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Abstract
We consider a class of polynomials related to the kernel Kiτ (x) of the Kontorovich-

Lebedev transformation. Algebraic and differential properties are investigated and
integral representations are derived. We draw a parallel and establish a relationship
with Bernoulli’s and Euler’s numbers and polynomials. Finally, as an application
we invert a discrete transformation with the introduced polynomials as the kernel,
basing on a decomposition of Taylor’s series in terms of the Kontorovich-Lebedev
operator.
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1 Introduction

As it is known (see [1, Vol. II]), the modified Bessel function of the second kind Kiτ (x)
of the argument x > 0 and the pure imaginary subscript iτ can be defined by the cosine
Fourier transform

Kiτ (x) =

∫ ∞

0

e−x cosh u cos τu du, x > 0, (1.1)

and reciprocally by the inversion formula we immediately obtain

e−x cosh u =
2

π

∫ ∞

0

Kiτ (x) cos τu dτ. (1.2)

∗Work supported by Fundação para a Ciência e a Tecnologia (FCT, the programmes POCTI and
POSI) through the Centro de Matemática da Universidade do Porto (CMUP). Available as a PDF file
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This function is real-valued and represents a kernel of the Kontorovich-Lebedev integral
expansion [2], [5], [6]

f(τ) =
2

π2
sinh πτ

∫ ∞

0

Kiτ (x)

x

∫ ∞

0

yKiy(x)f(y)dydx, (1.3)

which generates the reciprocal Kontorovich-Lebedev operators

G(x) =

∫ ∞

0

yKiy(x)f(y)dy,

f(τ) =
2

π2
sinh πτ

∫ ∞

0

Kiτ (x)

x
G(x)dx.

Moreover, it is an eigenfunction for the differential operator

A ≡ x2 − x
d

dx
x

d

dx
, (1.4)

i.e. we have
AKiτ (x) = τ 2 Kiτ (x). (1.5)

Denoting by An, n ∈ N, A0 = I the n-th iteration of the operator (1.4) we find from
(1.5)

AnKiτ (x) = τ 2n Kiτ (x), n ∈ N. (1.6)

The modified Bessel function has the asymptotic behaviour with respect to x [1, Vol. II],
[6]

Kν(x) =
( π

2x

)1/2

e−x[1 + O(1/x)], x → +∞, (1.7)

Kν(x) = O
(
x−|Reν|) , x → 0, (1.8)

K0(x) = O(− log x), x → 0 (1.9)

and with respect to the index ν = iτ

Kiτ (x) = O

(
e−πτ/2

√
τ

)
, τ → +∞. (1.10)

It has the following inequality

∣∣∣∣
∂mKiτ (x)

∂xm

∣∣∣∣ < 2 e−δτKm(x cos δ), x > 0, τ > 0, m = 0, 1, . . . (1.11)

for each δ ∈ [
0; π

2

)
.
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Returning to (1.2) let us differentiate the integral 2n times with respect to u. Hence
via the absolute and uniform convergence by u ≥ 0 we come out with the formula

∂2ne−x cosh u

∂u2n
= (−1)n 2

π

∫ ∞

0

Kiτ (x)τ 2n cos τu dτ, x > 0. (1.12)

Therefore it yields

lim
u→0

∂2ne−x cosh u

∂u2n
= (−1)n 2

π

∫ ∞

0

Kiτ (x)τ 2n dτ. (1.13)

Multiplying (1.13) by ex it gives

lim
u→0

∂2ne−2x sinh2(u/2)

∂u2n
= (−1)n 2

π
ex

∫ ∞

0

Kiτ (x)τ 2n dτ. (1.14)

We denote the right-hand side of (1.14) by pn(x) and we will show in the next section,
that it represents a polynomial of degree n ∈ N0. It is not difficult to see from (1.2) and
(1.14) that, for instance,

p0(x) = 1, p1(x) = −x.

We will study various algebraic and differential properties of this class of polynomials and
will find its relationship with the Bernoulli and Euler numbers and polynomials [1, Vol. I],
[3]. As an application of these results we will invert the following discrete transformation

f(x) = e−x

∞∑
n=1

cnpn(x), x ≥ 0, (1.15)

i.e. we will prove an inversion formula for coefficients cn from the weighted l1-space of
sequences. To do this, we will use an expansion of the corresponding class of Taylor’s
series in terms of the Kontorovich-Lebedev operator.

2 Algebraic and differential properties of polynomi-

als pn(x)

We begin, proving the representation of pn(x) in the form

pn(x) = (−1)nexAn e−x, n ∈ N0. (2.1)

To do this, we appeal to (1.2), (1.6) and use the absolute and uniform convergence of the
integral ∫ ∞

0

∂mKiτ (x)

∂xm
τ 2n dτ, m = 0, 1, 2, . . . , (2.2)
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with respect to x ≥ x0 > 0, which is easy to verify taking into account the inequality
(1.11) with

(
0; π

2

)
and continuity of all derivatives in (2.2) as functions of two variables.

Hence we motivate an interchange of the order of the integral and operator An in (1.14)

pn(x) = (−1)nex 2

π

∫ ∞

0

AnKiτ (x) dτ

= (−1)nex 2

π
An

∫ ∞

0

Kiτ (x) dτ = (−1)nexAn e−x,

which leads to (2.1). Furthermore, with the Schwarz inequality, integral representation of
Bernoulli numbers B4n, n = 1, 2, . . . [1, Vol. I], relation (2.16.51.8) [4, Vol. II] we derive
the estimate

|pn(x)| ≤ 2

π
ex

∫ ∞

0

|Kiτ (x)|τ 2n dτ ≤ 2

π
ex

(∫ ∞

0

τ sinh
(πτ

2

)
K2

iτ (x) dτ

)1/2

×
(∫ ∞

0

τ 4n−1

sinh(πτ/2)
dτ

)1/2

= 22n−3/4(24n − 1)1/2

√
−B4n

πn

×ex
(
xK1(x

√
2)

)1/2

, x > 0. (2.3)

A direct consequence of the relation (1.14) is a definition of the generating function
for polynomials pn(x). Precisely we have the series expansion

e−2x sinh2(t/2) =
∞∑

n=0

pn(x)

(2n)!
t2n. (2.4)

Hence letting x = 0 in (2.4) we get

pn(0) = 0, n = 1, 2, . . . . (2.5)

Further, taking (2.1) and definition (1.4) of the operator A we easily derive the following
differential recurrence relation for this system of polynomials

pn+1(x) = x2p′′n(x) + x(1− 2x)p′n(x)− xpn(x), n = 0, 1, 2, . . . . (2.6)

Hence it shows by the method of mathematical induction that pn is indeed a polynomial
of degree ≤ n. In particular, we have

p2(x) = 3x2 − x, p3(x) = −15x3 + 15x2 − x.

But denoting by an the leading coefficient of

pn(x) =
n∑

k=0

akx
k, n ∈ N0
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we find its value appealing to equation (2.6). We obtain

an = (−1)n(2n− 1)!!, n = 1, 2, . . . . (2.7)

So we get that pn is in fact a polynomial of degree n. As we could see above, a0 = 0 for
all pn(x), n ∈ N. From (2.1) we conclude that all coefficients of pn(x) are real numbers.
Therefore if z0 is a zero of pn, then z̄0 is a zero as well.

According to [3] the generalized Bernoulli polynomials are defined by the following
generating function

taext

(et − 1)a
=

∞∑

k=0

B
(a)
k (x)

tk

k!
, |t| < 2π.

The generalized Bernoulli numbers are defined as B
(a)
k = B

(a)
k (0). When a = 1 we arrive

at the classical Bernoulli numbers and polynomials [1, Vol. I], [3]. We appeal to the
following relation for the Bernoulli numbers [1, Vol. I]

−B4n =
2(4n)!

(2π)4n
ζ(4n),

where ζ(z) denotes the Riemann zeta-function in order to estimate the behaviour of the
sequence in the right-hand side of inequality (2.3) when n → ∞. So with the use of
Stirling’s formula for factorials [1, Vol. I] we find

|pn(x)|
(2n)!

≤ 22n−3/4(24n − 1)1/2

(2n)!
√

πn

√
−B4n ex

(
xK1(x

√
2)

)1/2

= O

((
4

π

)2n
)

ex
(
xK1(x

√
2)

)1/2

, n →∞

and series (2.4) converges absolutely and uniformly on any compact set of x ∈ [x0, X0] ⊂
R+ and t from the interval |t| ≤ t0 < π

4
. Let us differentiate series (2.4) with respect to

x. The motivation comes via the absolute and uniform convergence of the series with a
derivative of pn(x) because (see (1.11), (1.14))

|p′(x)|
(2n)!

≤ 1

(2n)!

[
|p(x)|+ 2

π
ex

∫ ∞

0

∣∣∣∣
∂Kiτ (x)

∂x

∣∣∣∣ τ 2n dτ

]

<
4ex

πδ2n+1
[K0(x cos δ) + K1(x cos δ)] , δ ∈

(
0,

π

2

)
.

Consequently, series
∑∞

n=0
p′n(x)
(2n)!

t2n converges absolutely and uniformly on any compact

set of x ∈ [x0, X0] ⊂ R+ and t such that |t| ≤ t0 < δ ≤ π
4
. Therefore the differentiation

through in (2.4) with respect to x drives us at the equality

(1− cosh t) e−2x sinh2(t/2) =
∞∑

n=0

p′n(x)

(2n)!
t2n. (2.8)
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Hence decomposing the left-hand side of (2.8) as a product of series and equating coeffi-
cients in front of t2n we obtain the following recurrence relation

p′n(x) = −
n−1∑

k=0

(
2n

2k

)
pk(x), n ∈ N. (2.9)

Putting x = 0 in (2.9) and using values p0(0) = 1, pk(0) = 0, k ∈ N we obtain p′n(0) =
−1, n ∈ N. Analogously, a differentiation with respect to t in (2.4) gives the equality

−x sinh t e−2x sinh2(t/2) =
∞∑

n=1

pn(x)

(2n− 1)!
t2n−1. (2.10)

By the same manipulations we arrive at the relation

pn+1(x) = −x

n∑

k=0

(
2n + 1

2k

)
pk(x), n ∈ N0. (2.11)

Differentiating through in (2.11), employing (2.9) and using simple relations for binomial
coefficients we come out with the identity

x

n∑

k=0

(
2n + 1

2k

)
p′k(x) =

n∑

k=1

(
2n + 1

2k − 1

)
pk(x). (2.12)

Returning to (2.1) we have

pm+n(x) = (−1)m+nexAm+n e−x, m, n ∈ N0.

On the other hand, with (1.6) and (1.14) we deduce

pm+n(x) = (−1)nexAn
(
e−xpm(x)

)
= (−1)mexAm

(
e−xpn(x)

)

and therefore
An

(
e−xpm(x)

)
= (−1)n+mAm

(
e−xpn(x)

)
. (2.13)

Taking m ≥ n we obtain from (2.13)

pm(x) = (−1)m+nexAm−n
(
e−xpn(x)

)
.

In particular, it gives the relations

p2n(x) = (−1)nexAn
(
e−xpn(x)

)
,

p2n+1(x) = (−1)n+1exAn+1
(
e−xpn(x)

)
. (2.14)
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Now we will write the expression for pn(x) in an explicit form. Taking the generating
function (2.4) we decompose it into the series to have the equality

∞∑

k=0

(−2x sinh2(t/2))k

k!
=

∞∑
n=0

pn(x)

(2n)!
t2n.

Let us introduce the sequence of functions ϕk(t), k ∈ N0

ϕk(t) =

{
t−2k sinh2k(t/2), if t 6= 0,
1
4k , if t = 0.

It is clear, that ϕk(t) is entire for each k and be represented by the Maclaurin series

ϕk(t) =
∞∑

m=0

ϕ
(2m)
k (0)

(2m)!
t2m.

Substituting into (2.14), its left-hand side becomes

∞∑

k=0

(−2xt2)k

k!

∞∑
m=0

ϕ
(2m)
k (0)

(2m)!
t2m =

∞∑

k=0

(−2xt2)k

k!

∞∑

n=k

ϕ
(2(n−k))
k (0)

(2(n− k))!
t2(n−k)

=
∞∑

n=0

t2n

n∑

k=0

An,k
(−2x)k

k!(2(n− k))!
, An,k = ϕ

(2(n−k))
k (0).

Hence equating with the right-hand side of (2.14) and invoking simple relations for bino-
mial coefficients, we come out with the representation for pn(x)

pn(x) =
1√
π

n∑

k=0

An,k

(
2n

2k

)
Γ

(
k +

1

2

)
(−8x)k,

where Γ(z) is Euler’s gamma-function [1, Vol. I].

3 A relationship with Bernoulli’s and Euler’s num-

bers and polynomials

We call again integral (1.14) and the Kontorovich-Lebedev integral expansion (1.3). It
is not difficult to verify the validity conditions of this expansion for the function f(τ) =
τ 2n−1, n ∈ N (see [2], [5], [6]). Therefore we find the equality

τ 2n−1

sinh πτ
=

(−1)n

π

∫ ∞

0

e−xKiτ (x)pn(x)
dx

x
, n ∈ N. (3.1)
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Hence letting τ → 0 in (3.1), we obtain

∫ ∞

0

e−xK0(x)pn(x)
dx

x
= 0, n = 2, 3, . . . .

Integrating through in (3.1) with respect to τ over R+, we change the order of integration
in its right-hand side by Fubini’s theorem via the absolute and uniform convergence of
the iterated integral (use (1.11)). Then after calculation of the inner integral via (1.2),
we invoke the relation (see (2.3)) [1, Vol. I]

∫ ∞

0

τ 2n−1

sinh πτ
dτ = (−1)n+1 (22n − 1)B2n

2n
(3.2)

to get the following representation for even Bernoulli numbers B2n

B2n =
n

1− 22n

∫ ∞

0

e−2xpn(x)
dx

x
, n ∈ N. (3.3)

On the other hand, making use the Parseval equality for the Kontorovich-Lebedev trans-
form [6] we find from (3.1)

∫ ∞

0

e−2xp2
n(x)

dx

x
= 2

∫ ∞

0

τ 4n−1

sinh πτ
dτ. (3.4)

Consequently, combining with (3.2) we establish the following integral representation of
Bernoulli numbers B4n

B4n =
2n

1− 24n

∫ ∞

0

e−2xp2
n(x)

dx

x
. (3.5)

Moreover, a comparison with (3.3) gives us a surprising equality

∫ ∞

0

e−2xp2
n(x)

dx

x
=

∫ ∞

0

e−2xp2n(x)
dx

x
, n ∈ N. (3.6)

But we will prove something more. Namely, we will show that

∫ ∞

0

e−2xpn(x)pm(x)
dx

x
= (−1)m+n

∫ ∞

0

e−2xpm+n(x)
dx

x
, n, m ∈ N0, n2 + m2 6= 0. (3.7)

In order to proceed this, we suppose that for instance, m ∈ N, n ∈ N0. Taking (2.1) we
substitute it in the left-hand side of (3.7). Thus

∫ ∞

0

e−2xpn(x)pm(x)
dx

x
= (−1)n

∫ ∞

0

e−xpm(x)Ane−x dx

x
. (3.8)



A CLASS OF POLYNOMIALS 9

Since pm(0) = 0, m ∈ N, Ak (e−xpm(x)) = (−1)ke−xpk+m(x), k ∈ N0 (see (2.5), (2.13)),
we appeal to the definition (1.4) of the operator A to apply it successively in the right-
hand side of (3.8), that presumes to involve also an integration by parts and an elimination
of the outintegrated terms. Hence we rewrite (3.8) as a chain of equalities

∫ ∞

0

e−2xpn(x)pm(x)
dx

x
= (−1)n+1

∫ ∞

0

e−xpm+1(x)An−1e−x dx

x

= (−1)n+2

∫ ∞

0

e−xpm+2(x)An−2e−x dx

x
= · · · = (−1)m+n

∫ ∞

0

e−2xpm+n(x)
dx

x
,

which yields finally (3.7). Moreover, it guarantees immediately

∫ ∞

0

e−2xpn(x)pm(x)
dx

x
=

∫ ∞

0

e−2xpn−k(x)pm+k(x)
dx

x
(3.9)

for any k = 0, 1, . . . , n. Furthermore, with (3.3) we derive

B2(m+n) =
(−1)m+n(m + n)

1− 22(m+n)

∫ ∞

0

e−2xpn−k(x)pm+k(x)
dx

x
. (3.10)

A connection between Bernoulli’s polynomials B2n+1(x) and polynomials pn(x) can be
established on the following way. We use integral representation of B2n+1(−x/2) in [I,
Vol. I]

B2n+1

(
−x

2

)
=

(−1)n(2n + 1)

22n+1
sin πx

×
∫ ∞

0

τ 2n

cosh πτ − cos πx
dτ, −2 < Re x < 0, n ∈ N0 (3.11)

and relation (2.16.33.2) in [4, Vol. II] to find

1

cosh πτ − cos πx
=

2

π2

∫ ∞

0

Kiτ (y)Kx+1(y)dy, −2 < Re x < 0. (3.12)

Substituting (3.12) into (3.11), we invert the order of integration easily motivating this by
inequality (1.11). Then we make use (1.14) and come out with the following representation

B2n+1

(
−x

2

)
=

(2n + 1)

22n+1π
sin πx

∫ ∞

0

Kx+1(y)e−ypn(y)dy. (3.13)

Considering pure imaginary subscripts x + 1 = iτ we rewrite (3.13) in the form

B2n+1

(
1− iτ

2

)
=

2n + 1

22n+1 πi
sinh πτ

∫ ∞

0

Kiτ (y)e−ypn(y)dy.
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Reciprocally, by the Kontorovich-Lebedev integral (1.3) we establish the representation of
the polynomials pn(x) as the Kontorovich-Lebedev transform of the Bernoulli polynomials,
namely

pn(x) = − 22(n+1) ex

(2n + 1) πi

∫ ∞

0

τ
Kiτ (x)

x
B2n+1

(
1− iτ

2

)
dτ, n ∈ N0. (3.14)

Hence applying again the Parseval equality for the Kontorovich-Lebedev transform [5],
[6] we deduce the identity

∫ ∞

0

∣∣∣∣B2n+1

(
1− iτ

2

)∣∣∣∣
2

τ

sinh πτ
dτ =

(2n + 1)2

24n+3

∫ ∞

0

e−2xp2
n(x)

dx

x
, n ∈ N. (3.15)

Moreover, with representation (3.5) we get the value of the integral in the left-hand side
of (3.15). Indeed, we have the formula

∫ ∞

0

∣∣∣∣B2n+1

(
1− iτ

2

)∣∣∣∣
2

τ

sinh πτ
dτ =

(2n + 1)2(2−4n − 1)

16n
B4n, n ∈ N.

Let us establish a connection between pn(x) and Euler’s numbers, which are defined
as usual by the series [1, Vol. I]

1

cosh t
=

∞∑
n=0

E2n
t2n

(2n)!
, |t| < π

2
. (3.16)

To do this, the estimate from Section 2

e−x |pn(x)|
(2n)!

≤ A

(
4

π

)2n

(xK1(x
√

2))1/2, x > 0

where A > 0 is an absolute constant, applies to motivate the convergence of the following
integral for |t| ≤ t0 < π

4

∫ ∞

0

e−x

∞∑
n=0

|pn(x)| |t|
2n

(2n)!
dx ≤ A

∞∑
n=0

(
4|t|
π

)2n ∫ ∞

0

(xK1(x
√

2))1/2dx

≤ A

∞∑
n=0

(
4|t0|
π

)2n ∫ ∞

0

(xK1(x
√

2))1/2dx < ∞,

since the latter series and integral are convergent (see (1.7), (1.8)). Therefore, we can
integrate through in the equality (2.4) with respect to x over R+ at least for |t| ≤ t0 < π

4
,

multiplying first both of its sides by e−x. Consequently, we obtain

1

cosh t
=

∞∑
n=0

t2n

(2n)!

∫ ∞

0

e−xpn(x)dx, |t| ≤ t0 <
π

4
.
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Combining with (3.16) we find the representation of Euler’s numbers in terms of polyno-
mials pn(x)

E2n =

∫ ∞

0

e−xpn(x)dx, n ∈ N0. (3.17)

Hence taking (2.11), we divide it by x and integrate through with respect to x over R+

to deduce the relation

−
∫ ∞

0

e−xpn+1(x)
dx

x
=

n∑

k=0

(
2n + 1

2k

)
E2k.

Further, the basic relation for binomial coefficients

(
2n + 1

2k

)
=

(
2n

2k

)
+

(
2n

2k − 1

)

and recurrence formula for Euler’s numbers [1, Vol. I]

n∑

k=0

(
2n

2k

)
E2k = 0

yield the equality ∫ ∞

0

e−xpn+1(x)
dx

x
= −

n∑

k=1

(
2n

2k − 1

)
E2k.

Analogously, from identity (2.12) with the use of the integration by parts we derive

(n + 1)
n∑

k=1

(
2n + 1

2k

)
E2k

n− k + 1
=

n∑

k=1

(
2n + 1

2k

)
Sk,

where

Sk =

∫ ∞

0

e−xxpk(x) dx.

Further, we introduce some kind of Euler’s type polynomials basing on the equality, which
can be obtained from (2.4) by multiplication on e−x and integration with respect to x
over (x,∞). Precisely, we get

1

cosh t
e−2x sinh2(t/2) =

∞∑
n=0

qn(x)
t2n

(2n)!
, |t| ≤ t0 <

π

4
, (3.18)

where

qn(x) = ex

∫ ∞

x

e−xpn(x)dx = (−1)nex

∫ ∞

x

Ane−x dx. (3.19)
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Evidently from (3.17) we have qn(0) = E2n. Moreover, integrating by parts in (3.19), we
find the representation of polynomials qn

qn(x) =
n∑

k=0

p(k)
n (x), n ∈ N0, (3.20)

where p
(k)
n (x) is the k -th derivative of pn(x). For instance,

q0(x) = 1, q1(x) = −(x + 1),

q2(x) = 3x2 + 5x + 5, q3(x) = −15x3 − 30x2 − 61x− 61.

Making a product of series (3.16) and (2.4) in the left-hand side of (3.18), we equate
coefficients in front of t2n to obtain another representation of polynomials qn(x)

qn(x) =
n∑

k=0

E2k

(
2n

2k

)
pn−k(x). (3.21)

From (3.20) we derive

q′n(x) =
n∑

k=0

p(k+1)
n (x) =

n∑

k=1

p(k)
n (x) = qn(x)− pn(x).

Thus, pn(x) = qn(x) − q′n(x) and since pn(0) = 0, n ∈ N, we find q′n(0) = E2n. Further,
differentiating again, we obtain

p′n(x) = q′n(x)− q′′n(x)

and the value p′n(0) = −1, n = 1, 2, . . . (see above) implies

q′′n(0) = E2n + 1.

Finally we note that the leading coefficients of polynomials pn, qn are the same.

4 A discrete transformation and relations with the

Kontorovich- Lebedev operators

Let us consider the discrete transformation (1.15). We will prove that this series converges
absolutely and uniformly for all x ≥ 0, if

∞∑
n=1

|cn|(2n)!

(
4

π

)2n

< ∞. (4.1)
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Therefore f(x) will be bounded continuous on [0, +∞) and f(0) = 0 since pn(0) = 0, n ∈
N.

In fact, from the asymptotic properties and integral representation of the modified
Bessel function K1(x) it is not difficult to establish the inequality xK1(x) < 1, x > 0. In
the limit case x → 0+ we have xK1(x) → 1. Therefore (see the previous section) for all
x ≥ 0

e−x|pn(x)| < A (2n)!

(
4

π

)2n

where A > 0 is an absolute constant, and since series (4.1) is convergent we establish
the absolute and uniform convergence of series (1.15) for all x ≥ 0. Thus its sum is
a bounded continuous function on [0, +∞) vanishing in zero. Applying the operator of
the Kontorovich-Lebedev transform to a partial sum fN(x) of (1.15) and using (2.1) we
deduce

sinh πτ

∫ ∞

0

Kiτ (x)fN(x)
dx

x
= sinh πτ

∫ ∞

0

Kiτ (x)e−x

N∑
n=1

cn pn(x)
dx

x

= sinh πτ

N∑
n=1

(−1)ncn

∫ ∞

0

Kiτ (x)
(An e−x

) dx

x
, τ > 0. (4.2)

Since A e−x = xe−x and due to relation (2.16.6.4) in [4, Vol. II]

∫ ∞

0

Kiτ (x) e−xdx =
πτ

sinh πτ
,

the right-hand side of (4.2) can be written in the form

sinh πτ

N∑
n=1

(−1)ncn

∫ ∞

0

Kiτ (x)
(An e−x

) dx

x
= −πτc1

+ sinh πτ

N∑
n=2

(−1)ncn

∫ ∞

0

Kiτ (x)
(An e−x

) dx

x
. (4.3)

But employing (1.4), (1.5) we take successfully the operator A to write the latter integral
as follows ∫ ∞

0

Kiτ (x)
(An e−x

) dx

x
=

∫ ∞

0

AKiτ (x)
(An−1 e−x

) dx

x

= · · · =
∫ ∞

0

An−1Kiτ (x)
(A e−x

) dx

x
= τ 2(n−1)

∫ ∞

0

Kiτ (x)e−xdx =
πτ 2n−1

sinh πτ
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for any n = 2, 3, . . . . This is because via (2.13), (2.1) An e−x = (−1)n−1A (e−xpn−1(x))
and

∫ ∞

0

Kiτ (x)A (
e−xpn−1(x)

) dx

x
= τ 2

∫ ∞

0

Kiτ (x)e−xpn−1(x)
dx

x
, n = 2, 3, . . .

since terms, which are out of integration, are vanished owing to the property pn(0) =
0, n = 1, 2, . . . and asymptotic behavior of the modified Bessel functions (see (1.7), (1.8),
(1.9)). Consequently, returning to (4.3), (4.2) we have

sinh πτ

∫ ∞

0

Kiτ (x)e−x

N∑
n=1

cn pn(x)
dx

x
= π

N∑
n=1

(−1)ncn τ 2n−1, τ > 0. (4.4)

We will motivate now the passage to the limit when N → ∞ through equality (4.4). To
do this, we will use (2.11) to write

pn(x)

x
= −

n−1∑

k=0

(
2n− 1

2k

)
pk(x), n ∈ N, x > 0.

Hence substituting the latter equality into (4.4), we estimate the following integral (see
above) ∫ ∞

0

|Kiτ (x)|e−x

N∑
n=1

|cn|
n−1∑

k=0

(
2n− 1

2k

)
|pk(x)| dx

≤ A

∫ ∞

0

K0(x)dx

N∑
n=1

|cn|
n−1∑

k=0

(
2n− 1

2k

)
(2k)!

(
4

π

)2k

= A1

N∑
n=1

|cn|
n−1∑

k=0

(2n− 1)!

(2(n− k)− 1)!

(
4

π

)2k

< A2

∞∑
n=1

|cn| (2n)!

(
4

π

)2n

< ∞, (4.5)

where A,A1, A2 > 0 are constants. Therefore the passage to the limit when N → ∞
is possible by virtue of the Lebesgue dominated convergence theorem, and taking into
account (1.15) we obtain the equality

sinh πτ

∫ ∞

0

Kiτ (x)f(x)
dx

x
= π

∞∑
n=1

(−1)ncn τ 2n−1, (4.6)

where the Taylor series in the left-hand side of (4.6) is convergent for all τ ≥ 0. Hence

π(−1)ncn =
1

(2n− 1)!
lim
τ→0

d2n−1

dτ 2n−1

[
sinh πτ

∫ ∞

0

Kiτ (x)f(x)
dx

x

]
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=
1

(2n− 1)!

n∑

k=1

(
2n− 1

2k − 1

)
π2k−1 lim

τ→0

d2(n−k)

dτ 2(n−k)

∫ ∞

0

Kiτ (x)f(x)
dx

x
. (4.7)

Meanwhile, from (1.1) we find

d2m

dτ 2m
Kiτ (x) = (−1)m

∫ ∞

0

e−x cosh uu2m cos τu du, m ∈ N0.

Furthermore, since (see (4.5))

∫ ∞

0

∣∣∣∣
d2m

dτ 2m
Kiτ (x)f(x)

∣∣∣∣
dx

x
< B

∫ ∞

0

∣∣∣∣
d2m

dτ 2m
Kiτ (x)

∣∣∣∣ dx

≤ B

∫ ∞

0

∫ ∞

0

e−x cosh uu2mdudx = B

∫ ∞

0

u2m

cosh u
du < ∞, m ∈ N0,

where B > 0 is a constant, one can differentiate and pass to the limit under the integral
sign in (4.7). As a result we obtain

cn =
n∑

k=1

(−1)kπ2(k−1)

(2k − 1)!(2(n− k))!

∫ ∞

0

∫ ∞

0

e−x cosh uu2(n−k)f(x)
dx

x
du.

Thus denoting by p̂n(x) the following even polynomial

p̂n(x) =
n−1∑

k=0

(−1)n−kπ2(n−k−1)

(2(n− k)− 1)!(2k)!
x2k

we have the final formula for coefficients cn

cn =

∫ ∞

0

Sn(x)f(x)
dx

x
, n ∈ N, (4.8)

where

Sn(x) =

∫ ∞

0

e−x cosh up̂n(u)du, x > 0.

We summarize our results by the following
Theorem 1. Let condition (4.1) take place. Then discrete transformation (1.15) f(x)

represents a bounded continuous function on [0, +∞), f(0) = 0, where the corresponding
series converges absolutely and uniformly and coefficients cn, n ∈ N are given by formula
(4.8). Besides, the Kontorovich-Lebedev operator of this function can be expanded by
Taylor’s series (4.6), which is convergent for all τ ≥ 0.

Corollary 1. If f(x) is decomposed by series (1.15), where its coefficients satisfy
condition (4.1), then this expansion is unique.
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Proof. In fact, if it admits also the representation

f(x) = e−x

∞∑
n=1

anpn(x),

then

0 = e−x

∞∑
n=1

(cn − an)pn(x),

and evidently, cn − an satisfies condition (4.1). Therefore, cn = an, n ∈ N via (4.8).
Corollary 1 is proved.

Corollary 2. Under condition (4.1) series (1.15) converges in the mean square sense
with respect to the norm of the space L2

(
R+; dx

x

)
to the same function f ∈ L2

(
R+; dx

x

)
.

Proof. Indeed, let us estimate the norm of the partial sums of series (1.15). Applying
the Minkowski inequality, equality (3.5) and the representation of Bernoulli’s numbers
(see Section 2) we derive

||fN ||L2(R+; dx
x ) =




∫ ∞

0

e−2x

∣∣∣∣∣
N∑

n=1

cnpn(x)

∣∣∣∣∣

2

dx

x




1/2

≤
N∑

n=1

|cn|
(∫ ∞

0

e−2xp2
n(x)

dx

x

)1/2

=
N∑

n=1

|cn|
√

1− 24n

2n
B4n < const.

N∑
n=1

|cn|(2n)!

(
2

π

)2n

< const.
N∑

n=1

|cn|(2n)!

(
4

π

)2n

. (4.9)

Thus {fN} is a Cauchy sequence in the space L2

(
R+; dx

x

)
because

||fN − fM ||L2(R+; dx
x ) < const.

N∑
n=M+1

|cn|(2n)!

(
4

π

)2n

→ 0, N > M, M →∞.

Since this sequence admits a pointwise convergence too, it asserts the same limit f(x).
Corollary 2 is proved.

Further, from (4.9) taking into account (3.3), (3.7) we have

||fN ||2L2(R+; dx
x ) =

N∑
n,m=1

(−1)n+mcncm
1− 22(n+m)

n + m
B2(n+m).
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Passing here to the limit when N →∞, we obtain the Parseval type identity for discrete
transformation (1.15)

∫ ∞

0

|f(x)|2dx

x
=

∞∑
n,m=1

(−1)n+mcncm
1− 22(n+m)

n + m
B2(n+m), (4.10)

where its right-hand side is evidently positive.
Denoting by FN(τ) the odd polynomial in the right-hand side of (4.4), we see that it

represents the Kontorovich-Lebedev transform of a partial sum fN of series (1.15). From
(1.14), (2.1) and (1.3) it follows the reciprocal formula for this partial sum

fN(x) =
2

π2

∫ ∞

0

τKiτ (x)FN(τ)dτ, N = 1, 2, . . . . (4.11)

The reciprocity (4.11) follows from the uniqueness theorem for the Kontorovich-Lebedev
transform [6], since fN ∈ L1

(
R+; K0(x)dx

x

) ∩ L2

(
R+; dx

x

)
for each N ∈ N. Now we will

find sufficient conditions for the mean-square convergence with respect to the norm of the
space L2

(
R+; dx

x

)
of a partial sum fN to a given function f when N →∞. We have

Theorem 2. Let f(x) be a bounded continuous function on [0,∞) such that f(x)/x
is bounded for all x > 0. Let a sequence of polynomials {FN(τ)} with coefficients (4.7)
converge pointwisely for all τ > 0 to a function F (τ). If {FN(τ)} is a Cauchy sequence in
the space L2

(
R+; τdτ

sinh πτ

)
, then the sequence of partial sums {fN} of series (1.15) converges

to f in the mean square sense with respect to the norm of the space L2

(
R+; dx

x

)
, i.e.

||f − fN ||L2(R+; dx
x ) → 0, N →∞. (4.12)

Finally, f ∈ L2

(
R+; dx

x

)
and

||f ||L2(R+; dx
x ) =

√
2

π
||F ||L2(R+; τdτ

sinh πτ ). (4.13)

Proof. Since the sequence of Taylor polynomials {FN(τ)} converges for every τ > 0,
we get that its limit F (τ) is equal to (see (4.4), (4.6), (4.7))

F (τ) = sinh πτ

∫ ∞

0

Kiτ (x)f(x)
dx

x
, τ > 0.

On the other hand, this sequence is a Cauchy one in the space L2

(
R+; τdτ

sinh πτ

)
. Thus

it converges to the same function F , which belongs to L2

(
R+; τdτ

sinh πτ

)
. Moreover, the

Parseval identity for the Kontorovich-Lebedev transform yields (see (4.11))

||fN − fM ||L2(R+; dx
x ) =

√
2

π
||FN − FM ||L2(R+; τdτ

sinh πτ )
→ 0, M,N →∞. (4.14)
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Consequently, {fN} converges in the mean square sense with respect to the norm of the
space L2

(
R+; dx

x

)
to some function g(x) ∈ L2

(
R+; dx

x

)
. Our goal is to prove that g = f

for almost all x > 0. Indeed, (4.14) implies

||g||L2(R+; dx
x ) =

√
2

π
||F ||L2(R+; τdτ

sinh πτ )
.

Moreover, the Plancherel theorem for the Kontorovich-Lebedev operator [5], [6] says that
for all x > 0

∫ x

0

g(x)dx =
2

π2

∫ ∞

0

τ sinh πτ

∫ x

0

Kiτ (x)dx

∫ ∞

0

Kiτ (y)f(y)
dy

y
dτ, (4.15)

where the integral with respect to τ in the right-hand side of (4.15) converges absolutely.
Hence owing to Lebesgue’s monotone convergence theorem we find

∫ x

0

g(x)dx =
2

π2
lim

ε→0+

∫ ∞

0

τ sinh(π − ε)τ

∫ x

0

Kiτ (x)dx

∫ ∞

0

Kiτ (y)f(y)
dy

y
dτ. (4.16)

Now Fubini’s theorem and conditions on f of the present theorem allow to change the
order of integration in the right-hand side of (4.16) and calculate the inner integral by τ
employing relation (2.16.51.8) in [4, Vol. II]. Thus after simple substitutions we arrive at
the representation

∫ x

0

g(x)dx =
1

π
lim

ε→0+

∫ x

0

x sin ε

∫ ∞

− cot ε

K1

(
x sin ε

√
t2 + 1

)
√

t2 + 1

×f (x (cos ε + t sin ε)) dtdx. (4.17)

But f(x) is bounded continuous for x ∈ [0,∞) and

x sin ε
√

t2 + 1K1

(
x sin ε

√
t2 + 1

)
< 1, x, t > 0, ε ∈ (0, π)

(see above the inequality yK1(y) < 1, y > 0). Therefore the estimate

x sin ε

∫ ∞

− cot ε

K1

(
x sin ε

√
t2 + 1

)
√

t2 + 1
|f (x (cos ε + t sin ε)) |dt

< const.

∫ ∞

−∞

dt

t2 + 1
= const.

and the dominated convergence theorem permit the passage to the limit under the integral
with respect to x. Further, appealing to results in [7] we prove that for all x ≥ 0

1

π
lim

ε→0+
x sin ε

∫ ∞

− cot ε

K1

(
x sin ε

√
t2 + 1

)
√

t2 + 1
f (x (cos ε + t sin ε)) dt = f(x).
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Thus from (4.16) ∫ x

0

g(x)dx =

∫ x

0

f(x)dx

and by differentiation we conclude g = f for almost all x ≥ 0. This gives (4.12), (4.13)
and concludes the proof of Theorem 2.
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