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Abstract A novel way of generating higher–order iteration functions for the computation of pth roots of
complex numbers is the main contribution of the present work. The behavior of some of these iteration functions
will be analyzed and the conditions on the starting values that guarantee the convergence will be stated. The
illustration of the basins of attractions of the pth roots will be carried out by some computer generated plots.
In order to compare the performance of the iterations some numerical examples will be considered.
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1 Introduction

Let p > 2 be a positive integer. Given a complex number w which do not belong to the closed negative real axis,
there is a unique complex z such that zp = w and −π/p < arg(z)< π/p, where arg(z) denotes the argument of
z. This unique z is called the principal pth root of the complex w and will be denoted by w1/p. All the pth roots
of w can be related with w1/p by

p
√

w = e
2ℓπi

p w1/p,
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with ℓ= 0,1, . . . , p−1. The pth roots of w are exactly the real or complex roots of the polynomial equation

zp −w = 0. (1)

Recently, the iterative methods for computing the principal pth root of a complex number have received
particular interest. This has been motivated, in part, by the relevance of this topic in the computation of pth
roots of matrices [9,10,12,13,16], which involves the pth roots of their complex or real eigenvalues. Moreover,
the scalar iteration functions can be extended to matrices in a natural way.

The Newton’s and Halley’s iterative methods are the ones most widely used for solving nonlinear equations
and, in particular, polynomial equations, whose orders of local convergence are, respectively, 2 and 3. For more
details we refer the reader to [6,23,4,19,1] and the references therein. The Newton iteration function associated
to the polynomial equation (1) is given by

N(z) =
(p−1)z+wz1−p

p
(2)

whereas the Halley iteration function is

H(z) = z
(p−1)zp +(p+1)w
(p+1)zp +(p−1)w

. (3)

Since both iteration functions are rational, their dynamical behavior can be analyzed using results from the
classical theory developed by Fatou and Julia [8,14,3].

Let λ be a fixed point of a rational iteration function ψ(z), that is, ψ(λ ) = λ . The set of initial values
for which the sequence generated by zk+1 = ψ(zk) converge to λ is called the basin of attraction of λ , while
the connected component of this set that contains λ is the immediate basin of attraction. It is well known that
the boundaries of the basins of attraction are Julia sets and so exhibit a fractal behavior. In general, when the
initial guess is close to such sets, the iterative methods are particularly sensitive, which means that the sequence
{zk}∞

k=0 can converge to a complex number distinct from λ or not converge at all.
A fixed point λ is called attracting, repelling or indifferent whether |ψ ′(λ )| is less than, greater than or

equal to 1, respectively. If ψ ′(λ ) = 0 then λ is called superattracting. In the case of Newton iteration N(z) the
only existing fixed points are the pth roots of w, which are superattracting. For Halley iteration H(z), the pth
roots of w are also superattracting fixed points, but it has the extra fixed point λ = 0, which is repelling.

A rational iteration function ψ(z) converges to λ with order of convergence j if there exist a complex
constant c > 0 and an integer k > 0 sufficiently large such that |zk+1 −λ | ≤ c|zk −λ | j, with zk+1 = ψ(zk). A
classical convergence result for fixed point iterations is stated below.

Theorem 1 [11,22] Let ψ(z) be an analytic function in a neighborhood of λ such that

ψ(λ ) = λ , ψ ′(λ ) = . . .= ψ( j−1)(λ ) = 0, ψ( j)(λ ) ̸= 0.

Then there is z0 sufficiently close to λ such that the sequence {zk}∞
k=0 generated by zk+1 = ψ(zk) converges to

λ with order j.

In this paper we present a novel way of generating infinitely many iteration functions for computing pth
roots of complex numbers, with prefixed orders of convergence. Many known iteration functions, including
Newton and Halley as well as the Schröder iteration functions, will appear as particular cases. As pointed out
in [23], higher-order iteration functions may have additional fixed points that are not pth roots of w. Although in
general these extraneous fixed points are repelling, they may complicate the structure of the basins of attractions
of the pth roots by inserting new sets of “petals”. This phenomenon will be analyzed for some higher-order
iterations and will be illustrated by computer generated plots of the basins of attractions of the pth roots.
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One important issue of our work is the computation of the principal pth root of a complex number by an
iterative method. It is widely known that the success of these kind of methods depends on the choice of the
initial guess. In [12,13,9,10] the authors derived practical conditions for choosing an appropriate initial guess
that guarantees the convergence of Newton’s and Halley’s method to the principal pth root. We extend their
results to other iteration functions, by proving that if the initial approximation satisfy a certain condition then
the sequence generated by the iterations converges toward the right pth root with the expected order.

This paper is organized as follows. In Section 2 an important result (Theorem 2), which can be used to
generate several families of iterative methods with higher–order convergence, is derived and a definition for
the residual of the terms of a sequence converging to a pth root is proposed. We also give examples of some
families of iteration functions and find connections with families already existing in the literature. Sections 3,
4 and 5 are devoted to the study of particular families of iterations, where some convergence results are stated
and, in particular, conditions for choosing an initial guess in terms of the residuals are derived. The results
we bring into discussion are illustrated by computer generated basins of attraction. Numerical examples that
permit to compare the performance of several iteration functions are given in Section 6. Finally, in the last
section, after presenting a brief conclusion, we point out some issues that need further research.

Unless otherwise stated, throughout the text we will systematically consider p > 2 and j > 1 as integer
numbers and w as a complex number not belonging to the closed negative real axis.

2 Generation of iteration functions

The following theorem allows the generation of infinitely many families of higher–order iteration functions
that converge to the pth roots of a complex number.

Theorem 2 Consider the complex function f defined by f (z) = [α(z)]1/p, where α(·) represents an analytic,
one-to-one complex-valued function defined in an open set containing zero. If Tj(z) denotes the Taylor poly-
nomial of degree j of f (z) at zero, then the principal pth root w1/p of w is a superattracting fixed point of the
function

Fj(z) := zTj−1
(
α−1(wz−p)

)
,

with α−1(·) representing the inverse function of α:
(
α−1 ◦α

)
(t) = t. Moreover, the iteration functions Fj(z)

are of orders at least j.

Proof. Consider R(z) := α−1(wz−p). The k-th order derivative of the composite function
(

f ◦R
)
(z) at the

point z = w1/p can be easily computed and is given by

dk

dzk

(
f ◦R

)
(z)
∣∣∣∣
z=w1/p

=
dn

dzn

[
w z−p

]1/p
∣∣∣∣
z=w1/p

=
(−1)k k!

wk/p , k = 1,2,3, . . . , j−1, . . . (4)

As we are dealing with derivatives of the composite function, this latter may also be computed based on the
Faà di Bruno’s formula [7,5, pp. 137-138], and, in this case we have:

dk

dzk

(
f ◦R

)
(z)
∣∣∣∣
z=w1/p

=
k

∑
µ=1

dµ f (t)
dtµ

∣∣∣∣
t=0

Bk,µ(r1,r2, . . . ,rk−µ+1) , k = 1,2,3, . . . , j−1, . . . (5)

where Bk,µ(r1,r2, . . . ,rk−µ+1) denotes the Bell polynomials [5, pp. 133-136], [18, Chapter 5] and

rσ =
dσ R(z)

dzσ

∣∣∣∣
z=w1/p

:=
dσ

dzσ

(
α−1(wz−p)

)∣∣∣∣
z=w1/p

, for σ = 1, . . . ,k−µ +1 and k = 1,2, . . . . (6)
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Likewise, the formula of Faà di Bruno permits to obtain an expression for the k-th order derivative of the
composite function

(
Tj−1 ◦R

)
(z) at the point z = w1/p and we have:

dk

dzk

(
Tj−1 ◦R

)
(z)
∣∣∣∣
z=w1/p

=
k

∑
µ=1

dµ Tj−1(t)
dtµ

∣∣∣∣
t=0

Bk,µ(r1,r2, . . . ,rk−µ+1) , k = 1,2,3, . . . , j−1, . . . (7)

where rσ (with σ = 1, . . . ,k−µ +1) are given by (6). Since

Tj−1(z) =
j−1

∑
ν=0

(
dν f (t)

dtν

∣∣∣∣
t=0

)
zν

ν!

we then have

dµ Tj−1(t)
dtµ

∣∣∣∣
t=0

=


dµ f (t)

dtµ

∣∣∣∣
t=0

, 0 6 µ 6 j−1

0 , µ > j

;

consequently (7) becomes

dk

dzk

(
Tj−1 ◦R

)
(z)
∣∣∣∣
z=w1/p

=
min(k, j−1)

∑
µ=1

dµ f (t)
dtµ

∣∣∣∣
t=0

Bk,µ(r1,r2, . . . ,rk−µ+1) , k = 1,2,3, . . . , j−1, . . . . (8)

The comparison between (5) and (8) ensures the equality

dk

dzk

(
Tj−1 ◦R

)
(z)
∣∣∣∣
z=w1/p

=
dk

dzk

(
f ◦R

)
(z)
∣∣∣∣
z=w1/p

for any k = 1,2, . . . , j−1

which, after (4), provides

dk

dzk

(
Tj−1 ◦R

)
(z)
∣∣∣∣
z=w1/p

=
(−1)k k!

wk/p for any k = 1,2, . . . , j−1

implying
dk

dzk Fj(z)
∣∣∣∣
z=w1/p

= 0 for any k = 1,2, . . . , j−1,

inasmuch as, according to the Leibniz formula for the product derivation, it holds

dk

dzk Fj(z)
∣∣∣∣
z=w1/p

=

(
z

dk
(
Tj−1 ◦R

)
dzk (z)+ k

dk−1
(
Tj−1 ◦R

)
dzk−1 (z)

)∣∣∣∣∣
z=w1/p

.

Finally, Theorem 1 allows to complete the proof.

Using similar arguments, it is straightforward that Theorem 2 can be extended to the non principal pth roots
of w. One important consequence of the previous result is that for any function α(z) satisfying the required
conditions, the sequence {zk}∞

k=0 defined by

zk+1 = zk Tj−1

[
α−1(wz−p

k )
]
,

converges, with order at least j, to a pth root of w, provided that an initial guess z0 sufficiently close to that root
is taken. Note that there are an infinity of possibilities for choosing α(z). For instance, for each a,b,c ∈ C, the
Möbius transformation

α(z) =
az+b
cz+b
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(with ab−bc ̸= 0) provides an important source of iteration functions. Some particular Möbius transformations
will be analyzed throughout the text. A list of illustrating examples of iteration functions thus generated is
discussed below, but first it shall be recalled that for any two complex numbers a and x the function (a+ z)−x

has a formal (binomial) series [5, p.37]:

(a+ z)−x = ∑
n>0

(−1)n (x)n
a−x−n zn

n!
, (9)

where the symbol (x)n denotes the Pochhammer symbol (also known as rising factorial) which is defined by

(x)0 = 1 and (x)n :=
n−1
∏

ν=0
(x+ν) = x(x+1) . . .(x+n−1) for any integer n > 1.

Example 1 Let f (z) = (1− z)1/p and Tj(z) be the Taylor polynomial of order j associated to f at z = 0. Since
α(z) = 1− z satisfies the conditions required in Theorem 2, one has the following family of iteration functions
of order j:

N j(z) = zTj−1(1−wz−p) (10)

= z
(
a0 +a1(1−wz−p)+ · · ·+a j−1(1−wz−p) j−1) ,

where j = 2,3, . . . and an =
1
n!

(
− 1

p

)
n
, for any n = 0, . . . , j−1. For the particular cases j = 2,3,

N2(z) = z
(

1− 1
p
(1−wz−p)

)
and

N3(z) = z
(

1− 1
p
(1−wz−p)+

1− p
2!p2 (1−wz−p)2

)
,

which have orders 2 and 3, respectively. It is to check that N2(z)≡ N(z) given in (2), that is, N2 is exactly the
Newton iteration for the pth root of w. Moreover, as it will be seen in Section 3, N j coincides with the Schröder
iteration of order j applied to the polynomial equation (1).

Example 2 If f (z) = 1/(1− z)1/p then

L j(z) = zTj−1(1−w−1zp) (11)

= z
(
a0 +a1(1−w−1zp)+ · · ·+a j−1(1−w−1zp) j−1) ,

where an =
1
n!

(
1
p

)
n
, for n = 0,1, . . . , j−1. This iteration function is similar to the one addressed firstly in [21],

and later on in [15] and [9]. The only difference is that our sequence zk+1 = L j(zk) converges toward a pth root
of w instead a pth root of w−1.

Example 3 We can also find non rational iteration functions for computing the principal pth root w1/p. One
example is F(z) = z

(
1+ 1

p log(wz−p)
)

, where log stands for the principal logarithm, which is generated by

f (z) = (ez)1/p = ez/p with j = 2. This iteration has the drawback of involving the computation of logarithms.
For this reason, it does not provide an effective method for pth roots.

For a given α(z) as in Theorem 2, the complex valued function

R(z) := α−1(wz−p)
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will play an important role in our analysis. When dealing with the sequence defined by

zk+1 = zk Tj−1

(
α−1(wz−p

k )
)
,

R(zk) can be seen as a residual, in the sense that it controls the error of the approximation

wz−p
k ≈ 1.

Indeed, assuming that, for a sufficiently large k, R(zk) = α−1(wz−p
k )≈ 0, the continuity of α−1 ensures that

wz−p
k ≈ α(0) = 1.

Residuals of iteration functions for pth roots have already appeared in the literature; see, for instance, [21], [15]
and [10]. Nevertheless, they have been treated separately as being associated to a particular iteration function.
Our approach here is new in the sense that we can give an unified definition that includes those residuals as
particular cases. The same holds for the recurrence relationship stated in the next lemma.

Lemma 1 Under the same assumptions and notations of Theorem 2 and for each k ∈ IN, the residual
R(zk) = α−1(wz−p

k ) fulfills

R(zk+1) = α−1
(

α(R(zk)) [Tj−1(R(zk))]
−p
)
.

Proof. The result follows from the identities

R(zk+1) = α−1(wz−p
k+1)

= α−1
(

w
[
zkTj−1

(
α−1(wz−p

k )
)]−p

)
= α−1

(
wz−p

k

[
Tj−1

(
α−1(wz−p

k )
)]−p

)
= α−1 (α(R(zk)) [Tj−1(R(zk))]

−p) .

3 The iteration functions N j

In this section we focus our attention on the iteration functions N j defined in (10). We start by proving that N j

is a Schröder iteration function associated to the polynomial equation zp −w = 0 (Lemma 2) and for j = 2,3
we define conditions over the initial guesses that guarantee the convergence to the right pth root.

In [20] Schröder constructed a family of prescribed order iteration functions for finding the simple roots of
a nonlinear equation g(z) = 0. These functions are defined by the expression

S j(z) = z+
j−1

∑
n=1

cn(z)[−g(z)]n,

where

cn(z) =
1
n!

[
1

g′(z)
d
dz

]n−1 1
g′(z)

(12)

and
[

1
g′(z)

d
dz

]k

:=
1

g′(z)
d
dz

([
1

g′(z)
d
dz

]k−1
)

for any k = 1,2, . . ..
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Lemma 2 Let N j be defined as in (10) and let S j be the Schröder iteration function associated to the polyno-
mial equation (1). Then

N j(z) = S j(z),

for all z ∈ C\{0}.

Proof. Let R(z) denote the residual associated to N j(z), that is,

R(z) = α−1 (wz−p)= 1−wz−p.

If g(z) = zp −w, then R(z) = g(z)/zp. In this case N j(z) becomes

N j(z) := z Tj−1(R(z)) = z
(

a0z+
a1z
zp g(z)+

a2z
(zp)2 [g(z)]

2 + · · ·+
a j−1z
(zp) j−1 [g(z)]

j−1
)

(13)

with an =
1
n!

(
− 1

p

)
n
, for any n = 0, . . . , j−1. On the other hand, proceeding by finite induction, one has

cn(z) =
(−1)n

n!

(
− 1

p

)
n

z
(zp)n , n = 0,1, . . . , j−1.

The comparison between (13) and the expression of S j yields the equalities

cn(z) = (−1)n anz
(zp)n , n = 0,1, . . . , j−1 ,

whence the result.

Theorem 2 (and also Lemma 2) confirms that, for each j, the iteration function N j(z) converges locally to a
root of the polynomial equation (1) with order j. Now, we analyze the residuals of the sequence generated by
N j,

zk+1 = N j(zk). (14)

For each k = 0,1,2, . . ., the residuals of (14) are given by

R(zk) = 1−wz−p
k .

By Lemma 1,
R(zk+1) = 1− (1−R(zk)) [Tj−1(R(zk))]

−p .

In order to find a condition on the residual R(z0) that ensures the convergence of (14) to a pth root of w, we seek
an upper bound of |R(zk+1)| in terms of |R(zk)|, which allows us to relate the absolute values of the residuals
of the successive terms of the sequence. This has been already done for the particular case of Newton’s method
( j = 2). We recall the result in the next theorem.

Theorem 3 [10,16] Consider the Newton sequence zk+1 = N2(zk) and the corresponding residuals R(zk). If

|R(z0)|= |1−wz−p
0 |< 1, (15)

then, for each k,
|R(zk+1)| ≤ |R(zk)|2 ≤ |R(z0)|2

k
.
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Our goal is to extend this result for j > 3. A proof for the case j = 3 is based on Theorem 4 and will be
presented in Corollary 1, however unfortunately we did not succeed to reach a proof for j > 4. The main reason
for this is connected with the requirement of the computation of the coefficients of the Taylor series expansion
for the residual function

R j(z; p) := 1− (1− z) [Tj−1(z)]
−p ,

whose expressions become more complicate as j increases. For j = 2 there is a nice and simple expression for
the Taylor coefficients of R2 (see [10,16]), while the case j = 3 requires more laborious arguments, as it can
be followed in Theorem 4.

Consider the 2-degree Taylor polynomial

T2(z) = 1− 1
p

z− p−1
2p2 z2 (16)

associated to the function f (z) = (1− z)1/p and the residual function

R3(z; p) = 1− (1− z)
(

T2(z)
)−p

. (17)

Let us consider the power series expansion of the two rational functions (T2(·))−p and R3(·; p), denoted by

(T2(z))
−p =

∞

∑
ν=0

c(p)
ν zν , R3(z; p) =

∞

∑
ν=0

d(p)
ν zν .

The roots of T2(z; p) are

z1 =−
p
(
1+

√
2p−1

)
p−1

, z2 =−
p
(
1−

√
2p−1

)
p−1

which are real and lie outside the unit circle. Consequently, the two rational functions (T2(z))
−p and R3(z; p)

are analytic inside the unit circle (i.e., for any z such that |z|< 1).

Theorem 4 The following statements hold:

(i) The coefficients d(p)
ν = 0 whenever ν = 0,1,2, and d(p)

ν > 0 for any ν = 3,4, . . ..

(ii) The series
∞

∑
ν=0

c(p)
ν is convergent.

(iii)
∞

∑
ν=0

d(p)
ν is convergent and

∞

∑
ν=0

d(p)
ν = 1.

(iv) The series
∞

∑
ν=0

c(p)
ν zν is absolutely convergent for any z such that |z|< 1.

(v) The series
∞

∑
ν=0

d(p)
ν zν is absolutely convergent for any z such that |z|< 1.

Proof. We begin by deriving explicit expressions for c(p)
ν and d(p)

ν , ν ∈ IN, in order to prove statements (i) and
(ii). At last we will show that (ii) provides (iii). The statements (iv) and (v) are a direct consequence of (ii) and
(iii), on the basis of Abel’s convergence theorem for formal power series.
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From its definition, the polynomial T2(z; p) may be written as T2(z; p) = T1(z; p)+b2 z2 with b2 =
−(p−1)

2 p2 ,
and on account of (9), we successively have(

T2(z)
)−p

=
(

T1(z)+b2z2
)−p

= ∑
n>0

(−1)n(p)n

n!

(
T1(z)

)−p−n(
b2z2

)n

= ∑
n>0

(p−1)n(p)n

n!2n p2n z2n
(

T1(z)
)−p−n

.

According to (9), it follows(
T1(z)

)−p−n
=
(

1− 1
p

z
)−p−n

= ∑
ν>0

(−1)ν(p+n)ν
ν!

(−1/p)ν zν = ∑
ν>0

(p+n)ν
ν! pν zν

whence (
T2(z)

)−p
= ∑

n>0

(p−1)n(p)n

n!2n p2n ∑
ν>0

(p+n)ν
ν! pν zν+2n . (18)

Now, based on the equality,

∑
n>0

∑
ν>0

A(n,ν) = ∑
ν>0

∑
n>0

A(n,ν) = ∑
ν>0

⌊ν/2⌋

∑
n=0

A(n,ν −2n),

with ⌊x⌋ denoting the floor function of x, that is, the highest integer lower than or equal to x, the relation (18)
becomes like(

T2(z)
)−p

= ∑
ν>0

⌊ν/2⌋

∑
n=0

(p)n (p+n)ν−2n (p−1)n

n!(ν −2n)! pν 2n zν = ∑
ν>0

⌊ν/2⌋

∑
n=0

(p)ν−n (p−1)n

n!(ν −2n)! pν 2n zν ,

yielding

c(p)
ν =

⌊ν/2⌋

∑
n=0

(p)ν−n (p−1)n

n!(ν −2n)! pν 2n . (19)

Clearly, we have c(p)
0 = c(p)

1 = c(p)
2 = 1. Inasmuch as d(p)

0 = 0 and

d(p)
ν+1 = c(p)

ν − c(p)
ν+1 , ν > 2 (20)

it subsequently follows that d(p)
1 = d(p)

2 = 0. With a few more computations, we derive the expression for d(p)
ν

whenever ν > 3:

d(p)
ν+1 =

⌊ ν
2 ⌋

∑
n=0

(p)ν−n (p−1)n

n!(ν −2n)! pν 2n −
⌊ ν+1

2 ⌋

∑
n=0

(p)ν+1−n (p−1)n

n!(ν +1−2n)! pν+1 2n

=
⌊ ν+1

2 ⌋

∑
n=0

(p)ν+1−n (p−1)n

n!(ν +1−2n)! pν+1 2n
((ν −2n+1)p− (p+ν −n))

(p+ν −n)

whence

d(p)
ν+1 =

⌊ ν+1
2 ⌋

∑
n=0

(p)ν+1−n (p−1)n

n!(ν +1−2n)! pν+1 2n

(
(ν −2n)(p−1)−n

)
(p+ν −n)

, ν > 2 . (21)
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From (21) and on account of the fact that p > 2, we successively have

d(p)
ν > 1

pν

⌊ ν
2 ⌋

∑
n=0

(1)ν−n

n! (ν −2n)! 2n
ν −1−3n

p+ν +1−n

=
1
pν

⌊ ν
2 ⌋

∑
n=0

(
ν −n

n

)
(ν −1−3n)

2n(p+ν +1−n)

> 1
pν (p+ν +1)

⌊ ν
2 ⌋

∑
n=0

(ν −1−3n)
2n

=
1

pν (p+ν +1)

[
2ν −8+2−k (−ν +3k+7)

]
k=⌊ ν

2 ⌋

whence (ii) holds.
On the other hand, and again based on the fact that p > 2, we are able to establish the inequality

(p)ν−n (p−1)n

pν =

(
ν−n−1

∏
µ=0

p+µ
p

)(
p−1

p

)n

6
ν−n−1

∏
µ=0

(
1+

µ
2

)
=

(ν +1−n)!
2ν−n

and from the definition of (19), it follows

0 < c(p)
ν 6 (ν +2)(ν +4)

2ν+3

because

c(p)
ν 6

⌊ν/2⌋

∑
n=0

(ν +1−n)!
n!(ν −2n)! 2ν =

1
2ν

⌊ν/2⌋

∑
n=0

(
ν +1−n

n+1

)
(n+1)6 1

2ν

⌊ν/2⌋

∑
n=0

(n+1) .

Consequently, the series of nonnegative terms
∞

∑
ν=0

c(p)
ν is convergent because of the convergence of the series

∞

∑
ν=0

(ν +2)(ν +4)
2ν+3 .

The statement (ii) provides statement (iii), as we show below. Indeed from (20), the sequence of the partial

sums of the series
∞
∑

ν=3
d(p)

ν is given by

D(p)
N =

N

∑
ν=3

d(p)
ν = c(p)

2 − c(p)
N = 1− c(p)

N .

Since
∞
∑

ν=0
c(p)

ν is a convergent series, necessarily, we have

lim
N→∞

c(p)
N = 0 ,

yielding (iii).

On account of the well known Abel’s theorem on power series - if the series
∞
∑

n=0
an converges, then the

power series
∞
∑

n=0
an zn converges absolutely for |z| < 1 - the statements (iv) and (v) come as consequence of

statements (ii) and (iii), respectively.
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Corollary 1 Consider the residual function R(z) = 1−wz−p and let zk be defined by

zk+1 = N3(zk).

If |R(z0)|= |1−wz−p
0 |< 1, then

|R(zk+1)| ≤ |R(zk)|3 ≤ |R(z0)|3
k
,

for all k = 1,2, . . ..

Proof. From Theorem 4 we have

|R(z1)| =
∣∣∣∣1− (1−R(z0))

(
T2(R(z0))

)−p
∣∣∣∣

=

∣∣∣∣∣ ∞

∑
ν=0

d(p)
ν (R(z0))

ν

∣∣∣∣∣
≤ |R(z0)|3

∞

∑
ν=0

d(p)
ν+3 |R(z0)|ν

≤ |R(z0)|3
∞

∑
ν=0

d(p)
ν+3

= |R(z0)|3.

Now the result follows by induction.

From Theorem 2 we know that if z0 is sufficiently close to a pth root of w, then the sequence (14) converges
to that pth root with order j. The following result states a stronger convergence result for j = 2,3, because it
gives a specific condition on the initial guess.

Lemma 3 Let R(z) = 1−wz−p. If z0 is such that |R(z0)|= |1−wz−p
0 |< 1, then, for j = 2,3, the sequence (14)

converges to a pth root of w with order of convergence j.

Proof. Let s be a pth root of w and assume that the sequence (14) converges to s. We know that R(zk)−R(s) =
R(zk) because R(s) = 0. The derivative of the residual at s can be written as

µ := R′(s) = lim
k→∞

R(zk)−R(s)
zk − s

.

Thus for each ε > 0 there exists a positive integer k0 such that for any k ≥ k0,∣∣∣∣R(zk)−R(s)
zk − s

−µ
∣∣∣∣< ε

and then
|R(zk)−R(s)|− |µ(zk − s)| ≤ |R(zk)−R(s)−µ(zk − s)|< ε|zk − s|.

Hence the following inequality holds:

|R(zk)−R(s)|< (ε + |µ|)|zk − s|,

or equivalently
|R(zk)−R(s)|< η1|zk − s|, (22)
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with η1 = ε + |µ|. Since
1

R′(s)
= lim

k→∞

zk − s
R(zk)−R(s)

,

a similar argument lead us to conclude that for k ≥ k1, for some k1, there is η2 > 0 such that

η2|zk − s|< |R(zk)−R(s)| . (23)

From (22), (23) and Corollary 1 it follows that

|zk+1 − s| ≤ 1
η2

|R(zk+1)−R(s)|

=
1

η2
|R(zk+1)|

≤ 1
η2

|R(zk)| j

≤ 1
η2

(η1 |zk − s|) j

=
η j

1
η2

|zk − s| j

which shows that (14), with j = 2,3 is of order j.

Lemma 4 Let θ = arg(w) ∈]−π, π[ and let S = {z ∈ C : |1−wz−p|< 1}. Then

S = S0 ∪S1 ∪·· ·∪Sp−1 (24)

where, for each n = 0,1, . . . , p−1,

Sn =

{
z ∈ S :

(2n−1)π +θ
p

< arg(z)<
(2n+1)π +θ

p

}
is a connected set and Sn ∩Sℓ = ϕ , for ℓ ̸= n.

Proof. Firstly we prove that, for each n, the points of the ray emerging from the origin

Rn =

{
z ∈ C : arg(z) =

(2n−1)π +θ
p

}
(25)

are not in S . If z ∈ Rn then

z = ρ1 e
(2n−1)π+θ

p i,

for some nonnegative ρ1. Let w = ρeθ i be the polar decomposition of w. Since

|1−wz−p| =

∣∣∣∣∣1−ρeθ i
(

ρ1e
(2n−1)π+θ

p i
)−p

∣∣∣∣∣
= |1+ρρ−p

1 |
≥ 1,

it follows that z /∈ S , which shows that (24) holds. The sets Sn are disjoint by definition. Now we show that
each Sn is a connected set. Let Pn(z) be the complex valued function which assigns to each z ∈ C \ IR−

0 the
unique pth root of z that satisfies

(2n−1)π
p

< arg(z)<
(2n+1)π

p
.
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By definition, we have [Pn(z)]p = z. Consider the function

gn(z) =
w1/p

Pn(z)

which is continuous in C\ IR−
0 . If

C = {z ∈ C : |1− z|< 1},

it is not hard to show that, for each n, gn(C\{0}) =Sn. Therefore Sn is a connected set because it is the image
of the connected set C \{0} by a continuous function.

Theorem 5 Let Sn be as in Lemma 4. If z0 ∈ Sn then for j = 2,3 the sequence (14) converges with order j to
the unique pth root of w which lies on the wedge

Wn =

{
z ∈ C :

(2n−1)π +θ
p

< arg(z)<
(2n+1)π +θ

p

}
(26)

Proof. Let j = 2,3. By Theorem 3 and Corollary 1, N j takes S into S . Moreover N j(Sn)⊂ Sℓ, for some ℓ,
because all the sets in the decomposition (24) are disjoint and each Sn is connected. Let wn be the pth root
of w which belongs to Wn. It is easy to see that wn ∈ Sn. Since N j(wn) = wn ∈ Sn, the set N j(Sn) must lie
entirely in Sn, for all n, and consequently, for z0 ∈ Sn, zk ∈ Sn for all n. By Corollary 1, zk converges to wn.
Thanks to Theorem 3 and Lemma 3, the convergence is of order j.

Corollary 2 Let S0 be the connected component of S as in (24). If z0 ∈ S0 for j = 2,3 the sequence (14)
converges to the principal pth root of w, w1/p, with order j.

Proof. According to Theorem 5, one needs to show that w1/p lies in S0. We know that that |1−w(w1/p)−p|=
0 < 1 and that the argument of the principal pth root of w is θ/p which satisfies

−π
p
<

θ
p
<

π
p
.

From these inequalities we conclude that

−π +θ
p

<
−π +θ

2p
<

θ
p
<

π +θ
2p

<
π +θ

p
,

which shows that w1/p ∈ S0.

If one is interested in taking real numbers as starting values, next corollary states the conditions that need
to be satisfied.

Corollary 3 Assume that w is such that ℜ(w) > 0, where ℜ(w) denotes the real part of w and let z0 be a
positive real number such that

z0 >

(
|w|2

2ℜ(w)

)1/p

.

Then for j = 2,3 the sequence (14) converges with order j to the principal pth root of w.
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Fig. 1 Regions of convergence defined by the residuals of N j (top left) and basins of attraction of the 5-roots of w = 1+ i for N2,
N3 and N4.

Proof. The condition |1−wz−p
0 |< 1 can be rewritten in the form

|zp
0 −w|< zp

0 .

This means that the positive real number zp
0 must lie on the open half plane that contains w and which is defined

by the perpendicular bisector of the segment joining w with the origin. Since ℜ(w)> 0, some calculations lead
us to conclude that this half plane contains the part of real axis corresponding to real numbers greater than
|w|2

2ℜ(w) . Thus

zp
0 >

|w|2

2ℜ(w)
,

and so the set {
z0 ∈ IR : z0 >

(
|w|2

2ℜ(w)

)1/p
}

is entirely contained in S0 defined in (24).

In Figure 1, the top-left plot displays the sets S0, . . . ,S4 with different colors together with the rays Rn

defined in (25), for w = 1+ i and p = 5. For each n, Sn corresponds to a specific 5th root of w and the previous
results guarantee that, at least for j = 2,3, it is contained in the basin of attraction of that pth root. This latter
fact is illustrated in the remaining plots, where the basins of attraction of each 5th root of w were determined
experimentally in Matlab. More precisely, a point z0 in the rectangle is marked with the same color of the
5th root 5

√
w of w, whenever |z50 − 5

√
w| < 10−4. We have also overlapped the boundaries of the regions of
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convergence on the basins of attraction for N2, N3 and N4. Black color is assigned to points that are not in Sn

(top-left) or that do not belong to the basins of attraction of the pth roots of w (remaining plots).
While the only fixed points of N2 are the pth roots of w, the iterations N3 and N4 have fixed points other

than the pth roots of w. Since these extra fixed points are in general repelling, they do belong to the Julia sets
of N j and so contribute to change the shape of the boundaries. In the plots for N3 and N4, we can see new sets
of petals which are typical in iteration functions of orders greater than 2. We refer the reader to [23] for more
details about the Julia sets of N j.

The plot corresponding to N4 (bottom right) suggests that the condition

|R(zk)|= |1−wz−p
0 |< 1

also guarantees the convergence of the sequence

zk+1 = N4(zk)

to a pth root of w. So assuming that results similar to the ones in Theorem 3 and Corollary 1 are stated for
j ≥ 4, it is easy to conclude that lemmas 3 and 4, Theorem 5 and corollaries 2 and 3 also hold for j ≥ 4.

4 The iteration functions L j

The analysis of the iterations functions L j defined in (11) is the topic of this section. We proceed as in the
previous section. For the particular cases j = 2,3,4, L j is defined by

L2(z) = z
(

1+
1
p
(1−w−1zp)

)
L3(z) = z

(
1+

1
p
(1−w−1zp)+

1+ p
2!p2 (1−w−1zp)2

)
L4(z) = z

(
1+

1
p
(1−w−1zp)+

1+ p
2!p2 (1−w−1zp)2 +

(1+ p)(1+2p)
3!p3 (1−w−1zp)3

)
.

The residuals associated to the sequence
zk+1 = L j(zk) (27)

are given by R(zk) = 1−w−1zp
k . By Lemma 1 these residuals satisfy the following relationship:

R(zk+1) = 1− (1−R(zk)) [Tj−1(R(zk))]
p ,

where Tj−1 is given as in Example 2. An important convergence result involving the sequence (27) and its
residuals is stated in the following theorem. The proof can be found in [21,15].

Lemma 5 Let R(zk) denotes the residual of zk defined in (27). If |R(z0)|= |1−w−1zp
0 |< 1, then

|R(zk+1)| ≤ |R(zk)| j ≤ |R(z0)| jk ,

for all k and j. Moreover, the sequence (27) converges to a pth root of w.

There are two important issues not addressed in [21,15]. The first one is to show that (27) has order of
convergence j (according to the definition stated in the Introduction) and the second one is to determine for
which pth root the sequence converges. These and other issues will be analyzed in the following results. The
proofs will be omitted because they are similar to the ones derived in Section 3 for N j.
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Lemma 6 If z0 is such that |R(z0)|= |1−w−1zp
0 |< 1, then the sequence (27) converges to a pth root of w with

order of convergence j.

Lemma 7 Let θ = arg(w) ∈]−π, π[ and let T = {z ∈ C : |1−w−1zp|< 1}. Then

T = T0 ∪T1 ∪·· ·∪Tp−1 (28)

where, for each n = 0,1, . . . , p−1,

Tn =

{
z ∈ T :

(2n−1)π +θ
p

< arg(z)<
(2n+1)π +θ

p

}

is a connected set and Tn ∩Tℓ = ϕ , for ℓ ̸= n.

Theorem 6 Let Tn be as in Lemma 7. If z0 ∈ Tn then the sequence (27) converges with order j to the unique
pth root of w which lies on the wedge

Wn =

{
z ∈ C :

(2n−1)π +θ
p

< arg(z)<
(2n+1)π +θ

p

}
.

Corollary 4 Let T0 be the connected component of T as in (28). If z0 ∈ T0 then zk converges with order j to
the principal pth root of w, w1/p.

Corollary 5 Assume that w is such that ℜ(w)> 0 and let z0 be a positive real number such that

z0 < (2ℜ(w))1/p .

Then zk converges with order j to the principal pth root of w.

Figure 2 displays Matlab generated plots to compare the domains of convergence defined by the sets Tn

in (28) with the basins of attractions of the 5th roots of w = 1+ i. The top-left plot shows the sets Tn together
with the rays Rn defined in (25). The remaining plots include the basins of attraction of the 5th roots of w with
respect to the iteration functions L2, L3 and L4 combined with the boundaries of the sets Tn. We can observe
that the iteration functions L j have much smaller domains of convergence than N j. Although this can be seen
as a disadvantage, it turns out that iterations L j have been implemented successfully for computing matrix pth
roots [15,9]. The main reason lies on the fact that each iterate of (27) does not involve the computation of the
inverse of zk. When working with matrices this contributes to reduce the computational cost of the method and
eventually to improve the accuracy.

Similarly to the iteration functions N j, it happens that for j ≥ 3, L j has extra fixed points that are not pth
roots of w. In general these fixed points are repelling and are responsible for the complicated structure of the
Julia sets of L j, by inserting new sets of petals.
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Fig. 2 Regions of convergence defined by the residuals of L j (top left) and basins of attraction of the 5th roots of w = 1+ i for L2,
L3 and L4.

5 More iteration functions

In this section we consider more iteration functions generated by the functions of the form

f (z) =
(

az+b
cz+b

)1/p

, (29)

with ab−bc ̸= 0. Let Tj denotes the j-degree Taylor polynomial of f . For each j the iteration function

Fj(z) = zTj−1

(
b(wz−p −1)
a− cwz−p

)
has order j. The 2-degree Taylor polynomial of f is

T2(z) = 1+
a− c
bp

z+
(a− c)2 + p(c2 −a2)

2b2 p2 z2.

If a and c are related by
a
c
=

1+ p
1− p

, (30)

and b ̸= 0, then the coefficient of z2 in T2 vanishes. This means that we have an iteration of order 3 defined
upon a 1-degree Taylor polynomial, which has a simpler expression. Thus assuming that a = 1+ p, b = 1 and
c = 1− p, the function

h(z) = [(1+(p+1)z)/(1+(1− p)z)]1/p,
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gives rise to the following 3-order iteration function

H3(z) = zT1

(
w− zp

(p+1)zp +(p−1)w

)
= z

(p−1)zp +(p+1)w
(p+1)zp +(p−1)w

(31)

which is exactly the Halley iteration H(z) mentioned in (3). We note that other choices for a, b and c satisfy-
ing (30) lead to the same iteration function. This optimal property of Halley iteration is not shared by other
iterations generated by functions of the form (29), because the coefficient of z2 in the corresponding Taylor
polynomial does not vanish. However, several tests we carried out showed that the corresponding iteration
functions perform better as the numerator of the coefficient of z2 becomes close to zero, that is, when

a
c
≈ 1+ p

1− p
. (32)

Another function of the form (29) that will be analyzed is

m(z) =
(

1+ z
1− z

)1/p

,

which satisfies (32) for p sufficiently large. The corresponding iteration functions are

M j(z) = zTj−1

(
w− zp

w+ zp

)
(33)

For j = 2, we have

M2(z) = z
(
(p−2)zp +(p+2)w

pzp + pw

)
.

Consider also the iteration functions generated by h,

H j(z) = zTj−1

(
p(w− zp)

(p+1)zp +(p−1)w

)
. (34)

and the sequences generated by the recursions

mk+1 = M j(mk), (35)

and
hk+1 = H j(hk). (36)

According to Lemma 1 the following residual recurrences hold:

R(mk+1) =
(1+R(mk))− (1−R(mk)) [Tj−1(R(mk))]

p

(1+R(mk))+(1−R(mk)) [Tj−1(R(mk))]
p (37)

and

R(hk+1) =

(
1+(p+1)R(hk)

)
−
(
(1− p)R(hk)+1

)
[Tj−1(R(hk))]

p

(p−1)
(

1+(p+1)R(hk)
)
+(p+1)

(
1+(1− p)R(hk)

)
[Tj−1(R(hk))]

p
. (38)

Consider the following regions defined by the residuals of the sequences (35) and (36):

M =

{
m0 ∈ C : |R(m0)|=

∣∣∣∣w−mp
0

w+mp
0

∣∣∣∣< 1
}
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and

H =

{
h0 ∈ C : |R(h0)|=

∣∣∣∣ w−hp
0

(p−1)w+(p+1)hp
0

∣∣∣∣< 1
}
.

A question that arises now is to know if M (resp. H ) defines a region of convergence for (35) (resp. (36)),
that is, if m0 ∈ M (resp., h0 ∈ H ) do the sequence (35) (resp. (36)) converge to a pth root of w with order
j? This seems to be a very hard issue because of the complicated expressions of the residuals recurrences (37)
and (38). This means that we cannot expect to state nice convergence results like the ones in Corollary 1 and
Lemma 5. However, we proved the following convergence result which concerns to the weaker case when (35)
is restricted to real numbers and j = 2.

Theorem 7 Consider the real version of the iterative formula (35), with j = 2,

mk+1 =
mk

p

(
(p−2)mp

k +(p+2)a
mp

k +a

)
,

where a is a positive real number. If m0 is a positive real number then the sequence {mk}∞
k=0 converges to a1/p

with order of convergence at least 2.

Proof. Firstly, we define the real function of real variable (see (37))

g(x) =
(1+ x)− (1− x)(1+2/p)p

(1+ x)+(1− x)(1+2/p)p

and show that
|g(x)|< x2,

for all 0 < x < 1, which is equivalent to
g(x)< x2 (39)

and
− x2 < g(x). (40)

Let 0 < x < 1. Since
(1+2/p)p = a0 +a1x+a2x2 + · · ·+apxp,

where an =
( p

p−n

)( 2
p

)n
, performing some calculations it is straightforward to conclude that the following

equivalences hold:

g(x)< x2 ⇔ (1+ x)2 − (1+ x2)(1+2/p)p < 0

⇔ −a2x2 −

(
p

∑
n=3

(an +an−2)xn

)
−ap−1xp+1 −apxp+2 < 0. (41)

We can easily observe that (41) holds and so (39) follows. To prove (40), we note that

− x2 < g(x) ⇔ (1+ x2)− (1− x)2(1+2/p)p > 0

⇔ (2a1 −a2)x2 +(−a3 +2a2 −a1)x3 +

(
p

∑
n=4

(−an +2an−1 −an−2)xn

)
+

+(2ap −ap−1)xp+1 −apxp+2 > 0. (42)



20

Let bn denote the coefficient of xn (n = 2,3, . . . , p+2) in (42). It is easy to show that b2 and b3 are nonnegative,
that is, b2 = 2a1 − a2 ≥ 0 and b3 = −a3 + 2a2 − a1 ≥ 0. Next we show that the remaining coefficients are
negative. Indeed, for n = 4, . . . , p, we have that

bn = −an +2an−1 −an−2

=

(
2
p

)n−2 (p−1) . . .(p−n+3)
pn(n−1)(n−2)!

×

×
(
(5n−n2 −4)p2 +(−4n2 +16n−12)p+(−4n2 +12n−8)

)
< 0,

bp+1 = 2ap −ap−1 < 0

bp+2 = −ap < 0.

Since
b2 +b3 + · · ·+bp+1 +bp+2 = a1 > 0,

it follows that
b2 +b3 >−b4 − . . .−bp+1 −bp+2.

Thus

b2x2 +b3x3 > b2x3 +b3x3

> −b4x3 − . . .−bp+1x3 −bp+2x3

> −b4x4 − . . .−bp+1xp+1 −bp+2xp+2

and so
b2x2 +b3x3 +b4x4 + . . .+bp+1xp+1 +bp+2xp+2 > 0,

which proves (42) and consequently (40). Since |R(m0)| = |(a − mp
0)/(a + mp

0)| < 1 for each positive m0,
proceeding as in the proof of Corollary 1 the result follows.

We have compared experimentally the region M (resp. H ) with the basins of attraction of the 5th roots
of w = 1+ i corresponding to the iteration function M2 (resp., H3). The pictures are displayed in Figure 3.
Comparing top-left and top-right plots we can observe that the region M apparently defines a convergence
region for M2, where starting values belonging to a given sector lead to convergence for the 5th root lying
exactly on that sector. However, this does not seem to happen with the region H for H3, which suggests that
the residuals considered for H j may not be the most appropriate. We recall that in [10] (and also in [17]) a
different residual was proposed to study the convergence of Halley’s method.

Another interesting fact we can see in Figure 3 is the similarity between the patterns exhibited by the basins
of attraction for the iterations M2 and H3. Contrarily to the basins of attraction for N j and L j, there are no black
regions and so it may happen that both M2 and H3 always converge to a root of w, for any nonzero starting
value. We note that both iteration functions have 0 and the pth roots of w as fixed points, though 0 is a repelling
fixed point.

6 Numerical examples

We have implemented the iterations functions N2, L2, M2, with order of convergence 2, and N3, L3 and H3 with
order of convergence 3 to illustrate the computation of the pth roots of some particular complex numbers. For
any k, the error |zk −w1/p| is displayed in each entry of the tables. All the tests were performed in Matlab using
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Fig. 3 Region M (top-left), basins of attractions of the 5th roots of w = 1+ i for M2 (top-right), region H (bottom-left) and basins
of attractions of the 5th roots of w for H3 (bottom-right).

variable precision arithmetic with 1000 significant decimal digits. Table 1 reports on the principal 5th root of
w = 1+ i, taking z0 = 1 as starting value. The residuals of z0 are

|1−wz−5
0 |= 1

for iterations N2 and N3 and
|1−w−1z5

0| ≈ 0.7

for L2 and L3. Although the residuals of N2 and N3 do not satisfy the requirements of Corollary 2, the conver-
gence to the principal 5-th root of w occurs. Residuals of the starting value for M2 and H3 are respectively∣∣∣∣w− z5

0

w+ z5
0

∣∣∣∣≈ 0.4

and ∣∣∣∣5(w− z5
0)

6z5
0 +4w

∣∣∣∣≈ 0.5.

Table 2 illustrates the computation of a non principal 8th root of w =−1+2i. We have taken z0 =−1+0.4i as
the initial guess and computed the 8th root of w, −0.9535...+ 0.5600...i, that lie on the wedge W4 defined in
(26). The residuals of z0 have absolute values less than 1 for the iterations M2 and H2, and between 1 and 2 for
the other iterations. Finally, Table 3 shows the application of the iterations to the particular case of the real pth
root of a positive real number, with p = 11, w = 29 and z0 = 1.3. All the residuals of z0 have absolute values
less than 1.
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k error N2 error L2 error M2 error N3 error L3 error H3

1 0.669...×10−1 0.793...×10−1 0.227...×10−1 0.387...×10−1 0.421...×10−1 0.114...×10−1

2 0.923...×10−2 0.182...×10−1 0.221...×10−3 0.272...×10−3 0.800...×10−3 0.255...×10−5

3 0.158...×10−3 0.952...×10−3 0.229...×10−7 0.106...×10−9 0.491...×10−8 0.290...×10−16

4 0.469...×10−7 0.253...×10−5 0.245...×10−15 0.628...×10−29 0.113...×10−23 0.426...×10−49

5 0.411...×10−14 0.180...×10−10 0.280...×10−31 0.129...×10−86 0.140...×10−70 0.134...×10−147

Table 1 Values of the error |zk − (1+ i)1/5|, with z0 = 1

k error N2 error L2 error M2 error N3 error L3 error H3

1 0.220...×100 0.240...×100 0.144...×100 0.250...×100 0.260...×100 0.133...×100

2 0.306...×100 0.309...×100 0.646...×10−2 0.885...×100 0.129...×101 0.100...×10−1

3 0.171...×100 0.650...×100 0.199...×10−4 0.531...×100 0.729...×102 0.434...×10−5

4 0.755...×10−1 0.236...×101 0.180...×10−9 0.254...×100 0.676...×1046 0.353...×10−15

5 0.196...×10−1 0.184...×103 0.147...×10−19 0.684...×10−1 inf 0.189...×10−45

Table 2 Values of the error |zk − (−0.9535...+0.5600...i)|, with p = 8, w = 1−2i and z0 =−1+0.4i

k error N2 error L2 error M2 error N3 error L3 error H3

1 0.149...×10−1 0.129...×10−1 0.233...×10−2 0.561...×10−2 0.358...×10−2 0.111...×10−2

2 0.784...×10−3 0.722...×10−3 0.207...×10−5 0.348...×10−5 0.112...×10−5 0.745...×10−8

3 0.225...×10−5 0.230...×10−5 0.159...×10−11 0.803...×10−15 0.359...×10−16 0.224...×10−23

4 0.187...×10−10 0.234...×10−10 0.933...×10−24 0.985...×10−44 0.115...×10−47 0.616...×10−70

5 0.129...×10−20 0.242...×10−20 0.320...×10−48 0.181...×10−130 0.384...×10−142 0.126...×10−209

Table 3 Values of the error |zk −291/11|, with z0 = 1.3

One important conclusion we can extract from the tables is that, among the iteration functions of order
2, M2 performs much better than N2 and L2. It is less sensitive to the choice of the starting values and the
convergence is faster. Our tests also confirm that Halley’s method is a very good choice for computing pth
roots.

7 Conclusion

We have presented a new method to generate higher–order iteration functions for computing the pth roots of
a complex number. Among the infinitely many iteration functions that can be derived by this method, we can
find well known iteration functions such as Newton, Halley and Schröder iterations. Some iteration functions
not addressed previously in the literature can also be derived. Important convergence results that shed light
on the problem of choosing an appropriated initial guess were proved as well. Our work raises a considerable
number of questions that still need to be answered. For example, one needs to investigate if Corollary 1 can
be extended to any j and to study the convergence behavior of the sequences (35). The complexity of the
associated calculations compelled us to leave such study for a future work.
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