θnω
k (x) : x ∈ [v j]θ nω

}
,

where {v j ∈ W k
θ nω

: j = 1, . . . ,#I θ nω
bi } are constructed from the big image property. For

the proof of |PG(φ)|< ∞, note that

1
n

n−1

∑
k=0

logmθ kω

n→∞−→
∫

logmωdP and
1
n

n−1

∑
k=0

logMθ kω

n→∞−→
∫

logMωdP

by the ergodic theorem. It hence follows from Z ω
n (a) ≤ Mω · · ·Mθ n−1ω that PG(φ) < ∞.

Furthermore, from assertions (i) and (ii) combined with logAω
n ≥ ∑

n−1
k=0 logmθ kω and the

convergence in Proposition 3.1, we obtain that PG(φ)≥
∫

logmωdP(ω).

Using these estimates, we are now in position to prove the main result of this section.
In the statement of the theorem, Ω∗ refers to the subset of Ωa in the definition of the relative
Gurevič pressure.
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Theorem 3.4. Assume that (X ,T ) has the b.i.p.-property, and (H∗) and (S1-S2) are satisfied.
Then PG(φ) is finite and, for a.e. ω ∈Ω,

∑
n∈Jω (Ω∗)

snZ ω
n

{
< ∞ s < e−PG(φ),

∞ s = e−PG(φ).

Proof. Note that PG(φ) is finite by Lemma 3.3. By replacing φ by φ− logφ we now assume
without loss of generality, that PG(φ) = 0. By Lemma 3.3 (i), it then follows, for a.e.
ω ∈Ωbp, that

lim
n∈Jω (Ω∗)

1
n

logZ ω
n = 0.

We will show that ∑Aω
n < ∞ leads to a contradiction of PG(φ) = 0. So assume that, for

a.e. ω ∈ Ωbi, ∑n∈Jω (Ωbi) Aω
n < ∞. Hence, for ε > 0, there exist Ω′ ⊂ Ωbi and N ∈ N such

that Aω
n < ε for all ω ∈Ω′ and n≥ N. Now consider the jump transformation θ ∗ : Ω′→Ω′

given by

η : Ω
′→ N, ω → η

∗(ω) := min{n ∈ N : n≥ N,θ n
ω ∈Ω

′}
θ
∗ : Ω

′→Ω
′, ω → θ

η∗(ω)
ω.

Note that θ ∗ is invertible, and that P|Ω′ is a finite θ ∗-invariant measure (see e.g. [14]). In
particular, it follows that θ ∗(Ω′) = Ω′ mod P. Set

η
∗
k (ω) :=

k−1

∑
i=0

η
∗((θ ∗)i

ω).

Since the sequence (logAω
n ) is subadditive, it follows that Aω

η∗k (ω) ≤ εk. Furthermore, by the
ergodic theorem, η∗k (ω)/k converges to an invariant function which is bigger than or equal
to N. In particular,

lim
k→∞

1
η∗k (ω)

logAω

η∗k (ω) ≤
k

η∗k (ω)
logε ≤ logε

N
a.s.

Using Aω
n ≥Z ω

n we obtain that limn∈Jω (Ω̃)(logZ ω
n )/n < 0 for a.e. ω ∈ Ωbi, and a suitable

subset Ω̃ ⊂ Ω∗ of positive measure. Since this is a contradiction to PG(φ) = 0, it follows
that

∑
n∈Jω (Ωbi)

Aω
n = ∞

for a.e. ω ∈ Ωbi, and by subadditivity, for a.e. ω ∈ Ω. By Lemma 3.3 (ii), the assertion
follows.
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4 Random eigenvalues and conformal measures

The first step of this section is to construct random eigenvalues and conformal measures for
random topological Markov chains for which the sum of the preimage function diverges. As
a corollary, we obtain that the random eigenvalue can be identified with the quotient of two
random power series. In particular, this then gives in analogy to deterministic topological
Markov chains (see [11]) that the b.i.p.-property implies positive recurrence. Throughout
this section we assume that (X ,T ) is topologically mixing, φ satisfies (H2) and (S1-2) and
PG(φ) is finite. In particular, without loss of generality, PG(φ) = 0. Now fix a ∈ W 1, and
for Ω̃⊂Ωa, ω ∈Ω and 0 < s≤ 1, set

Pω(s) := ∑
n∈Jω (Ω̃)

snZ ω
n .

If there exists Ω̃ ⊂ Ωa such that Pω(1) = ∞, and Pω(s) < ∞ for 0 < s < 1, we say that
(X ,T,φ) is of divergence type. In particular, observe that for a system of divergence type,
we have limn∈Jω (Ω̃)(logZ ω

n )/n = 0 = PG(φ) by Hadamard’s formula for the radius of con-
vergence. Also note that systems with the b.i.p.-property are in this class as a consequence
of Theorem 3.4.

Lemma 4.1. There exists a sequence (sn : n∈N) with sn↗ 1 and λ ∗ : ω→R with logλ ∗ ∈
L1(P) such that∫

g(ω) log(λ ∗(ω))dP(ω) = lim
n→∞

∫
g(ω) log(Pω(sn)/Pθω(sn))dP(ω)

for all g ∈ L∞(P). Furthermore, we have
∫

logλ ∗dP = 0 and mω ≤ λ ∗(ω)≤Mω , for P-a.e.
ω ∈Ω.

Proof. Observe that

Pω(s) = ∑
n∈Jω (Ω̃)

sn
∑

x∈Xω :T n
ω (x)=ξθnω

eφ ω (x)eφ θω
n−1(Tω (x))

= sLω
φ (1)(ξθω)+ ∑

n∈Jω (Ω̃),n≥2

sn
∑

y∈Xθω :T n−1
θω

(y)=ξθnω

Lω
φ (1)(y)eφ θω

n−1(y)

≤ s ·Mω(1+Pθω(s)).

By applying the same argument and using
(
1+(Pθω(s))−1

)
≥ 1, we arrive at

smω ≤
Pω(s)
Pθω(s)

≤ sMω

(
1+(Pθω(s))−1) . (4)

Since log‖Lω
φ
(1)‖ ∈ L1(P), the set {log(Pω(s)/Pθω(s)) : s < 1} is uniformly integrable.

This shows the existence of logλ ∗ ∈ L1(P) as a weak limit. By applying the ergodic the-
orem, it then follows that

∫
logλ ∗dP = 0. The remaining assertion can be proved by com-

bining lims→1+ Pθω(s) = ∞ with the above inequalities.
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In order to obtain pointwise convergence of Pω(s)/Pθω(s) as s→ 1 we construct a ran-
dom conformal measure using a randomized version of the construction in [4]. As a con-
sequence of (S1-2), the construction and the proof of relative tightness will turn out to be
significantly easier than in [3]. For s < 1 and ω ∈Ω, set

µω,s :=
1

Pω(s) ∑
n∈Jω (Ω̃)

sn
∑

x:T n
ω (x)=ξθnω

eφ ω
n (x)

δx,

where δx refers to the Dirac measure at x ∈ Xω . For A ∈Bω , it hence follows that

µω,s(A) :=
1

Pω(s) ∑
n∈Jω (Ω̃)

snLω,n
φ

(1A)(ξθ nω).

In order to show that a reasonable limit of this family of measures exists (for s↗ 1), we will
employ Crauel’s random Prohorov theorem (see [2]). So recall that {µω,s : ω ∈ Ω,s ≥ s0}
is relatively tight if for all ε > 0 there exists a set K ⊂ X such that K ∩Xω is compact for
a.e. ω ∈Ω and

∫
µs(K)dP > 1− ε for all s > s0.

Lemma 4.2. The family {µω,s : ω ∈Ω,n ∈ N} is relatively tight.

Proof. For the proof, for k ∈ N, ω ∈Ω, and b ∈ N, set

Ak,b
ω := {(x0,x1, . . .) ∈ Xω : xk = b}= T−k

ω ([b]θ kω),

Eω
n := T−n

ω ({ξθ nω}), Eω
n (b,k) := Eω

n ∩T−k
ω ([b]θ kω).

By construction, it then follows that

µω,s(A
k,b
ω )

=
1

Pω(s)

 ∑
n∈Jω (Ω̃),n≤k,

x∈Eω
n (b,k)

sneφ ω
n (x) + ∑

x∈Eω
k+1(b,k)

sk+1eφ ω
n (x) + ∑

n∈Jω (Ω̃),n≥k+2,

x∈Eω
n (b,k)

sneφ ω
n (x)


=:

1
Pω(s)

(Σω
1 (b)+Σ

ω
2 (b)+Σ

ω
3 (b)) .

For the third summand, one immediately obtains that

Σω
3 (b)

Pω(s)
≤ sk+1

Pω(s) ∑
n∈Jω (Ω̃),n≥k+2

sn−(k+1)

· ∑
w∈W k

ω : wb∈W k+1
ω

eφ ω
k ([wb])

∑
x∈Eθk+1ω

n−(k+1)∩T
θkω

([b]
θkω

)

eφ θk+1ω

n−(k+1)(x)

≤ sk+1Pθ k+1ω(s)
Pω(s)

 ∑
w∈W k

ω : wb∈W k+1
ω

eφ ω
k ([w])

eφ θkω ([b])
µθ k+1ω,s(Tθ kω([b]θ kω))

≤ sk+1Pθ k+1ω(s)
Pω(s)

(
k−1

∏
l=0

Mθ lω‖

)
eφ θkω ([b]) ≤

(
∏

k−1
l=0

M
θ l ω

m
θ l ω

)
eφ θkω ([b]),
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where the last inequality follows from (S2) and (4). By the same arguments, it follows that

Σ
ω
2 (b)≤

(
∏

k−1
l=0 Mθ lω

)
eφ θkω ([b]).

Finally, for n = 1, . . .k, note that the set Eω
n ∩ T−k

ω ([b]θ kω) is nonempty for at most one
b ∈W 1

θ kω
. Hence, there exists cω,k ≤ ∞ with ∑b>cω,k

Σω
1 (b) = 0.

For a given ε > 0, choose a triple (C,s0,Ω
′) with C > 0, s0 ∈ (0,1) and Ω′ ⊂ Ω such

that P(Ω′) > 1−ε and Pω(s)≥C for all s≥ s0, ω ∈Ω′. For ω ∈Ω′ and c≥ cω,k, we hence
have that

∑
b≥c

µω,s(A
k,b
ω ) =

1
Pω(s) ∑

b≥c
(Σω

2 (b)+Σ
ω
3 (b))

≤
(

C−1
∏

k−1
l=0 Mθ lω +∏

k−1
l=0

M
θ l ω

m
θ l ω

)
∑
b≥c

eφ θkω ([b]) (5)

≤ Bθ k+1ω

(
C−1

∏
k−1
l=0 Mθ lω +∏

k−1
l=0

M
θ l ω

m
θ l ω

)
Mθ kω < ∞ (6)

Combining the summability in (6) with the independence of the estimate from s in (5) then
gives rise to the existence of c∗

ω,k ≥ cω,k, for ω ∈Ω′ and k ∈ N, such that c∗
ω,k < ∞ and

∑
b≥c∗

ω,k

µω,s(A
k,b
ω )≤ ε

2k .

Observe that ω→ c∗
ω,k might chosen to be measurable, which can be seen e.g. by construc-

tion of c∗
ω,k as a maximum. For K := {(ω,(x0,x1, . . .)) : ω ∈ Ω′,xk < c∗

ω,k} it then follows
that ∫

µω,s(Kc)dP≤ ε +
∫

Ω′
µω,s(Kc)dP

= ε +
∫

Ω′
µω,s({(x0, . . .) : ∃k s.t. xk ≥ c∗ω,k})dP

≤ ε +
∫

Ω′
∑

k=1,...,∞
b≥c∗

ω,k

µω,s(A
k,b
ω )dP≤ ε +P(Ω′)

∞

∑
k=1

ε

2k ≤ 2ε.

Since K∩Xω is compact for a.e. ω ∈Ω′, the assertion follows.

As an immediate consequence of Crauel’s relative Prohorov theorem we hence obtain
that there exists a sequence (sn) with sn↗ 1 and a random probability measure {µω} such
that

lim
n→∞

∫
f dµω,sndP(ω) =

∫
f dµωdP(ω)

for all f ∈L C
1 (P), where L C

1 (P) := { f : X → R : f |Xω
∈ C(Xω),

∫
‖ f|Xω

‖∞dP(ω) < ∞}
and C(Xω) denotes the set of continuous functions defined on Xω . The following theorem
is now stated without the assumption that PG(φ) = 0.
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Theorem 4.3. Let (X ,T,φ) be a topologically mixing system of divergence type with (H2),
S(1-2) and PG(φ) > −∞. Then there exists a sequence (sn) with sn ↗ exp(−PG(φ)) such
that

λ (ω) := lim
n→∞

Pω(sn)/Pθω(sn)

exists almost surely, with | logλ | ∈ L1(P) and
∫

logλdP = 0. Furthermore, there exists a
random probability measure {µω} as a weak limit of the sequence {µω,sn}, such that, for
x ∈ Xω ,

dµθω ◦Tω

dµω

(x) = λ (ω)ePG(φ)−φ ω (x).

Proof. By replacing φ with φ − PG(φ), assume without loss of generality that PG(φ) =
0. Let (tk : k ∈ N) be a sequence given by Lemma 4.1. By Lemma 4.2, there exists a
subsequence (sn : n ∈ N) of (tk) and a random probability measure {µω : ω ∈ Ω} which is
the weak limit of {µω,sn}. For n ∈ N, a ∈ W nω and A ⊂ [a]ω with µω(A) > 0, it follows
that

µω,s(A) =
1

Pω(s) ∑
k∈Jω (Ω̃),k≤n

x∈Ek
ω∩A

skeφ k
ω (x)

+
Pθ kω(s)
Pω(s)

1
Pθ kω(s) ∑

n∈Jω (Ω̃),k>n,

x∈Ek−n
θnω

∩T n
ω (A)

skeφ ω
n (τa(x))eφ θnω

k−n (x)

When passing to the limit, the first summand tends to zero and as a consequence of estimate
(4), we obtain that µθ nω and T n

ω ◦ µω are absolutely continuous for a.e. ω ∈ Ω. Hence,
dµθ nω ◦T n

ω/µω exists a.e. and

dµθ nω ◦T n
ω

µω

(x) = e−φ ω
n (x) lim

k→∞

Pω(sk)
Pθ kω(sk)

.

In particular, limk→∞ Pω(sk)/Pθ kω(sk) exists a.e. and by Lemma 4.1 we have | logλ | ∈ L1(P)
and

∫
logλdP = 0.

If PG(φ) 6= 0 then the radius of convergence of Pω(s) is equal to exp(−PG(φ)). With
P∗ω(s) referring to the random power series associated with the potential φ ∗ = φ −PG(φ),
we have P∗ω(s) = Pω(s · exp(−PG(φ))). The remaining assertions follow from this.

Remark 4.4. For a ∈Wω and A⊂ [a]ω , the above result implies that

µθω(Tω(A)) = λ (ω)
∫

A
ePG(φ)−φ ω

dµω

for a.e. ω ∈Ω. Hence {µω} is a (λ exp(PG(φ)−φ))-random conformal measure. Further-
more, this leads to the characterisation of {µω} in terms of the dual (Lφ

ω)∗ acting on the
space of Radon measures (see e.g. [3]), that is

(Lφ

ω)∗(µθω) = λ (ω)ePG(φ)
µω .
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Remark 4.5. Now assumme that φ has property (H1). For a = (a0, . . . ,an−1)∈W n
ω we then

immediately obtain an estimate for µω([a]ω) in terms of the measure of Tθ n−1ω([an−1]ω).
Set Λn(ω) := λ (ω) ·λ (θω) · · ·λ (θ n−1ω). We then have

1
Bθ nω

µθ nω(Tθ n−1ω([an−1]ω))≤ Λn(ω)
µω([a]ω)

eφ n
ω (x)−nPG(φ) ≤ Bθ nω µθ nω(Tθ n−1ω([an−1]ω)),

for all x ∈ [a]ω . If (X ,T ) has the big image property, then

Dω := inf{µω(Tθ−1ω([b]θ−1ω)) : b ∈W 1
θ−1ω
}> 0

for all ω ∈Ωbi. Hence, for a.e. ω ∈Ω and n with θ nω ∈Ωbi, we have

(Bθ nω)−1Dθ nω ≤ Λn(ω)
µω([a]ω)

eφ n
ω (x)−nPG(φ) ≤ Bθ nω ,

which is a natural analogue of the Gibbs property for random topological Markov chains.

We proceed with applications of the above theorem to systems with the b.i.p.-property.
In this case, by Theorem 3.4, we have that the system is of divergence type, and hence the
above theorem is applicable. The representation of λ as a quotient then gives rise to a an
estimate for the asymptotic behaviour of the Gurevič partition functions.

Corollary 4.6. If (X ,T,φ) has the b.i.p.-property and (H∗) and (S1-2) hold then there exist
positive measurable functions K,K∗ : Ωa→ R, N : Ωa→ N such that for all ω ∈ Ωa and
n≥N (ω) with ω ∈Ωa∩θ nΩa,

K(ω)K(θ−n
ω)≤ Zθ−nω

n (a)
Λn(θ−nω)enPG(φ) ≤ K∗(ω). (7)

Proof. Assume without loss of generality that PG(φ) = 0. We divide the proof into two
steps. We first show that Zθ−nω

n (a)Z ω
m �Z θ−nω

n+m (a), and then use this estimate prove the
assertion.

Choose k, l ∈ N such that θ−l+1ω ∈ Ωbi, θ kω ∈ Ωbp, and Nθ−lω
ba < l for all b ∈I θ−lω

bi .
Set

Mω := sup


∑

w∈W k+l
θ−l ω

(b1,b2)

eφ θ−l ω
k+l ([w])

∑
u∈W l

θ−l ω
(b1 ,a),

v∈W k
θmω

(a,b2)

eφ θ−l ω
l ([ua])eφ ω

k ([v])
: b1 ∈W 1

θ−lω
,b2 ∈W 1

θ kω


It then follows from (1) and the b.i.p.-property that Mω < ∞. Hence, for all n,m ∈ N with
θ−nω ∈Ωa,θ

mω ∈Ωa and n≥ l, m≥ k +Nθ kω
ba for all b ∈I θ kω

bp , we have

Z θ−nω
m+n (a)≤MωBθ−lωZθ−nω

n (a)BωZ ω
m (a)Bθ kω =: M ′

ωZθ−nω
n (a)Z ω

m (a).
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As a consequence of Theorems 3.4 and 4.3 there exists a sequence (s j) with s j ↗ 1 such
that the limit λ (ω) = lim j→∞ Pω(s j)/Pθω(s j) exists for a.e. ω ∈Ω. Hence, for n as above,
we have

Zθ−nω
n (a)

Λn(θ−nω)
= lim

j→∞

Zθ−nω
n (a)Pω(s j)

Pθ−nω(s j)
≥ lim

j→∞

Zθ−nω
n (a)∑i∈Jω (Ω̃) si

jZ
ω

i (a)

∑i∈J
θ−nω

(Ω̃) si
jZ

θ−nω
i

≥M ′
ω lim

j→∞

∑i∈Jω (Ω̃) si
jZ

θ−nω
n+i (a)

∑i∈J
θ−nω

(Ω̃) si
jZ

θ−nω
i

With k = k(θ−nω) := min{l ≥ αθ−nω : θ k−lω ∈Ωbp}, it follows from Lemma 3.3 (i) that

Zθ−nω
n (a)

Λn(θ−nω)
≥ M ′

ωCθ−nω(a,k)
Λk(θ−nω)

.

Hence the left hand side of (7) holds for n≥N (ω), where

N (ω) := min{l ∈ N : θ
−l

ω ∈Ωbi, Nθ−lω
ba < l for all b ∈J θ−lω

bi },
K(ω) := min{M ′

ω ,Cω(a,k(ω))/Λk(ω)(ω)}.

The remaining assertion follows by similar agruments by using the estimate Z θ−nω
i ≥

Zθ−nω
n (a)Z ω

i−n(a)B−1
ω and Lemma 3.3 (i).

By choosing a subset Ωr of Ωa for which K(ω) is uniformly bounded, it immediately
follows that there exists K̃ : Ωr→ R, K̃ > 0 with

K̃−1(ω)≤ Zθ−nω
n (a)

Λ(θ−nω)
≤ K̃(ω),

for a.e. ω ∈ Ωr and n ≥N (ω) with θ−nω ∈ Ωr. This in particular shows that (X ,T,φ)
is positive recurrent as introduced in [3]. For the definition of relative exactness in the
statement of the Theorem below, we refer to [6, 3].

Theorem 4.7. Assume that (X ,T,φ) has the b.i.p.-property and (H∗) and S(1-2) hold. Then
there exists a measurable family of functions (hω : ω ∈ Ω) such that, for µ and λ given by
Theorem 4.3, the following holds.

(i) For a.e. ω ∈ Ω, hω : Xω → R is a positive, 1-Hölder continuous function which is
bounded from above and below on cylinders.

(ii) For a.e. ω ∈Ω, we have Lω
φ

hω = λ (ω)ePG(φ)hθω ,
∫

hω µω = 1.

(iii) The random topological Markov chain is relatively exact with respect to (µω). In
particular, for { f ω : ω ∈Ω′} with f ω ∈ L1(µω) for a.e. ω ∈Ω, we have

lim
n→∞

∥∥∥∥∥ Lω,n
φ

f ω

Λn(ω)enPG(φ) −hθ nω

∫
f ωdµω

∥∥∥∥∥
L1(µθnω )

= 0.
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(iv) The probability measure given by hωdµωdP is T -invariant and ergodic.

Proof. These are immediate consequences of Theorem 5.3, Proposition 7.3 and Proposition
7.4 in [3].

Remark 4.8. Recall e.g. from [1], that a random subshift of finite type is a random topo-
logical Markov chain with `ω < ∞. Now assume that a random subshift (X ,T ) of finite
type is topologically mixing and has properties (H2) and (S1-2). Clearly, (X ,T ) has the
b.i.p.-property. Moreover, it easily can be seen that V ω

1 (φ) < ∞. Hence above Theorem is
applicable and hence is an extension of Ruelle’s theorem in [1].

Furthermore, by considering a potential which is constant on cylinders of length two,
we obtain a Perron-Frobenius-theorem for the following class of random matrices. So let
A = {Aω : ω ∈Ω} with Aω =

(
pω

i j , i < `ω , j < `θω

)
and pi j ≥ 0 a.s. be a measurable family

of random matrices. We refer to A as a summable random matrix with the b.i.p.-property if

(i) the signum of A gives rise to a random topological Markov chain with the b.i.p.-
property,

(ii) For a.e. ω ∈ θ−1(Ωbi∪Ωbp), we have

sup
{ pω

i j

pω
ik

: i < `ω , j,k < `θω , pω
ik 6= 0

}
< ∞.

(iii) there exist positive random variables ω 7→mω and ω 7→Mω with logm, logM ∈ L1(P)
such that, for a.e. ω ∈Ω,

mω ≤ inf
j<`θω

∑
i<`ω

pω
i j ≤ sup

j<`θω

∑
i<`ω

pω
i j ≤Mω .

By viewing A as a locally constant potential we arrive at the following random Perron-
Frobenius theorem. Below, R∞−1 stands for RN, and (B)i j for the coefficient of the matrix
B with coordinates (i, j).

Corollary 4.9. For a summable random matrix A with the b.i.p.-property, there exist a
positive random variable λ : Ω→R and strictly positive random vectors h = {hω ∈R`ω−1 :
ω ∈Ω} and µ = {µω ∈ R`θω−1 : ω ∈Ω} such that, for a.e. ω ∈Ω,

(hω)tAω = λ (ω)hθω , Aω
µ

θω = λ (ω)µ
ω , (hω)t

µ
ω = 1.

Furthermore, for a.e. ω ∈Ω and i < `ω , we have

lim
n→∞

∑
j<`θnω

∣∣∣∣∣(Aω ·Aθω · · ·Aθ n−1ω)i j

Λn(ω)
−µ

ω
i hθ nω

j

∣∣∣∣∣µθ nω
j = 0.
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Proof. Let (X ,T ) be the random topological Markov chain given by the signum of A and,
for x ∈ [a0a1]ω , set φ ω(x) := log pω

a0a1
. Then φ is 2-Hölder continuous and, by condition

(ii), is 1-Hölder continuous for ω ∈ θ−1(Ωbi∪Ωbp). As a consequence of the summability
assumption (iii) it then follows that Theorem 4.7 is applicable to (X ,T,φ). So let λ ′, h′

and µ ′ be given by this result. The random variable λ is then defined by λ := λ ′ePG(φ).
Furthermore, since Lφ acts on functions which are constant on cylinders, it follows by the
construction of the eigenfunction in Proposition 7.3 in [3] that h′ is constant on cylinders of
length 1. Hence, with h given by hω

a := h′|[a]ω , we have that, for a.e. ω ∈Ω and x ∈ [b]θω ,

((hω)tAω)b = Lω
φ (h′)(x) = λ (ω)h′(x) = λ (ω)hθω

b .

Furthermore, for µ given by µω
a := µ ′ω([a]ω), the identity Aω µθω = λ (ω)µω follows by

similar arguments. The remaining assertion is an application of Theorem 4.7 (iii) to the
indicator function 1[a]ω .

As a concluding remark, we give an application of our results to the existence of a
stationary vector (or stationary distribution) for a stationary Markov chain with countably
many states in a stationary environment. Recall that such a Markov chain is given by a
random stochastic matrix A = {(pω

i j : i < `ω , j < `θω) : ω ∈ Ω}, that is ∑ j<`θω
pω

i j = 1 for
every i < `θω and a.e. ω ∈ Ω, where pω

i j stands for the random transition probability from
state i to j. Furthermore, a random vector π = {(πω

i : i < `ω) : ω ∈ Ω} is called random
stationary distribution if πωAω = πθω and ∑i πω

i = 1 for a.e. ω ∈Ω. The following result
answers a question of Orey in [10].

Theorem 4.10. Assume that A is a random stochastic matrix such that

(i) the signum of the transpose At of A defines a random top. mixing topological Markov
chain with the big preimages property,

(ii) for a.e. ω ∈ θ(Ωbi), we have

sup
{ pω

ji

pω
ki

: i < `ω , j,k < `θω , pω
ki 6= 0

}
< ∞.

Then a random stationary distribution π exists, and for i < `ω ,

lim
n→∞

∑
j<`

θ−nω

∣∣∣(Aθ−n+1ω · · ·Aθ−1ω ·Aω) ji−π
ω
i

∣∣∣πθ−nω
j = 0.

Proof. By assumption, the signum of At defines a topological mixing system ((X ,T ),(Ω,θ−1)
with the big preimages property. Moreover, as a consequence of (ii), the potential defined
by φ ω |[i j] := log pω

ji is 1-Hölder continuous for ω ∈ θ(Ωbp).
Since A is a stochastic matrix, it follows that the constant function 1 is an eigenfunction

of Lφ , and hence Z ω
n = 1 for all n∈N and a.e. ω ∈Ω. For a∈W 1, it follows from Lemma

3.3 (i) that there exists Cω > 0 such that Z ω
n (a) ·Cω ≥ 1 for all n∈ Jω(Ωa) sufficiently large.

Hence PG(φ) = 0, (X ,T,φ) is of divergence type and positive recurrent. The assertion now
follows from Theorem 4.3 above and Theorem 5.3 in [3].
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[4] M. Denker and M. Urbański, On the existence of conformal measures, Trans. Am.
Math. Soc. 328 (1991) 563–587.

[5] Y. Derriennic, Un théorème ergodique presque sous-additif, Ann. Probab. 11 (1983)
669–677.

[6] Y. Guivarc’h, Propriétés ergodiques, en mesure infinie, de certains systèmes dy-
namiques fibrés, Ergod. Th. Dynam. Sys. 9 (1989) 433–453.

[7] Yu. Kifer, Perron-frobenius theorem, large deviations, and random perturbations in
random environments, Math. Z. 222 (1996) 677–698.

[8] Yu. Kifer, Thermodynamic formalism for random transformations revisited, Stoch.
Dyn. 8 (2008) 77–102.
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