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ABSTRACT

We show that the following problems are decidable in rank 2 free groups: does a
given finitely generated subgroup H contain primitive elements? and does H meet
the automorphic orbit of a given word u? In higher rank, we show the decidability
of the following weaker problem: given a finitely generated subgroup H , a word
u and an integer k, does H contain the image of u by some k-almost bounded
automorphism? An automorphism is k-almost bounded if at most one of the letters
has an image of length greater than k.

1 Introduction

Orbit problems in general concern the orbit of an element u or a subgroup H of a group
F , under the action of a subgroup G of AutF . Conjugacy problems are a special instance
of such problems, where G consists of the inner automorphisms of F . In this paper, we
restrict our attention to the case where F is the free group FA with finite basis A.

In this context, orbit problems were maybe first considered by Whitehead [21], who
proved that membership in the orbit of u under the action of AutFA is decidable. The
analogous result regarding the orbit of a finitely generated subgroup H was established by
Gersten [6]. Much literature has been devoted as well to the case where G = 〈ϕ〉 is a cyclic
subgroup of AutFA, e.g. Myasnikov and Shpilrain’s work [12] on finite orbits of the form
〈ϕ〉 · u and Brinkmann’s recent proof [2] of the decidability of membership in 〈ϕ〉 · u.

∗The first author acknowledges support from Project ASA (PTDC/MAT/65481/2006) and C.M.U.P.,
financed by F.C.T. (Portugal) through the programmes POCTI and POSI, with national and European
Community structural funds. Both authors acknowledge support from the ESF project AutoMathA.
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The orbit problem considered in this paper is the following: given an element u ∈ FA

and a finitely generated subgroup H of FA, does H meet the orbit of u under AutFA, that
is, does H contain ϕ(u) for some automorphism ϕ ∈ AutFA? A particular instance of this
problem is the question whether H contains a primitive element, since the set of primitive
elements of FA is the automorphic orbit of each letter a ∈ A.

Our main result states that both these problems are decidable in the 2-generated free
group F2. In free groups with larger rank, we are only able to decide a weaker problem.
Say that an automorphism ϕ of FA is k-almost bounded if |ϕ(a)| > k for at most one letter
a ∈ A. We show that given k > 0, u ∈ FA and H a finitely generated subgroup of FA, one
can decide whether there exists a k-almost bounded automorphism µ such that µ(u) ∈ H.

In the rank 2 case, we use a particular factorization of the automorphism group AutF2

(Theorem 3.8) and a detailed combinatorial analysis of the effect of certain simple automor-
phisms on the graphical representation of the subgroup H (the representation by means of
so-called Stallings foldings [19, 8], see Section 2.2).

The proof of the result on almost bounded automorphisms in arbitrary ranks relies
ultimately on Diekert et al.’s result that the existential theory of equations with rational
constraints in free groups is decidable [5]. Interesting intermediary results state that the
set of primitive elements in F2 is a context-sensitive language (Proposition 3.5) and that if
|A| = m and v1, . . . , vm−1 ∈ FA, then the set of elements x such that v1, . . . , vm−1, x form
a basis of FA is a constructible rational set (Proposition 5.3).

2 Preliminaries

2.1 Free groups

Let A denote a finite alphabet and let A−1 denote a set of formal inverses of A. The free
group on A is the quotient

FA = (A ∪A−1)∗/η,

where (A∪A−1)∗ is the free monoid over A∪A−1 and η denotes the congruence on (A∪A−1)∗

generated by the relation
{(aa−1, 1) | a ∈ A ∪A−1}.

We denote the canonical projection (A ∪ A−1)∗ → FA by π. (The −1 notation is extended
to (A ∪A−1)∗ as usual.)

Let
RA = (A ∪A−1)∗ \ (

⋃

a∈A∪A−1

(A ∪A−1)∗aa−1(A ∪A−1)∗)

denote the set of all reduced words in (A ∪ A−1)∗ and let ι : (A ∪ A−1)∗ → RA denote
the reduction map. Since η = Kerι, we abuse notation and denote also by ι the induced
bijection FA → RA. The length of g ∈ FA is defined by |g| = |ι(g)|. To simplify notation,
we shall usually write u = ι(u).

Let u ∈ RA. We say that u is cyclically reduced if uu ∈ RA. For every word u ∈ RA,
there exist unique words v, w ∈ RA such that u = vwv−1 and w is cyclically reduced. We
say that w is the cyclically reduced core of u.

Given X ⊆ FA, we denote by 〈X〉 the subgroup of FA generated by X.
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Let AutFA denote the group of all automorphisms of FA. If ϕ ∈ AutFA and no confusion
arises, we shall denote also by ϕ the corresponding bijection of RA.

Given B ⊆ FA, we say that B is a basis of FA if the homomorphism FB → FA induced
by the inclusion map B → FA is an isomorphism. Equivalently, B is a basis of FA if and
only if B = ϕ(A) for some ϕ ∈ AutFA.

2.2 Automata

An A-language is a subset of A∗. Following the standard language theory convention, we
usually omit brackets in the representation of singleton sets.

We say that A = (Q, q0, T, E) is a (finite) A-automaton if:

• Q is a (finite) set;

• q0 ∈ Q and T ⊆ Q;

• E ⊆ Q×A×Q.

A nontrivial path in A is a sequence

p0
a1−→p1

a2−→ . . .
an−→pn

with (pi−1, ai, pi) ∈ E for i = 1, . . . , n. Its label is the word a1 . . . an ∈ A
∗. It is said to be

a successful path if p0 = q0 and pn ∈ T . We consider also the trivial path p
1
−→p for each

p ∈ Q. It is successful if p = q0 ∈ T . The language L(A) recognized by A is the set of all
labels of successful paths in A.

The automaton A = (Q, q0, T, E) is said to be deterministic if, for all p ∈ Q and a ∈ A,
there is at most one edge of the form (p, a, q). We write then q = p · a. We say that A is
trim if every q ∈ Q lies in some successful path.

The star operator on A-languages is defined by

L∗ =
⋃

n≥0

Ln,

where L0 = {1}. An A-language L is said to be rational if L can be obtained from finite A-
languages using finitely many times the operators union, product and star. Alternatively,
L is rational if and only if it is recognized by a finite (deterministic) A-automaton A =
(Q, q0, T, E). The set of all rational A-languages is denoted by Rat A.

In the context of a particular result or claim, we say that a rational language L is effec-
tively constructible if there exists an algorithm to produce a finite automaton recognizing L
from the concrete structures containing the input.

If A = (Q, q0, T, E) is an (A∪A−1)-automaton, the dual of an edge (p, a, q) is (q, a−1, p).
Then A is said to be dual if E contains the duals of all edges. It is said to be inverse if it
is dual, deterministic, trim and |T | = 1.

Given a finitely generated subgroup H of FA, we denote by A(H) the finite automaton
associated toH by the construction often referred to as Stallings foldings. This construction,
that can be traced back to the early part of the twentieth century [16, Chap. 11], was made
explicit by Serre [17] and Stallings [19] (see also [8]).

We can describe it briefly as follows.
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1. We take a finite generating set X = {x1, . . . , xn} for H in reduced form.

2. We build the flower automaton

// •oo

x1

�� ...
...

xn

PP

where the petals are paths labelled by the generators and their dual edges.

3. We successively identify (“fold”) pairs of edges of the form

•

•

a
??~~~~~~~

a
// •

(a ∈ A ∪A−1) until no further folding applies.

The following proposition summarizes some of the relevant properties of A(H) (see [8]):

Proposition 2.1 Let H ≤f.g. FA. Then:

(i) A(H) is a finite inverse automaton;

(ii) if p
u
−→q is a path in A(H), so is p

u
−→q;

(iii) A(H) does not depend on the finite reduced generating set chosen;

(iv) for every u ∈ RA, u ∈ L(A(H)) if and only if π(u) ∈ H;

(v) L(A(H)) ⊆ π−1(H);

(vi) for every cyclically reduced u ∈ FA, wuw−1 ∈ H for some w ∈ FA if and only if u
labels some loop in A(H).

We conclude with the fundamental Benois Theorem [1]:

Theorem 2.2 If L ∈ Rat (A∪A−1), then L ∈ Rat (A∪A−1) and is effectively constructible.

2.3 Automorphisms of F2

In most of the paper, we shall be discussing the free group on 2 generators. We shall fix
the alphabet A2 = {a, b} and use the notation F2 = FA, R2 = RA.

Given a basis {u, v} of F2, we denote by ϕu,v the automorphism defined by ϕu,v(a) = u
and ϕu,v(b) = v. For every w ∈ F2, let λw = ϕwaw−1,wbw−1 be the inner automorphism
defined by w.

We introduce the notation

Σ = {ϕa,ba, ϕb−1 ,a−1};
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Φ = {ϕa,ba, ϕab,b, ϕa,ab, ϕba,b};

Ψ = {ϕ ∈ AutF2 : |ϕ(a)| = |ϕ(b)| = 1};

Λ = {λw; w ∈ RA};

∆ = {ϕa,ambεan ; m,n ∈ Z, ε ∈ {1,−1}};

It is immediate that these sets consist of automorphisms of F2. The following lemma
summarizes some of their properties. The proof (by straightforward verification) is omitted.

Lemma 2.3 Let w ∈ R2, θ ∈ AutF2, m,n ∈ Z and ε ∈ {1,−1}. Then

(i) θλw = λθ(w)θ;

(ii) ϕa,ab = λaϕa,ba;

(iii) ϕab,b = ϕb,aϕa,baϕb,a;

(iv) ϕba,b = λbϕab,b = λbϕb,aϕa,baϕb,a;

(v) ϕ−1
a,ba = ϕa−1 ,bϕa,baϕa−1 ,b;

(vi) ϕb,a = ϕa−1,bϕb−1,a−1ϕa−1 ,b;

(vii) ϕa,ambεan = λamϕa,bεam+n ;

(viii) ϕa,b−1an = λa−nϕa,ba−nϕa,b−1 ;

(ix) ϕa,ban = ϕn
a,ba.

From now on, we apply the language formalism and conventions to automorphisms.

Proposition 2.4 (i) XΛ = ΛX for every X ⊆ AutF2;

(ii) ΛΨΦ∗ ⊆ ΛΨ(Σ−1)∗ϕa−1,b;

(iii) ∆ ⊆ Λ(ϕ∗
a,ba ∪ ϕa−1 ,bϕ

∗
a,baϕa−1 ,b)(1 ∪ ϕa,b−1).

Proof. (i) By Lemma 2.3(i).
(ii) By Lemma 2.3(i)-(vi), we get

ΛΨΦ∗ ⊆ΛΨ(ϕa,ba ∪ ϕb,a)
∗ = ΛΨ(ϕ−1

a−1 ,b
ϕ−1

a,baϕ
−1
a−1 ,b

∪ ϕa−1,bϕb−1,a−1ϕa−1 ,b)
∗

= ΛΨ(ϕa−1,bϕ
−1
a,baϕa−1,b ∪ ϕa−1 ,bϕ

−1
b−1,a−1ϕa−1,b)

∗ = ΛΨϕa−1,b(Σ
−1)∗ϕa−1,b

= ΛΨ(Σ−1)∗ϕa−1,b.

(iii) By Lemma 2.3(v)-(ix), we have

ϕa,amban = λamϕa,bam+n ∈ Λ(ϕ∗
a,ba ∪ (ϕ−1

a,ba)
∗) = Λ(ϕ∗

a,ba ∪ ϕa−1 ,bϕ
∗
a,baϕa−1 ,b),

ϕa,amb−1an = λamϕa,b−1am+n = λa−nϕa,ba−(m+n)ϕa,b−1

∈ Λ(ϕ∗
a,ba ∪ ϕa−1,bϕ

∗
a,baϕa−1,b)ϕa,b−1 .

�
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3 Primitive words

Let us first consider a particular automorphic orbit in FA, namely the set PA of primitive
words. Recall that a word is primitive if it belongs to some basis of FA. In particular, PA is
the automorphic orbit of each letter from A. We shall often view PA as a subset of RA. We
denote by P2 the set of all primitive words in F2. We establish certain language-theoretic
properties of P2 and we use combinatorial properties of the words in P2 to derive a technical
factorization of the group AutF2 of automorphisms of F2, that will be used in Section 4.

Let us first recall three known results from the literature. The first is due to Nielsen
[13] (see also [4, 2.2] and [14]) and the second is due to Wen and Wen [20]. An interesting
perspective on either is offered in [9, Chapter 2] and [3, Chapter I-5].

Proposition 3.1 (i) Up to conjugation, every primitive word u ∈ P2 is either a letter,
or of the form u = an1bm1 ...ankbmk where

- either n1 = ... = nk ∈ {1,−1} and {m1, ...,mk} ⊆ {n, n+ 1} for some integer n,

- or m1 = ... = mk ∈ {1,−1} and {n1, ..., nk} ⊆ {n, n+ 1} for some integer n.

(ii) The set of positive primitive words P2 ∩ {a, b}
+ is equal to Φ∗({a, b}) = b ∪Φ∗(a).

Corollary 3.2 P2 = ΛΨΦ∗(a).

Proof. By Proposition 3.1(i), a primitive word contains at most two letters from A∪A−1.
Moreover, Proposition 3.1 implies that the set of all cyclically reduced primitive words is
precisely

Ψ(P2 ∩ {a, b}
+) = Ψ(b) ∪ΨΦ∗(a).

Since Ψ(a) = A ∪A−1 = Ψ(b), we conjugate to get

P2 = ΛΨΦ∗(a).

�

3.1 The language P2

Recall that a context-sensitive A-grammar is a triple G = (V, P, S) such that

• V is a finite set containing A
.
∪ {S};

• P is the set of rules of the grammar, a finite subset of (V + \ A+)× V + satisfying

(x, y) ∈ P ⇒ |x| ≤ |y|.

For all x, y ∈ V +, we write x⇒ y if there exist r, s ∈ V ∗ and (p, q) ∈ P such that x = rps
and y = rqs. We denote by

∗
⇒ the transitive and reflexive closure of ⇒. The language

generated by G is
L(G) = {w ∈ A+ | S

∗
⇒ w}.

A language L ⊆ A+ is said to be context-sensitive if it is generated by some context-
sensitive A-grammar. As usual, a language L ⊆ A∗ is called context-sensitive if L ∩ A+ is
context-sensitive.
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Lemma 3.3 The class of context-sensitive languages is closed under union, intersection,
right and left quotient by a word, ε-free substitutions, inverse morphisms and non-erasing
morphisms (that is, homomorphisms in which every letter is mapped to a non-empty word).

Proof. Closure under union, intersection, ε-free substitutions, inverse homomorphisms and
non-erasing morphisms is well-known [7, Exercise 9.10]. In particular, the family of context-
sensitive languages forms a trio [7, Section 11.1] and as such, it is closed under limited erasing
[7, Lemma 11.2]. By definition, this means that if k ≥ 1, L is context-sensitive and ϕ is a
morphism such that ϕ(v) 6= 1 for each u ∈ L and each factor v of u of length greater than
k, then ϕ(L) is context-sensitive as well.

Now let L ⊆ A∗, a ∈ A and $ 6∈ A. Let σ be the substitution that maps a to σ(a) = {a, $}
and which fixes every other letter of A. Let also ϕ : (A ∪ {$})∗ → A∗ be the morphism
which fixes every letter of A and erases $. Then a−1L = ϕ(σ(L) ∩ $A∗) and La−1 =
ϕ(σ(L)∩A∗$). Since the σ-images of the letters are finite, and hence context-sensitive, the
languages σ(L) ∩ $A∗ and σ(L) ∩ A∗$ are context-sensitive; moreover ϕ exhibits limited
erasing on these languages, so a−1L and La−1 are context-sensitive as well. �

Lemma 3.4 Let A be a finite alphabet and let Γ be a finite set of endomorphisms of A+.
For every u ∈ A+, Γ∗(u) is a context-sensitive language.

Proof. Take b /∈ A. We define a context-sensitive (A ∪ {b})-grammar G = (V, P, S) by
V = A ∪ {R,S, T} ∪ {Fϕ | ϕ ∈ Γ} and

P = { S → bFϕuR, S → bub2, Fϕa→ ϕ(a)Fϕ, FϕR→ TR,
FϕR→ b2, aT → Ta, bT → bFϕ; a ∈ A, ϕ ∈ Γ}.

We show that L(G) = bΓ∗(u)b2.
Clearly, Fϕv

∗
⇒ ϕ(v)Fϕ for all ϕ ∈ Γ and v ∈ A∗ and so

bvTR
∗
⇒ bTvR⇒ bFϕvR

∗
⇒ bϕ(v)FϕR⇒ bϕ(v)TR.

Since S ⇒ bFϕuR
∗
⇒ bϕ(u)FϕR⇒ bϕ(u)TR for every ϕ ∈ Γ, it follows that S

∗
⇒ bθ(u)FϕR⇒

bθ(u)b2 for every θ ∈ Γ+. Together with S ⇒ bub2, this yields bΓ∗(u)b2 ⊆ L(G).
To prove the opposite inclusion, let

Z = {S} ∪ {bxyb2, bxTyR, bϕ(x)FϕyR; xy ∈ Γ∗(u)}.

Then
(X ∈ Z ∧ X ⇒ Y )⇒ Y ∈ Z.

Since S ∈ Z, it follows that L(G) ⊆ Z ∩ A∗ = bΓ∗(u)b2 and so L(G) = bΓ∗(u)b2. Thus
bΓ∗(u)b2 is context-sensitive and by Lemma 3.3, Γ∗(u) = b−1(bΓ∗(u)b2)(b2)−1 is context-
sensitive as well. �

Theorem 3.5 P2 is a context-sensitive language.
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Proof. Since the class of context-sensitive languages is closed under union (Lemma 3.3),
it follows from Proposition 3.1(ii) and Lemma 3.4 that P2 ∩ {a, b}

+ is context-sensitive.
Let G = (V, P, S) be a context-sensitive A-grammar generating P2 ∩ {a, b}

+. We build a
context-sensitive A-grammar G ′ = (V ′, P ′, S′) by letting V ′ = {S′} ∪ V and

P ′ = P ∪ {S′ → S} ∪ {S′ → cS′c−1; c ∈ A2 ∪A
−1
2 }.

It is immediate that L(G ′)∩R2 is the set of all reduced words having their cyclically reduced
core in P2 ∩{a, b}

+. It follows from Proposition 3.1(i) or Corollary 3.2 that P2 = P2 ∩R2 =
Ψ(L(G′) ∩R2), and in view of the closure properties in Lemma 3.3, P2 is context-sensitive.
�

This result cannot be improved to the next level of Chomsky’s hierarchy:

Proposition 3.6 P2 is not a context-free language.

Proof. We show that P2 ∩ ab
+ab+ab+ is not a context-free language. Since the class of

context-free languages is closed under intersection with rational languages, it shows that P2

is not context-free either.
It follows easily from Proposition 3.1(i) that

P2 ∩ ab
∗ab∗ab∗ = {abmabnabk; m,n, k ∈ N, max{m,n, k} = min{m,n, k}+ 1}. (1)

It is now a classical exercise to show that P2 ∩ ab
+ab+ab+ is not context-free since it fails

the Pumping Lemma for context-free languages [7, Section 6.1]. �

3.2 A factorization of AutF2

The following result constitutes a simple application of Proposition 2.1:

Lemma 3.7 Let A = {a1, . . . , am} and u ∈ RA. Then {a1, . . . , am−1, u} is a basis of FA if
and only if u = vaε

mw for some v, w ∈ R{a1,...,am−1} and ε ∈ {1,−1}.

Proof. It is immediate that if u = vaε
mw with v, w ∈ R{a1,...,am−1}, then {a1, ..., am−1, u}

generates FA, and by the Hopfian property of free groups (see [10]), {a1, ..., am−1, u} is a
basis of FA.

Conversely, let us assume that u ∈ RA contains several occurrences of am or a−1
m , and

let u = vzw with v, w ∈ Ra1,...,am−1 of maximal length. It is immediate that if H =
〈a1, ..., am−1, u〉, then H = 〈a1, ..., am−1, z〉 and A(H) is equal to A(〈z〉) with loops labelled
a1, ..., am−1 attached at the origin. Thus, if {a1, ..., am−1, u} is a basis of FA, then A(〈z〉)
must consist of a single loop labeled am, and hence z must be equal to am or a−1

m . �

Theorem 3.8 AutF2 = ΛΨΦ∗∆ = Ψ(Σ−1)∗Λϕ∗
a,ba(ϕa−1 ,b ∪ ϕa−1,b−1).

Proof. We start by establishing the first equality. Let θ ∈ AutF2. Then θ(a) ∈ P2

and so θ(a) = σ(a) for some σ ∈ ΛΨΦ∗ by Corollary 3.2. Now σ−1θ ∈ AutF2, hence
{a = σ−1θ(a), σ−1θ(b)} is a basis of F2. By Lemma 3.7, it follows that σ−1θ(b) = ambεan

for some m,n ∈ Z and ε ∈ {1,−1}. Thus θ(b) = σ(ambεan) and we get

θ = σϕa,ambεan ∈ ΛΨΦ∗∆.
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The opposite inclusion is trivial since AutF2 is closed under composition. Therefore
AutF2 = ΛΨΦ∗∆.

Now Proposition 2.4 yields

AutF2 = ΛΨΦ∗∆
⊆ΛΨΦ∗(ϕ∗

a,ba ∪ ϕa−1,bϕ
∗
a,baϕa−1 ,b)(1 ∪ ϕa,b−1)

= ΛΨΦ∗(1 ∪ ϕa−1,bϕ
∗
a,baϕa−1,b)(1 ∪ ϕa,b−1)

= ΛΨΦ∗ϕa−1,bϕ
∗
a,baϕa−1,b(1 ∪ ϕa,b−1)

⊆ΛΨ(Σ−1)∗ϕ∗
a,baϕa−1 ,b(1 ∪ ϕa,b−1)

= Ψ(Σ−1)∗Λϕ∗
a,ba(ϕa−1 ,b ∪ ϕa−1 ,b−1).

The converse inclusion is of course trivial. �

4 The orbit problem in F2

The aim of this section is to prove

Theorem 4.1 Given u ∈ F2 and H ≤f.g. F2, it is decidable whether or not µ(u) ∈ H for
some µ ∈ AutF2.

In view of Theorem 3.8, we will pay detailed attention to the action of the automorphisms
of Σ, namely ϕb−1,a−1 and ϕa,ba, on the automata of the form A(H).

Let us also note the interesting corollary below.

Corollary 4.2 Given H ≤f.g. F2, it is decidable whether H contains a primitive element
of F2.

4.1 Singularities, bridges and automorphisms in Σ

Given H ≤f.g. F2, we say that a state q of A(H) is a

• source if q · a, q · b 6= ∅,
a
←−q

b
−→

• sink if q · a−1, q · b−1 6= ∅.
a
−→q

b
←−

We use the general term singularities to refer to both sources and sinks.
We denote by Sing(H) the set of all singularities of A(H) plus the origin. If we emphasize

the vertices of Sing(H) in A(H), it is immediate that A(H) can be described as the union
of positive paths, i.e. paths with label in (a∪b)+, between the vertices of Sing(H), and these
positive paths do not intersect each other except at Sing(H). We call such paths bridges.
Note that every positive path whose internal states are not singularities can be extended
into a uniquely determined bridge.

We discuss now the evolution of the Stallings automata under the influence of Σ. The
next result follows immediately.

Fact 4.3 The automaton A(ϕb−1,a−1(H)) has the same vertex set as A(H), edges are re-
verted and labels changed. In particular, sources and sinks are exchanged. If β is a bridge
in A(H), β = p

w
−→q, then there is a bridge q−→p labeled ϕb−1,a−1(w−1), of equal length,

which we denote by ϕb−1,a−1(β).
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Fact 4.4 The automaton A(ϕa,ba(H)) is obtained from A(H) by the following 3 steps:

(S1) If p
b
−→q is an edge of A(H) and q is not a sink, we replace that edge by a path

p
b
−→ •

a
−→q, adding a new intermediate vertex for each such edge.

(S2) If p
a
−→q

b
←−r is a sink in A(H), we replace this configuration by

p
a

(( q r
b

kk

(S3) We successively remove all the vertices of degree 1 different from the origin.

Proof. Following [15, Subsection 1.2], the automaton A(ϕ(H)) may be obtained fromA(H)
in three steps:

(1) We replace each edge labelled by b by a path labelled ba (introducing a new interme-
diate vertex for each such edge), producing a dual automaton B.

(2) We execute the complete folding of B.

(3) We successively remove all the vertices of degree 1 different from the origin.

How much folding is involved in the process? Let us consider the first level of folding, i.e.
those pairs of edges that can be immediately identified in B.

• There are no b-edges involved in the first level of folding: indeed, the b-edges keep
their origin when we go from A(H) to B, and their target is always a new vertex
where folding cannot take place.

• If we have a sink p
a
−→q

b
←−r in A(H), we get

p
a
−→q

a
←− •

b
←−r

in B and therefore an instance of first level folding, yielding

p
a

(( q r
b

kk

• These are the only instances of first level folding: we cannot fold two “new” a-edges
a
−→q

a
←− in B since that would imply the existence of two b-edges

b
−→q

b
←− in A(H).

Let C denote the automaton obtained by performing all the instances of first level folding
in B. It follows from the above remarks that C can be obtained from A(H) by application
of (S1) and (S2).

We actually need no second level of folding because C is already deterministic. Indeed,
it is clear from (S1) and (S2) that configurations such as

a
←−q

a
−→ or

b
←−q

b
−→ cannot occur

in C.
Suppose that

b
−→q

b
←− does occur. Then both edges must have been obtained through

(S2) which is impossible since p · a is uniquely determined in A(H).
Finally, suppose that

a
−→q

a
←− does occur. At least one of these edges must have been

obtained through (S1), but not both, otherwise we would have a configuration
b
−→q

b
←− in

A(H). But then we would have a configuration
a
−→q

b
←− in A(H) and q would be a sink,

contradicting the application of (S1). Thus C is deterministic and so A(ϕ(H)) is obtained
from A(H) by successive application of (S1), (S2) and (S3). �
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Fact 4.5 (i) When applying ϕa,ba, a state of A(H) is trimmed in step (S3) if and only
if it is a sink of A(H) without outgoing edges. Moreover, no consecutive states can be
trimmed.

(ii) The sources of A(ϕa,ba(H)) are precisely the sources p of A(H) such that p · a is not
a sink or has outgoing edges in A(H).

(iii) The sinks of A(ϕa,ba(H)) are precisely the states p of A(H) with incoming edges such
that p · a is a sink of A(H).

Proof. (i) The origin cannot be trimmed and the number of outgoing edges never decreases,
so the only possible candidates to (S3) are the states that are decreasing the number of
incoming edges, which are precisely the sinks of A(H). Clearly, their fate will then depend
on the previous existence of some outgoing edge. Note that A(H) cannot possess two
consecutive sinks with no outgoing edges, hence the trimming of a vertex will not be followed
by the trimming of any of its neighbours.

(ii) Since outgoing edges can be at most redirected through (S1) and (S2), it is clear
that every source p of A(ϕa,ba(H)) must be a source of A(H). Thus everything will depend
on p · a being trimmed or not, and part (i) yields the claim.

(iii) Clearly, no new intermediate vertex obtained through (S1) can become a sink, and
any sink of A(H) will not remain such after application of (S2). Thus the only remaining
candidates are the non sinks of A(H) that are increasing the number of incoming edges,
which are precisely those of the form q ·a−1, where q is a sink of A(H). Clearly, to have two
distinct incoming edges in A(ϕa,ba(H)), p = q ·a−1 must have at least one incoming edge in
A(H). In such a case, it is easy to check that after (S1)/(S2), p has indeed become a sink
of A(ϕa,ba(H)). We remark also that the subsequent trimming by (S3) does not affect the
presence of singularities. �

Fact 4.6 Let β be a bridge in A(H) of length at least 2, say β = p
w
−→q, and let w = w′cd

where c, d ∈ A.

(i) A(ϕa,ba(H)) has a positive path p
ϕ(w′c)
−−→s, which extends to a uniquely determined

bridge, denoted by ϕa,ba(β).

(ii) |ϕa,ba(β)| ≥ |β| − 1, and we have |ϕa,ba(β)| = |β| − 1 exactly if w ∈ a+, p is a source
or the origin in A(H), and q is a sink in A(H).

Proof. Write β = p
w′

−→r
c
−→s

d
−→q.

(i) By Fact 4.5, no state of the path p
ϕ(w′c)
−−→s risks trimming. Hence it suffices to check

that no intermediate vertex of this path can become a singularity (let alone the origin).
This follows easily from Fact 4.5(ii) and (iii).

(ii) The inequality |ϕa,ba(β)| ≥ |β| − 1 follows at once from part (i). It follows also that
|ϕa,ba(β)| = |β| − 1 if and only if w′c ∈ a+ (otherwise |ϕa,ba(β)| ≥ |ϕa,ba(w

′c)| > |w′c| =
|β| − 1) and p, s ∈ Sing(ϕa,ba(H)). Thus we assume that w′c ∈ a+.

Clearly, if p is the origin, it must remain so. If p is a source, it follows from Fact 4.5(ii)
that p remains a source (since p · a is not a sink in A(H)). Finally, if p is a sink, it will no
longer be a singularity in A(ϕa,ba(H)) by Fact 4.5(iii). Therefore p ∈ Sing(ϕa,ba(H)) if and
only if it is a source or the origin in A(H).

11



Clearly, q can never become the origin or a source. Since q has incoming edges in A(H),
it follows from Fact 4.5(iii) that s becomes a sink in A(ϕa,ba(H)) if and only if s ·a is a sink
in A(H). Since the unique outgoing edge of s in A(H) has label d, then s ∈ Sing(ϕa,ba(H))
if and only if d = a and q is a sink in A(H). �

Let σ(H) be the number of singularities of A(H), i.e. the number of sources plus the
number of sinks. Note that a vertex may be a source and a sink, and is then counted twice.
Facts 4.3 and 4.5 yield:

Lemma 4.7 Let H ≤f.g. F2 and ϕ ∈ Σ. Then σ(ϕ(H)) ≤ σ(H).

We say that a path p
w
−→r is homogeneous if w ∈ Ra ∪Rb. Given H ≤f.g. F2, we define

δ0(H) = max{ σ(H), {|κ| | κ is a homogeneous cycle in A(H)}},
δ(H) = max{ δ0(H), {|κ| | κ is a homogeneous cycle-free path in A(H)}}.

Lemma 4.8 Let H ≤f.g. F2 and ϕ ∈ Σ. Then δ0(ϕ(H)) ≤ δ0(H).

Proof. We may assume that ϕ = ϕa,ba. In view of Lemma 4.7, we only need to show that
A(ϕ(H)) has no homogeneous cycle of length greater than δ0(H).

Assume that q
w

pp is a homogeneous cycle in A(ϕ(H)). Assume first that w = an.
Since no a-edge obtained through (S1) can be part of an a-cycle, it follows that the cycle
existed already in A(H) and so n ≤ δ0(H).

Assume now that w = bn. Once again, no b-edge obtained through (S1) can be part of a
b-cycle, hence all edges in the cycle must have been obtained through (S2). But producing
a b-edge through (S2) requires a sink, and any such sink produces a unique b-edge. Thus n
cannot exceed the number of sinks in A(H) and so n ≤ δ0(H) as required. �

Given H ≤f.g. F2, we consider the geodesic metric d defined on the vertex set of A(H)
by taking d(u, v) to be the length of the shortest path connecting u and v. Since A(H) is
inverse, it is irrelevant to consider directed or undirected paths. As usual, we have

d(u,Sing(H)) = min{d(u, v); v ∈ Sing(H)}.

Given t > 0, we denote by At(H) the automaton obtained by removing from A(H) all
vertices u such that d(u,Sing(H)) > t and their adjacent edges. We say that A(H) is the
t-truncation of A(H).

By Fact 4.6, we know that, for every bridge β in A(H) of length at least 2, and ϕ ∈ Σ,
we have |ϕ(β)| ≥ |β| − 1. The next lemma will provide sufficient conditions to ensure
|ϕ(β)| ≥ |β|.

Lemma 4.9 Let ϕ ∈ Σ, H ≤f.g. F2 and K ∈ Σ∗(H). If β is a bridge in A(K) and
|β| > 2δ(H), then |ϕ(β)| ≥ |β|.

Proof. We may assume that H is nontrivial, i.e., δ(H) > 0.
The result is easily verified if ϕ = ϕb−1,a−1 in view of Fact 4.3, since that automorphism

preserves state set, singularities and distances. So we now assume that ϕ = ϕa,ba.
Since ϕb−1 ,a−1 has order 2, we may assume that ϕb−1,a−1ϕb−1,a−1 is not a factor of µ as

a word on Σ, i.e., we may replace Σ∗ by

L = Σ∗ \ (Σ∗ϕb−1 ,a−1ϕb−1 ,a−1Σ∗) (2)

12



at our convenience. Hence we may write µ = ϕj
a,baψ with j ≥ 0 and ψ ∈ {1, ϕb−1 ,a−1} ∪

ϕb−1 ,a−1ϕa,baL.
We first observe that by Lemma 4.8,

If x
an

−→x is a cycle in A(ψ(H)), then n ≤ δ(H). (3)

Next we show that

If x
an

−→y is a cycle-free path in A(ψ(H)), then n ≤ δ(H). (4)

The result is trivial if ψ is trivial or equal to ϕb−1,a−1 (since in that case δ(ψ(H)) = δ(H)).
Let us now assume that ψ 6∈ {1, ϕb−1 ,a−1}, so that ψ = ϕb−1,a−1ϕa,baχ for some χ ∈ L.

Let p
an

−→q be a cycle-free path in A(ψ(H)) with n > δ(H). Then q
bn

−→p is a cycle-free
path in A(ϕa,baχ(H)). Since δ(H) > 0, we have n ≥ 2. Observe that the application of
ϕa,ba shatters to pieces any b-path existing in A(χ(H)), hence transformations of type (S2)
must be involved in the genesis of q

bn

−→p.
Let

q = q0
b
−→q1

b
−→ . . .

b
−→qn = p

be our path in A(ϕa,baχ(H)). Since any b-edge obtained through (S1) must be followed
only by an a-edge, only qn−1

b
−→qn can be obtained through (S1). Thus there exist edges in

A(χ(H)) (represented through discontinuous lines) of the form

p1 p2 pn−2 pn−1

q0

b
>>}

}
}

}

b
// q1

b
>>}

}
}

}

a

OO�
�

�

b
// q2

a

OO�
�

�

. . . qn−2
b

//

a

OO�
�

�

b
::v

v
v

v
v

qn−1

a

OO�
�

�

b
// qn

Clearly, the vertices p1, . . . , pn−1 are distinct sinks in A(χ(H)). If qn−1
b
−→qn is also obtained

through (S2), we get an nth sink in A(χ(H)). If qn−1
b
−→qn is obtained through (S1), there

is an edge qn−1
b
−→z in A(χ(H)) and since n ≥ 2, it follows that qn−1 must be a source in

A(χ(H)). In any case, we obtain n singularities in A(χ(H)) and so

δ0(χ(H)) ≥ n > δ(H) ≥ δ0(H),

contradicting Lemma 4.8. Therefore (4) holds.
Let us finally consider a bridge β in A(K) such that |β| > 2δ(H). By Fact 4.6, if

|ϕ(β)| < |β|, then β = p
am

−→q, where m > 2δ(H), p is a source or the origin in A(K), and
q is a sink of A(K). Since the action of ϕa,ba does not increase the length of a-cycles and
since all a-cycles in A(ψ(H)) have length at most δ(H) (see (3)), we see that β is not part
of an a-cycle. Now, the action of ϕa,ba can only increase the length of a cycle-free a-path
by one unit, so (4) shows that j > 2δ(H) − δ(H) = δ(H).

By Fact 4.6(ii), p is either the origin or a source in A(K). By Fact 4.5(ii), p is still the
origin or a source in A(ψ(H)). Moreover, successive application of Fact 4.5(iii) yields that
q ·aj exists in A(ψ(H)) and is a sink in that automaton (note that, since p is either the origin
or a source, all the a-edges in the corresponding path of A(ϕi

a,baψ(H)) must already exist in

A(ϕi−1
a,baψ(H)) for i = 1, . . . , j). In particular, aj labels a cycle-free path in A(ψ(H)) (if the

path were not cycle-free, β would be part of an a-cycle, a contradiction). Since j > δ(H),
this contradicts (4), and hence concludes the proof. �
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Theorem 4.10 Let ϕ ∈ Σ, H ≤f.g. F2, t ≥ δ(H) and K,K ′ ∈ Σ∗(H). Then

At(K) = At(K
′) ⇒ At(ϕ(K)) = At(ϕ(K ′)).

Proof. As in the proof of Lemma 4.9, we may assume that δ(H) > 0 and ϕ = ϕa,ba.
By Lemma 4.7, we know that the number of singularities does not increase by application

of automorphisms from Σ. By Lemma 4.9, we also know that, once the length of a bridge
reaches the threshold 2δ(H) + 1, it can only get longer. As it turns out from the definition,
truncation affects only bridges of length at least 2δ(H) + 1. We must therefore discuss the
truncation mechanism for such long bridges.

Assume that β : p
w
−→q is a bridge in A(µ(H)) (µ ∈ Σ∗) with |w| ≥ 2t+1. Then we may

write w = uzv with |u| = |v| = t. By Lemma 4.9, the label of ϕ(β) is of the form u′z′v′

with |u′| = |v′| = t and |z′| ≥ |z|. We only need to prove that u′ and v′ depend only on
At(µ(H)) and are therefore independent from z.

In view of Fact 4.5, it is clear that u′ depends only on At(µ(H)) (remember that w =
uzv is a positive word and singularities cannot move forward along a positive path). The
nontrivial case is of course the case of q being a sink in A(µ(H)), since by Fact 4.5(iii) a
sink can actually be transferred to the preceding state along a positive path. We claim that
even in this case v′ is independent from z.

Indeed, assume first that b occurs in v. Then |ϕ(v)| > |v| provides enough compensation
for the sink moving backwards one position. Hence we may assume that v = at. We claim
that v′ = at as well, independently from z. Suppose not. Since we are assuming that the
sink has moved from q to its predecessor, and ϕ(at−1) = at−1, it follows that v′ = bat−1.
Hence b occurs in w. Write w = xbam. Since ϕ(bam) = bam+1, and taking into account the
mobile sink, we obtain by comparison bam = bat−1 and so m = t− 1, a contradiction, since
at is a suffix of w. Therefore v′ = at and so is independent from z as required. �

Corollary 4.11 Let H ≤f.g. F2 and t ≥ δ(H). Then the set

X (H) = {At(K) | K ∈ Σ∗(H)}

is finite and effectively constructible.

Proof. By Lemma 4.7, X (H) is finite. The proof of Theorem 4.10 provides a straighforward
algorithm to compute all its elements. Indeed, all we need is to compute the finite sets

Xn(H) = {At(K) | K ∈ Σn(H)}

until reaching

Xn+1(H) ⊆
n
⋃

i=0

Xi(H), (5)

which must occur eventually since X (H) = ∪i≥0Xi(H) is finite. Why does (5) imply X (H) =
∪n

i≥0Xi(H)? Suppose that B ∈ Xm(H)\(∪n
i≥0Xi(H)) for m > n minimal, say B = At(ϕ(K))

with K ∈ Σm−1(H) and ϕ ∈ Σ. By minimality of m, we have At(K) ∈ ∪n
i≥0Xi(H). Thus

At(K) = At(K
′) for some K ′ ∈ ∪n

i=0Σ
i(H). Now Theorem 4.10 yields

B = At(ϕ(K)) = At(ϕ(K ′)) ∈
n+1
⋃

i=0

Xi(H) =

n
⋃

i=0

Xi(H),

a contradiction. Therefore X (H) = ∪n
i≥0Xi(H) as claimed. �
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4.2 Proof of Theorem 4.1

Let u ∈ F2 and H ≤f.g. F2. We want to show that it is decidable whether µ(u) ∈ H for
some µ ∈ AutF2. By Theorem 3.8, and since Ψ−1 = Ψ, it suffices to decide whether there
exist w ∈ F2 and n ≥ 0 such that one of the following conditions hold:

• λwϕ
n
a,baϕa−1,b(u) ∈ Σ∗Ψ(H);

• λwϕ
n
a,baϕa−1,b−1(u) ∈ Σ∗Ψ(H).

Since Ψ is finite, it suffices to be able to decide whether

there exist w ∈ F2 and n ≥ 0 such that λwϕ
n
a,ba(u) ∈ µ(H) for some µ ∈ Σ∗. (6)

As noted before, we may use L instead of Σ∗. In view of Proposition 2.4(i), we may also
replace λwϕ

n
a,ba by ϕn

a,baλw.
We start by considering the case n = 0. Again by Proposition 2.4(i), we may assume

that u is cyclically reduced, and by Proposition 2.1(vi), our problem further reduces to
asking if one can decide whether

u labels a loop in A(µ(H)) for some µ ∈ L. (7)

We note that every loop contains either the origin or a singularity: if it does not contain
the origin, then there is a path from the origin to a state in the loop, and the first contact
between that path and the loop is a source or a sink. In particular, every loop labelled by
u in A(µ(H)) is also in At(µ(H) if t > |u|/2. Let us then fix t > max{|u|/2, δ(H)}. Then
for every µ ∈ L, u labels a loop in A(µ(H)) if and only if u labels a loop in At(µ(H)). By
Corollary 4.11 we can effectively compute the finite set

X (H) = {At(K) | K ∈ Σ∗(H)}.

Thus (7) is decidable, and hence (6) is decidable for n = 0. It is also decidable for any
fixed n (applying the case n = 0 to ϕn

a,ba(u) instead of u).
We now consider (6) in its full generality. If u ∈ Ra, then we are reduced to the case

n = 0 since ϕa,ba(u) = u. So we will assume that b or b−1 occurs in u, and by conjugation
again, we may assume that u starts with b or ends with b−1 (and not both since u is cyclically
reduced).

Let M be the least common multiple of 1, 2, . . . , δ0(H). In order to prove (6), it suffices
to show that if there exist w ∈ F2 and n ≥ 0 such that λwϕ

n
a,ba(u) ∈ µ(H) for some

µ ∈ Σ∗, then λwϕ
n
a,ba(u) ∈ µ(H) for some w ∈ F2, n < |u| + max{|u|,M + δ(H)} and

µ ∈ {1, ϕb−1 ,a−1} ∪ ϕb−1,a−1ϕa,baL. Since we have proved (6) for bounded n, the latter
property is decidable, and hence (6) is decidable in general.

We now proceed to proving this reduction, assuming that λwϕ
n
a,ba(u) ∈ µ(H) for some

n ≥ 0, w ∈ F2 and µ ∈ Σ∗. We consider such a triple (w, n, µ) with nminimal and we want to
show that n < |u|+max{|u|,M+δ(H)}. So let us assume that n ≥ |u|+max{|u|,M+δ(H)}.
As already observed, ϕn

a,baλw′(u) ∈ µ(H) for some w′ ∈ F2, and if µ starts with ϕa,ba (as a
word on Σ), we may cancel ϕa,ba on both sides, and hence reduce n. Thus, by minimality,
we may assume that µ does not start with ϕa,ba, that is, µ ∈ {1, ϕb−1 ,a−1} ∪ϕb−1,a−1ϕa,baL.
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Write u = ai0bε1ai1 . . . bεkaik with ε` = ±1 for every `. For every m ≥ |u|, we have
m > |i`| for every ` and it follows easily that

ϕm
a,ba(u) = ϕa,bam(u) = aj0bε1aj1 . . . bεkajk

with

j` =











i` +m if ε` = ε`+1 = 1, or ` = k and εk = 1

i` −m if ε` = ε`+1 = −1, or ` = 0 and ε1 = −1

i` in all other cases

Since we assumed that u is cyclically reduced and u starts with b or ends with b−1, it is
easily verified that ϕm

a,ba(u) is cyclically reduced as well.
If n ≥ |u|+ max{|u|,M + δ(H)}, then we have n, n−M ≥ |u|, so if

ϕn
a,ba(u) = ar0bε1ar1 . . . bεkark , ϕn−M

a,ba (u) = as0bε1as1 . . . bεkask ,

we may write

s` =











r` if |r`| < |u|

r` +M if rl ≤ −M − |u|

r` −M if rl ≥M + |u|

for l = 0, . . . , k. Indeed, if |r`| < |u|, then r` = i` since otherwise |r`| ≥ n− |i`| ≥ |u|. On
the other hand, if r` ≤ −M−|u|, then r` = i`−n and so r` = s`−M . The case rl ≥M+ |u|
is similar.

By Proposition 2.1(vi), ϕn
a,ba(u) labels a loop in A(µ(H)). For every `, |r`| < |u| or

|r`| > n − |u| ≥ M + δ(H). But every cycle-free a-path in A(µ(H)) has length at most
δ(H) (by (4) in Subsection 4.1). So every factor ar` of u such that |r`| ≥ |u| must be read in
a cycle of A(µ(H)) (in an inverse automaton, if a homogeneous path contains a cycle, then
it reads entirely along that cycle). Note that, by definition, M is a multiple of the length c`

of that cycle. Now compare ϕn−M
a,ba (u) and ϕn

a,ba(u): the difference in each a-path is either

aM , or a−M , or non-existent. In any case, it consists of a whole number of passages around
the length c` cycle, and hence ϕn−M

a,ba (u) labels a path in A(µ(H)) as well. This contradicts
the minimality of n and completes the proof. �

5 Beyond rank 2

We do not know how to extend Theorem 4.1 to arbitrary finite alphabets, but we can get
decidability for weakened versions of the problem. The first such result involves a restriction
on the subgroups considered.

Theorem 5.1 Let u ∈ FA and let H ≤f.g. FA. If H is cyclic or a free factor of FA, it is
decidable whether or not µ(u) ∈ H for some µ ∈ AutFA.

Proof. Let us first assume that H is a free factor of FA, with rank k. It is easily verified
that µ(u) ∈ H for some automorphism µ if and only if u sits in some rank k free factor of
FA. We conclude using the result from [11], which shows that one can effectively compute
the least free factor of FA containing u (the algebraic closure of the subgroup 〈u〉).
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Let us now assume that H = 〈v〉. Without loss of generality, we may assume that u
and v are cyclically reduced. Say that a word x is root-free if it is not equal to a non-trivial
power of a shorter word. Then u = xk for some uniquely determined integer k ≥ 1 and
root-free word x, and similarly, v = y` for some uniquely determined ` ≥ 1 and root-free y.
It is an elementary verification that the image of a cyclically reduced root-free word by an
automorphism is also cyclically reduced and root-free. Thus, an automorphism maps u into
H if and only if and only it maps x to y or y−1, and k is a multiple of `. Decidability follows
from the fact that we can decide whether two given words are in each other’s automorphic
orbit, using Whitehead’s algorithm [10]. �

The second result on a weakened version of our orbit problem involves almost bounded
automorphisms. Given a finite alphabet A and k ∈ N, we say that an automorphism ϕ of
FA is k-almost bounded if |ϕ(a)| > k for at most one letter a ∈ A. We let AlmBkFA denote
the set of k-almost bounded automorphisms of FA.

Theorem 5.2 Given u ∈ FA, L ⊆ RA rational and k ∈ N, it is decidable whether or not
µ(u) ∈ L for some µ ∈ AlmBkFA.

The proof of this theorem relies on Diekert et al.’s result on the decidability of the
existential theory of equations with rational constraints in free groups [5]. It also requires
the following result, which generalizes Lemma 3.7.

Proposition 5.3 Let m = |A| and v1, . . . , vm−1 ∈ RA. Then

X = {x ∈ RA | (v1, . . . , vm−1, x) is a basis of FA}

is rational and effectively constructible.

Proof. First note that X is nonempty if and only if (v1, ..., vm−1) is a basis of a free factor
of FA. This is decidable. In fact, it is verified in [18] that if K = 〈v1, ..., vm−1〉, then K is a
free factor of FA if and only if there are vertices p and q of A(K) whose identification leads
(via foldings) to the bouquet of circles A(FA). In addition, if up and uq are the labels of

geodesic paths of A(K) from the origin to p and q, and if z = upu
−1
q , then z ∈ X. Thus it

is decidable whether X = ∅, and if it is not, then we can effectively construct an element z
of X.

Let ϕ ∈ AutFA be defined by ϕ(ai) = vi (i = 1, . . . ,m−1) and ϕ(am) = z. Then x ∈ X
if and only if (a1, . . . , am−1, ϕ

−1(x)) is a basis of FA. Write R = R{a1,...,am−1}. By Lemma
3.7, this is equivalent to say that ϕ−1(x) ∈ R(am ∪ a

−1
m )R and therefore

X = ϕ(R(am ∪ a
−1
m )R) = V (z ∪ z−1)V

for V = {v1, . . . , vm−1, v
−1
1 , . . . , v−1

m−1}
∗.

Since V (z ∪ z−1)V is a rational subset of (A∪A−1)∗, we conclude that X is rational by
Theorem 2.2. Moreover, the formula X = V (z ∪ z−1)V provides an effective construction
of X. �

Proof of Theorem 5.2. Write A = {a1, . . . , am}. Without loss of generality, we may restrict
ourselves to the case |µ(ai)| ≤ k for i = 1, . . . ,m − 1. Since there are only finitely
many choices for these µ(ai), we may as well assume them to be fixed, say µ(ai) = vi for
i = 1, . . . ,m− 1.
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Write u = u0a
ε1
mu1 . . . a

εn

m un with n ≥ 0, ui ∈ F{a1,...,am−1} and εi = ±1 for every i. Then
we must decide if there exists some

y ∈ X = {x ∈ RA | (v1, . . . , vm−1, x) is a basis of FA}

such that
u′0y

ε1u′1 . . . y
εnu′n ∈ L,

where u′i is the word obtained by replacing each aj by vj in ui. Note that X is rational by
Proposition 5.3. This is equivalent to deciding whether or not the equation

u′0y
ε1u′1 . . . y

εnu′n = z

on the variables y, z has some solution in FA with the rational constraints y ∈ X and z ∈ L.
By [5], this is decidable. �

Corollary 5.4 Given u ∈ FA, H ≤f.g. FA and k ∈ N, it is decidable whether or not
µ(u) ∈ H for some µ ∈ AlmBkFA.

Proof. In view of Theorem 2.2, the reduced words of H constitute a rational language and
so we may apply Theorem 5.2. �
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