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1.1 Introduction

Boussinesq hydromagnetic convection obeys the Navier-Stokes equation with
Lorentz and Archimedes forces for the flow, the magnetic induction equation
for the magnetic field, and the heat transfer equation for temperature (v, 7,
k, « are, respectively, the molecular viscosity, magnetic diffusivity, thermal
diffusivity and thermal compressibility; f‘, f{, S are external source terms):

AV =V x(@xV)=dp+vd*V-Hx (0 xH)— T —Tp)G +F,
OH=0x(VxH) +7?H+R, 9-H=0, 8-V=0, (1.1)
HT=—(V-9)T +kdT+S.

They may be used to simulate the evolution of astrophysical convective hy-
dromagnetic (CHM) systems. Accurate simulations for geo- and astrophysical
parameter values are close to impossible, due to the limited power of available
computers. A semi-analytic approach, based on multiscale analysis, can be
applied to this system, in particular to evaluate eddy diffusivity [, 12, 4, 3].
Negative values of eddy diffusivity indicate that the system is unstable to
perturbations involving large scales. This instability is a possible mechanism
for kinematic magnetic field generation (non-convective dynamos exploiting
this mechanism were studied in [, 6]).

1.2 Multiscale analysis

The modes of perturbations of steady CHM states obey the equation PAW =

AW, where ) is the growth rate of perturbations, W = [ wVY wH wT }t is
a block vector representing their spatial profile, A is the linearised CHM op-
erator and P is the projection onto the subspace of solenoidal vector fields [1I].
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In the two-scale expansion, slow variables X = ex are introduced to describe
large-scale dynamics. Expanding perturbations and growth rates in power se-
ries in the scale ratio €, substituting them in the eigenvalue equation and
equating the terms in €™ at each order n, a hierarchy of equations of the form
PA(OPf = Pg is obtained. Such an equation has a solution, as long as its
right hand side is orthogonal to the kernel of the adjoint operator, PA() P,
For n = 0 and n = 1, this solvability condition is trivially satisfied, if the
perturbed CHM state possesses certain symmetries. For n = 2, it yields an
eigenvalue equation for the eddy diffusivity operator in slow variables.

1.3 Numerical results and discussion

To model magnetic instabilities in turbulent convective flows, periodic steady
CHM states can be randomly generated in the Fourier space Iﬁl,] These states
satisfy (CJ) for the appropriate source terms. Symmetry and solenoidality
conditions must be imposed on the Fourier coefficients, which are normalised
afterwards to have a prescribed decaying energy spectrum and the r.m.s. av-
erage one. Auxiliary problems are solved numerically in the Fourier space by
pseudo-spectral methods (sine or cosine transforms are applied in the vertical
direction, in accordance with boundary conditions for respective components
of vector fields). Algebraic (E(k) ~ k~¢) or exponential (E(k) ~ exp(—¢&k))
spectra were considered in [ﬁ] where flows with exponentially decaying spectra
were found to be statistically better dynamos.

Simulations have been carried out for v =n =k = 0.5, and o = 1 for the
periodicity box of size 27w x 27 x 7, with the resolution of 32 x 32 x 16 Fourier
harmonics. An ensemble of 1000 instances of CHM steady states, involving
Fourier harmonics with wave numbers not exceeding 7, has been generated for
both algebraic and exponentially decaying spectra, assuming £ = 4 in both
cases. For algebraic spectra, it turns out that 110 out of 1000 (11%) generated
flows exhibit negative combined eddy diffusivity. The number rises to 131
(13%) for exponential spectra (see Fig. [T (a)-(b)). Steady states leading
to negative eddy diffusivity are unstable to large-scale perturbations. The
growth rate of the perturbation is quadratic in the scale ratio e. Therefore, this
instability can be observed only if the considered CHM steady state is stable
to short-scale perturbations, which would have larger growth rates otherwise.

For one of the generated CHM states, one of the molecular diffusivities has
been varied, keeping all the other parameters equal to the previously used val-
ues (see Fig. [l (c)-(d)). The combined eddy diffusivity depends explicitly on
the molecular diffusivities v and 7, and on a correction involving the solutions
of the auxiliary problems. Molecular diffusivities v, n and k are also present
in the linearised operator and affect the solutions of these auxiliary problems.
If no correction is present, the maximum growth rate is negative and equal to
—min(v, n). For large molecular diffusivities, the growth rate remains negative,
since the correction is of the order of 1/ min(v, 7, k) and cannot outweigh the



Title Suppressed Due to Excessive Length 3

additive contribution of v and 7. Beyond the interval of this asymptotic be-
haviour, the correction may grow in amplitude, leading eventually to positive
growth rates A\o. Whether this happens depends in particular on the spectral
properties of the linearisation of ([[Il). Thus the influence of molecular diffu-
sivities on the growth rate of the dominant mode of large-scale perturbations
is difficult to predict.
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Figure 1.1. Statistics of growth rates (opposite of eddy diffusivity), for algebraic
(a) and exponential (b) spectra; growth rates as function of molecular diffusivities,
for algebraic (c) and exponential (d) spectra.
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