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ABSTRACT

We consider endomorphisms of a monoid defined by a special confluent rewriting
system that admit a continuous extension to the completion given by reduced in-
finite words, and study from a dynamical viewpoint the nature of their infinite
periodic points. For prefix-convergent endomorphisms and expanding endomor-
phisms, we determine the structure of the set of all infinite periodic points in terms
of adherence values, bound the periods and show that all regular periodic points
are attractors.

1 Introduction

The dynamical study of the automorphisms of a free group and their space of ends is a
well established subject in discrete Dynamical Systems [3, 4, 9, 10, 11, 12]. This paper
constitutes an effort to study these problems in a more general setting, by considering
monoids defined by certain types of rewriting systems instead of just free groups, and
endomorphisms instead of automorphisms. The idea is to use combinatorics on words and
automata theory to obtain results that have a marked geometric, topological or dynamical
nature.

The authors initiated this project in [7], where the foundations of the whole approach
were established. In view of the possibilities offered to language theory by the study of free
groups [17, 18] and more general structures such as PR-monoids [19], it seemed a natural
idea to extend some of the theory on infinite words to the more general setting of monoids
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defined by finite special confluent rewriting systems. We recall that a rewriting system
{(r1, s1), . . . , (rn, sn)} is said to be special if s1 = . . . = sn = 1.

Monoids defined through finite special confluent rewriting systems allow normal forms
consisting of irreducible elements, hence they can be viewed as proper subsets of a free
monoid with a particular binary operation (concatenation followed by total reduction, such
as in the free group case). This approach can, up to some extent, be generalized to infinite
words that are endowed with algebraic and topological structures that constitute natural
generalizations of their free monoid counterparts. The fact that we can view infinite words
as the space of ends of the undirected Cayley graph of the original monoid gives geometric
significance to this topology.

We should note that infinite iteration of a (finite) word can no longer be assumed in
every case due to the existence of periodic elements, thus our approach involves a partial
version of the usual concept of ω-monoid [16].

The paper [7] was essentially devoted to the basic problem of endomorphism extensions:
under which circumstances can an endomorphism ϕ of the monoid of finite words be ex-
tended to an endomorphism (continuous map, weak endomorphism) of the partial ω-monoid
of infinite words? Characterization theorems leading to positive decidability results were
obtained in most cases.

In this paper we use the characterization of the uniformly continuous endomorphisms
(those that admit a continuous extension to the space of infinite words – that may be
viewed as the natural topological completion or as the space of ends originating from the
geodesic metric of the Cayley graph) to study the infinite periodic points of these extended
endomorphisms. The main results are obtained for prefix-convergent endomorphisms and
expanding endomorphisms, when we succeed in determining the structure of the set of
infinite periodic points, bounding the periods and proving that all regular periodic points
are attractors.

The paper is organized as follows: Section 2 is devoted to preliminaries. In Section
3 we establish the dynamical concepts relevant to our project. Note that most of these
concepts are usually restricted to invertible mappings. In Section 4 we discuss the periodic
points for prefix-convergent endomorphisms. This is a natural property to consider from a
topological point of view but does not appear to be decidable in general. In Section 5 we
accomplish a similar study in the case of expanding endomorphisms, which is proved to be
a decidable property for a given endomorphism. As one should expect, the two properties
are independent from each other. In Section 6 we develop the particular case of the free
monoid, generalizing Konig’s Lemma [16] in the spirit of the preceding sections.

2 Preliminaries

For basic concepts and results on language theory (respectively topology), the reader is
referred to [2] (respectively [8]).

Let A denote a finite alphabet. Given u, v ∈ A∗, we write u ≤ v if u is a prefix of v. A
(finite) rewriting system over A is a (finite) subset R of A∗×A∗. Given u, v ∈ A∗, we write
u−→Rv if

u = xry, v = xsy
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for some x, y ∈ A∗ and (r, s) ∈ R. We denote by ∗−→ the reflexive and transitive closure of
the relation −→. The subscript R will be usually omitted. The congruence on A∗ generated
by R will be denoted by R]. Note that R] = ∗−→R∪R−1 . The quotient M = A∗/R] is said
to be the monoid defined by the rewriting system R.

A rewriting system R over A is said to be

• special if R ⊆ A+ × {1};

• confluent if, whenever u
∗−→v and u

∗−→w, there exists z ∈ A∗ such that v
∗−→z and

w
∗−→z:

u ∗ //

∗
��

v

∗
���
�
�

w ∗ //___ z

Let R be a special confluent rewriting system over A. We say that w ∈ A∗ is irreducible
(with respect to R) if w /∈ ∪(r,1)∈RA∗rA∗. For every u ∈ A∗, there is exactly one irreducible
v ∈ A∗ such that u

∗−→v: existence follows from any reduction sequence being length-
reducing, and uniqueness from confluence. We denote this unique irreducible word by u. It
is well known (see [6]) that the equivalence

uR]v ⇔ u = v

holds for all u, v ∈ A∗, hence A∗ constitutes a set of normal forms for the monoid M =
A∗/R]. Moreover,

M ∼= (A∗, ·),

where · denotes the binary operation on A∗ defined by u · v = uv. We denote the monoid
(A∗, ·) by A∗

R. We shall often abuse notation and identify A∗
R with A∗. We write also

A+
R = A∗ \ {1}.

We denote by Aω the set of all infinite words of the form a1a2a3 . . ., with an ∈ A for
every n ∈ IN = {1, 2, 3, . . .}. Write

A∞ = A∗ ∪Aω.

Given α ∈ A∞ and n ∈ IN, we denote by α(n) the n-th letter of α (if α ∈ A∗ and n > |α|,
we set α(n) = 1). We write also

α[n] = α(1)α(2) . . . α(n).

An infinite word α ∈ Aω is said to be irreducible (with respect to R) if α[n] is irreducible
for every n ∈ IN. We denote the set of all irreducible infinite words (with respect to R) by
Aω

R and we write
A∞

R = A∗
R ∪Aω

R.

For all α, β ∈ A∞, we define

r(α, β) =
{

min{n ∈ IN | α(n) 6= β(n)} if α 6= β
∞ if α = β
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and we write
d(α, β) = 2−r(α,β),

using the convention 2−∞ = 0. It follows easily from the definition that d is an ultrametric
on A∞, satisfying in particular the axiom

d(α, β) ≤ max{d(α, γ),d(γ, β)}.

We shall identify A∞ with the metric space (A∞, d). It is well known that the metric space
A∞ is compact (and therefore complete) [16, Chapter III]. Note that limn→∞ αn = α if and
only if

∀k ∈ IN ∃m ∈ IN ∀n ∈ IN (n ≥ m ⇒ α[k]
n = α[k]).

Furthermore, since A∞ is complete, a sequence u1, u2, . . . ∈ A∗ converges if and only if
it is a Cauchy sequence, i.e., if the condition

∀k ∈ IN ∃m ∈ IN ∀n, n′ ∈ IN (n, n′ ≥ m ⇒ u[k]
n = u

[k]
n′ )

holds. By [7, Corollary 2.3], (A∞
R , d) is compact (and therefore complete) whenever R is

special confluent. We remark that, since α = limn→∞ α[n] for every α ∈ A∞, (A∞, d)
(respectively (A∞

R , d)) is the completion of (A∗, d) (respectively (A∗
R, d)). Note also that d

induces the discrete topology on A∗ since the open ball B2−(n+1)(u) = {u} for every u ∈ An.
Referring to [7], we can mention an interesting geometric viewpoint on the nature of

(Aω
R, d). Let Γ denote the Cayley graph of the monoid A∗

R relative to the generating set
A, and let s(u, v) denote the distance on A∗

R given by the length of the shortest undirected
path connecting u and v in Γ. We can view Aω

R as the space of ends of Γ. By [7, Theorems
5.7 and 5.12], the metric d on Aω

R induces the Gromov topology on the space of ends of the
hyperbolic metric space (A∗

R, s).
We recall that x ∈ X is an adherence value of (un)n if:

∀ε > 0∀n ∈ IN ∃m ≥ n : d(um, x) < ε.

This is equivalent to say that there exists some infinite subsequence of (un)n converging to
x. We denote the set of all adherence values of (un)n by Ad(un)n.

Given a mapping ϕ : X → X, we say that x ∈ X is ϕ-periodic if x = xϕm for some
m ∈ IN. If m = 1, we say that x is a fixed point for ϕ. We denote by Per(ϕ) (respectively
Fix(ϕ)) the set of all periodic (respectively fixed) points of ϕ.

The following result is essential when considering rational languages in the context of
special confluent rewriting systems (see also [6, Theorems 4.1.2 and 4.2.4]):
Theorem 2.1 [1, 5] Let R be a finite special confluent rewriting system on A and let
L ⊆ A∗ be rational. Then:

(i) L is rational;

(ii) DL = {u ∈ A∗ | u ∈ L} is deterministic context-free.

Moreover, both L and DL are effectively constructible from L.
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We present now a series of results from [7] that will prove useful in the forthcoming
sections.

We fix R = {(r1, 1), (r2, 1), . . . , (rn, 1)} and write tR = max{|r1|, |r2|, . . . , |rn|}.
Lemma 2.2 [7, Lemma 4.1] Let u, v, w ∈ A∗

R be such that |v| ≥ |w|(tR − 1) and uv ∈ A∗
R.

Then uvw = uvw.
Lemma 2.3 [7, dual of Lemma 4.2] For all u, v ∈ A∗

R,

(i) u = u′u′′ and v = v′v′′ with uv = u′v′′ and |u′′v′| ≤ min{|u|, |v|} · tR.

(ii) |uv| ≥ max{|v| − (tR − 1)|u|, |u| − (tR − 1)|v|}.

Lemma 2.4 [7, Lemma 5.8] Let L ⊆ A∗
R be rational and let ϕ : A∗

R → A∗
R be an endomor-

phism. Then Lϕ is rational and effectively constructible from L.
We generalize the concept of ω-semigroup [16, Chapter I.4] as follows. A partial ω-

monoid is a structure of the form (M1,M2, ·, ◦, π), where · : M1 × M1 → M1 and ◦ :
M1 × M2 → M2 are binary operations and π : Mω

1 = M1 × M1 × . . . → M1 ∪ M2 is a
surjective partial map, such that:

(w1) (M1, ·) is a monoid;

(w2) if (u1, u2, . . .)π is defined and i1 < i2 < . . . is a sequence in IN, then
(u1 . . . ui1 , ui1+1 . . . ui2 , ui2+1 . . . ui3 , . . .)π is defined and equal to (u1, u2, . . .)π;

(w3) if (u1, u2, . . .)π is defined and v ∈ M1, then (v, u1, u2, . . .)π is defined and equal to
v ◦ ((u1, u2, . . .)π);

(w4) (1, 1, . . .)π is defined and equals 1.

We noted in [7] that these axioms imply the mixed associative law given by

u ◦ (v ◦ α) = (u · v) ◦ α

for all u, v ∈ M1 and α ∈ M2.
If M1 ∪M2 is endowed with a distance d such that:

• the operations · and ◦ are continuous (considering the product topology on M1 ×
(M1 ∪M2), for instance via the max metric on the components);

• (u1, u2, . . .)π is defined if and only if limn→∞ u1u2 . . . un exists, in which case they
coincide;

then we have a metric partial ω-monoid.
It follows easily from (w3) and (w2) that the identity of M1 is a left identity for the

mixed product ◦. If π is a full map, we have the standard concept of ω-monoid (ω-semigroup
if we don’t require (M1, ·) to have an identity).

If u ∈ M1 and (u, u, u, . . .)π is defined, we denote it by uω.
An endomorphism of (M1,M2, ·, ◦, π) is a mapping ϕ : M1 ∪M2 → M1 ∪M2 such that:

(h1) M1ϕ ⊆ M1;
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(h2) for all u, v ∈ M1, (u · v)ϕ = (uϕ) · (vϕ);

(h3) for all u ∈ M1 and α ∈ M2,

(u ◦ α)ϕ =
{

(uϕ) · (αϕ) if αϕ ∈ M1

(uϕ) ◦ (αϕ) if αϕ ∈ M2

(h4) if (u1, u2, . . .)π is defined, then (u1ϕ, u2ϕ, . . .)π is defined and equal to (u1, u2, . . .)πϕ.

An endomorphism is said to be proper if M2ϕ ⊆ M2.
We define a binary operation

◦ : A∗
R ×Aω

R →Aω
R

(u, α) 7→ uα

by uα = limn→∞ uα[n].
The partial operation π : (A∗

R)ω → A∞
R is defined as follows: for every sequence (un)n ∈

(A∗
R)ω, (u1, u2, . . .)π is defined if and only if (u1 . . . un)n converges. In such a case, we have

(u1, u2, . . .)π = lim
n→∞

u1 . . . un.

Theorem 2.5 [7, Theorem 4.4] With the ultrametric d, (A∗
R, Aω

R, ·, ◦, π) is a metric partial
ω-monoid.

The next result shows necessary and sufficient conditions for the existence of a continuous
extension to A∞

R of an endomorphism ϕ of A∗
R. We refer to the constant homomorphism as

the trivial homomorphism.
Theorem 2.6 [7, Theorems 8.4 and 8.7] Let ϕ be a nontrivial endomorphism of A∗

R. Then
the following conditions are equivalent and decidable:

(i) ϕ can be extended to a continuous mapping Φ : A∞
R → A∞

R ;

(ii) ϕ can be extended to a proper uniformly continuous endomorphism of the metric partial
ω-monoid A∞

R ;

(iii) ϕ is uniformly continuous;

(iv) wϕ−1 is finite for every w ∈ A∗
R.

Moreover, if these conditions hold the continuous mapping Φ is unique and given by αΦ =
limn→∞ α[n]ϕ.

Surjectivity of Φ is determined by the surjectivity of ϕ:
Proposition 2.7 Let ϕ be a uniformly continuous endomorphism of A∗

R and let Φ : A∞
R →

A∞
R be its continuous extension. Then Φ is onto if and only if ϕ is onto.

Proof. By Theorem 2.6, Φ is proper and so if Φ is onto, ϕ must be onto as well.
Conversely, assume that ϕ is onto and let α ∈ Aω

R. Let

X =
⋃
n≥1

α[n]ϕ−1.
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Since ϕ is onto and by Theorem 2.6, α[n]ϕ−1 is a finite nonempty subset of A∗
R for every

n ≥ 1. Thus X is a countable infinite subset of the compact space (A∞
R , d) and so must

have some adherence value in A∞
R , that is,

∃β ∈ A∞
R ∀ε > 0 ∃w ∈ X : 0 < d(w, β) < ε.

We show that βΦ = α. Suppose that α(m) 6= (βΦ)(m) for some m ≥ 1. Since Φ is uniformly
continuous,

∃M ≥ 1 ∀α1, α2 ∈ A∞
R (r(α1, α2) > M ⇒ r(α1Φ, α2Φ) > m).

Let w ∈ X be such that 0 < d(w, β) < 2−M . Since there are infinitely many such w and
each α[n]ϕ−1 is finite, we may assume that wϕ = α[n] with n ≥ m. Hence r(w, β) > M
and so r(α[n], βΦ) = r(wϕ, βΦ) > m. Since n ≥ m, it follows that α(m) = (βΦ)(m), a
contradiction. Thus βΦ = α and Φ is onto. �

3 Endomorphism dynamics

We fix a nontrivial uniformly continuous endomorphism ϕ of A∗
R. Let Φ be its continuous

extension to A∞
R . We intend to classify Φ-periodic points from a dynamical viewpoint.

Clearly, given α ∈ A∞
R , we consider {αΦn | n ∈ IN} to be the orbit of α. Then α is Φ-

periodic if and only α = αΦp for some p ≥ 1. This is of course equivalent to α being a
fixed point for the power endomorphism Φp, and most of the terminology we are about to
introduce is usually defined for fixed points. The smallest such p is said to be the period of
α.

Given α ∈ Per(Φ), we define the attraction basin to be

Att(α) = {β ∈ A∞
R | α ∈ Ad(βΦn)n}.

If Φ is onto, it makes sense to define the repulsion basin of α to be

Rep(α) = {α} ∪ {β ∈ A∞
R | ∀ε > 0∀n ∈ IN ∃m ≥ n ∃γ ∈ βΦ−m : d(α, γ) < ε.}

Note that Φ is onto if and only if ϕ is onto by Proposition 2.7. In terms of a dynamical
system, we can say that the future of α – the orbit (αΦ, αΦ2, . . .) – is uniquely determined
but the past of α may be not so (unless Φ is one-to-one). In that case, its past is a ramified
tree corresponding to the various elements of αΦ−1, αΦ−2, . . . The idea is to collect in the
repulsion basin of α all those words that could have been arbitrarily close to α in the past
but got away from it (and also α for technical reasons).

We say that α is singular if α belongs to the topological closure of Per(ϕ). Otherwise,
we say that α is regular. We denote the set of all regular (respectively singular) Φ-periodic
points of A∞

R by Perr(Φ) (respectively Pers(Φ)). Clearly, Perr(Φ) ⊆ Aω
R.

We say that α ∈ Perr(Φ) is

• an attractor if some neighbourhood of α is contained in Att(α).

If ϕ is onto, we say also that α ∈ Perr(Φ) is
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• a repeller if some neighbourhood of α is contained in Rep(α);

• hyperbolic if α is neither an attractor nor a repeller, but some neighbourhood of α is
contained in Att(α) ∪ Rep(α);

• degenerate if no neighbourhood of α is contained in Att(α) ∪ Rep(α).

If Φ is an automorphism, then Per(Φ−1) = Per(Φ) and it is straightforward that the attrac-
tion basin of α ∈ Per(Φ) relatively to Φ is the repulsion basin of α relatively to Φ−1. Hence
α ∈ Per(Φ) is an attractor for Φ if and only if it is a repeller for Φ−1 and vice-versa.

The dynamical study of automorphisms of the free group has been carried on by different
authors (e.g. [3, 4, 9, 10, 11, 12]). In particular, it is known that:
Theorem 3.1 [9, 11, 12] Let A∗

R be a free group of rank k and let ϕ be an automorphism
of A∗

R. Then:

(i) There are at least two infinite Φ-periodic points of period ≤ 2k. If Aω
R has a single

orbit of Φ-periodic points, then this orbit has period 2.

(ii) The period of α ∈ A∞
R is bounded by some constant Mk depending only on k, and

veryfing Mk ∼
√

k log(k) when k → +∞.

(iii) Every regular Φ-periodic point is either an attractor or a repeller.

We intend to deal with a more general situation, going beyond the free group and
beyond automorphisms. It is therefore natural that the condition (iii) of the theorem does
not hold any longer, as we show in the next example. In the presence of formal inverses in
an alphabet, we say that an endomorphism is matched if it preserves (formal) inverses.
Example 3.2 Let A = {a, b, c, b−1} and R = {(bb−1, 1), (b−1b, 1)}. Let ϕ : A∗

R → A∗
R be

the matched endomorphism defined by

aϕ = ab, bϕ = b, cϕ = b−2c.

Then Aω
R contains (regular) hyperbolic Φ-periodic points.

Proof. It is clear that abω and a(b−1)ω are Φ-periodic. Suppose that u ∈ A+
R is Φ-periodic.

If u /∈ b∗ ∪ (b−1)∗, we may write u = bkxv for some k ∈ Z and x ∈ {a, c}. Clearly, x = c
implies uϕn = bk−2nc . . . for every n ∈ IN, hence x = a. If u = bkabm, then uϕn = bkabm+n

for every n ∈ IN and u is not periodic. If u = bkabmav, then uϕn = bkabm+na . . . and u
is not periodic either. Finally, if u = bkabmcv, then uϕn = bkabm−nc . . .. Thus Per(ϕ) =
b∗ ∪ (b−1)∗ and so abω and a(b−1)ω are regular.

Since limn→∞(abkc)ϕn = a(b−1)ω, we have abkc /∈ Att(abω) for every k ∈ Z. Since every
neighbourhood of abω must contain some word of the form abkc, it follows that abω is not
an attractor.

Clearly, ϕ is onto. Suppose that abk ∈ Rep(abω) with k > 0. Then in particular

∃m ≥ k ∃w ∈ (abk)Φ−m : r(abω, w) > k,

yielding a contradiction since (abk)Φ−m = abk−m. Thus abk /∈ Rep(abω) for every k > 0.
Since every neighbourhood of abω must contain some word of the form abk, it follows that
abω is not a repeller.
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Similarly, we can check that

ab∗ ∪ ab∗aA∗
R ⊆ Att(abω),

ab∗cA∗
R ⊆ Rep(abω),

thus
d(β, abω) < 2−2 ⇒ β = ab . . . ⇒ β ∈ Att(abω) ∪ Rep(abω)

and abω is hyperbolic. �

In the following example, we present a case where all the regular periodic points are
degenerate.
Example 3.3 Let A = {a, b, c, b−1} and R = {(bb−1, 1), (b−1b, 1)}. Let ϕ : A∗

R → A∗
R be

the matched endomorphism defined by

aϕ = ab, bϕ = b, cϕ = b−1cb.

Then Perr(Φ) is infinite and all its elements are degenerate.

Proof. First we show that

(u ≤ v ∧ uϕ = ub) ⇒ v /∈ Per(ϕ). (1)

Indeed, assume that v ∈ Per(ϕ) possesses a prefix u such that uϕ = ub. We may assume that
u is maximal for this property. Since v cannot be of the form v = ubk since ϕn(ubk) = ubk+n

nor v = ubkaw since ϕn(ubkaw) ∈ ubk+naA∗
R, it follows that v = ubkcw for some k ∈ Z and

w ∈ A∗
R. However, this contradicts the maximality of u since ubkc ≤ v and (ubkc)ϕ = ubkcb.

Thus (1) holds.
Adapting the argument in Example 3.2, it is now easy to prove that Per(ϕ) = b∗∪(b−1)∗.

Hence Pers(Φ) = {bω, (b−1)ω}. Write B = b∗ ∪ (b−1)∗. We show next that

Perr(Φ) = Ba(Bc)∗{bω, (b−1)ω} ∪ Ba(Bc)ω. (2)

Let α ∈ Perr(Φ) and write α = b0x1b1x2b3 . . . where the xi represent all the occurrences
of either a or c. Similar arguments to those we used in the finite case show that xixi+1 ∈
{a2, ca} contradicts α ∈ Perr(Φ). Thus xixi+1 ∈ {ac, c2} for every i and so the direct
inclusion of (2) holds. The opposite inclusion is easily verified and so (2) holds.

In particular, Perr(Φ) is infinite. Take α ∈ Perr(Φ). It follows from (2) that Perr(Φ)
contains no isolated points, so there exists a sequence (αi)i of distinct elements of Perr(Φ)
such that α = limi→∞ αi. We may assume that no element of this sequence is in the orbit of
α. Since αi ∈ Perr(Φ), it follows that αi /∈ Att(α) for every i. Since ϕ is an automorphism,
Rep(α) relatively to Φ equals Att(α) relatively to Φ−1. Since αi ∈ Perr(Φ−1), it follows by
duality that αi /∈ Rep(α) for every i. Therefore every neighbourhood of α contains some
αi /∈ Att(α) ∪ Rep(α) and so α is degenerate. �
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4 Preparatory results

We fix an endomorphism ϕ of A∗
R throughout the section. We define

Fin(ϕ) = {u ∈ A∗
R | {uϕn | n ≥ 1} is finite } = (Per(ϕ))(ϕ−1)∗,

Inf(ϕ) = A∗
R\Fin(ϕ), A0 = A ∩ Fin(ϕ), A1 = A \A0.

Clearly, Fin(ϕ) is a submonoid of A∗
R and

(Fin(ϕ))ϕ ∪ (Fin(ϕ))ϕ−1 ⊆ Fin(ϕ).

In particular, A∗
0 ⊆ Fin(ϕ) and A∗

0ϕ ⊆ Fin(ϕ).
Lemma 4.1 (Fin(ϕ))(Inf(ϕ)) ⊆ Inf(ϕ).

Proof. Let u ∈ Fin(ϕ) and v ∈ Inf(ϕ). Since (uv)ϕn = (uϕn)(vϕn), it follows from Lemma
2.3(ii) that (uv)ϕn has unbounded length and so uv ∈ Inf(ϕ). �

By Theorem 2.6, ϕ admits a continuous extension Φ to A∞
R if and only if it is uniformly

continuous. Henceforth, we shall assume that, whenever ϕ is uniformly continuous, Φ
denotes its (unique) continuous extension to A∞

R .
Lemma 4.2 Let ϕ be uniformly continuous and let u ∈ A∗

R. Then the following conditions
are equivalent:

(i) Ad(uϕn)n is finite;

(ii) (uϕnk)n converges for some k > 0

Moreover, if limn→∞ uϕnk = α, then αΦk = α and

Ad(uϕn)n = {α, αΦ, . . . , αΦk−1} ⊆ Per(Φ).

Proof. Assume that Ad(uϕn)n is finite. We observe that

∀ε > 0 ∃n0 ∈ IN ∀n ≥ n0 ∃αn ∈ Ad(uϕn)n : d(uϕn, αn) < ε.

Indeed, let ε > 0. Since A∞
R is compact, we have A∞

R = ∪m
i=1Bε/2(βi) for some β1, . . . , βm ∈

A∞
R . If uϕn ∈ Bε/2(βi) for infinitely many values of n, then Bε(βi) ∩Ad(uϕn)n 6= ∅. Hence

we take n0 such that, whenever uϕn ∈ Bε/2(βi) for only finitely many values of n, then
n0 > n for all such n.

If ε is chosen so that

ε ≤ ε1 =
1
2
min{d(α, β) | α, β ∈ Ad(uϕn)n, α 6= β},

then αn is uniquely defined. Now, as Φ is uniformly continuous, there exists ε2 > 0 such
that

∀α1, α2 ∈ A∞
R (d(α1, α2) < ε2 ⇒ d(α1Φ, α2Φ) < ε1).

10



Taking ε3 = min{ε1, ε2}, d(uϕn, αn) < ε3 yields d(uϕn+1, αnΦ) < ε1. Since d(uϕn+1, αn+1) <
ε1 and αn ∈ Ad(uϕn)n yields αnΦ ∈ Ad(uϕn)n, we obtain αnΦ = αn+1 by uniqueness. Since
Ad(uϕn)n is finite, there exists some k ≥ n0 such that αk = α2k = αkΦk. Thus

∀ε ∈ ]0, ε3] ∃n0 ∈ IN ∀n ≥ n0 : d(uϕnk, αk) < ε

and so limn→∞ uϕnk = αk. Thus (ii) holds.
Conversely, assume that limn→∞ uϕnk = α. Since Φ is continuous, it commutes with

limits. It follows that, for i = 0, . . . , k − 1,

lim
n→∞

uϕi+nk = lim
n→∞

uϕnkΦi = ( lim
n→∞

uϕnk)Φi = αΦi.

Thus αΦi ∈ Ad(uϕn)n ∩Aω
R for i = 0, . . . , k − 1.

Suppose now that β ∈ Ad(uϕn)n. Then β = limn→∞ uϕjn for some infinite subsequence
(uϕjn)n of (uϕn)n. Clearly, there exists some i ∈ {0, . . . , k − 1} such that {jn | n ∈
IN} ∩ {i + nk | n ∈ IN} is infinite. Thus

β = lim
n→∞

uϕjn = lim
n→∞

uϕi+nk = αΦi

and so
Ad(uϕn)n = {αΦi | i = 0, . . . , k− 1}.

Finally, we remark that

(αΦi)Φk = ( lim
n→∞

uϕi+nk)Φk = lim
n→∞

uϕi+(n+1)k = αΦi

and so αΦi ∈ Per(Φ). �

Lemma 4.3 Let Φ : A∞
R → A∞

R be an endomorphism. If u ∈ A∗
R and α ∈ Aω

R are Φ-
periodic, so is uα.

Proof. If uΦp = u and αΦq = α for some p, q ∈ IN, then

uαΦpq = (uΦpq)(αΦpq) = uα

as required. �

Lemma 4.4 Let (un)n be a sequence in A∗
R with |un| bounded and let (vn)n, (wn)n be se-

quences in A∞
R such that

∀k ∈ IN ∃l ∈ IN ∀n ≥ l r(vn, wn) > k.

Then
∀k ∈ IN ∃l ∈ IN ∀n ≥ l r(unvn, unwn) > k.

Moreover, Ad(unvn)n = Ad(unwn)n.
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Proof. Assume that M = max{|un| : n ∈ IN}. Let k ∈ IN. Then there exists l ∈ IN
such that r(vn, wn) > k + M(tR − 1) for every n ≥ l. It follows from Lemma 2.3 that
r(unvn, unwn) > k as required. Hence

∀ε > 0 ∃l ∈ IN ∀n ≥ l d(unvn, unwn) < ε.

If α ∈ Ad(unvn)n, then α = limn→∞ uinvin for some increasing sequence (in)n in IN. Thus

∀ε > 0 ∃q ∈ IN ∀n ≥ q d(uinvin , α) < ε.

Since d is an ultra-metric, it follows that

∀ε > 0 ∃h ∈ IN ∀n ≥ h d(uinwin , α) < ε

and so α ∈ Ad(unwn)n. Thus Ad(unvn)n ⊆ Ad(unwn)n and the lemma follows by symmetry.
�

Next we fix
p = min{n ≥ 1 | ∀a ∈ A0 aϕ2p = aϕp}. (3)

Since A0 is finite and {aϕn | n ≥ 1} is finite for every a ∈ A0, p is well defined. If
u = a1 . . . an ∈ A∗

0 with ai ∈ A0, it follows that

uϕ2p = (a1ϕ2p) . . . (anϕ2p) = (a1ϕp) . . . (anϕp) = uϕp. (4)

As a consequence, we obtain:
Lemma 4.5 A∗

0ϕ
p ⊆ Per(ϕ).

We note that if A1 = ∅, we can always identify all Φ-periodic points:
Proposition 4.6 Let ϕ be nontrivial and uniformly continuous. If A = A0, then:

(i) Per(Φ) = A∗
Rϕp ∪Aω

RΦp;

(ii) if A∗
R is infinite, there exist Φ-periodic words in both A+

R and Aω
R.

Proof. (i) By Lemma 4.5, we have A∗
Rϕp ⊆ Per(ϕ). Conversely, let u ∈ Per(ϕ). Then

u = uϕn for some n ≥ 1 and so u = uϕnp. On the other hand, since aϕ2p = aϕp for
every a ∈ A, we get uϕ2p = uϕp. Thus u = uϕnp = uϕp and so u ∈ A∗

Rϕp. Therefore
Per(ϕ) = A∗

Rϕp.
Take α ∈ Aω

R and let β = αΦp. Since Φ is proper, then β ∈ Aω
R. Moreover,

βΦp = αΦ2p = (limn→∞ α[n])Φ2p = limn→∞ α[n]ϕ2p

= limn→∞ α[n]ϕp = (limn→∞ α[n])Φp = αΦp = β

and so Aω
RΦp ⊆ Per(Phi). The inclusion Per(Phi) ∩ Aω

R ⊆ Aω
RΦp is proved similarly to the

finite case.
(ii) Assume that A∗

R is infinite. By Theorem 2.6, wϕ−1 is finite for every w ∈ A∗
R.

Iteration of this argument shows that 1(ϕp)−1 must be finite and thus a proper subset of
A∗

R. Therefore uϕp 6= 1 for some u ∈ A∗
R and so A+

R contains ϕ-periodic words, infinitely
many in fact.

On te other hand, A∗
R infinite implies Aω

R 6= ∅. Since Φ is proper, it follows that
Per(Phi) ∩Aω

R = Aω
RΦp is nonempty as well. �
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Given u ∈ A∗
R \A∗

0, let uθ denote the (unique) prefix of u in A∗
0A1. We define

A2 = {a ∈ A1 : ∃m ∈ IN ∀n ∈ IN |aϕnθ| ≤ m}.

Lemma 4.7 If A∗
0 is finite, then A2 = A1.

Proof. For every a ∈ A1, we have aϕnθ ∈ A∗
0A1 and therefore |aϕnθ| is bounded if A∗

0 is
finite. Hence A2 = A1. �

5 Prefix-convergent endomorphisms

We fix an endomorphism ϕ of A∗
R throughout the section and adopt all the notation intro-

duced in Section 4.
We say that the endomorphism ϕ is prefix-convergent if:

∀a ∈ A1 ∀k ∈ IN ∃m ∈ IN ∀v ∈ A∗
R ∀n ≥ m (a ≤ v ⇒ r(aϕn, vϕn) > k). (5)

The concept expresses the fact that, for every a ∈ A1, the sequences (d(aϕn, vϕn))n converge
uniformly to 0 for all v having a as prefix.
Lemma 5.1 If ϕ is prefix-convergent, then:

(i) Fin(ϕ) = A∗
0;

(ii) A∗
0ϕ ⊆ A∗

0;

(iii) ∀u ∈ A∗
0 ∀v ∈ A∗

R \A∗
0 uv /∈ A∗

0.

Proof. (i) By a previous remark, we only have to show that Fin(ϕ) ⊆ A∗
0. Let u ∈ Fin(ϕ)

and suppose that u /∈ A∗
0. Then we may write u = vaw with v ∈ A∗

0, a ∈ A1 and w ∈ A∗
R.

Applying (5) to a and aw, we get

∀k ∈ IN ∃m ∈ IN ∀n ≥ m r(aϕn, (aw)ϕn) > k.

Thus, as a ∈ Inf(ϕ), we also have aw ∈ Inf(ϕ). Since v ∈ Fin(ϕ), we obtain u = vaw ∈
Inf(ϕ) by Lemma 4.1, a contradiction. Therefore u ∈ A∗

0 as required.
(ii) follows from (i) and A∗

0ϕ ⊆ Fin(ϕ).
(iii) follows from (i) and Lemma 4.1. �

Lemma 5.2 Let ϕ be prefix-convergent uniformly continuous and let α = uaβ ∈ A∞
R with

u ∈ A∗
0 and a ∈ A1. Then

∀k ∈ IN ∃l ∈ IN ∀n ≥ l r((ua)ϕn, αΦn) > k.

Moreover, Ad((ua)ϕn)n = Ad(αΦn)n.
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Proof. Let k ∈ IN. Since a ∈ A1 and ϕ is prefix-convergent, there exists some l ∈ IN such
that:

∀n ≥ l ∀s ∈ IN r(aϕn, (aβ[s])ϕn) > k + 1.

Let n ≥ l. Since Φn is continuous, lims→∞ aβ[s] = aβ yields lims→∞(aβ[s])ϕn = (aβ)Φn.
Thus d(aϕn, (aβ[s])ϕn) < 2−k−1 for every s ∈ IN yields d(aϕn, (aβ)Φn) ≤ 2−k−1 < 2−k and
so r(aϕn, (aβ)Φn) > k. Since |uϕn| is bounded, Lemma 4.4 yields

∀k ∈ IN ∃l ∈ IN ∀n ≥ l r((ua)ϕn, αΦn) > k

and Ad((ua)ϕn)n = Ad(αΦn)n. �

We discuss next the periodic points of ϕ, recalling the definition of p in (3).
Lemma 5.3 If ϕ is prefix-convergent, then Per(ϕ) = A∗

0ϕ
p.

Proof. Assume that u ∈ Per(ϕ). Then u = uϕq for some q ≥ 1. Let v = uϕp(q−1).
Then u = uϕpq = vϕp. Suppose that v = v′av′′ with v′ ∈ A∗

0 and a ∈ A1. Since ϕ is
prefix-convergent,

∀k > 0 ∃m ∈ IN ∀n ≥ m r(aϕn, (av′′)ϕn) > k.

Since v, v′ ∈ Fin(ϕ), we have av′′ ∈ Fin(ϕ) as well by Lemma 4.1. Thus

∃m ∈ IN ∀n ≥ m aϕn = (av′′)ϕn

and so a ∈ Fin(ϕ), contradicting a ∈ A1. Therefore v ∈ A∗
0 and so Per(ϕ) ⊆ A∗

0ϕ
p.

The opposite inclusion follows from Lemma 4.5. �

We can now determine the singular Φ-periodic points.
Theorem 5.4 If ϕ is prefix-convergent uniformly continuous, then

Pers(Φ) = Per(Φ) ∩A∞
0 = (A∞

R ∩A∞
0 )Φp.

Moreover, every α ∈ Pers(Φ) has period ≤ p.

Proof. Assume that α ∈ Pers(Φ). Then

∀k > 0 ∃m ≥ k α[m] ∈ Per(ϕ).

It follows that α[m] ∈ A∗
0ϕ

p ⊆ A∗
0 by Lemmas 5.1(ii) and 5.3. Hence α ∈ Per(Φ) ∩A∞

0 .
Assume next that α ∈ Per(Φ) ∩ A∞

0 . Then α = αΦq for some q ≥ 1, and so α = αΦpq.
Write β = αΦp(q−1). Since

β = αΦp(q−1) = ( lim
n→∞

α[n])Φp(q−1) = lim
n→∞

α[n]ϕp(q−1)

by continuity of Φ and α[n]ϕp(q−1) ∈ A∗
0 by Lemma 5.1(ii), we obtain β ∈ A∞

0 and so
α ∈ (A∞

R ∩A∞
0 )Φp.

Finally, assume that α = βΦp for some β ∈ A∞
R ∩A∞

0 . We have

αΦp = βΦ2p = (limn→∞ β[n])Φ2p = limn→∞ β[n]ϕ2p

= limn→∞ β[n]ϕp = (limn→∞ β[n])Φp = βΦp = α

by continuity of Φ and (4), hence α ∈ Per(ϕ). By Lemma 5.3, α = limn→∞ β[n]ϕp is
singular.

Since αΦp = α, the lemma is proved. �

14



Next we determine the regular Φ-periodic points.
Theorem 5.5 If ϕ is prefix-convergent uniformly continuous, then

Perr(Φ) =
⋃

a∈A2

(A∗
0ϕ

p)Ad(aϕn)n (6)

Moreover, every α ∈ Perr(Φ) is an attractor and there exists some M ∈ IN such that any
α ∈ Per(Φ) has period ≤ M .

Proof. Let a ∈ A2. For every n ≥ 1, write aϕn = unanvn with un ∈ A∗
0 and an ∈ A1. Since

a ∈ A2, we have urar = ur+qar+q for some q, r ≥ 1. We show that (aϕr+nq)n converges.
Indeed, since ϕ is prefix-convergent, we get

∀k > 0 ∃m ∈ IN ∀n ≥ m r(arϕ
nq, (arvr)ϕnq), r(arϕ

nq, (arvr+q)ϕnq) > k.

Thus
∀k > 0 ∃m ∈ IN ∀n ≥ m r((arvr)ϕnq), (arvr+q)ϕnq) > k.

Since ur ∈ Fin(ϕ) and k is arbitrary, we get

∀k > 0 ∃m ∈ IN ∀n ≥ m r(aϕr+nq, aϕr+q+nq) = r((urarvr)ϕnq), (urarvr+q)ϕnq) > k

and so
∀k > 0 ∃m ∈ IN ∀n, n′ > m r(aϕr+nq, aϕr+n′q) > k.

Thus (aϕr+nq)n is a Cauchy sequence and therefore converges since A∞
R is compact. Ap-

plying Lemma 4.2 with u = aϕr, we get Ad(aϕr+n)n = Ad(aϕn)n ⊆ Per(Φ). Then Lemmas
4.3 and 5.3 yield

∪a∈A2(A∗
0ϕ

p)Ad(aϕn)n ⊆ Per(Φ).

Since aϕn = unanvn and |un| is bounded, we get Ad(aϕn)n ∩A∞
0 = ∅ and so

(∪a∈A2(A∗
0ϕ

p)Ad(aϕn)n) ∩A∞
0 = ∅

by Lemma 5.1(iii). In view of Theorem 5.4, we obtain

∪a∈A2(A∗
0ϕ

p)Ad(aϕn)n ⊆ Perr(Φ).

Conversely, let α ∈ Perr(Φ) satisfy α = αΦq. By Theorem 5.4, we may write α = uaβ
with u ∈ A∗

0 and a ∈ A1. Then Lemma 5.2 yields Ad((ua)ϕn)n = Ad(αΦn)n, which is
finite since α ∈ Per(Φ). Write αΦn = unanβn with un ∈ A∗

0 and an ∈ A1. Let k =
max{|un|; n ∈ IN}. Since in a compact space any infinite sequence has an adherence value
and any convergent subsequence of ((ua)ϕn)n must converge to some αΦi (i ∈ {0, . . . , q−1}),
it follows that

∃l ∈ IN ∀n ≥ l ∃i ∈ {0, . . . , q − 1} r((ua)ϕn, uiaiβi) > k.

Then |(ua)ϕnθ| = |uiai| ≤ k+1. As |uϕn| is bounded, it follows from Lemma 2.3 that |aϕnθ|
is bounded, hence a ∈ A2. By the first part of the proof, it follows that some subsequence
(aϕnr)n converges and so does its subsequence (aϕnpqr)n. Thus

α = lim
n→∞

(uϕp)(aϕnpqr) = (uϕp) lim
n→∞

aϕnr ∈ (A∗
0ϕ

p)Ad(aϕn)n
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and so (6) holds.
Let α ∈ Perr(Φ). We show that α is an attractor. As we have already proved, we may

write α = uaβ with u ∈ A∗
0 and a ∈ A2. It is enough to show that α′ ∈ Att(α) whenever

r(α, α′) > |u|+ 1.
Indeed, if r(α, α′) > |u|+1, then we may write α′ = uaβ′ for some β′ ∈ A∞

R . By Lemma
5.2, we have Ad(αΦn)n = Ad((ua)ϕn)n = Ad(α′Φn)n and so α ∈ Ad(α′Φn)n as required.

Since aϕ2p = aϕp for every a ∈ A0, to show that the period of α ∈ Per(Φ) is bounded, it
is enough to prove it for α ∈ Ad(aϕn)n. By Lemma 4.2 and by the early part of the proof,
the period of α is bounded by |{aϕnθ; n ≥ 1}|. �

Corollary 5.6 Let ϕ be prefix-convergent uniformly continuous. If A∗
0 is finite and A1 6= ∅,

then Per(Φ) ∩Aω
R is a finite nonempty set of (regular) attractors.

Proof. Since A∗
0 is finite, it follows from Theorem 5.4 that Per(Φ) ∩ Aω

R = Perr(Φ). By
Lemma 4.7, we have A1 = A2 and so

Perr(Φ) =
⋃

a∈A1

(A∗
0ϕ

p)Ad(aϕn)n

by Theorem 5.5. As we saw in the proof of Theorem 5.5, we may apply Lemma 4.2 to
conclude that Ad(aϕn)n is finite and nonempty. Thus Per(Φ) ∩ Aω

R = Perr(Φ) is finite and
nonempty since A1 6= ∅. All its elements are attractors by Theorem 5.5. �

The existence of fixed points follows from the following condition:
Theorem 5.7 Let ϕ be prefix-convergent uniformly continuous. Let u ∈ A+

R \ A∗
0 and

w ∈ A+
R be such that uϕ = uw. Then limn→∞ uϕn ∈ Fix(Φ).

Proof. Write u = u′au′′ with u′ ∈ A∗
0 and a ∈ A1. Since ϕ is prefix-convergent and

uw = u′au′′w is irreducible, we have

∀k ∈ IN ∃m ∈ IN ∀n ≥ m (r(aϕn, (au′′)ϕn) > k ∧ r(aϕn, (au′′w)ϕn) > k).

Since |u′ϕn| is bounded and k is arbitrary, we get

∀k ∈ IN ∃m ∈ IN ∀n ≥ m (r((u′a)ϕn, (u′au′′)ϕn) > k ∧ r((u′a)ϕn, (u′au′′w)ϕn) > k),

that is,

∀k ∈ IN ∃m ∈ IN ∀n ≥ m (r((u′a)ϕn, uϕn) > k ∧ r((u′a)ϕn, uϕn+1) > k).

Hence
∀k ∈ IN ∃m ∈ IN ∀n ≥ m r(uϕn, uϕn+1) > k

and so
∀k ∈ IN ∃m ∈ IN ∀n, n′ ≥ m r(uϕn, uϕn′) > k.

Thus (uϕn)n is a Cauchy sequence and therefore converges to some α ∈ Aω
R by compactness

of A∞
R . By Lemma 4.2, α ∈ Fix(Φ). �
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We proceed now to discuss prefix-convergency through examples and particular cases.
We say that an endomorphism ϕ of A∗

R preserves prefixes if, for every prefix v of u ∈ A∗
R,

vϕ is still a prefix of uϕ.
Lemma 5.8 If ϕ preserves prefixes, it is prefix-convergent.

Proof. Let a ∈ A1 and k ∈ IN. Then there exists some m ∈ IN such that |aϕn| ≥ k for
every n ≥ m. Since ϕ preserves prefixes, so does ϕn. Thus, whenever n ≥ m,

a ≤ v ⇒ aϕn ≤ vϕn ⇒ r(aϕn, vϕn) = |aϕn|+ 1 > k.

Therefore ϕ is prefix-convergent. �

We show next that preserving prefixes is a decidable property.
Lemma 5.9 For every v ∈ A∗

R, the language L = {u ∈ A∗
R | u ≤ uv} is rational and

effectively constructible.

Proof. Let k = (tR − 1)|v|, L′ = {u ∈ L : |u| < k} and L′′ = {u ∈ L : |u| = k}. We show
that

L = L′ ∪ ((A∗
RL′′) ∩A∗

R). (7)

Let w ∈ A∗
R and u ∈ L′′ with wu irreducible. Then u ≤ uv and so wu ≤ wuv. By the

dual of Lemma 2.2, we get wu ≤ wuv = wuv and so wu ∈ L. Thus L′∪ ((A∗
RL′′)∩A∗

R) ⊆ L.
Conversely, let u ∈ L. We may assume that |u| ≥ k and write u = wz with |z| = k.

Since wz = u ≤ uv = wzv and wzv = wzv by the dual of Lemma 2.2, it follows that z ≤ zv
and so z ∈ L′′. Therefore u ∈ (A∗

RL′′) ∩A∗
R and (7) holds. It follows that L is rational.

Since L′ and L′′ can be effectively computed, L is effectively constructible. �

Proposition 5.10 It is decidable whether or not an endomorphism ϕ of A∗
R preserves

prefixes.

Proof. We remark that ϕ preserves prefixes if and only if

∀u ∈ A∗
R ∀a ∈ A (ua ∈ A∗

R ⇒ uϕ ≤ (ua)ϕ). (8)

Indeed, if (8) holds and ua1 . . . an ∈ A∗
R (ai ∈ A), successive application of (8) yields

uϕ ≤ (ua1)ϕ ≤ (ua1a2)ϕ ≤ . . . ≤ (ua1 . . . an)ϕ.

For every a ∈ A, let
La = {u ∈ A∗

R | u ≤ u(aϕ)},

Ka = {u ∈ A∗
R | ua ∈ A∗

R}.

Then ϕ preserves prefixes if and only if

∀u ∈ A∗
R ∀a ∈ A (u ∈ Ka ⇒ uϕ ∈ La),

or equivalently,
∀a ∈ A Kaϕ ⊆ La. (9)

Now Ka = (A∗
R∩ (A∗a))a−1 is rational and effectively constructible by the standard closure

properties of rational languages and so is Kaϕ by Lemma 2.4. Since La is rational and
effectively constructible by Lemma 5.9, it follows that (9) is decidable as required. �
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We shall present now a number of examples. Most of them involve a free group on 2
generators, so the following lemma will come handy:
Lemma 5.11 Let A∗

R be the free group on the alphabet A = {a, b, a−1, b−1} and let ϕ be an
endomorphism of A∗

R. Then ϕ is uniformly continuous if and only if (ab)ϕ 6= (ba)ϕ.

Proof. By Theorem 2.6, ϕ is uniformly continuous if and only if wϕ−1 is finite for every
w ∈ A∗

R. Since A∗
R is a group, this is equivalent to 1ϕ−1 being finite. Since the unique finite

subgroup of a free group is the trivial subgroup, this is equivalent to ϕ being injective.
Clearly, if ϕ is injective then (ab)ϕ 6= (ba)ϕ. Conversely, assume that (ab)ϕ 6= (ba)ϕ.

By the Nielsen-Schreier Theorem [15, Section I.2], A∗
Rϕ is a free group that must therefore

have rank 2 since it is nonabelian and so is the quotient group A∗
R/1ϕ−1. Since a finitely

generated free group cannot be isomorphic to a proper quotient [15, Proposition I.3.5], it
follows that ϕ is injective. �

In the examples to follow, when we say that A∗
R be the free group on B, we assume that

A = B ∪B−1.
Example 5.12 Let A∗

R be the free group on {a, b} and let ϕ be the endomorphism of AR

defined by aϕ = ab, bϕ = ba. Then ϕ preserves prefixes, is uniformly continuous and
|Per(Φ)| = 5. There are no finite nontrivial Φ-periodic points.

Proof. Let x, y ∈ A. If xy is irreducible, so is (xϕ)(yϕ). Hence ϕ preserves prefixes. By
Lemma 5.11, ϕ is uniformly continuous.

Clearly, the sequences (aϕn)n and (bϕn)n converge to some instance of the Thue-Morse
infinite word [13, Section 2.2]. Since a−1ϕ2 = a−1b−2a−1 and b−1ϕ2 = b−1a−2b−1, it is a
simple exercise to check that

Ad(a−1ϕn)n = Ad(b−1ϕn)n = {a−1b−1b−1a−1 . . . , b−1a−1a−1b−1 . . .}

consist of two further instances of the Thue-Morse word, hence A0 = ∅ and Per(ϕ) = {1}
by Lemma 5.3. By Theorem 5.5, the 4 instances of the Thue-Morse word

(abba . . . , baab . . . , a−1b−1b−1a−1 . . . , b−1a−1a−1b−1 . . .)

are the unique infinite Φ-periodic points. �

The next example shows an instance of Corollary 5.6.
Example 5.13 Let A∗

R be the free group on {a, b} and let ϕ be the endomorphism of A∗
R

defined by aϕ = a−2ba2, bϕ = a−1ba. Then ϕ is prefix-convergent uniformly continuous and
A2 = A. Moreover, Per(ϕ) = {1} and |Perr(Φ)| = 1.

Proof. By Lemma 5.11, ϕ is uniformly continuous.
It is easy to see that if u = x1 . . . xn ∈ A+

R with x1, . . . , xn ∈ A, then uϕ = ar0bs1ar1 . . .
bsnarn with

si ∈ {−1, 1} (i = 1, . . . , n), r0 ∈ {−2,−1},

ri ∈ {−1, 0, 1} (i = 1, . . . , n− 1), rn ∈ {1, 2}.

18



Let u′ = ar0bs1ar1 . . . bsn . Then vϕ ∈ u′A∗ whenever u ≤ v. Moreover, |u| < |u′|. Thus
|uϕn| ≥ |u| + n for every n and so A0 = ∅. By Lemma 4.7, we obtain A = A2. We show
that

∀u, v ∈ A+
R (u 6= v ⇒ r(u, v) < r(uϕ, vϕ)). (10)

Indeed, if u = wu0, v = wv0 with w 6= 1, then w′ is a common prefix of wϕ, uϕ and vϕ.
Since |w| < |w′|, (10) holds if r(u, v) > 1. Since r(uϕ, vϕ) > 1 in any case, (10) holds.
Thus

∀u, v ∈ A+
R ∀n ∈ IN r(uϕn, vϕn) > n (11)

and so ϕ is prefix-convergent.
Since A0 = ∅, Lemma 5.3 yields Per(ϕ) = {1}. By Theorems 5.4 and 5.5, we get

Pers(Φ) = ∅ and Perr(Φ) = ∪a∈AAd(aϕn)n. As all sequences converge to the same point by
(11), we get |Perr(Φ)| = 1. �

Note that in the preceding example ϕ does not preserve prefixes.
The next example shows an instance of Theorem 5.5 with A∗

0 infinite.
Example 5.14 Let A∗

R be the free group on {a, b} and let ϕ be the endomorphism of AR

defined by aϕ = aba−1, bϕ = b. Then ϕ is prefix-convergent uniformly continuous and
A1 = A2 = {a, a−1}.

Proof. By Lemma 5.11, ϕ is uniformly continuous.
It is easy to show by induction that, for every n ≥ 1,

aϕn = abε1a−1bε2abε3a−1 . . . abε2n−1a−1

with εi = ±1 for i = 1, . . . , 2n − 1. Thus A1 = {a, a−1} since bϕn = b for every n ∈ IN.
Since aϕnθ = a−1ϕnθ = a for every n ≥ 1, we obtain A2 = A1.

For every q ≥ 1, we have

aqϕn = (aϕn−1)bq(a−1ϕn−1) (12)

Let x ∈ A2 and let k ∈ IN. Take m = k and assume that xw is irreducible. If
w /∈ (a ∪ a−1)A∗

R, then (xw)ϕn = (xϕn)(wϕn) and so

r(xϕn, (xw)ϕn) = |xϕn|+ 1 = 2n+1 > k

whenever n ≥ m.
Otherwise, w = xqw′ for some q ≥ 1, w′ /∈ (a ∪ a−1)A∗

R and so in view of (12)

r(xϕn, (xw)ϕn) = r(xϕn, xq+1ϕn) = |aϕn−1|+ 2 = 2n + 1 > k

whenever n ≥ m. Thus ϕ is prefix-convergent. �

The next example shows that, as far as fixed points are concerned, we cannot expect
reduction to finite fixed points and Ad(aϕn)n in the spirit of Theorem 5.5.
Example 5.15 Let A = {a, b} and R = {(a3, 1)}. Let ϕ : A∗

R → A∗
R be the endomorphism

defined by aϕ = a2 and bϕ = aba2b. Then ϕ is prefix-convergent and uniformly continuous
and Fix(Φ) = {1, (a2b)ω}.
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Proof. Clearly, A0 = {a} and (a2b)ϕ = (a2b)2. A simple induction shows that

∀n ∈ IN (bϕ2n = b(a2b)2
2n−1 ∧ bϕ2n+1 = ab(a2b)2

2n+1−1),

hence
Ad(bϕn)n = {b(a2b)ω, ab(a2b)ω}.

Since the number of ocurrences of b increases in each iteration of ϕ, it follows easily that ϕ
is prefix-convergent and uniformly continuous. It is immediate that Fix(ϕ) = {1}. Suppose
that α = (a2b)kalbβ ∈ Fix(Φ) with l ∈ {0, 1}. Then α = αΦ = (a2b)2kaba2b(βΦ) if l = 0 and
α = αΦ = (a2b)2kba2b(βΦ) if l = 1, a contradiction in any case. Thus Fix(Φ) = {1, (a2b)ω}.
�

A non prefix-convergent endomorphism does not have to produce regular periodic points:
Example 5.16 Let A∗

R be the free group on {a, b} and let ϕ be the endomorphism of AR

defined by aϕ = ab, bϕ = ab−1a−1. Then ϕ is not prefix-convergent but is uniformly
continuous and A0 = ∅. There exist just finitely many infinite Φ-periodic points, but no
regular ones.

Proof. By Lemma 5.11, ϕ is uniformly continuous.
Let z = aba. Since zϕ = z, we have zω, (z−1)ω ∈ Per(Φ). A simple induction shows that

aϕ2n+1 = znabz−n, bϕ2n+1 = znab−1a−1z−n, bϕ2n = znbz−n (n ≥ 0),

aϕ2n = znb−1a−1z−(n−1) (n ≥ 1),

hence limn→∞ xϕn = zω for every x ∈ A. It follows that A0 = ∅ and so A = A2 by Lemma
4.7. Since r(aϕn, zϕn) ≤ 4 for every n ∈ IN, it follows that ϕ is not prefix-convergent.

We show now that zω and (z−1)ω are the unique infinite Φ-periodic points. Let α ∈
Per(Φ) ∩Aω

R. Then α = αΦp for some p > 0. Since xϕ2p = zpxz−p for every x ∈ A, we get

α = αΦ2p = (limn→∞ α[n])Φ2p = limn→∞(α[n]ϕ2p)
= limn→∞ zpα[n]z−p = limn→∞ zpα[n] = zpα.

We may write zp = uv, α = v−1β with zpα = uβ. Thus v−1β = α = zpα = uβ. Since
uv = zp, we must have either u = 1 or v = 1.

If u = 1, then β = z−pβ yields β = (z−p)ω and so α = z−pβ = (z−1)ω. Otherwise β = α
and so α = zpα yields α = zω.

Since zω and (z−1)ω are both singular, we conclude that there exist no regular Φ-periodic
points. �

We end this sequence of examples by considering the famous Fibonacci endomorphism:
Example 5.17 Let A∗

R be the free group on {a, b} and let ϕ be the endomorphism of AR

defined by aϕ = ab, bϕ = a. Then ϕ is not prefix-convergent but it is uniformly continuous
and A0 = ∅.
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Proof. By Lemma 5.11, ϕ is uniformly continuous.
Clearly, limn→∞ aϕn = limn→∞ bϕn = α, where α = abaab . . . denotes the Fibonacci

(infinite) word [14, Section 2.1]. It follows that A0 = ∅.
We have

(a−1ba)ϕ2 = (b−1ab)ϕ = ba,

hence (a−1ba)ϕn ∈ (a ∪ b)A∗
R for n ≥ 2. Since a−1ϕn ∈ (a−1 ∪ b−1)A∗

R for every n ∈ IN, it
follows that r(a−1ϕn, (a−1ba)ϕn) = 1 for every n ≥ 2. Thus ϕ is not prefix-convergent. �

However, if we consider the Fibonacci endomorphism for A = {a, b, a−1, b−1} and R =
{(aa−1, 1), (bb−1, 1)}, it preserves prefixes since xy irreducible implies (xϕ)(yϕ) irreducible
for all x, y ∈ A. We still have uniform continuity and A0 = ∅, therefore Corollary 5.6
applies. It is a simple exercise to check that

Per(Φ) = { lim
n→∞

aϕn, lim
n→∞

a−1ϕ2n, lim
n→∞

b−1ϕ2n}.

6 Length-increasing endomorphisms

Let ϕ be an endomorphism of A∗
R. We say that ϕ is

• length-increasing if
∀u ∈ A+

R |uϕ| > |u|;

• eventually length-increasing if

∃m ∈ IN ∀u ∈ A+
R (|u| ≥ m ⇒ |uϕ| > |u|); (13)

• expanding if

∀k ∈ IN ∃m ∈ IN ∀u ∈ A+
R (|u| ≥ m ⇒ |uϕ| ≥ |u|+ k). (14)

Obviously, if ϕ is either length-increasing or expanding, then it is eventually length-
increasing. Examples 6.13 and 6.14 show that length-increasing and expanding are inde-
pendent properties.
Lemma 6.1 If ϕ is eventually length-increasing, then it is uniformly continuous.

Proof. Assume that ϕ is eventually length-increasing. Then wϕ−1 is finite for every w ∈ A∗
R

and so ϕ is uniformly continuous by Theorem 2.6. �

We fix ϕ and
h = max{|aϕ|; a ∈ A}.

Lemma 6.2 Let ϕ be uniformly continuous. Then

∃M ∈ IN ∀u ∈ A∗
R (|u| ≥ M ⇒ |uϕ| ≥ 2h). (15)

Proof. Suppose not. Then

∀n ∈ IN ∃un ∈ A∗
R (|un| ≥ n ∧ |unϕ| < 2h).

Since there are only finitely many words v of length < 2h, it follows that vϕ−1 is infinite
for some v, contradicting Theorem 2.6. �
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We fix M ≥ max{tR, 2h} satisfying (15).
Lemma 6.3 Let uvw ∈ A∗

R with |v| ≥ M . Then there exists a factorization vϕ = v1v2v3

such that v2 6= 1 and
(uvw)ϕ = (uϕ)v1 v2 v3(wϕ).

Proof. Let v ∈ A∗
R be such that |v| ≥ M . Suppose the lemma fails for some choice of u

and w. We may assume that |uw| is minimal.
Assume that u, w 6= 1. Let u0 denote the first letter of u and write u = u0u1. Let

w0 denote the last letter of w and write w = w1w0. By minimality of |uw|, we have a
factorization v = v1v2v3 with v2 6= 1 and (u1vw1)ϕ = (u1ϕ)v1 v2 v3(w1ϕ). Write x1 =
(u1ϕ)v1, y1 = v3(w1ϕ). We discuss the reduction process in

(uvw)ϕ = (u0ϕ)x1v2y1(w0ϕ)

and show that (uvw)ϕ is the product of a proper prefix of u0ϕ by a proper suffix of w0ϕ.
By minimality of |uw|, the factor v2 cannot be fully cancelled in the reduction (u0ϕ)x1v2y1.
We consider two cases:
Case I: some part of the factor v2 is cancelled.
Then we may write (u0ϕ)x1v2y1 = u2v3y1 where u2 < u0ϕ and v3 is a proper suffix of v2.
Note that v3 6= 1, otherwise w0 would be superfluous. Now in the reduction of (uvw)ϕ =
u2v3y1(w0ϕ) we get a word of the form u3w2 with u3 ≤ u2 and w2 a proper suffix of w0ϕ.
Case II: the factor v2 remains intact.
Then we may write (u0ϕ)x1v2y1 = u2x2v2y1 where u2 ≤ u0ϕ and x2 is a suffix of x1. Now
in the reduction of (uvw)ϕ = u2x2v2y1(w0ϕ) part of u2 must be cancelled, otherwise u0

would be superfluous. Hence we get a word of the form u3w2 with u3 < u2 and w2 a proper
suffix of w0ϕ.

In any case, we get |(uvw)ϕ| < |u0ϕ|+ |w0ϕ| ≤ 2h and so |v| ≤ |uvw| < M by (15), a
contradiction.

The cases u = 1 or w = 1 are actually a simplification of the case discussed and can
therefore be omitted. �

Lemma 6.4 Let ϕ be expanding. Then

∃m ∈ IN ∀u, v ∈ A+
R (r(u, v) ∈ ]m,+∞[ ⇒ r(uϕ, vϕ) > r(u, v)).

Proof. Since ϕ is expanding,

∃m ≥ M ∀u ∈ A+
R (|u| ≥ m ⇒ |uϕ| ≥ |u|+ hM(tR − 1)). (16)

Let u, v ∈ A+
R be distinct with r(u, v) > m. Let w be the longest common prefix of u and

v. Write u = wu′. We show that there exists a factorization wϕ = w1w2 such that

uϕ = w1(w2(u′ϕ)) and |w1| > |w|. (17)

Since |w| ≥ m ≥ M , it follows from Lemma 6.3 that there exists a factorization wϕ = w1w2

such that w1 6= 1 and uϕ = w1(w2(u′ϕ)). We assume that w1 has maximal length.
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Suppose that |w1| ≤ |w|. By (16), we have

|w|+ |w2| ≥ |w1|+ |w2| = |wϕ| ≥ |w|+ hM(tR − 1)

and so |w2| ≥ hM(tR − 1). By maximality of |w1|, w2 must be fully cancelled in the
reduction w2(u′ϕ). Let u′′ be the shortest prefix of u′ such that w2 is fully cancelled in the
reduction w2(u′′ϕ). Since the image of the last letter of u′′ must necessarily help to cancel
the first letter of w2, we conclude that |w2(u′′ϕ)| < h. Now let w0 be the shortest suffix
of w such that w2 is a suffix of w0ϕ. Since the first letter of w2 must necessarily originate
from the image of the first letter of w0, we conclude that |w0ϕ| < |w2|+h. Since w0u

′′ is a
factor of wu′ = u, it is reduced. Writing w0ϕ = xw2, we have (w0u

′′)ϕ = xw2(u′′ϕ) and so

|(w0u
′′)ϕ| = |xw2(u′′ϕ)| ≤ |x|+ |w2(u′′ϕ)| < 2h.

By (15), it follows that |w0u
′′| < M and so |u′′| < M . Hence |u′′ϕ| < hM . By

Lemma 2.3(ii), it follows that u′′ϕ cannot cancel a word with length ≥ hM(tR − 1) and so
|w2| < hM(tR − 1), a contradiction. Thus |w1| > |w| and (17) holds.

Applying the same argument to vϕ, we conclude that uϕ and vϕ have a common prefix
of length |w|+ 1 and so r(uϕ, vϕ) > r(u, v) as required. �

Lemma 6.5 Let ϕ be expanding. Then Ad(uϕn)n is finite and nonempty for every u ∈ A∗
R.

Proof. By Lemma 6.4,

∃m ∈ IN ∀u, v ∈ A+
R ∀n ∈ IN (r(u, v) > m ⇒ r(uϕn, vϕn) > n). (18)

Let u ∈ A∗
R. Since (|uϕn|)n is increasing, there exist some r, q ≥ 1 such that uϕr and uϕr+q

have a common prefix w of length m. Write uϕr = wv and uϕr+q = wv′. By (18), we have

r(wϕn, uϕr+n) = r(wϕn, (wv)ϕn) > n,

r(wϕn, uϕr+q+n) = r(wϕn, (wv′)ϕn) > n,

hence r(uϕr+n, uϕr+q+n) > n for every n ∈ IN. It follows that r(uϕr+nq, uϕr+(n+1)q) ≥ n
for every n ≥ 1 and so

∀k ∈ IN ∀n, n′ > k r(uϕr+nq, uϕr+n′q) > k.

Thus (uϕr+nq)n is a Cauchy sequence and therefore convergent since A∞
R is compact. Thus

Ad(uϕn)n is nonempty. By Lemma 6.1, we may apply Lemma 4.2 and conclude that
Ad(uϕn)n is finite. �

We are now ready for the characterization of the periodic points. We denote as usual
by Φ the continuous extension of ϕ to A∞

R .
Theorem 6.6 Let ϕ be expanding. Then Pers(Φ) = Per(ϕ) and there exists some m ∈ IN
such that

Perr(Φ) =
⋃

|u|=m

Ad(uϕn)n (19)

is a finite nonempty set of attractors.
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Proof. Since ϕ is expanding, Per(ϕ) is finite and so Pers(Φ) = Per(ϕ).
We take m from (18). By Lemmas 6.1, 4.2 and 6.5, ∪|u|=mAd(uϕn)n is finite nonempty

and contained in Per(Φ). Since ϕ is expanding and m in (18) originates from (16), then
Ad(uϕn)n ⊆ Aω

R and so Ad(uϕn)n ⊆ Perr(Φ).
Conversely, let α ∈ Perr(Φ). We may write α = uβ for some u ∈ A∗

R of length m and
some β ∈ Aω

R. For all n, k ∈ IN, we have r(uϕn, α[m+k]ϕn) > n by (18) and since Φn is
continuous we get

αΦn = ( lim
k→∞

α[m+k])Φn = lim
k→∞

α[m+k]ϕn,

hence r(uϕn, αΦn) > n for every n. Since α ∈ Per(Φ), we have α = αΦp for some p ≥ 1.
Hence r(uϕnp, α) > np for every n and so α = limn→∞ uϕnp ∈ Ad(uϕn)n. Thus (19) holds.

To show that α is an attractor, we check the inclusion B2−m(α) ⊆ Att(α). Let γ ∈
B2−m(α). Then r(α, γ) > m and so γ = uβ′ for some β′ ∈ A∞

R . Since r(uϕn, γ[m+k]ϕn) > n
for all n and k by (18), we get r(uϕn, γΦn) > n similarly to the case of α. In view of
r(uϕnp, α) > np, it follows that r(γΦnp, α) > n for every n and so limn→∞ γΦnp = α. Thus
α ∈ Ad(γΦn)n and so γ ∈ Att(α). Therefore B2−m(α) ⊆ Att(α) and α is an attractor. �

We address now the decidability question.
Given u ∈ A∗, let uξ denote the suffix of length M of u if |u| > M . Otherwise, let

uξ = u.
We define a finite (A,Z)-transducer Tϕ = (Q, q0, T, E) as follows:

Q = {u ∈ A∗
R : |u| ≤ M} is the set of states;

q0 = 1 is the initial state;

T = Q \ {1} is the set of terminal states;

E = {(u, a, n, v) ∈ Q × A × Z × Q : ua ∈ A∗
R, n = |(ua)ϕ| − |uϕ| − 1, v = (ua)ξ} is

the set of edges.

The label of a path p in Tϕ is denoted by pλ and its projections on A∗ and Z by pλ1 and
pλ2, respectively.

For details on automata and transducers, the reader is referred to [2].
Lemma 6.7 Let uv, vw ∈ A∗

R with |v| ≥ M . Then uvw ∈ A∗
R and

|(uvw)ϕ| − |(uv)ϕ| = |(vw)ϕ| − |vϕ|.

Proof. Since |v| ≥ tR, we have uvw ∈ A∗
R. By Lemma 6.3, there exists a factorization

vϕ = v1v2v3 such that v2 6= 1 and

(uvw)ϕ = (uϕ)v1 v2 v3(wϕ).

Hence
|(uvw)ϕ| − |(uv)ϕ|= |(uϕ)v1|+ |v2|+ |v3(wϕ)| − |(uϕ)v1| − |v2v3|

= |v1v2|+ |v3(wϕ)| − |v1v2v3| = |(vw)ϕ| − |vϕ|

and the lemma holds. �
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Let
mϕ = min{pλ2; p is a cycle-free successful path in Tϕ}.

Theorem 6.8 The following conditions are equivalent:

(i) ϕ is eventually length-increasing;

(ii) cλ2 ≥ 0 for every cycle c in Tϕ and pλ2 > 0 for every successful path p with

(max{0, 2−mϕ})|Q| ≤ |p| < (1 + max{0, 2−mϕ})|Q|.

Proof. Suppose that
p : q0

(a1,n1)−−−→q1
(a2,n2)−−−→ . . .

(ak,nk)−−−→qk

is a successful path in Tϕ. For every i ∈ {1, . . . , k}, we have ni = |(qi−1ai)ϕ| − |qi−1ϕ| − 1
and qi = (qi−1ai)ξ. We show that a1 . . . ai ∈ A∗

R and

ni = |(a1 . . . ai)ϕ| − |(a1 . . . ai−1)ϕ| − 1. (20)

Assume first that i ≤ M . Then qj = qj−1aj for every j ≤ i and the claims follow immedi-
ately. Assume now that i > M and the claims hold for i−1. Let u = a1 . . . ai−1−M . By the
induction hypothesis, we have a1 . . . ai−1 ∈ A∗

R. It is easy to check that qj = (qj−1aj)ξ
for every j ≤ i yields a1 . . . ai−1 = uqi−1. Now i > M implies |qi−1| = M . Since
uqi−1, qi−1ai ∈ A∗

R, we may apply Lemma 6.7 and obtain a1 . . . ai = uqi−1ai ∈ A∗
R and

also
ni = |(qi−1ai)ϕ| − |qi−1ϕ| − 1 = |(ui−1qi−1ai)ϕ| − |(ui−1qi−1)ϕ| − 1

= |(a1 . . . ai)ϕ| − |(a1 . . . ai−1)ϕ| − 1.

The induction is therefore complete and so (20) holds.
It follows that

pλ2 =
k∑

i=1

ni =
k∑

i=1

(|(a1 . . . ai)ϕ| − |(a1 . . . ai−1)ϕ| − 1) = |(a1 . . . ak)ϕ| − k

and so
pλ2 = |pλ1ϕ| − |pλ1|. (21)

Notice that
{pλ1; p is a successful path in Tϕ} = A+

R. (22)

Indeed, we have just proved the direct inclusion and the opposite one follows from the
following inductive argument: if ua ∈ A∗

R and we assume that there is a successful path p
with pλ1 = u, then we can always extend p by means of some edge of the form (u, a, n, v).
Therefore (22) holds.

Assume now that (i) holds and let c be a cycle in Tϕ. Suppose that cλ2 < 0. Since Tϕ is
trim, we have a successful path of the form pc and so pcn is also a successful path for every
n ∈ IN. Let u = pλ1 and v = cλ1. Then uv∗ is an infinite subset of A+

R by (22), and (21)
implies

|(uvn)ϕ| − |uvn| = (pcn)λ2 = pλ2 + n(cλ2) ≤ pλ2 − n
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for every n, yielding |(uvn)ϕ| < |uvn| for infinitely many n, contradicting (i). Thus
cλ2 ≥ 0.

Next we show that
pλ2 ≥ min{1,mϕ +

|p|
|Q|

− 1} (23)

for every successful path p by induction on |p|. Let p be a successful path and assume the
claim holds for all shorter paths. If p is cycle-free, then |p| < |Q| and pλ2 ≥ mϕ + |p|

|Q| − 1
follows from the definition of mϕ. Hence we may assume that p = p1cp2 for some cycle c.
Since cλ2 ≥ 0, we may assume that

(p1p2)λ2 < 1, (24)

otherwise we are done. Suppose first that cλ2 > 0. Then |c| ≤ |Q| yields

|p|
|Q|

=
|p1p2|
|Q|

+
|c|
|Q|

≤ |p1p2|
|Q|

+ 1

and by (24) the induction hypothesis yields

pλ2 = (p1p2)λ2 + cλ2 ≥ (p1p2)λ2 + 1 ≥ mϕ +
|p1p2|
|Q|

≥ mϕ +
|p|
|Q|

− 1

and (23) holds. Assume now that cλ2 = 0. Then (p1p2)λ2 > 0, otherwise p1c
∗p2 is an infinite

set of successful paths with (p1c
∗p2)λ2 ⊆ ]−∞, 0], contradicting (i). This contradicts (24),

hence (23) holds in any case.
Thus, if we take a successful path p with (max{0, 2−mϕ})|Q| ≤ |p| < (1 + max{0, 2−

mϕ})|Q|, we get

mϕ +
|p|
|Q|

− 1 ≥ mϕ + 2−mϕ − 1 = 1

if mϕ ≤ 1 and

mϕ +
|p|
|Q|

− 1 ≥ 2 + 0− 1 = 1

if mϕ ≥ 2, hence in any case (23) yields pλ2 > 0 and so (ii) holds.
Conversely, assume that (ii) holds. Let n = (max{0, 2 − mϕ})|Q|. Then pλ2 > 0 for

every successful path p with n ≤ |p| < n + |Q|. We show that pλ2 > 0 for every successful
path p with n + |Q| ≤ |p| by induction on |p|. Assume that n + |Q| ≤ |p| and the claim
holds for shorter paths of that form. We may factor p = p1cp2 for some cycle c. Since
n ≤ |p1p2| < |p| it follows from (ii) and the induction hypothesis that (p1p2)λ2 > 0. Since
cλ2 ≥ 0 by (ii), we obtain pλ2 = (p1p2)λ2 + cλ2 > 0.

Therefore pλ2 > 0 for every successful path p with n ≤ |p| and so (i) holds by (22) and
(21). �

It follows from the proof of Theorem 6.8 that
Corollary 6.9 If ϕ is eventually length-increasing, then

∀u ∈ A+
R (|u| ≥ (max{0, 2−mϕ})|Q| ⇒ |u| < |uϕ|).
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Theorem 6.10 The following conditions are equivalent:

(i) ϕ is expanding;

(ii) cλ2 > 0 for every cycle c in Tϕ.

Proof. Assume that (i) holds and let c be a cycle in Tϕ. Suppose that cλ2 ≤ 0. Since Tϕ is
trim, we have a successful path of the form pc and so pcn is also a successful path for every
n ∈ IN. Let u = pλ1 and v = cλ1. Then uv∗ is an infinite subset of A+

R by (22), and (21)
implies

|(uvn)ϕ| − |uvn| = (pcn)λ2 = pλ2 + n(cλ2) ≤ pλ2

for every n, contradicting (i). Thus (ii) holds.
Conversely, assume that (ii) holds. We show that

pλ2 ≥ mϕ +
|p|
|Q|

− 1 (25)

for every successful path p by induction on |p|. Let p be a successful path and assume the
claim holds for all shorter paths. If p is cycle-free, then |p| < |Q| and (25) follows from
the definition of mϕ. Hence we may assume that p = p1cp2 for some cycle c. Since cλ2 > 0
and |c| ≤ |Q|, we get

|p|
|Q|

=
|p1p2|
|Q|

+
|c|
|Q|

≤ |p1p2|
|Q|

+ 1

and the induction hypothesis yields

pλ2 = (p1p2)λ2 + cλ2 ≥ (p1p2)λ2 + 1
≥mϕ + |p1p2|

|Q| ≥ mϕ + |p|
|Q| − 1

and so (25) holds.
Let k > 0. We show that

∀u ∈ A∗
R (|u| ≥ (k −mϕ + 1)|Q| ⇒ |uϕ| ≥ |u|+ k). (26)

Let u ∈ A∗
R be such that |u| ≥ (k −mϕ + 1)|Q|. By (22), there exists a successful path p

such that pλ1 = u. Since |p| ≥ (k −mϕ + 1)|Q|, (21) and (25) yield

|uϕ| − |u| = pλ2 ≥ mϕ +
|p|
|Q|

− 1 ≥ mϕ + k −mϕ + 1− 1 = k

and so (26) holds. Therefore ϕ is expanding. �

Corollary 6.11 It is decidable whether or not an arbitrary endomorphism ϕ is

(i) length-increasing;

(ii) eventually length-increasing;

(iii) expanding.
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Proof. By Theorem 2.6, we may decide whether or not ϕ is uniformly continuous. This
is a necessary condition for ϕ to be eventually length-increasing by Lemma 6.1. Thus
we may assume that ϕ is uniformly continuous. As it is proved in [7, Theorem 8.7], we
may effectively compute wϕ−1 for any given word w. It follows that M can be effectively
computed. Now decidability of (ii) and (iii) follows from Theorems 6.8 and 6.10 since we
can construct the transducer T and then check if conditions 6.8(ii), 6.10(ii) hold. In view
of Corollary 6.9, decidability of (i) follows from (ii) since we only need to test finitely many
short words. �

We can use previous results to bound the periods:
Corollary 6.12 If ϕ is expanding and α ∈ Per(Φ), then the period of α is bounded by
|A|max{M,(hM(tR−1)−mϕ)|Q|}.

Proof. Assume first that α ∈ Aω
R. By Theorem 6.6, we have α ∈ Ad(uϕn)n for some

u ∈ A∗
R. By the proof of Lemma 6.5 and Lemma 4.2, αΦp = α if r(uϕr, uϕr+p) > m where

r ∈ IN and m is given by (18). By the proofs of Lemmas 6.4 and 6.5, m originates from
(16). By (26), we can take m = max{M, (hM(tR−1)−mϕ)|Q|}. Since (uϕn)[m] with length
m can take at most |A|m values, it follows that αΦp = α for some

p ≤ |A|m ≤ |A|max{M,(hM(tR−1)−mϕ)|Q|}.

Assume now that α ∈ A∗
R. Then |uϕn| < (2−mϕ)|Q| for every n ∈ IN by Corollary 6.9

and so αΦp = α for some

p ≤ |A|(2−mϕ)|Q| ≤ |A|(hM(tR−1)−mϕ)|Q| ≤ |A|m

as required. �

We end the section by presenting some examples.
Example 6.13 Let A = {a, b, b−1} and R = {(bb−1, 1)}. Let ϕ : A∗

R → A∗
R be the matched

endomorphism defined by aϕ = b−1ab and bϕ = b3. Then ϕ is length-increasing but not
expanding.

Proof. Given u = x1 . . . xn ∈ A+
R with x1, . . . , xn ∈ A, we have |(x1ϕ) . . . (xnϕ)| = 3n. It is

easy to check that the maximum number of letters that can be cancelled in the reduction
of (x1ϕ) . . . (xnϕ) is 2(n − 1), hence |uϕ| ≥ 3n − 2(n − 1) = n + 2 = |u| + 2 and so ϕ is
length-increasing.

Since anϕ = b−1anb for every n ≥ 1, ϕ is not expanding. �

For the next counterexample, we reuse the endomorphism from Example 5.15.
Example 6.14 Let A = {a, b} and R = {(a3, 1)}. Let ϕ : A∗

R → A∗
R be the endomorphism

defined by aϕ = a2 and bϕ = aba2b. Then ϕ is expanding but not length-increasing.

Proof. As |a2ϕ| < |a2|, ϕ is not length-increasing. Every u ∈ A∗
R can be written

as u = u1 . . . unv with ui ∈ {b, ab, a2b} and v ∈ {1, a, a2}. Then uϕ = u′1 . . . u′nv with
u′i ∈ {aba2b, ba2b, a2ba2b} and v′ ∈ {1, a, a2}, so |uϕ| ≥ 2|u| − 3 and ϕ is expanding. �
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Given u ∈ A∗ and a ∈ A, we denote by |u|a the number of occurrences of the letter a in
u.
Example 6.15 Let A∗

R be the free group on {a, b, c} and let ϕ be the endomorphism of AR

defined by aϕ = ac, bϕ = c−1a−1b3 and cϕ = ca. Then ϕ is expanding and length-increasing
but not prefix-convergent.

Proof. The unique reducible words of the form (xϕ)(yϕ) with x, y ∈ A are (aϕ)(bϕ) and
(b−1ϕ)(a−1ϕ). Let u ∈ A∗

R. We replace any occurrence of ab (respectively b−1a−1) by d
(respectively d−1) to get a reduced word u′ in the free group F on B = {a, b, c, d}. Write
u′ = x1 . . . xn with x1, . . . , xn ∈ B ∪ B−1. We extend ϕ to an endomorphism ϕ̂ of F by
taking dϕ̂ = (ab)ϕ = b3. It is easy to check that

uϕ = u′ϕ̂ = (x1 . . . xn)ϕ = (x1ϕ) . . . (xnϕ)

and
|uϕ| = |x1ϕ|+ . . . + |xnϕ| ≥ 2n + |u′|d + |u′|d−1 = n + |u| ≥ 3

2
|u|.

Thus ϕ is expanding and length-increasing.
Since ϕ is length-increasing, we have A0 = ∅ and so A2 = A by Lemma 4.7. We have

a ≤ ab and aϕn ∈ aA∗ for every n ∈ IN. However, (ab)ϕ = b3 and a simple induction shows
that (ab)ϕn ∈ {a−1, c−1, b}A∗ for every n ≥ 1. Thus r(aϕn, (ab)ϕn) = 1 for every n ≥ 1
and so ϕ is not prefix-convergent. �

Concerning fixed points, we see in the next example they do not necessarily exist, even
when aϕ = aw for some a ∈ A.
Example 6.16 Let A∗

R be the free group on {a, b} and let ϕ be the endomorphism of AR

defined by aϕ = ab and bϕ = b−1a−2b3a. Then ϕ is expanding and length-increasing but
has no nontrivial fixed points.

Proof. The unique reducible words of the form (xϕ)(yϕ) with x, y ∈ A are (aϕ)(bϕ) and
(b−1ϕ)(a−1ϕ).

Let u ∈ A∗
R. We replace any occurrence of ab (respectively b−1a−1) by c (respectively

c−1) to get a reduced word u′ in the free group F on B = {a, b, c}. Write u′ = x1 . . . xn

with x1, . . . , xn ∈ B ∪ B−1. We extend ϕ to an endomorphism ϕ̂ of F by taking cϕ̂ =
(ab)ϕ = a−1b3a. It is easy to see that (xiϕ)(xi+1ϕ) is reducible if and only if xixi+1 ∈
{bc, c−1b−1, c2, c−2} and in that case reduction goes no further than aa−1 = 1. Since uϕ =
(x1ϕ̂) . . . (xnϕ̂), we get

|uϕ| ≥ 3n− |u′|a − |u′|a−1 = 3(|u′|b + |u′|b−1 + |u′|c + |u′|c−1) + 2(|u′|a + |u′|a−1)

≥ 3
2(|u′|b + |u′|b−1 + |u′|c + |u′|c−1) + 3

2(|u′|a + |u′|c + |u′|a−1 + |u′|c−1)

= 3
2(|u|b + |u|b−1 + |u|a + |u|a−1) = 3

2 |u|.
Thus ϕ is expanding and length-increasing.

Suppose that α ∈ x1x2A
∞
R is a fixed point with x1, x2 ∈ A. Let α′ = x′1x

′
2β be the word

on B ∪ B−1 obtained as before. If x′1 = a, then x1 = a and x2 6= b and so αΦ ∈ abA∞
R , a

contradiction. If x′1 = c, then x1x2 = ab and so αΦ ∈ a−1A∞
R , a contradiction. We omit

the remaining cases, that confirm that Fix(Φ) = {1}. �
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7 The free monoid case

We develop now the particular case of the free monoid, making more explicit existence
results such as Konig’s Lemma [16]. It is well known that infinite fixed points for free
monoid endomorphisms are of the form u limn→∞ aϕn, where u ∈ Fix(ϕ), a ∈ A, aϕ ∈ aA+

and |aϕn| is not bounded [14]. Hence we concentrate our efforts once again in the periodic
case. In view of Theorem 2.6, we remark that an endomorphism ϕ of A∗ is uniformly
continuous if and only if wϕ−1 is finite for every w ∈ A∗, and this is clearly equivalent to
have aϕ 6= 1 for every a ∈ A. Moreover, Theorem 2.6 asserts that this is equivalent to the
existence of a (proper) endomorphism extension of ϕ to A∞, henceforth denoted by Φ. We
keep the notation A = A0 ∪A1 introduced in Section 5.

By Lemma 5.8, we obtain:
Lemma 7.1 Let ϕ : A∗ → A∗ be a uniformly continuous endomorphism. Then ϕ is prefix-
convergent.

We further introduce

A3 = {a ∈ A : ∀n ∈ IN |aϕn| = 1} ⊆ A0.

We define also a directed graph G(ϕ) by

V (G(ϕ)) = A1 ∪A3;
E(G(ϕ)) = {(a, b) ∈ A1 ×A1 | aϕ ∈ A∗

0bA
∗}

∪ {(a, b) ∈ A3 ×A3 | aϕ = b}.

As usual, a cycle is a closed path

a0 → a1 → . . . → an = a0

satisfying
∀i, j ∈ {0, . . . , n− 1} (ai = aj ⇒ i = j).

Since G(ϕ) is finite, it has only finitely many cycles. Moreover, there exists at least one cycle
since, in each (a, b) ∈ E(G(ϕ)), b is uniquely determined by a and so |E(G(ϕ))| = |V (G(ϕ))|.
We define

l3 = lcm{|c|; c is an A3-cycle in G(ϕ)}
and

L(ϕ) = max{lcm(l3, |c|); c is an A1-cycle in G(ϕ)}.
Clearly, L(ϕ) ≤ |A1||A3|!.
Lemma 7.2 Let ϕ be a uniformly continuous endomorphism of A∗ and let a ∈ A0. Then
every letter of aϕ|A0|−1 lies in an A3-cycle.

Proof. We use induction on |A0|. If |A0| = 1, then A0 = {a} = A3 since aϕ = a, thus the
claim holds. Assume now that |A0| > 1 and the claim holds for smaller values of |A0|.

If aϕq = uav for some q ∈ IN, then a ∈ A0 yields u = v = 1 and so a ∈ A3 since ϕ is
uniformly continuous. Therefore a lies in an A3-cycle.

Otherwise, let A′
0 be the set of letters occurring in {aϕn | n ≥ 1}. We may apply the

induction hypothesis to ϕ|A′
0

to conclude that every letter of bϕ|A
′
0|−1 lies in an A3-cycle for

every b occurring in aϕ. Since |A′
0| < |A0|, this completes the proof. �
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Theorem 7.3 Let ϕ be a uniformly continuous endomorphism of A∗ and let a0 ∈ A1. Then

0 < |Ad(a0ϕ
n)n| ≤ L(ϕ).

Proof. By Lemma 7.2, for every a ∈ A0, every letter of aϕ|A| lies in an A3-cycle. Thus

∀a ∈ A0 aϕ|A|+l3 = aϕ|A|. (27)

In fact, since every letter of aϕ|A| lies in an A3-cycle and l3 is a multiple of the length of
any A3-cycle, (27) holds.

For every a ∈ A1, we have aϕ ∈ A∗
0A1A

∗. Hence, for every n ∈ IN, we may write
a0ϕ

n = unanu′n for some un ∈ A∗
0, an ∈ A1 and u′n ∈ A∗. Clearly, there exists some

A1-cycle c in G(ϕ) such that
∀j ≥ |A1| aj+|c| = aj . (28)

In fact, j ≥ |A1| implies that aj lies in some A1-cycle. Hence (28) holds.
Let l = lcm(l3, |c|). We show that:

∀i ∈ {0, . . . , l − 1} (a0ϕ
|A|+i+ln)n converges. (29)

Let i ∈ {0, . . . , l − 1} and k = |A|+ i. We have a0ϕ
k = ukaku

′
k and (28) yields

uk+laku
′
k+l = uk+lak+lu

′
k+l = a0ϕ

k+l = (ukaku
′
k)ϕ

l

= (ukϕ
l)(akϕ

l)(u′kϕ
l).

Since uk+l, ukϕ
l ∈ A∗

0, it follows that uk+l = (ukϕ
l)v and akϕ

l = vakw for some v ∈ A∗
0 and

w ∈ A∗.
Suppose first that v 6= 1. For every n ∈ IN, we have

a0ϕ
k+ln = (ukaku

′
k)ϕ

ln = (ukϕ
ln)(vϕl(n−1))(vϕl(n−2)) . . . (vϕl)vak . . .

Since uk, v ∈ A∗
0, it follows from (27) that, for n ≥ |A|, ukϕ

ln = ukϕ
l|A| and vϕln = vϕl|A|.

Moreover, if n > |A|+ n0,

a0ϕ
k+ln = (ukϕ

l|A|)(vϕl|A|)n0 . . .

Since vϕl|A| 6= 1, it is immediate that

lim
n→∞

a0ϕ
|A|+i+ln = (ukϕ

l|A|)(vϕl|A|)ω.

Suppose now that v = 1. Since ak ∈ A1, we have w 6= 1. For every n ∈ IN, we get

a0ϕ
k+ln = (ukaku

′
k)ϕ

ln = (ukϕ
ln)akw(wϕl)(wϕ2l) . . . (wϕl(n−1))(u′kϕ

ln)

Since uk ∈ A∗
0, it follows from (27) that, for n ≥ |A|, ukϕ

ln = ukϕ
l|A|. Since wϕln 6= 1 for

every n ∈ IN, it is immediate that

lim
n→∞

a0ϕ
|A|+i+ln = (ukϕ

l|A|)akw(wϕl)(wϕ2l)(wϕ3l) . . .

Therefore (29) holds.
It is straightforward that the limits of the subsequences in (29) are the only adherence

values of (a0ϕ
n)n since any such adherence value must be an adherence value for one of the l

subsequences of the partition, and a convergent sequence has its limit as its only adherence
value. Therefore

0 < |Ad(a0ϕ
n)n| ≤ l ≤ L(ϕ)

as required. �
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The next example shows that the bound L(ϕ) is in some sense tight.
Example 7.4 Let A = {a1, . . . , a8} and let ϕ be the (uniformly continuous) endomorphism
of A∗ defined by:

a1ϕ = a2a5, a4ϕ = a2, a8ϕ = a2
5, aiϕ = ai+1 (i ∈ {2, 3, 5, 6, 7}).

Then a1 ∈ A1 and |Ad(a1ϕ
n)n| = L(ϕ).

Proof. It is easy to see that

A1 = {a1, a5, a6, a7, a8}, A3 = {a2, a3, a4},

hence G(ϕ) is the graph described by

a1 // a5 // a6

��

a2 // a3

��
a8

OO

a7oo a4

aaBBBBBBBB

hence L(ϕ) = lcm(3, 4) = 12. We have

aiϕ
12 =

{
ai for i = 2, 3, 4
a8

i for i = 5, 6, 7, 8.

A straightforward induction shows that

a1ϕ
12n = a4a

8n−14
8 a1ϕ

12n+4 = a2a
8n

8 a1ϕ
12n+8 = a3a

8n2
8

a1ϕ
12n+1 = a2a

8n

5 a1ϕ
12n+5 = a3a

8n2
5 a1ϕ

12n+9 = a4a
8n4
5

a1ϕ
12n+2 = a3a

8n

6 a1ϕ
12n+6 = a4a

8n2
6 a1ϕ

12n+10 = a2a
8n4
6

a1ϕ
12n+3 = a4a

8n

7 a1ϕ
12n+7 = a2a

8n2
7 a1ϕ

12n+11 = a3a
8n4
7 .

In particular, a1 ∈ A1 and

Ad(a1ϕ
n)n = {aiaω

j | i ∈ {2, 3, 4}, j ∈ {5, 6, 7, 8} }

has 12 elements. �

We can now identify all the Φ-periodic points:
Theorem 7.5 Let ϕ be uniformly continuous. Let B = {a ∈ A | aϕl3 = a}. Then

Per(Φ) = B∞ ∪ (
⋃

a∈A2

B∗Ad(aϕn)n) (30)

and each α ∈ Per(Φ) has period ≤ L(ϕ). Moreover, if α is regular then it is an attractor.

Proof. Since ϕ is uniformly continuous, we have B ⊆ A3. Given u ∈ Per(ϕ), we must have
u ∈ A∗

0 and so uϕ|A|+l3 = uϕ|A| by (27). If uϕn = u, we get

u = uϕn|A| = uϕn|A|+l3 = uϕl3 .
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Thus Per(ϕ) ⊆ B∗ since ϕ is uniformly continuous. The opposite inclusion being obvious,
we obtain Per(ϕ) = B∗. By Lemma 7.1, we may apply Lemma 5.3 and Theorem 5.4 to get
B∗ = A∗

0ϕ
p and Pers(Φ) = A∞

0 Φp. Hence Pers(Φ) = B∞.
Now Theorem 5.5 yields

Perr(Φ) =
⋃

a∈A2

B∗Ad(aϕn)n

and implies that all these regular periodic points are attractors.
Finally, we bound the period. It is immediate that αΦl3 = α for every α ∈ B∞, hence

we only need to show that every α ∈ Ad(aϕn)n (a ∈ A1) satisfies αΦl = α for some l ≤ L(ϕ)
with l3|l. By the remark at the end of the proof of Theorem 7.3, Ad(aϕn)n consists of the
limits of the subsequences in (29), thus

α = lim
n→∞

aϕk+nl

for some k ∈ IN and l ≤ L(ϕ) with l3|l. Since Φ is a continuous endomorphism of A∞

extending ϕ, it follows that

αΦl = (limn→∞ aϕk+nl)Φl = limn→∞(aϕk+nlϕl)
= limn→∞ aϕk+(n+1)l = limn→∞ aϕk+nl = α.

Therefore each α ∈ Per(Φ) has period ≤ L(ϕ). �

Write
A4 = {a ∈ A1 : aϕka ∈ aA+ for some ka ≥ 1}.

Alternatively, A4 is the set of vertices of G(ϕ) lying in some A1-cycle.
Corollary 7.6 Let ϕ be uniformly continuous and let B = {a ∈ A | aϕL(ϕ) = a}. Then
there exists a finite subset F of Aω with |F | = |A4| such that

Per(Φ) = B∞ ∪ B∗F (31)

and all elements of B∗F are attractors.

Proof. For every a ∈ A4, let αa = limn→∞ aϕnka . Let

F = {αa; a ∈ A4}.

We show that (31) holds.
Assume that α ∈ Per(Φ) and αΦm = α (m ≥ 1). By Theorem 7.5, we have Per(Φ) =

B∞ ∪ B∗F1 with F1 = ∪a∈A1Ad(aϕn)n. Hence we may assume that α ∈ B∗F1. Write
α = uaβ with u ∈ A∗

0 and a ∈ A1. Since αΦm = α, A0ϕ ⊆ A∗
0 and aϕm 6= a, it follows that

uϕm = u and aϕm = av for some v ∈ A+. By Theorem 5.7, limn→∞ aϕnm ∈ Fix(Φm) and
it is now straighforward to check that

α = αΦm = uav(vϕm)(vϕ2m) . . . = u lim
n→∞

aϕnm.

Moreover, a ∈ A4 and α = uαa since two convergent sequences sharing an infinite subse-
quence must share the same limit. Thus Per(Φ) ⊆ B∞ ∪ B∗F.

Trivially, F ⊆ F1 and so (31) follows from Theorem 7.5. Thus (31) holds.
Since all the αa start with different letters, we get |F | = |A4|. Finally, all elements of

B∗F are attractors by Theorem 7.5. �
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