
Computing Maximal Error-detecting Capabilities and Distances
of Regular Languages1

Stavros Konstantinidis† and Pedro V. Silva‡

†Department of Mathematics and Computing Science
Saint Mary’s University

Halifax, Nova Scotia, B3H 3C3 Canada
s.konstantinidis@smu.ca

‡Centro de Matemática, Faculdade de Ciências
Universidade do Porto – R. Campo Alegre 687

4169-007 Porto, Portugal
pvsilva@fc.up.pt

Abstract. A (combinatorial) channel consists of pairs of words representing all possible input-
output channel situations. In a past paper, we formalized the intuitive concept of “largest amount
of errors” detectable by a given language L, by defining the maximal error-detecting capabilities of L
with respect to a given class of channels, and we showed how to compute all maximal error-detecting
capabilities (channels) of a given regular language with respect to the class of rational channels and
a class of channels involving only the substitution-error type. In this paper we resolve the problem
for channels involving errors of any combination of the basic types substitution, insertion, deletion.
Moreover, we consider the problem of finding the inverses of these channels, in view of the fact that
L is error-detecting for γ if and only if it is error-detecting for the inverse of γ. We also discuss a
natural method of reducing the problem of computing (inner) distances of a given regular language
L to the problem of computing maximal error-detecting capabilities of L.

Key words: algorithm, automaton, combinatorial channel, edit string, error detection, maximal,
regular language, string distance.

1 Introduction

A (combinatorial) channel consists of pairs of words describing all input-output situations permitted
by the channel. The fact that (w, z) is in the channel means that the word z can be received via the
channel when the word w is used as input. Then, if w 6= z, we say that z contains errors, or that
w was received with errors. A language L is error-detecting for some channel γ, [6], if there is no
pair (w, z) in the channel such that w 6= z and both w and z are in Lλ; that is, the channel cannot
transform a word of Lλ into a different word of Lλ. This fact allows one to detect that a received
word z contains errors exactly when z is not in Lλ. Here λ is the empty word and Lλ = L ∪ {λ}.

An error model is a set C of channels. Intuitively, C contains the possible channels that appear
to model the error situations arising in some application where information needs to be transmitted
or stored. In [8] we introduced the concept of maximal error-detecting capability of a language L,
with respect to a certain error model C. This is a channel γ in C such that L is error-detecting for γ
and L is not error-detecting for γ′, for any channel γ′ in C that properly contains γ. In [8] we posed
the question of computing the maximal error-detecting capabilities of a given regular language for

1Research supported by (i) a Discovery Research Grant of NSERC, Canada, and (ii) Project ASA
(PTDC/MAT/65481/2006) and C.M.U.P., financed by F.C.T. (Portugal) through the programmes POCTI and POSI,
with national and European Community structural funds.

1

various error models, including the rational channels as well as various models of SID channels.
Rational channels are exactly those realized by finite transducers. Informally, an SID channel is
specified by an expression of the form τ(m, l), where τ is an error type and m, l are nonnegative
integers with m < l. This channel consists of all pairs (w, z) of words such that z can result if we
apply at most m errors of type τ in any segment of w of length l. An error type is an expression in

{σ, ι, δ, σ ⊙ ι, σ ⊙ δ, ι ⊙ δ, σ ⊙ ι ⊙ δ}

The three simple error types σ, ι, δ denote substitutions, insertions, and deletions, respectively. The
symbol ⊙ is used simply as a connective for the simpler types. In [8] we showed how to compute
all maximal error-detecting capabilities of a given regular language with respect to the error-model

Cτ = {τ(m, l) : for any m and l with 0 ≤ m < l}

when τ = σ, and we left open the problem when τ 6= σ. In this paper we settle this problem.
In doing so, we also settle all containment relationships between any two channels τ(m1, l1) and
τ(m2, l2) and, in particular, we show that two such channels are equal if and only if m1 = m2 and
l1 = l2 (for any error type τ).

A consequence of the above result is that the SID-maximal error-detecting capabilities of a
given regular language L are computable as well, that is, the maximal error-detecting capabilities
of L with respect to the error model

SID = {τ(m, l) : for any error type τ and m, l with 0 ≤ m < l}.

We also consider the problem of finding the inverses of channels τ(m, l), in view of the fact that
L is error-detecting for a channel γ if and only if it is error-detecting for the inverse of γ. Counter
to one’s intuition, we show that the channels (ι⊙ δ)(m, l) and (σ ⊙ ι⊙ δ)(m, l) are not symmetric,
and only the inverses of ι(m, l) and δ(m, l) are channels of the form τ(m′, l′). This implies that, in
computing maximal error-detecting capabilities for the SID error model, one needs to consider six
of the seven error types.

Finally, we note a simple and natural connection between (string) distances and combinatorial
channels. In particular, for every distance d taking only integer values, we can define an error model
Cd = {γd(0), γd(1), . . .} such that the following holds: for any language L, the (inner) distance d(L)
of L is 1+m, where m is the largest value for which γd(m) is the maximal error-detecting capability
of L with respect to Cd. This observation provides a method for computing the distance of a given
regular language.

The paper is organized as follows. In the next section we give some basic notions and notation,
including a formal definition for SID channels via the concept of edit string. In Section 3, we prove
a few basic combinatorial results about SID channels and error-detection. These results are needed
to establish the correctness of the algorithms of Section 4 for computing maximal error-detecting
capabilities of a given regular language with respect to SID-channel models. Moreover, the last
subsection of Section 4 discusses the method of maximal error-detecting capabilities for computing
distances of regular languages. Finally, Section 5 contains a few concluding remarks.

2 Basic definitions and background

We use the symbol Σ to denote a fixed, but arbitrary, alphabet containing at least the two symbols
0 and 1. The symbol Σ∗ denotes the set of all words (or strings) over Σ, including the empty word
λ. The length of a word w is denoted by |w|. If w can be written as xvy then the word v is called

2

a factor of w. A language is any set of words. If K is a language then Kλ denotes the language
K ∪{λ}. A binary relation over the alphabet Σ is a subset γ of Σ∗×Σ∗. The domain of γ, denoted
as dom γ, is the set of all words w such that (w, z) ∈ γ for some word z. The inverse of γ, denoted
by γ−1, is the relation consisting of all (z,w) such that (w, z) is in γ. A (combinatorial) channel is
a binary relation γ over Σ that is domain preserving, that is, γ contains the pair (w,w) for all w in
dom γ. This requirement ensures that error-free communication is always possible via the channel.
When (w, z) ∈ γ, we say that z is a possible output of the channel when w is used as input.

In the sequel we shall consider mainly regular languages, that is, languages accepted by finite
automata, and SID channels. Recall that a finite automaton has finitely many states, one of which
is its initial state and some of them are its final states, and a set of transitions of the form (p, a, q).
Such a transition says that if the automaton is in state p and the current input starts with a ∈ Σ
then it can enter the state q. The automaton can consume a given input word by following its
transitions and, in this case, accepts the word when it is in some final state. The set of words
accepted by a finite automaton A is denoted by L(A) – see [15], for instance, for more details on
finite automata and transducers.

An edit string is a word over the alphabet E of edit operations

E = {(x/y) : x, y ∈ Σ ∪ {λ} and xy 6= λ}.

The empty word of E∗ is denoted with (λ/λ). If the edit operation (x/y) is such that x 6= y then
(x/y) is called an error. In particular, if x = λ then (x/y) is an insertion error, if y = λ then it is a
deletion error, otherwise it is a substitution error. For an error type τ , we write Eτ for the subset
of E containing all non-errors and all errors of type τ . For example,

Eδ = {(x/x) : x ∈ Σ} ∪ {(x/λ) : x ∈ Σ}.

An edit string (x1/y1) · · · (xn/yn) describes a possible sequence of edit operations that can be used
to transform the word x1 · · · xn to the word y1 · · · yn. For example, the edit string

h = (0/0)(0/1)(0/0)(0/λ)(0/0)(0/0)(λ/1)

transforms the word w = 000000 to the word z = 010001. In this case, we say that w is the input
part and z is the output part of h, and we use the notation hπ1 and hπ2 for the input and output
parts of h, respectively. The weight |h|6= of an edit string h is the number of errors in h – this is
equal to 3 in the above h. The input size of an edit string is the length of its input part, that is,
the quantity |hπ1| – this is equal to 6 in the above h, whereas its length is 7.

An edit system [5] is a set H of edit strings, that is, a subset of E∗. The relation ch(H) defined
by H is

ch(H) = {(u, v) : u = hπ1 and v = hπ2, for some h ∈ H}.

We shall define SID channels via edit systems. Informally, the SID channel τ(m, l) consists of all
pairs (w, z) such that z results by applying at most m errors in any factor of w of length l [10].
Moreover, any insertion error occurring to the left of an input symbol counts as part of that symbol.
We formalize SID channels using the concept of l-segment of an edit string h. This is a factor g
of h(1/1)l of input size equal to l such that g ends with no insertion errors. For example, the
edit strings (0/λ)(0/0)(0/0)(λ/1)(1/1) and (0/0)(0/λ)(0/0)(0/0) are 4-segments of the h displayed
above.

An SID edit system Hτ,m,l is defined using three parameters, an error type τ and two nonnegative
integers m and l, with m < l, as follows

Hτ,m,l = {h ∈ E∗
τ : if g is an l-segment of h then |g|6= ≤ m}. (1)

3

For example, the edit string h displayed above is in both, Hσ⊙ι⊙δ,3,6 and Hσ⊙ι⊙δ,2,4, but not in
Hσ⊙ι⊙δ,2,6 as the 6-segment (0/1)(0/0)(0/λ)(0/0)(0/0)(λ/1)(1/1) of h contains more than 2 errors.
Using SID edit systems we can formally define the SID channel τ(m, l) as follows

τ(m, l) , ch(Hτ,m,l).

Remark 1 For every edit string h ∈ Hτ,m,l, it is easy to confirm that (i) every factor of h is in
Hτ,m,l, (ii) (a/a)mh(b/b)n ∈ Hτ,m,l for all a, b ∈ Σ and m,n ≥ 0, (iii) for every factor g of h, if
the input size of g is < l, or if |g| < l, then |g|6= ≤ m.

We note that Hτ,m,l can be defined by requiring that, in (1), g is simply a factor of h of input length
at most l – as in [5]. Although this is slightly different in theory, it makes very little difference in
practice. Moreover, some results like Lemma 3 are rather simpler with the present definition.

3 Combinatorial Results

In this section we derive a few combinatorial results – in particular Theorems 1,2,3 – that will
be used to establish the correctness of our algorithms in Section 4 for computing maximal error-
detecting capabilities with respect to SID channels.

3.1 A channel bound for error-detectability

Lemma 1 For all words u, v, u′, v′, if uv 6= u′v′ then, for every word w, uwv 6= u′wv′ or uw2v 6=
u′w2v′.

Proof. We view the set of all words Σ∗ as a submonoid of the free group Σ⊛, [1], where we
write w−1 for the inverse of the word w. Let x = u′−1u and y = v′v−1, and suppose, for the
sake of contradiction, that there is a word w such that uwv = u′wv′ and uw2v = u′w2v′. Then,
xwy−1 = u′−1uwvv′−1 = w and similarly xw2y−1 = w2. Hence,

wywy−1 = xwy−1ywy−1 = w2,

which implies that ywy−1 = w, that is, y−1w = wy−1. Thus, xwy−1 = w yields xy−1 = λ ⇒ x =
y ⇒ u′−1u = v′v−1 ⇒ uv = u′v′, a contradiction. �

Theorem 1 Let τ be an error type, other than σ, let m be a positive integer, and let A be a
finite automaton accepting at least two words, including the empty word. The language L(A) is
error-detecting for the channel τ(m, l), for some l > m, if and only if it is error-detecting for
τ(m, 1 + s2

A(m + 1)), where sA is the number of states in A.

For the proof of the theorem we shall need the automaton Aτ , which is constructed from the
automaton A and the error type τ as follows:

1. The set of states of Aτ is {(p, q) : p, q are states of A}.

2. The alphabet of Aτ consists of all edit operations (x/x′) ∈ E of type τ .

3. The set T of transitions is as follows: For every two transitions (p1, a1, q1) and (p2, a2, q2) of the
automaton A, add in T the transitions ((p1, p2), (a1/a2), (q1, q2)), ((p1, p2), (λ/a2), (p1, q2)),
and ((p1, p2), (a1/λ), (q1, p2)) whose label is of type τ or of the form (x/x).

4

4. The start state of Aτ is the pair (s, s), where s is the start state of A. The final states of Aτ

are all pairs (p, p′), where p and p′ are final states in A.

It is not difficult to verify that the language accepted by Aτ consists of all edit strings h
containing only errors of type τ (if any) such that hπ1, hπ2 ∈ L(A).

Proof of Theorem 1. The ‘if’ part is trivial. For the ‘only if’ part, suppose that L(A) is error-
detecting for the channel τ(m, l), for some l > m. Let k = 1 + s2

A(m + 1). We shall obtain
a contradiction by assuming that L(A) is not error-detecting for τ(m,k). Thus, there exist two
distinct words u and v in L(A) such that (u, v) ∈ τ(m,k) – and (u, v) /∈ τ(m, l). Moreover, there
is an edit string h ∈ Hτ,m,k such that u = hπ1 and v = hπ2. We establish the following claim.

Claim 1: |h| > k. Indeed, first note that |h|6= > m, as otherwise (u, v) ∈ τ(m, l). Then, as
h ∈ Hτ,m,k and h contains more than m errors, we have that the claim holds.

Let B = {(a/a) : a ∈ Σ} = all edit operations that are not errors. Consider the automaton Aτ

and define the set Q′
0 of states p in this automaton such that there is a path from p to p in which

the edit string formed along the path is in B+. Let P be an accepting path (q0, h1, q1, . . . , ht, qt)
in Aτ such that h = h1 · · ·ht. By Claim 1, t > k. We establish the following two claims.

Claim 2: Every part P ′ of P of the form

P ′ = (qi, hi+1, qi+1, . . . , hi+k−1, qi+k−1)

contains a state qr ∈ Q′
0 for some r with i < r < i + k − 1. Let g = hi+1 · · · hi+k−1. As the length

of g is less than k, Remark 1 implies that |g|6= ≤ m. So g = g0e1g1 · · · esgs, where each ej is an
error and each gj is in B∗ and 0 ≤ s ≤ m. As |g0 · · · gs| = |g| − s = k − 1 − s, it follows that
|g0 · · · gs| > (s2

A − 1)(s + 1), which implies that |gj | ≥ s2
A for some index j. Then the path P ′

contains a part P ′′ of the form

(qφ, hφ+1, qφ+1 . . . , hφ+s2

A
, qφ+s2

A
),

with each hi being in B. Moreover, as P ′′ involves more than s2
A states, there are two indices θ, θ′

such that φ ≤ θ < θ′ ≤ φ + s2
A and qθ = qθ′ . As hθ+1 · · ·hθ′ ∈ B+, we have that qθ ∈ Q′

0. If
θ′ < i + k − 1 then i ≤ θ < θ′ and we define r = θ′. If θ′ = i + k − 1 then θ < θ′ ≤ i + k − 1 and
θ ≥ θ′ − s2

A > i, and we define r = θ. In either case, qr ∈ Q′
0 and i < r < i + k − 1, as required.

Claim 3: In the path P of Aτ , there are n + 1 states p0, . . . , pn, with n ≥ 2, such that p0 = q0,
pn = qt, every state pj with j ∈ {1, . . . , n− 1} is in Q′

0, and |gi| ≤ k− 1 for all i ∈ {1, . . . , n}, where
each gi is the edit string formed in P between the states pi−1 and pi. For the correctness of this
claim, we consider the part

(q0, h1, q1, . . . , hk−1, qk−1)

of P which, by Claim 2, contains a state qr ∈ Q′
0 with 0 < r < k − 1, hence 0 < r < t. Let

p1, . . . , pn−1 be the sequence of all the states in Q′
0, other than q0 and qt, as they appear in the

path P , and let gi be the edit string that is formed in P between the states pi−1 and pi, where
we let p0 = q0 and pn = qt. If any of the gi’s were of length greater than k − 1 then, by Claim 2,
there would be states in Q′

0 occurring in the path P , other than the pj’s, which is a contradiction.
Hence, |gi| ≤ k − 1 for all i, as required.

The above claim implies that the edit string h can be written as

h = g1 · · · gn.

5

Moreover, the same claim implies that, for every j ∈ {1, . . . , n−1}, there is a path in the automaton
Aτ from state pj to pj with some label fj of length |fj | ≥ l. Then, also f2

j is the label of a path
from pj to pj. Thus, any edit string of the form

f = g1f
m1

1 g2 · · · f
mn−1

n−1 gn, where each mj ∈ {1, 2},

is in L(Aτ), which implies that fπ1, fπ2 ∈ L(A). As hπ1 6= hπ2, successive applications of Lemma 1
imply that there is a choice of m1, . . . ,mn−1 such that fπ1 6= fπ2. Moreover, each f

mj

j ∈ B+. We
shall derive a contradiction by showing that (fπ1, fπ2) ∈ τ(m, l). Consider any l-segment g of f .
We shall prove that |g|6= ≤ m. As every |f

mj

j | ≥ l, the string g is a factor of g1f
m1

1 , or f
mn−1

n−1 gn, or

f
mj−1

j−1 gjf
mj

j for some j. In any case, the number of errors in g is less than or equal to the number
of errors in some factor gi of f . As gi is also a factor of h ∈ Hτ,m,k and |gi| < k (by Claim 3),
Remark 1 implies |gi|6= ≤ m, as required. �

3.2 Inclusions between SID channels

In accordance to one’s intuition, the SID channels considered in this paper are pairwise distinct.
We confirm this basic result next.

Theorem 2 For every SID channels τ(m, l) and τ(m′, l′), with m,m′ > 0, we have that τ(m, l) =
τ(m′, l′) if and only if m′ = m and l′ = l.

For the proof of this theorem we need the next two lemmata – we note that, in fact, the theorem
can be proven without Lemma 3, however, that lemma is needed in the next section. The expression
l%l′ denotes the remainder of the integer division l/l′.

Lemma 2 [8] For any SID channels τ(m, l) and τ(m′, l′), if m′ = m and l < l′ then τ(m′, l′) (

τ(m, l).

Lemma 3 For every two SID channels τ(m, l) and τ(m′, l′), with m,m′ > 0, we have that τ(m, l) ⊇
τ(m′, l′) if and only if

m ≥ m′⌊
l

l′
⌋ + min{l%l′,m′}, if ι is not in τ

m ≥ m′⌊
l

l′
⌋ + m′, if ι is in τ

Proof. Let q = ⌊ l
l′
⌋, r = l%l′ and r0 = min{r,m′}. For the ‘only if’ part, consider the following

words

u1 = 1r0(0l′−m′

1m′

)q u2 = 0(l′−m′)q

u3 = 0l′q u4 = 1m′

(0l′1m′

)q u5 = 0r0+l′q

It is easy to verify that

(u1, u2) ∈ τ(m′, l′), if δ occurs in τ ,
(u3, u4) ∈ τ(m′, l′), if ι occurs in τ ,
(u1, u5) ∈ τ(m′, l′), if σ occurs in τ .

6

By the assumption, at least one of the above pairs, say (v, v′) must be in τ(m, l). In any case, as
the first word of (v, v′) is of length at most l, the second word v′ can be obtained from v using at
most m errors. On the other hand, any edit string that turns v to v′ must have at least r0 + m′q
errors if v = u1 and τ contains no ι, or at least m′ + m′q errors if v = u3 and τ contains ι. For
example, as u5 contains only 0’s, to turn u1 to u5, all the r0 + m′q 1’s in u1 must be deleted or
substituted with 0’s.

For the ‘if’ part, consider any pair (u, v) ∈ τ(m′, l′). Then, there is an edit string h ∈ Hτ,m′,l′

such that u = hπ1 and v = hπ2. We shall show that h ∈ Hτ,m,l, hence also (u, v) ∈ τ(m, l). So
let g be any l-segment of h. It is sufficient to show that |g|6= ≤ m. We can write g = g0g1 · · · gq

such that the input size of each gj is l′, for j = 1, . . . , q, and the input size of g0 is l%l′. Moreover,
we agree that there are no insertion errors at the ends of the gj ’s – this is obvious for j = q, as g
is an l-segment, and possible for each j < q, as otherwise any insertions at the end of gj could be
“moved” to the beginning of gj+1.

Next we consider two cases. In the first case, m ≥ r0 + m′q and ι is not in τ . Then |g|6= ≤
min{m′, |g0|}+qm′. Moreover, as ι is not in τ , the input size of g0 is equal to |g0|, that is, |g0| = l%l′.
Hence, |g|6= ≤ r0 + qm′ ≤ m, as required. Now consider the case where m ≥ m′(1+ q) and ι is in τ .
Obviously there can be at most m′ errors in each gi, hence, |g|6= ≤ (1 + q)m′ ≤ m, as required. �

Proof of Theorem 2. The ‘if’ part is trivial. For the ‘only if’ part, assume without loss of generality
that m ≤ m′. By Lemma 2, it is sufficient to show that m = m′. We use contradiction by assuming
m < m′. Let q = ⌊ l

l′
⌋. If ι is in τ then Lemma 3 implies that m ≥ m′q+m′, hence, m′ > m′q+m′, a

contradiction. Now assume that ι is not in τ . By Lemma 3, m ≥ m′q + min{l%l′,m′}. As m < m′,
we must have q = 0, l%l′ = l and l < l′. This implies m ≥ 0 + min{l,m′}, that is, m ≥ m′ or
m ≥ l, which is a contradiction. Hence, m = m′. �

3.3 Inverses of SID channels

The symmetry in the definition of error-detection implies the following.

Remark 2 A language L is error-detecting for some channel γ if and only if it is so for γ−1.

This observation motivates the study of the inverses of combinatorial channels. In particular, in the
next theorem, we focus on SID channels of the form τ(m, l). We show that σ(m, l) is a symmetric
channel, and the inverse of ι(m, l) is δ(m, l + m). On the other hand, counter to one’s intuition,
the channels (ι⊙ δ)(m, l) and (σ⊙ ι⊙ δ)(m, l) are not symmetric. For example, for any parameters
m, l with l > m > 0, we have that

(1m0l−m1, 0l−m) ∈ (ι ⊙ δ)(m, l),

via the edit string h = (1/λ)m(0/0)l−m(1/λ) ∈ Hι⊙δ,m,l. On the other hand, there is no edit string
h′ ∈ Hι⊙δ,m,l such that h′π1 = 0l−m and h′π2 = 1m0l−m1, as this would require at least m + 1
insertions of 1’s in l − m input symbols.

Theorem 3 Let m, l be positive integers with m < l. The following statements hold true.

1. The inverse of the channel ι(m, l) is δ(m, l + m).

2. The inverse of the channel δ(m, l) is ι(m, l − m), when l > 2m.

3. The inverse of the channel σ(m, l) is σ(m, l), that is, this channel is symmetric.

7

4. Let τ be an error type other than σ, ι, δ. We have that

τ(m, l)−1 6= τ ′(m′, l′),

for every error type τ ′ and m′, l′ > 0.

Proof. For an edit operation (x/y), the notation (x/y)−1 represents the edit operation (y/x).
This notation is extended homomorphically to edit strings h, and then to edit systems H, that is,
H−1 = {h−1 : h ∈ H}. It is easy to verify that, |h|6= = |h−1|6= for every edit string h, and that for
every edit system H, we have

ch(H)−1 = ch(H−1).

For the first statement, we first consider any h ∈ Hδ,m,l+m and we show that h−1 ∈ Hι,m,l.
Obviously, h−1 can contain only non-errors and insertion errors. For any l-segment g of h−1 we
need to show that |g|6= ≤ m. Equivalently, we need to show |g−1|6= ≤ m. The segment g contains
exactly l non-errors and is of the form

g = (x1/a1) · · · (xt/at),

where each ai is in Σ, each xi is in Σ∪ {λ}, and (xt/at) is a non-error. Note that g−1 has exactly l
non-errors and belongs to Hδ,m,l+m. We shall derive a contradiction by assuming |g−1|6= ≥ m + 1.
Indeed, consider the shortest prefix g1, say, of g−1 containing exactly m + 1 errors. Then, (at/xt)
is not part of g1, so g1 contains up to l − 1 non-errors. As g1 ∈ Hδ,m,l+m, we have that the input
size of g1 is ≥ l + m + 1 and, therefore, g1 contains at least l non-errors; a contradiction.

For the converse of the first statement, we consider any h ∈ Hι,m,l and we show that h−1 ∈
Hδ,m,l+m. Let g be any (l + m)-segment of h−1. We shall show that |g|6= ≤ m. As the edit string
g−1 is a factor of h, possibly padded with (1/1)’s at the end, we have that g−1 is in Hι,m,l and of
the form

g−1 = (x1/a1) · · · (xl+m/al+m),

where each ai is in Σ and each xi is in Σ∪{λ}. Let f be equal to g−1 if g−1 ends with a non-error,
or equal to g−1(1/1), if g−1 ends with an insertion error. In any case we have that |f | ≤ l+m+1. It
is sufficient to show |f |6= ≤ m. We shall derive a contradiction by assuming |f |6= ≥ m + 1. Indeed,
as f ∈ Hι,m,l, the input size of f must be at least l + 1, which means that f contains at least l + 1
non-errors. Hence, |f | ≥ (l + 1) + (m + 1) > l + m + 1; a contradiction.

The second statement follows easily from the first one.
The third statement follows when we show that H−1

σ,m,l = Hσ,m,l. This can be done without
complications by following the definition of Hσ,m,l.

For the fourth statement, we shall consider only two cases and we leave the rest to the reader.
Case of τ = σ ⊙ ι: Assume for the sake of contradiction that τ(m, l)−1 = τ ′(m′, l′) for some

τ ′,m′, l′. Obviously, it must be that τ ′ = σ ⊙ δ. If m′ > m then, as (am′

, λ) ∈ τ ′(m′, l′), we have
that (λ, am′

) ∈ τ(m, l), which is impossible. If m′ < m then, as (λ, am) ∈ τ(m, l), we have that
(am, λ) ∈ τ ′(m′, l′), which is again impossible. Hence, m′ = m. If l′ > l then, as

(0/1)m(0/0)l−m(λ/1) ∈ Hτ,m,l,

we have that (0m0l−m, 1m0l−m1) ∈ τ(m, l). Hence, (1m0l−m1, 0m0l−m) ∈ τ ′(m, l′), which is impos-
sible, as we would need m + 1 errors to eliminate the 1s in the factor 1m0l−m1 of length l + 1 ≤ l′.
Now if l′ ≤ l one considers

h = (1/λ)m(0/0)l
′−m(1/λ) ∈ Hτ ′,m,l′ ,

8

and verifies that (hπ1, hπ2) ∈ τ ′(m, l′), but (hπ2, hπ1) /∈ τ(m, l).
Case of τ = ι⊙ δ: As above, assume for the sake of contradiction that τ(m, l)−1 = τ ′(m′, l′) for

some τ ′,m′, l′. Obviously, it must be that τ ′ = τ . Again one shows that m′ = m. If l′ > l then one
considers the edit string

h = (1/λ)m(0/0)l−m(1/λ) ∈ Hτ,m,l,

and verifies that (hπ1, hπ2) ∈ τ(m, l), but (hπ2, hπ1) /∈ τ(m, l′). If l′ ≤ l then one uses the edit
string used in the above case for l′ ≤ l. �

We note that the second statement of Theorem 3 remains valid for 0 < l ≤ m, provided we
accept the definition of the relation ι(m′, l′) even for any l′ with 0 < l′ ≤ m′.

4 Algorithmic Consequences

This section consists of two parts. The first one concerns the problem of computing the maximal
error-detecting capabilities of a given regular language with respect to SID error models. The
second part consists of Section 4.5 and concerns the problem of computing the (inner) distance of
a given regular language.

Now we assume that a regular language L(A) is given via a finite automaton A accepting at
least two different words, including the empty word λ – otherwise one can simply add λ to L(A).
We shall utilize the following results from [6, 8].

Theorem 4 [6] The following problem is decidable in polynomial time.
Input: a finite automaton A and a finite transducer realizing some channel γ.
Output: Y/N, depending on whether the language L(A) is error-detecting for γ.

Proposition 1 [6, 5] For each error type τ and integers m and l, with 0 ≤ m < l, there is
(effectively) a finite transducer realizing the SID channel τ(m, l).

We note that the construction of a transducer realizing τ(m, l) would normally require a very large
number of states and transitions – exponential with respect to m [5]. Thus, the algorithms before
Section 4.5 are practical only for small values of m and l.

Lemma 4 [8] Let A be a finite automaton accepting at least two words, and let τ(m, l) be an SID
channel such that the language L(A) is error-detecting for τ(m, l). If τ 6= σ then m is less than the
length of a shortest nonempty word in L(A).

4.1 The error model C1
τ [l] = {τ(m, l) : for any m with 0 ≤ m < l}

Here one fixes a word length l that appears to be appropriate for capturing the statistics of errors
within words of length l. This error model is finite and consists of the channels τ(m, l), for m =
0, . . . , l−1. Using Proposition 1 and Theorem 4, one computes the largest value of m such that the
given language L(A) is error-detecting for τ(m, l). In this case, the required maximal error-detecting
capability of L(A) is τ(m, l).

4.2 The error model C2
τ [m] = {τ(m, l) : for any l with l > m}

Here, for a fixed maximum number of errors m, we wish to compute the shortest word length l′,
if any, such that the given language L(A) is error-detecting for τ(m, l′). This case was solved in
[8] when τ = σ. Now we can solve it for any error type τ 6= σ using Theorem 1. Indeed, as

9

τ(m, l) (τ(m, l′) when l > l′ we need to compute the smallest l′ ∈ {m + 1, . . . , 1 + s2
A(m + 1)}

(if any) such that L(A) is error-detecting for τ(m, l′). This is possible using Proposition 1 and
Theorem 4. Note that the channel τ(m, l′) would be different from the one we get, say τ(m′, l), in
the case of the error model C1

τ [l] if the fixed m is greater than m′.

4.3 The error model Cτ = {τ(m, l) : for any m and l with 0 ≤ m < l}

Again this case was solved in [8] when τ = σ. Now assume τ 6= σ. We have the following algorithm.

Let M be the length of a shortest word in L(A).
Let sA be the number of states in A.
For each m = 1, . . . ,M − 1

For each l = m + 1, . . . , 1 + s2
A(m + 1)

Construct the transducer for τ(m, l)
Decide whether L(A) is error-detecting for τ(m, l)
If yes, add τ(m, l) to a set Cτ .

If Cτ = ∅, let C ′
τ = {τ(0, 1)}.

Else, use Lemmata 2,3 to compute the set C ′
τ of all maximal channels in Cτ .

Output C ′
τ .

Of course there are several ways to improve the performance of the above algorithm. For example,
one can modify the linear search for the value of l to a binary search. Moreover, if for some value
of m we have that there is no l such that L(A) is error-detecting for τ(m, l), then there is no need
to run the outer loop for any larger values of m.

4.4 The error model SID

Recall the error model SID was defined in the introduction. In this case, one can use the result
of [8] for τ = σ and the algorithm in Section 4.3 to compute the set C ′

τ of all Cτ -maximal error
detecting capabilities of L(A), for each error type τ 6= σ. However, in view of Remark 2 and
Theorem 3, we can omit running the algorithm for τ = ι, and determine the Cι-maximal error-
detecting capabilities of the given language via the inverses of the channels in C ′

δ. We note that, in
this error model, one has to resolve all containment relationships between SID channels involving
different error types. For example, it can be shown that σ(m, l) ((ι ⊙ δ)(2m, l). We leave the
details of this exercise to the interested reader.

4.5 Computing distances of regular languages

The concept of (string) distance has been a useful tool in various information processing domains,
starting with the Hamming distance [4, 11] and Levenshtein (or edit) distance [10] in error control
coding, and then with various versions of the edit distance in applications like speech processing
and bioinformatics [14]. Moreover, some interesting distances have been considered also in the
context of formal languages [2, 9, 13]. Here we discuss a natural connection between the concepts
of (inner) distance and maximal error-detecting capability for formal languages.

A (string) distance is defined to be a function

d : Σ∗ × Σ∗ → [0,∞],

such that d(w, z) = 0 if and only if the words w, z are equal. We allow d(w, z) = ∞ to represent
the fact that the word w cannot be compared to z via the distance d. This is possible for instance

10

when d = Hamm, the Hamming distance, which is meant to relate words of the same length. We
note that some authors use the term ‘distance’ for what others define to be a metric, that is, a
distance in our sense that also is symmetric and satisfies the triangle inequality. Now, for any
number t ∈ [0,∞), we define the channel

γd(t) = {(w, z) : d(w, z) ≤ t}.

The next lemma follows easily from the above definitions.

Lemma 5 Let d be a distance and L be a language. The following statements hold true.

1. L is error-detecting for γd(0).

2. For all t, t′ ∈ [0,∞) with t ≤ t′, we have that γd(t) ⊆ γd(t
′). Hence, if L is not error-detecting

for some γd(t) then it is not error-detecting for γd(t
′) for all t′ ≥ t.

In the sequel, we focus on integral distances. A distance d is called integral if d(w, z) is an
integer for all words w, z. For any language L containing at least two words, we define the (inner)
distance of L as

d(L) , min{d(w, z) : w, z ∈ Lλ, w 6= z}.

Theorem 5 Let d be an integral distance and let L be a language containing at least two words.

1. For every integer m ≥ 0, L is error-detecting for γd(m) if and only if d(L) > m.

2. The value d(L) is equal to m+1, where m is the largest value such that γd(m) is the (unique)
maximal error-detecting capability of L with respect to the error model Cd = {γd(0), γd(1), . . .}.

Proof. The first statement follows easily from the definitions, so we deal with the second statement.
By definition, d(L) = d(u1, v1) for some words u1, v1 ∈ Lλ with u1 6= v1. Let m = d(L) − 1. As
(u1, v1) ∈ γd(m + 1), L is not error-detecting for γd(m + 1). Now we show that L is error-detecting
for γd(m). So let u0, v0 ∈ Lλ such that (u0, v0) ∈ γd(m). As d(u0, v0) < 1 + m = d(L), it must
be that d(u0, v0) = 0 and, therefore, u0 = v0. Hence, L is error-detecting for γd(m) and, as it
is not error-detecting for any γd(m

′) with m′ > m, we have that γd(m) is the unique maximal
error-detecting capability of L with respect to Cd. �

The first statement of the above theorem is a natural extension of the classical fact of error
control coding [4, 11] that a fixed-length code (language) C is m-error-detecting (with respect to
substitution errors) if and only if Hamm(C) > m. The second statement can be used to address
the following problem.

• Problem 1 Let d be a fixed integral distance. Given a finite automaton A accepting at least
two words, compute the integer d(L(A)).

We discuss here a method to address the above problem and mention a couple of its applications
to specific distances. As the details of this method constitute a project on its own, here we
restrict ourselves to the main points of the method. We make two assumptions regarding the
distance d: (i) for each finite automaton A, there is (effectively) an upper bound βd(A) for the
quantity d(L(A)); and (ii) for each nonnegative integer n, there is (effectively) a transducer Td,n

realizing the channel γd(n). With these assumptions, the method computes the largest value
m ∈ {0, . . . , βd(A) − 1} satisfying the condition “L(A) is error-detecting for the channel γd(m).”

11

This condition can be tested via Theorem 4 using the transducer Td,m for realizing the channel
γd(m). Then, by Theorem 5, the required output is d(L(A)) = 1 + m.

The first application of the above method is for the case of d = ed, the edit distance, that is,

ed(u, v) , min{|g|6= : g ∈ E∗, gπ1 = u, gπ2 = v}.

We note that [7] establishes an upper bound for ed(L(A)) and solves Problem 1 in polynomial
time using different tools. The same problem can now be solved using the above method, again in
polynomial time. As stated already, the details of the new algorithm and its performance compared
to the one in [7] are questions outside the aims of the present paper.

The second application of the above method is for the case of d = dl, for some l > 0, a distance
introduced in [9] and translated in our context as follows:

dl(u, v) , min{νl(h) : h ∈ E∗, hπ1 = u, hπ2 = v},

where νl(h) = max{|g|6= : g is an l-segment of h}. This distance definition is based on the largest
number of errors in the l-segments of an edit string h that transforms u to v. Our method applies
again here because (i) dl(u, v) ≤ l for all words u and v and (ii) the required transducer Tdl,m can
be obtained using Proposition 1 when we take into account the following lemma whose proof is
based on the definitions of the channels involved.

Lemma 6 For any integer m with 0 ≤ m < l, we have that γdl
(m) = (σ ⊙ ι ⊙ δ)(m, l).

Corollary 1 The following problem is computable.
Input: finite automaton A accepting at least two words and integer l > 0.
Output: the value dl(L(A)).

5 Discussion

We have considered the problem of computing maximal error-detecting capabilities of regular lan-
guages with respect to combinatorial channels. In particular, we have resolved the problem for the
class of SID channels τ(m, l), for any error type τ , a problem that was left open in [8]. Some related
questions for further research can be found in [8]. For example:

• Implement the proposed algorithms and possibly apply them to real world languages, com-
puting thus the inherent error-detecting capabilities of such languages. The difficulty here is
that the efficiency of these algorithms is affected by the high descriptional complexity of SID
channels. A first attempt towards this end is in progress in [3].

• In view of the above comment, investigate the maximal error-detecting capability problem
for homophonic channels [8], as they have much lower descriptional complexities.

• Investigate the analogous concept of maximal error-correcting capability for formal languages.

Having noted the natural connection between string distances and combinatorial channels, we also
propose the following topics for further research:

• Investigate further the method of Section 4.5 for computing the distance of a regular language,
in particular versions of the edit distance.

• Investigate the channels corresponding to the additive distances considered in [2, 13].

12

References

[1] J. Berstel and D. Perrin. Theory of Codes. Academic Press, Inc., Orlando Florida, 1985.

[2] C. Calude, K. Salomaa, and S. Yu. Additive distances and quasi-distances between words,
Journal of Universal Computer Science 8 (2002), 141–152.

[3] A. Daka. Maximal Error-detecting Capabilities of Regular Languages (tentative title). MSc
APS thesis, Dept. Math. and Computing Sci., Saint Mary’s University, Canada (in progress).

[4] J. Duske and H. Jürgensen. Codierungstheorie. BI Wissenschaftsverlag, Manheim, 1977.

[5] L. Kari and S. Konstantinidis. Descriptional complexity of error/edit systems, Journal of
Automata, Languages and Combinatorics 9 (2004) 2/3, 293-309.

[6] S. Konstantinidis. Transducers and the properties of error-detection, error-correction and
finite-delay decodability, Journal of Universal Computer Science 8 (2002), 278–291.

[7] S. Konstantinidis. Computing the edit distance of a regular language, Information and Com-
putation 205 (2007), 1307-1316. A shorter version appears as “Computing the Levenshtein
distance of a regular language” in: Proceedings of IEEE Information Theory Workshop on
Coding and Complexity, Rotorua, New Zealand, Aug. 29 - Sep. 1, 2005, pp 113116.

[8] S. Konstantinidis and P.V. Silva. Maximal error-detecting capabilities of formal languages,
Journal of Automata, Languages and Combinatorics 13 (2008), 55–71.

[9] C. L. McAloney. Error-correction and finite transductions. MSc thesis, Dept. Computing and
Information Sci., Queen’s University, Canada, 2003.

[10] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Dokl. 10 (1966), 707–710.

[11] W. W. Peterson and E. J. Weldon, Jr. Error-Correcting Codes. MIT Press, Cambridge, second
ed., 1972.

[12] G. Rozenberg and A. Salomaa (eds). Handbook of Formal Languages, Vol. I. Springer-Verlag,
Berlin, 1997.

[13] K. Salomaa and P. Schofield. State complexity of additive weighted finite automata. Interna-
tional Journal of the Foundations of Computer Sci. 18 (2007), 1407-1416.

[14] D. Sankoff and J. Kruskal. Time Warps, String Edits, and Macromolecules: The theory and
practice of sequence comparison. CSLI Publications, 1999.

[15] S. Yu. Regular Languages. In [12], 41–110.

13

