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Abstract. We introduce a relative notion of the 'big images and preimages’-
property for random topological Markov chains. This then implies that a rel-
ative version of the Ruelle-Perron-Frobenius theorem holds with respect to
summable and locally Holder continuous potentials.

1 Introduction

In this note we give a further contribution to the extension of thermodynamic formalism for
topological Markov chains to random transformations and, in particular, obtain a sufficient
condition for the existence of random conformal measures and random eigenfunctions of
the Ruelle operator which applies e.g. to a random full shift with countably many states. In
particular, we obtain an extension of the results for random subshifts of finite type obtained
by Bogenschiitz, Gundlach and Kifer ([[L, 7} |8]) to random shift spaces with countably many
states. For illustration, we also give applications to countable random matrices, that is we
deduce a Perron-Frobenius theorem and a sufficient condition for the existence of a station-
ary distribution for a countable-state Markov chain with random transition probabilities.
For deterministic dynamical systems the following results are known. Recall that it was
shown by Sarig ([12]) that the Ruelle-Perron-Frobenius theorem extends to deterministic
topological Markov chains with countably many states and locally Holder continuous po-
tentials if and only if the system is positive recurrent. If the potential is summable, results
in this direction are obtained by imposing topological mixing conditions, ‘finite irreducibil-
ity’ or ‘finite primitivity’, on the shift space (see [9, [13]). Furthermore, if the topological
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Markov chain is topologically mixing then these conditions coincide with the ‘big images
and preimages’-property introduced in [[11]] where it is shown that this condition is equiv-
alent to positive recurrence for summable potentials (see [[11]). Note that these results are
advantageous in many applications since they can be, in contrast to positive recurrence,
verified easily.

The goal of this paper is to obtain an extension of these results to random bundle trans-
formations, that is we consider a commuting diagram (or fibered system)

x 5 ox
nl I
o % o

where 6 is an ergodic automorphism of the abstract probability space (Q,P) and 7 is onto
and measurable. With X, referring to 7! ({®}) the restriction T, : Xg — Xg of T to fibers
then has a natural interpretation as a random transformation in a random environment. In
here, we consider the class of random topological Markov chains, that is X is a subset of
NN x Q such that each fiber X,, has a random Markov structure (for details, see Section .

For the extension of the notion of big images and preimages (b.i.p.) to this setting,
we only require that a corresponding property holds for returns to subsets €,; and Q,, of
positive measure in the base Q. That is, for @ € Q,;, there exists a finite union of cylinders
Fopw C Xpg such that T, ([a]) N Fye # 0 for all cylinders [a] C X, (big images) and, for
o € Q,, there exists a finite union of cylinders F_, , C Xp-14, such that Tg-1,(Fy_, ) = Xo
(big preimages), respectively. Note that this property is a purely topological property with
respect to the fibers.

We then consider topologically mixing systems equipped with a potential ¢ which is
locally Holder continuous in the fibers. Our further analysis relies on the divergence at the
radius of convergence of a random power series whose coefficients are given by random
partition functions. Systems with this property will be called of divergence type. As a
first result we obtain in Theorem [3.4] that a system with summable potential and the b.i.p.-
property is of divergence type.

For systems of divergence type with summable potential, it then follows that a random
conformal measure exists (Theorem [4.3)). That is, there there exists a family of probability
measures {1, } and a positive random variable A : Q — R such that, for x € X,

dlew o T /dlie(x) = A(0)ele@) 00

where P;(¢) refers to the relative Gurevi¢ pressure as introduced in [3]]. The proof of this
statement relies on the construction of A as the limit of the quotient of random power series
and the application of Crauel’s random Prohorov theorem (see [2]) to a family of random
measures. Note that the construction of this family of random measures is an adaption of
the construction in [3]]. However, it turns out that the summability assumption significantly
simplifies the tightness argument compared to the proof in there.



In particular, this result gives that 1¢76(9) is the spectral radius of the dual of the ran-
dom Ruelle operator. For systems with the b.i.p.-property, the identification of A as quotient
of random power series then gives rise to application of results in [3]], that is the system
is positive recurrent and a relative version of the Ruelle-Perron-Frobenius theorem holds
(Corollary {.6| and Theorem [£.7). As immediate consequences of these results, we obtain
a Perron-Frobenius theorem for random matrices (Corollary and an application to ran-
dom stochastic matrices (Theorem §.10).

2 Preliminaries

Let 6 be an automorphism (i.e. bimeasurable, invertible and probability preserving) of the
probability space (Q,.7,P), { = {y > 1 be a NU {ec}-valued random variable and for a.e.
0 €Q,letAy, = (0;j(®),i <Ly, j<lop) be amatrix with entries 0;;(®) € {0, 1} such that
® — Ag is measurable and Y, a;j(@) > 0 for all i < £. For the random shift spaces

Xo = {x = (X0,X1,.-) : Gy, (0'@) =1Vi=0,1,...},

the (random) shift map Ty, : X — Xp is defined by Ty, : (x0,x1,%2...) = (x1,X2,...). This
gives rise to a globally defined map T of X, where X := {(®,x) : x € X, }, and T(®,x) =
(0@, Typx). In this situation, the pair (X,T) is referred to as a random countable topolog-
ical Markov chain. For n € N, set T} = Tgu-14,0+--0Tpg 0 Ty, and note that 7" (w,x) =
(0", Thx).

A finite word a = (x¢,x1,...,X,—1) € N" of length n is called w-admissible, if x; < Ly,
and Q. (0'w) =1, fori=0,...,n— 1. In here, # denotes the set of @-admissible words
of length n (in particular, #,) = {a:a < {y}) and, for a = (ag,a,...,a,_1) € N",

[dlo = [ao,a1,....an-1]o ={x€Xp: xi=a;,i=0,1,...n—1}

is called cylinder set. The set of those @ € Q where the cylinder is nonempty will be denoted
by Q,, that is
Q={w: [dep#0}={w:acW}.

Finally, #" refers to the set of words of length n defined by P(,) > 0 for alla € #". In
this paper, we exclusively consider topologically mixing random topological Markov chains.
That is, for a,b € #'!, there exists a N-valued random variable N, = N,»(®) such that for
n > Ny(®),a < ¥} and 8"w € Q,, it follows that [a]e, N (T12) ™ [bgne # 0.

As mentioned above we are interested in thermodynamic aspects of random topological
Markov chains with respect to locally Holder continuous potentials. Therefore, recall that,
for a function ¢ : X — R, (®,x) — ¢®(x), the n-th variation is defined by

V' (@) = sup{[9®(x) =9 (¥)| : xi =yi, i=0,1,...,n—1}.

The function ¢ is referred to as a locally fiber Hilder continuous function with index k € N
if there exists a random variable k = k(@) > 1 such that [log kdP < oo and for all n >



k, V2(¢) < x(w)r". For abbreviation, such a function will be referred to as a k-Holder
continous function. This then leads to the following elementary but useful estimate. For
n<m,x,y € [a]y for some a € #', and a (m — n+ 1)-Holder continous function ¢,

162(x) <Y 10907 () — 0% Ty \<Zv9k
k=0
nf(ek )" < Y k(0" o)t = i(e"")k
k=0 k>m—n k=1

Since logk € L!(P), we obtain (logk)/n — 0 as a consequence of the ergodic theorem.
So the radius of convergence of the series on the right hand side of the above estimate is
equal to 1 and, in particular, the right hand side is finite. Hence, for a locally fiber Holder
continuous function with index less than or equal to (m —n+ 1), we obtain

(Borw) ™' < (Borw) ™" < e 70°0) < (Bguy)™" < Bora, (1)
where By, :=exp} ;. K(G*ka))rk. Note that this definition differs from the one in [3] by
the choice of the element in the base - in here we replaced @ by 8" @. A further basic notion
is the (random) Ruelle operator Ly associated to a potential (function) ¢ = (¢©) : X — R,
which is defined by, for a function f: X — R,

Lifbox)= Y V(o).

YeXp,Toy=x

In here, we consider potentials ¢ satisfying some of the following additional assump-
tions.

(H1) The potential ¢ is 1-Holder continuous, and [log B,dP(®) < .
(H2) The potential ¢ is 2-Holder continuous, and [log BydP(®) < eo.
(S1) [logMudP(®) < e, where M, := sup{Lg(1)(x) : x € Xg0}.
(82) [logmedP(®) > —co, where mg := inf{Lg (1)(x) : x € X0}

These assumptions might be seen as randomised versions of Holder continuous (H1-2) and
summable potentials (S1-2), respectively. Recall that, if ¢ is locally fiber Holder contin-
uous and k is integrable, then (H1) holds (see [3]). Also note that (S1-2) is equivalent to
[logLg (1)]| € L'(P). Below, after introducing big images and preimages, we will give a
further Holder condition (H*) for which 1-Holder continuity is only required on a subset of
Q and 2-Holder continuity else.



3 Partition functions and big images and preimages

In this section, we introduce the notion of big images and preimages for random topological
Markov chains. Moreover, we discuss immediate consequences of this notion in terms
of estimates for the random version of the Gurevi¢ partition functions. These estimates
will then be used to prove that the preimage function diverges at its radius of convergence
(Theorem 3.4).

In order to define the relevant objects, we now introduce the following notation. For
abeW', weQ,andn €N, set

W2 (a,b) = {(Wo, ..., wn_1) € W s wo=a,wp_1b € Wg1,}-

n—1g
Moreover, for w € #}, and m < n, set exp(92([w])) := sup{exp(¢2(x)) : x € [W]p}. As
an immediate consequence of (1) we have, for a k-Holder continuous potential ¢,

0 < inf{exp(9,” 1s1(x)) : x € Wo} < exp(,” 41 ([W])) <eoas. 2

We now consider a fixed topologically mixing random Markov chain (X, 7'), a potential
¢ satisfying (H2) and a € #''. For o € Q, and n € N, the n-th (random) Gurevi¢ partition
function is defined by

Z%(a) := Z 9 (vl
weH g (a,a)
where we use the convention that Z? (a) = 0if #,}} (a,a) = 0. Note that this definition differs
from the one in [3]]. In here, ¢([w]) is replaced by ¢, ([wa]) in order to obtain a partition
function applicable to 2-Holder continuous potentials. Since (X,7) is topologically mix-
ing, it follows that Z?(a) > 0 for all n > Ny,(®) with 6"® € Q,. Furthermore, given a
measurable family {&, € [d]e : @ € Q}, the n-th local preimage function is defined by

%ﬂ)(a) - Z e(P/?(Tw(éB”w)) = Lg”n(l[a})(égnw)?

weWf(aa)
where 1, refers to the inverse branch T2([w]|e) — [W]e. In particular, if ¢ is 2-Holder, then
implies that Z%(a) > Z,%(a) > Z®(a)B,,.,,. Moreover, the n-th preimage function is
defined by, for @ € Q,
O . Z ¥ (5(8oma)) :L;””(l)(&gnw).

n
wery
As a consequence of (S1), we have 2, < My -+ Mg.1,, < oo. Finally, set
A?:= Y ()
weH Y
and note that 0 < A? < c. We now introduce the the relative Gurevi¢ pressure Pg(¢)
adapted to the situation under consideration. For Q' C Q and w € Q, set J,(Q') :={n €
N: 6"w € Q'}, and choose N € N such that Q* := {®w € Q, : Ny (®w) < N} is a set of

positive measure. The following proposition is a slight generalization of Theorem 3.2 in [3|]
to 2-Holder continuous (H2) and summable (S1) potentials.



Proposition 3.1. For a mixing system (X,T) and a potential satisfying (H2) and (S1), the
limits . |
Ps(9):= lim =logZ?(a)= lim - log Z(a) > —oo

n—oo,

nelop(Q%) nEJw(d*)

exist, are a.s. constant with respect to @ and independent of the choice of a and N.

Proof. Since most of the arguments can be found in [3]] we only give a sketch of proof. For
ae. o€ Q*and m,n > N with 0", 0" " @ € Q* it follows from (1)) that

Z,(@) 2% (a) < Boro 2,7 ,(a). (3)
It is well known that the induced transformation 6 : Q* — Q* given by
n:Q'—-N, o—-nw):=mn{rneN: 0"wecQ'}
:Q -Q, w— 0",
is an invertible, measure preserving, conservative and ergodic transformation with respect

to P restricted to Q*. Set Ny(®) ==Y} 1 (8'). It then follows from H for M > N and
k,l € N, that

oM
—log © (a) +1og 230 () (@) +log 2, 8, | (a) <10gBgu,-

Nty (©)

Since Z,°(a) < Z,° < MMy - Mgn-14, it follows from (H2), (S1) and Kac’s theorem
that the almost subadditive ergodic theorem as stated in [3] is applicable to —log Z/®(a)
with respect to the measure preserving transformation 6M . Since N /k converges by Birkhoff’s
ergodic theorem it follows that

f(®) := lim

(0]
I (@) 8 P

exists a.s., and is @ -invariant. It is now easy to see that this limit is independent from
the choice of M > N and hence the limit is a constant function. In order to show that the
limit does exist along J,(Q*) we now use a different argument as in [3]). For k > 3N set
ar := N+ (k modN). Then k — a; is a multiple of N, and 2N > a; > N. In particular,

éa
gnfk(w) (a), Qj}kii%) (a) > 0. Hence, by ,

o 6% (o) . o
@) (20 @23 00 @) < 55 108 (B 210@)).

By passing to the limit, we obtain that inf{(log Z,”(a)) : n € Jo(Q*)} > f(®) a.s. The
other direction then follows by the same argument with by = 2N — (k- mod N) and using

67 () 64 ()
"@ink(é*bwco))(“)gn?fbk(w) (@) <BoZy " (a).

The remaining assertions now follow from Z®(a) > 2,*(a) > Z®(a)B,.,, and Step 2 in the
proof of Theorem 3.2 in [3]. O



We now introduce the notion of big images and preimages. In here, we will write #B
for the cardinality of a set B. So assume that there exists Q.; C Q of positive measure, and
a family { £° C #,} : ® € Q,;} such that

(i) #A7 < oo,

(i) foreacha € ¥, , there exists b € £ such that ab € #, .

We then say that (X, T) has the big image property. By choosing a subset of Q,;, one may
assume without loss of generality that there exists a finite set .#, such that £ C .#; for
each w € Q,;.

Moreover, if there exists Q,, C Q of positive measure, and a family {4 C 7/91,1 o
o € Q,,} such that

(i) #7 <o,
(i) for each a € ¥, there exists b € £, such that ba € 7/92,1 o

then (X, T) is said to have the big preimage property. As above, one may assume without
loss of generality, that each .7, is a subset of a globally defined finite set .%,,. If (X,T) is
topologically mixing and has the big image and big preimage property, then (X,T) is said
to have the (relative) b.i.p.-property.

Lemma 3.2. If (X,T) has the b.i.p.-property, then for a € #'' and almost every ® € Q,,
there exist O, By € N such that

(i) #](a,b) #0, forall n > g, and b € %ﬁw,
(ii) Wytsy(b,a) # 0, for alln > By, and b € Wy, ,.

Proof. In order to show the first assertion, set Ny, := max{N,(®) : ¢ € %,}, and o, =
min{n > Ny : 0" € Q,,}. The second assertion follows by a similar construction. O

The following Lemma now shows that the above partition and preimage functions are
proportional to each other along subsequences. In the proof of the result, we only will need
that ¢ is 1-Holder for @ € 61 (Q; U Q,,). The precise condition is as follows.

(H*) The potential ¢ has property (H2) and for a.e. @ € 07! (Q,UQ,,), we have V2 (¢9) <

Lemma 3.3. For (X,T,¢) with b.i.p.-property, (H*) and (S1-2), the following holds.

(i) Fora.e. @ € Q,, and k,n € N with k > Q, fw € Q,, and 0 tnw e Q,, there exists
1 < Cgyla,k) < oo such that

Z00 < Colak) 22, (a).



(ii) Fora.e. ® € Q, and n,k € N with 0"@ € Q,;, 0" ® € Q, and k > By, there exists
1 < Dgng(a,k) < oo such that

A;lo SBQna)Dan(G,k)il nc—?-k'

Moreover, Pg(9) is finite and Cy(a,k) and Dy (a,k) are measurable.

Proof. In order to show the first assertion, note that the big preimage property combined
with Lemma implies the existence of {v; € #&: j=1,... ,#,ﬂb‘:k“’} such that for each

b e Wy, there exists j € {1,... #7920} with vib € #/A+1. This then gives that

#7000

ZEa)> Y Y Il e

J=1 wweWJ,‘”

#o0o .
> ) inf{ed)"a’(x) X € [Vj]w} Y e (@(Egriny))
Jj=1 w: vj-we'f/a’,{“’

> inf{e‘i’?(’c) ‘x € vilw,j= 1,‘--,#%?} 2, = (Cola,k)) " 2.

Observe that Cy(a,k) > 0 which follows from (H*) and . Moreover, by choosing e.g.
Vi, Vige 1o be minimal with respect to the lexicographic ordering, it follows that @ —

Cp(a,k) is measurable. Assertion (ii) follows by a similar argument, that is by

#Jb?"
Z Z e¢rfik(rw’,"j(§gn+kw))
=1y wv; ewitk
#Ig
> APBy) exp(—V{" Z inf {0 x € vlona

where {v; € #&,: j=1,...,#72"®?} are constructed from the big image property. For
the proof of |P5(¢@)| < oo, note that

=Y logmgiy, — /logmde and — Y logMgi,, — /longdP
=) M=o

by the ergodic theorem. It hence follows from Z,*(a) < My -+ Mga- o that Pg(¢) < ce.
Furthermore, from assertions (1) and (ii) combined with logA? > Yo 0log Mgk and the
convergence in Proposition[3.1} we obtain that P;(¢) > [log mde( ). O

Using these estimates, we are now in position to prove the main result of this section.
In the statement of the theorem, Q* refers to the subset of , in the definition of the relative
Gurevic pressure.



Theorem 3.4. Assume that (X,T) has the b.i.p.-property, and (H*) and (S1-S2) are satisfied.
Then Ps(9) is finite and, for a.e. @ € Q,

Z sn %a)

{< o §5< e_PG(¢),
neJp(Q*)

oo s = e FPcl9)

Proof. Note that P;(¢) is finite by Lemma By replacing ¢ by ¢ —log ¢ we now assume
without loss of generality, that Pg(¢) = 0. By Lemma [3.3] (i), it then follows, for a.e.
O € &, that
1
lim —log %, =0.

nely(Q*) n
We will show that Y A? < co leads to a contradiction of Pg(¢) = 0. So assume that, for
ae. € Qy, Yuey,(0n)An < . Hence, for € > 0, there exist Q' Cc Q, and N € N such
that A? < € for all @ € Q' and n > N. Now consider the jump transformation 6* : Q' — €/
given by

n:Q—N, 0o—n"(0):=min{neN: n>N,0"wecQ}
0" :Q - Q, w— o g,

Note that 6* is invertible, and that P|¢ is a finite 6*-invariant measure (see e.g. [14]). In
particular, it follows that 6*(Q’) = Q' mod P. Set

k—1
M (@) := gn*((e*)iw)-

Since the sequence (logA?) is subadditive, it follows that Aﬁ* (@) < €. Furthermore, by the
k

ergodic theorem, 7 (®)/k converges to an invariant function which is bigger than or equal
to N. In particular,

k loge
" loge < —
i (@) N

Using A? > Z,® we obtain that lim,_, &) (log Z,%)/n < 0 for a.e. @ € Q, and a suitable

lim ———— a.s.

logA?,, <
k= 1 () 082 (0) =

subset Q C Q* of positive measure. Since this is a contradiction to Ps(¢) = 0, it follows

that
n€Jo(Qui)

for a.e. @ € Q,;, and by subadditivity, for a.e. @ € Q. By Lemma [3.3] (ii), the assertion
follows. OJ



4 Random eigenvalues and conformal measures

The first step of this section is to construct random eigenvalues and conformal measures for
random topological Markov chains for which the sum of the preimage function diverges. As
a corollary, we obtain that the random eigenvalue can be identified with the quotient of two
random power series. In particular, this then gives in analogy to deterministic topological
Markov chains (see [11]) that the b.i.p.-property implies positive recurrence. Throughout
this section we assume that (X, 7') is topologically mixing, ¢ satisfies (H2) and (S1-2) and
Pg(9) is finite. In particular, without loss of generality, Pg(¢) = 0. Now fix a € #!, and

forQC Q,, e Qand 0 < s <1, set

Py(s):= ) s"2Z°.

ne€Jy(Q)

If there exists Q C Q, such that Py(1) = oo, and P,(s) < oo for 0 < s < 1, we say that
(X,T,9) is of divergence type. In particular, observe that for a system of divergence type,
we have lim, _, ", (log 2,%)/n = 0= P;(¢) by Hadamard’s formula for the radius of con-
vergence. Also note that systems with the b.i.p.-property are in this class as a consequence
of Theorem 3.4

Lemma 4.1. There exists a sequence (s, :n € N) with s, /' 1 and A* : @ — R withlogA* €
L' (P) such that

/g(w)log(l*(w))dp(w) = lim [ ¢(®)log(Pu(sn)/Poars,))dP(®)

n—oo

forall g € L(P). Furthermore, we have [logA*dP =0 and mg, < A*(®) < My, for P-a.e.
o € Q.

Proof. Observe that

Po(s)= Y & y e (1) 0.4 (To (x)

nely(Q) ¥€XwT5(x)=Egng

=sLf () () + ), & Y LY(1)(y)e )

n€lo(Q)n>2  yXow:Th,' (V) =Eomw
<s-Mp(1+Po(s)).
By applying the same argument and using (1 + (Pew(s))*l) > 1, we arrive at
Po(s)
Since log [Lg(1)[| € L' (P), the set {log(Py(s)/Poe(s)) : s < 1} is uniformly integrable.
This shows the existence of logA* € L!(P) as a weak limit. By applying the ergodic the-

orem, it then follows that [logA*dP = 0. The remaining assertion can be proved by com-
bining lim,_,1+ Py (s) = o with the above inequalities. O

s < <sMo (14 (Pgo(s)) ). 4)

10



In order to obtain pointwise convergence of Py (s)/Pae(s) as s — 1 we construct a ran-
dom conformal measure using a randomized version of the construction in [4]]. As a con-
sequence of (S1-2), the construction and the proof of relative tightness will turn out to be
significantly easier than in [3]. For s < 1 and @ € Q, set

1 ®
Lo ::m Z 1 Z e (X)5x,

O\ heln(@)  ¥Ta(0)=8ma

where 0, refers to the Dirac measure at x € X,,. For A € %, it hence follows that

1 ——
uua),S(A) = Pw(S) ne‘g(ﬁ)s L(p (1A)(59”(0)'

In order to show that a reasonable limit of this family of measures exists (fors 1), we will
employ Crauel’s random Prohorov theorem (see [2]). So recall that {g s : @ € Q,5 > 50}
is relatively tight if for all € > O there exists a set K C X such that K N X, is compact for
ae weQand [ U (K)dP > 1—¢ forall s > s.

Lemma 4.2. The family {lo: ® € Q,n € N} is relatively tight.

Proof. For the proof, fork € N, ® € Q, and b € N, set
Akb = {(x0,x1,...) €Xe : X = b} =T ([b]grg),
EY:=T,"({&oro}):  EP(b.k):=EPNT, ([Dloto)-

By construction, it then follows that

k,b
Hos(AG )
:Pl Y g0 Y AW Y gt
[ (S) n€]a)(fl)‘n§k‘ xEEkJrl (h,k) nelm(ﬁ)‘nzlﬂrl
x€EP (bk) xeEQ (b k)

(EP (D) + 22 (D) + 25 (b))

TR
For the third summand, one immediately obtains that
20) M e

Po(s) = Pols) n€Jo(Q)n>k+2

okt

y 98 (b)) Y Py ()
we g whe W ! xeES L8 (T (k)
Sk+1P et (s o (1 ko
< S Lol (g ) | g (T (o)
Py(s)
@ weHE: wheW k!

S leP M L)
§M<HM9’(DH> (Hﬁ‘im ) 9" (1)

11



where the last inequality follows from (S2) and (). By the same arguments, it follows that

_ ko
29(b) < (ITF2d Mgr,) € " 19D,

Finally, for n = 1,...k, note that the set E N T, *([b]gt,) is nonempty for at most one
be Welkw. Hence, there exists ¢y < oo with Y- X(b) = 0.

For a given € > 0, choose a triple (C,so,Q’) with C > 0, sp € (0,1) and Q" C Q such
that P(Q') > 1 — € and P, (s) > C for all s > 59, @ € Q'. For € Q' and ¢ > ¢, we hence
have that

1
Y bo(A5) = - ¥ (£2(0) + 29 (0)
b>c w( )bzc
_ _ 1M ok o
< (€IS Moo + IS e ) Y e () )
A0] bZC
_ _ M
< B+ <C IH;(:(%MGI(D—FH;( (% myy >M9k (©)

Combining the summability in (6) with the independence of the estimate from s in (5] then
gives rise to the existence of cZLk > Cok, for o € Q' and k € N, such that Coyx < o0 and

£
Z Hw,.v(Agb) < Sk
bcho,k

Observe that @ — ¢}, , might chosen to be measurable, which can be seen e.g. by construc-
tion of ¢f, , as a maximum. For K := {(®, (x0,x1,...)) : @ € Q' ,x < ¢}, } it then follows

that
/uw’S(Kc)dPg e+/ He.s(K)dP
Q/

_ €+/Q/ Hos({(x0,-.-) : kst o > ¢y })dP

o £
<e+ N ) os(ALD)dP < e+ P(Q) Z 7
k=1,..., k=1
”Z"Z),k
Since K N Xy, is compact for a.e. @ € €, the assertion follows. O

As an immediate consequence of Crauel’s relative Prohorov theorem we hence obtain
that there exists a sequence (s,) with s, /" 1 and a random probability measure {l, } such
that

lim / fdpie.s,dP(® / fdlipdP(o)

for all f € ZF(P), where ZF(P):={f:X - R: flx, € C(Xo), [ lfix, |l--dP(®) < o}
and C(Xy) denotes the set of continuous functions defined on X,,. The following theorem
is now stated without the assumption that P;(¢) = 0.
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Theorem 4.3. Let (X, T, ) be a topologically mixing system of divergence type with (H2),
S(1-2) and Pg(9) > —oo. Then there exists a sequence (s,) with s, /" exp(—Ps(9)) such
that

Aw) = r}iirgon(sn)/Pgw(sn)

exists almost surely, with |logA| € L'(P) and [logAdP = 0. Furthermore, there exists a
random probability measure {|i,} as a weak limit of the sequence {l,}, such that, for
x € Xy,

dlgyo Ty

dle

Proof. By replacing ¢ with ¢ — P5(¢), assume without loss of generality that P;(¢) =
0. Let (# : k € N) be a sequence given by Lemma By Lemma there exists a
subsequence (s, : n € N) of (#) and a random probability measure {l, : @ € Q} which is
the weak limit of {le,}. Forn € N, a € #"w and A C [a], with e (A) > 0, it follows
that

(x) = A(@)ee9) 90,

k
Fz Z Sk€¢“’ (x)
@ (s) ko (Q) k<n
xeEk A

+ POka)(s) 1 Z sk€¢rfu(7a(x))e I?:lr?(x)

Pa)(s) Pekw(s) n€Je (Q)k>n,
k—n
0w

Hao,s (A) -

x€EK M NT(A)

When passing to the limit, the first summand tends to zero and as a consequence of estimate
(@), we obtain that pgn, and T o U are absolutely continuous for a.e. @ € Q. Hence,
dlgng o T}/ e exists a.e. and

dlero © T (x) = e~ 9@ lim Po(sk)
Ho koo Poi g (Sk)

In particular, limy . Pey (sk) /Poi o (Sk) exists a.e. and by Lemmawe have |log| € L' (P)
and [logAdP = 0.

If P;(¢) # O then the radius of convergence of Py(s) is equal to exp(—Ps(¢)). With
P} () referring to the random power series associated with the potential ¢* = ¢ — P5(9),
we have P (s) = Py(s-exp(—Ps(¢9))). The remaining assertions follow from this. O

Remark 4.4. For a € #;, and A C [d],, the above result implies that
Hoo(To(A)) = 2(@) [ "0~ au,
A

fora.e. @ € Q. Hence {ly} is a (Aexp(Ps(¢) — ¢))-random conformal measure. Further-
more, this leads to the characterisation of {fi,} in terms of the dual (L$)* acting on the
space of Radon measures (see e.g. [3]), that is

(L) (How) = (@) p1gy.

13



Remark 4.5. Now assumme that ¢ has property (H1). For a = (ay,...,a,—1) € #} we then
immediately obtain an estimate for Uy ([ale) in terms of the measure of Tgu—14([an—1]w)-
Set Ap(®) :== A(@)-A(0®)---A(6" '®). We then have

oo (T ([t 10)) < An(0) 22080 g (Tl 1),

Bogng

for all x € [a]e. If (X, T) has the big image property, then
Dy = inf{lo(Ty 16([blo-10)) : bE Hg-iy} >0
for all w € ;. Hence, for a.e. ® € Q and n with 6"w € Q,;, we have

(Benw)_lDeﬂw < An(w) ,uw([a]w) ) < Bgng,

e¢r’zl)(x)*"PG(¢
which is a natural analogue of the Gibbs property for random topological Markov chains.

We proceed with applications of the above theorem to systems with the b.i.p.-property.
In this case, by Theorem |3.4] we have that the system is of divergence type, and hence the
above theorem is applicable. The representation of A as a quotient then gives rise to a an
estimate for the asymptotic behaviour of the Gurevi¢ partition functions.

Corollary 4.6. If (X, T, ) has the b.i.p.-property and (H*) and (S1-2) hold then there exist
positive measurable functions K, K* : Q, — R, A : Q, — N such that for all ® € Q, and
n> N (o) with o € Q,NO"CQ,,

K(@)K(0"0) < 2t 2 < k() 0

= A (07" w)e(9) '

Proof. Assume without loss of generality that Pg(¢) = 0. We divide the proof into two

steps. We first show that Z8 "?(a) 2;© > %8, ?(a), and then use this estimate prove the
assertion.

Choose k,I € N such that 6~/ € Q,, 0*® € Q,,, and N&,'® <[ forall b e .78 '©.

Set
.

y 00 (1)
WGWekjfw (b] ,bz)
y 07 (lua]) L9 ()

uew! by .a),
i P1:)
vE’//ekmw(a,bz)

Mg = sup : b€ 7/91 by € %lkw

gy

It then follows from (1) and the b.i.p.-property that .#, < . Hence, for all n,m € N with
07"we Q,,0"mweQ,andn> 1, m> k—i—Nl?ak“’ forall b € ,ﬂbgk“’, we have

00 (a) < MpBg-15Z0 " (a)Bo Z (a)Bgryy =: MuZE P (a) 22 (a).

m—+n m
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As a consequence of Theorems [3.4] and [4.3| there exists a sequence (s;) with s; ' 1 such
that the limit A (@) = lim;_... Py(s;)/Pow(s;) exists for a.e. ® € Q. Hence, for n as above,
we have

—n -n 67" 4
A N L N B B DN
M(0710) e Ponols) e L g i 200

L@ 2200 @)
> Ay tim S
7 Licty-1g@ 5%

With k = k(0 "®) := min{l > Qg-ne, : 0w € Q,}, it follows from Lemma(i) that
A - MCo-ng(a,k)
A(07"®) —  A(07"@)

Hence the left hand side of (7)) holds for n > 4" (®), where

N (0):=min{l eN: 0 7'0 € Q,, N,'® <lforallbe g '},
K(o) := min{.a,, Co(a,k(®)) / A(w) (@) }.

The remaining assertion follows by similar agruments by using the estimate 2% "® >
Z8 "0 (a) 2%, (a)B," and Lemma[3.3) (). .

By choosing a subset Q. of Q, for which K () is uniformly bounded, it immediately
follows that there exists K : Q, — R, K > 0 with
- Zef"a)( a) »
K ' o)<t " <Ko
for ae. ® € Q, and n > A (@) with 6 "® € Q,. This in particular shows that (X,T,¢)
is positive recurrent as introduced in [3]. For the definition of relative exactness in the
statement of the Theorem below, we refer to [6, [3]].

Theorem 4.7. Assume that (X,T, ) has the b.i.p.-property and (H*) and S(1-2) hold. Then
there exists a measurable family of functions (h® : @ € Q) such that, for u and A given by
Theorem[d.3] the following holds.

(i) For a.e. ® € Q, h® : X, — R is a positive, 1-Hélder continuous function which is
bounded from above and below on cylinders.

(ii) For a.e. @ € Q, we have Lfi‘,’h“’ = A(w)efe @) poe, Jh®uy = 1.

(iii) The random topological Markov chain is relatively exact with respect to (). In
particular, for {f® : ® € Q'Y with f® € L' (1) for a.e. ® € Q, we have

e,
¢ (¢)—h9 w/fwd,u»a)

e N —0.
An(@)ee

L (.ue"w)

lim

n—oo
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(iv) The probability measure given by h® dq,dP is T-invariant and ergodic.

Proof. These are immediate consequences of Theorem 5.3, Proposition 7.3 and Proposition
7.4 in [3]. O

Remark 4.8. Recall e.g. from [1]], that a random subshift of finite type is a random topo-
logical Markov chain with ¢, < c. Now assume that a random subshift (X,T') of finite
type is topologically mixing and has properties (H2) and (S1-2). Clearly, (X,7) has the
b.i.p.-property. Moreover, it easily can be seen that V*(¢) < c. Hence above Theorem is
applicable and hence is an extension of Ruelle’s theorem in [[1]].

Furthermore, by considering a potential which is constant on cylinders of length two,
we obtain a Perron-Frobenius-theorem for the following class of random matrices. So let
A={Ap: ®€Q} withAy = (pf‘]’., i <!y, <lge) and p;j >0 a.s. be a measurable family
of random matrices. We refer to A as a summable random matrix with the b.i.p.-property if

(i) the signum of A gives rise to a random topological Markov chain with the b.i.p.-
property,

(ii) Forae. ® € 071(Q,;UQ,,), we have
e
sup{’aj): i<€w,j,k<€9w,pi‘}(’7é0} < oo,

(iii) there exist positive random variables ® — mg, and ® — M, with logm,logM € L' (P)
such that, for a.e. w € Q,

: (0] (0]
me < _n}f Z Pij < sup Z Pij <M.
I<teo ;7. J<low i<ty

By viewing A as a locally constant potential we arrive at the following random Perron-
Frobenius theorem. Below, R®~! stands for RY, and (B); ; for the coefficient of the matrix
B with coordinates (i, j).

Corollary 4.9. For a summable random matrix A with the b.i.p.-property, there exist a
positive random variable A : Q — R and strictly positive random vectors h = {h® € Rfe~!
® € Q) and u = {u® c R~ o € Q) such that, for a.e. 0 € Q,

(Y A® = A(0)h®®, A®u®® =2A(@)n®, (h®)'un®=1.

Furthermore, for a.e. @ € Q and i < £y, we have

Jim )

J<lgng

(Aw ~A9w .. _AO”*la))ij
Ay (@)

0w 0"w|,, 0" __
PhY " =o0.
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Proof. Let (X,T) be the random topological Markov chain given by the signum of A and,
for x € [apai]w, set 9 (x) :=logpg , . Then ¢ is 2-Holder continuous and, by condition
(i), is 1-Holder continuous for @ € 67! (5 UL,,). As a consequence of the summability
assumption (iii) it then follows that Theorem is applicable to (X,T,9). So let A, A
and u’ be given by this result. The random variable A is then defined by A := A/ef6(9).
Furthermore, since Ly acts on functions which are constant on cylinders, it follows by the
construction of the eigenfunction in Proposition 7.3 in [3]] that /' is constant on cylinders of
length 1. Hence, with & given by A2 := 1’|, we have that, for a.e. ® € Q and x € [bgp,

((h®)'A®)p = LG (W) (x) = A(@)h' (x) = A(@)hy®.

Furthermore, for y given by u® := u! (la]e), the identity A°u%® = A(w)u® follows by
similar arguments. The remaining assertion is an application of Theorem [4.7] (iii) to the
indicator function 1, O

o

As a concluding remark, we give an application of our results to the existence of a
stationary vector (or stationary distribution) for a stationary Markov chain with countably
many states in a stationary environment. Recall that such a Markov chain is given by a
random stochastic matrix A = {(p{} : i <lo,j <lge): @ € Q}, thatis ¥ ;g pi} =1 for
every i < fgp and a.e. ® € Q, where p{‘]’. stands for the random transition probability from
state i to j. Furthermore, a random vector 7 = {(7 : i < {y): ® € Q} is called random
stationary distribution if T?A® = 79? and ¥, 1 = 1 for a.e. @ € Q. The following result
answers a question of Orey in [10].

Theorem 4.10. Assume that A is a random stochastic matrix such that

(i) the signum of the transpose A" of A defines a random top. mixing topological Markov
chain with the big preimages property,

(ii) fora.e. ® € 6(L,), we have

Pi . .
suP{i’) D i<ly,j k< low,po ;éo} < oo,
Pii
Then a random stationary distribution T exists, and for i < £,
llm Z ‘(Aefn+1a) . ,Aeila) Aw)jl . niw j'[jeinw _ 0

j<£9—nw

Proof. By assumption, the signum of A’ defines a topological mixing system ((X,T), (2,0~ ")
with the big preimages property. Moreover, as a consequence of (ii), the potential defined
by ¢®|; := log p; is 1-Holder continuous for @ € 0(Qyy)-

Since A is a stochastic matrix, it follows that the constant function 1 is an eigenfunction
of Ly, and hence Z,° = 1 foralln € Nand a.e. ® € Q. Fora € #'!, it follows from Lemma
3.3](i) that there exists C, > 0 such that Z,°(a)-Cp > 1 for all n € J,(€,) sufficiently large.
Hence P;(¢) =0, (X,T,¢) is of divergence type and positive recurrent. The assertion now
follows from Theorem above and Theorem 5.3 in [3]]. L]
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