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Abstract

Different approaches are used to introduce a direct product Kontorovich-Lebedev
transformation, its essentially multidimensional analog and certain modifications in
terms of multiple integrals over R’}. Mapping properties are investigated. Inversion
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1 Introduction

As it is known [6], [7], [9], [12], [13], classical Kontorovich-Lebedev transforms are of the
form

/ Ko >0, (L)
g(s) = /0 I(x)f(z)dz, Res>D0, (1.2)

= /Ooo K (z)f(T)dr, x> 0. (1.3)

Here K,(x), Is(z), K;-(z) are modified Bessel functions [3, Vol. I} of the complex index
and ¢ is the imaginary unit. We note that the modified Bessel functions K, (z), I, (%) are
linear independent solutions of the Bessel differential equation

o, d*u

du 9 oy
2@4—2%—(2 + p°)u = 0. (1.4)
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They can be given by the formulas

s u+2k
Z r uz—l/—zk + 1)k (15)
k=0
Ku(2) = s——[I_u(2) = L(2)], (1.6)
2sin
when p # 0,£1,£2,..., and K, (2) = lim,.,, K,,(2), n = 0,£1,£2,... . The function

K,,(#) is called also the Macdonald function and has the following integral representations
(cf., in [3, Vol. I1J, [13])

Ku(2) =/ e * M cosh ptdt = 5/ e~ Feoshttul g — 5/ e D21y (1.7)
0 —00 0

Useful relations are [3, Vol. IIJ, [12]

2K, (2) = 2 (K (2) — Kya(2)] (18)
| @R 0% = s Re 6 e g, (1.9
/000 'K, (z)dx = 2°7°T (QTW> I (a ; ,u) , Re a > |Re pf, (1.10)

where I'(z) is Euler’s gamma-function [3, Vol. I},

. . . )
/ 7sinh 77T’ (a—;w)r<a 2”) Ki-(z)dr =2'"%1%2%, 0 < Re a < 3" (1.11)
0

These functions have the asymptotic behaviour [3, Vol. II]

K (2) = (2”_2)”2 4 0(1/2)], 2 oo, (1.12)
L(z) = \/%[1 +O(1/2)], 21— oo (1.13)
and near the origin
Ku(2) =0 (1) | 2 — 0, (1.14)
Ko(2) = —log z + O(1), z — 0, (1.15)
L(2) = 0", u#0, 2 — 0. (1.16)

We will use in the sequel the properties of the multidimensional Mellin transform [2].

In fact, let s! = H?lej for s = (s1,89,...,8,) € C", 0; = {Sj €C, Re Sj:%}7 o=
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o1 X 03 X «++ X 0,. Then the Mellin transform of a function f : R} — C is called the

function f*(s) defined by
f*@):/n v f() da, (1.17)

where the latter integral by virtue of Fubini’s theorem and under some conditions on f
(see [2]) is understood as a product of simple integrals

/ 2 1/ 3~ 1/ oV (@)dey . day,. (1.18)

Its inversion is given accordingly [2]

fz) = , /f*(s)x_s ds (1.19)

(2mi)"

as well as the generalized Parseval equality for two functions f, g and their Mellin trans-
forms f*, g*

f( V() do /f “(1— s)d (1.20)

27m

where 1 — s = (1—51,1—52,..., 1—s,).
Basing on formulas (1.18), (1.19) we will also treat under certain conditions from [2]
the multidimensional Laplace transform

Lif](z) = / =0 (1) dt, (1.21)

where (x,t) = x1t; + - -+ + x,t, and its inverse in terms of the Mellin transform (1.19)

F=L[f]
1 F*(1—s) .
£(t) = (27”,)”/0 s (1.22)

where I'(1 — s) = [[;_, I'(1 — s;).

We will use in the sequel the following modification of the Laplace transformation [2]
(Af)(2) = / exp (— max(z1tr, .., 2nts) (). (1.23)
n

The Mellin transform (1.17) of the modified Laplace kernel exp(—max(zy,...,,)) is
given by the integral (see [2], [5])

T (145 +-+5,)
$1...5; '

/ ¥ exp(— max(zy,...,2,))dr = (1.24)

+
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Furthermore, via (1.19) and the Mellin transform theory in Ly(R") equality (1.24) imme-
diately implies the reciprocal relation for almost all x € R}

(1 n
exp(—max(zq,...,2,)) = / / i 81 Tt )ml_sds, (1.25)
(o1) (on 1 - S)
where we denoted by D! = <§1, ...,%). Moreover, by using definition (1.17) of the

Mellin transform, it can be generalized on an arbitrary kernel k(z) (cf. [5], [11]) for a
maximum and a sum of its arguments. In particular, we have the equalities

/ ¥ k(max(zy, ..., 2,))de =
n

(51+"’+5n)
S1...5n

H?:1 I'(s;)

St T s)

K* (514 + 8u) | (1.26)

/ k(x4 ) de = il E*(s14 -+ sp). (1.27)

2 A direct product Kontorovich-Lebedev transform

In this section we will expand formula (1.1) on a n-dimensional case introducing a direct
product Kontorovich-Lebedev transform

(KL ()= | f@) ][] Kir(z))das, 7= (11,72, 70) €RY (2.1)
RY j=1

as the operator KL : Ly(R}) — C (R:ﬁ), a = (a,00,...,00), 0 < a; <1, 7 =

1,...,n, p> 1. Here L5 (R") denotes the weighted Lebesgue space normed by

n 1/1’
||f||Lg(R1) = (/R” |f(x)| HKO(%‘%)Cm) , p>1
¥ j=1

with respect to the measure []7_; Ko(ajz;)dz; and Co (R7) as usual is the space of
bounded continuous functions vanishing at infinity.

Theorem 1. The Kontorovich-Lebedev transform (2.1) is well-defined continuous,
linear map

KL : LS(RY) — Co (R),

with the norm at most [[}_, (2&>7, i.e.

™

1-p

kL)l < ]j (20‘”) '
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When a; =1, i =1,...,n it has the exact value (%) ne-1/p

Proof. We Wlll appeal to the following inequality for the modlﬁed Bessel function [13]
|Kin(6t)] < e ATCCOS B (8t) 2 € R, 0< < 1. (2.2)

Hence with the Hélder inequality for multiple integrals and relation (2.16.2.2) in [8], Vol.
2 we derive

p—1

KL f||c RT) = </ HKO QT dm]) ||fHLa H (/0 Ko(ay t)dt)p

RY j=1 j=1

1-p
i 200, \ P
<11l ey = H( ) 171l see. (2.3)
7=1

1-p

So the norm of the Kontorovich-Lebedev operator is at most H?:1 (%) v Moreover,

using representations (1.7) for the modified Bessel function we find that the product
f(x)e= (@ coshw) “coshy = (coshuy, coshug, . .., coshu,) is summable over R x R™ and via
Fubini’s theorem we obtain the composition representation of the Kontorovich-Lebedev
transform (2.1)

v n/2
(KL £ =(35) FIE(coshw)(r) (2.4)
in terms of the Laplace transform (1.21) in the point coshu and the Fourier transform
FIfr) = o [ p)ear (2.5)
(27T)n/2 R”

Therefore (ICL f)(7) is continuous and it vanishes at infinity via the Riemann-Lebesgue
lemma if we show that L[f](coshu) € L;(R™). But the latter fact follows from (1.7) and
the estimate

s \L[f](coshu)\dug/ \f(x)\HKO(xj)dxj

RY j=1

m\ n(-1)/p
<(3) [1£1lzg ey < oo.

Finally, taking f(x) = 1, which belongs to Lg(R’) and calculating its Kontorovich-

Lebedev transform (2.1), which gives the value (Z)" []_, [cosh(r; /2)]" we easily find

2 j=1
that the norm of the KL-operator attains its least value (g)n(p D Theorem 1 is proved.

Now we are going to prove the inversion theorem for the Kontorovich-Lebedev trans-
form (2.1) in L(RY ), p > 1. To do this we will employ the inversion L;- theorem [1] for
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the Fourier transform (2.5) and Sneddon’s operational method, which was used formally
in [9], Chapter 6 to establish an inversion formula for the ordinary Kontorovich-Lebedev
transform (1.1). We have

Theorem 2. Let f € LY(RY), p > 1 and (KL f)(7) 7" exp (% > i Tj) e Li(R7).
Then for almost all x € R

f(z) = lim (%)n/n L £ HTJ sinh 77 #dn (2.6)

e—0+ ]

Proof. Indeed, we take composition representation (2.4) and use the continuity of the
function L[f](coshu) € Li(R™) in order to apply the inversion theorem for the Fourier

transform and for all u € R", coshu = (coshwuy, ..., coshu,) to get the equality
: 1 —e|T|24i{T, u)
L{f](coshu) = hlglJr — [ e YKL f)(T)drT. (2.7)
E— 7Tn n

The mentioned continuity of L[f](coshu) can be established, in turn, by the uniform con-
vergence of the Laplace integral (1.21). In fact, by the Hélder inequality and asymptotic
formulas (1.12), (1.15) for the modified Bessel functions we deduce the estimate

n 1/q
e—ng':ﬁJ'
|L[f](coshu)| < / €7<C08hu’t>’f(t>| dt < (/ - dt) ||f||Lg‘(R")
¥ R Hj:l Koq/p(ajtj) "

/Oo S n/qllfH - (28)
< t LoaRrn) < 00, ¢ = ——, .
o K" () pE p—1

which implies the uniform convergence of the corresponding Laplace integral for all u € R”
and the continuity of L[f](coshu). Returning to (2.7) we rewrite its right-hand side by
using the evenness of the integrand with respect to 7 and u. Therefore we obtain

e—0+

L{f](coshu) = lim (;)”/ eI (KL f)(T)ﬁCOSTj’LL]’de, u € RY. (2.9)

j=1
Now we are going to differentiate by u; > 0, j = 1,..., n both sides of (2.9). The
left-hand side becomes
an
mL[f](COShU Hsmh UJ/ e <COShu’t>f(t) tldt

and similarly to (2.8) we show that the latter integral is uniformly convergent by u on
any compact set of R}. On the other hand, the differentiation by v in the right-hand side
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of (2.9) under the limit sign can be motivated considering the uniform convergence by u
of the integral

/ eI (KL f)(T)HSil’lTjUj 7;dT;
n

=1
when ¢ — 0+. But this follows via Cauchy’s criterium because (see (2.2), (2.3)) |[KL f)(7)| <
Ae” 2197 A > 0,0 < ¢; < T, J=1,...,nand (e <ey)

[ o=t - e e pi [Tsinr m

i j=1

<A / ol [1 _ e—(62—61)|T|2] [Te o7 mdr;
+

j=1

SA(€2—51)/ ’T|2H€70j7j Tdej—>0, 82—>O+.
¥ j=1
Consequently, (2.9) leads to the equality

2\" 2 N 7y sinTu
~leoshwl (1) #ldt = lim (= / e (KL I dr; 2.10
/ . /) —or \ 7 n N H sinh u; (2.10)
+ J=1
Meanwhile, relation (2.16.6.1) in [8], Vol. 2 gives
sin 7;u; 1. ®  icoshu
Sin—hjuj =T ! sinh 7T7—j/0 € ~tcosh ]K’LTJ( )dt

Substituting this value into (2.10) and changing the order of integration in its right-hand
side via Fubini’s theorem, (2.10) becomes

/ e=leoshut) £y flap = lim [ e~ FL(1)dt, (2.11)

e—0+
RY

where

F.(t) = (3)n / ) eI KL f)(r HTJ sinh 77; K- (t;)dr;. (2.12)

T2
7=1

So the theorem will be proved by virtue of the uniqueness and boundedness properties
of the Laplace operator L[f] : Li(R%;e*dt) C Ly(R}) — C(RY) (see (2.8)). In fact,
appealing to the Schwarz inequality, conditions of the theorem (see also (2.2)) and relation
(2.16.33.2) in [8], Vol. 2, we get

2 " 78172 —(€2—¢€1 7'2
1 = Pl < (35) [ e [L= s e p)e
Jr
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n ) 1/2 00 1/2
X H T sinh T (/ 6_2ajtj dt]> (/ ’Kifj (tj) |2dt]> de

< —21”&1 ) [1 e (ame |T|2] (KL f)(r)| eXp( Zﬁ) dr — 0,

when 0 < g7 < €9 — 0+ due to the Lebesgue dominated convergence theorem. Therefore
F} has a limit in the space L (R’ ; e~*dt), which we denote by h(t). Hence we pass to the
limit under the Laplace operator in the right-hand side of (2.11) and by the uniqueness
property immediately obtain h(t) = t'f(t) for almost all ¢ € R}. This implies the
inversion formula (2.6) and completes the proof of Theorem 2.

3 Plancherel theorem

In this section we will prove an analog of the Plancherel theorem [10] for the multidimen-
sional Kontorovich-Lebedev transform (2.1), which was established for the classical case
n [9], [12], [13]. But first we will need the multidimensional analog of the Kontorovich-
Lebedev convolution [12], [13] for the transformation (2.1).

Definition 1. Let f, g be functions from R’} into C. Then the function f * g defined
on R

1 1 & ui Yy
—— ; + dud 3.1
ST - f(u)g(y) exp < 5 E (a:] ;s . udy (3.1)

j=1

(f*xg)(x) =

is called the (Kontorovich-Lebedev) convolution of f and g (provided that it exists).
Appealing to Fubini’s theorem we immediately establish a multidimensional analog of
Theorem 2.1 in [14].
Theorem 3. Let f,g € L{(R%). Then the convolution f x g exists for almost all
xz € R} and it belongs to LY(R?). The convolution is commutative, associative and

1 *glle@ny < [[fllze@m)llgl e @n)- (3.2)

For the Kontorovich-Lebedev transform (2.1) it has the factorization equality

KLIf 9] = KLIfIKLg) (3.3)

Finally, if 0 < a; < %, j=1,...,n then the following Parseval type equality holds true

Uro)w) = (5) % [ kel [[nsuban Ko in. (64

w2 ) al :
J=1
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Now putting ¢ = f in (3.4) we assume that f belongs to the space of C*-functions
with compact support on R’ Multiplying both sides of (3.4) by 2 Texp (Z? LT ) 0<
A< % and inverting the order of integration by Fubini’s theorem, we calculate the corre-

sponding Mellin transforms (1.17) using relations (2.3.16.1) in [8], Vol. 1 and (2.16.6.5)
in [8], Vol. 2. Hence we arrive at the equality

n

S e | (&) Kl — 1) duydy,

T j=1 |u] y]’

_ ( 27 )n/ KLLf] HT] sinh(277,) [T(\ + i) 2dr;. (3.5)

7=1

But the left-hand side of (3.5) can be treated with the use of Theorem 65 in [10] for the
Fourier convolution. Indeed, invoking with relation (2.16.6.6) in [8], Vol. 2 it becomes

A
Fn(;_» R f_H(|u“]y’ > (s — yj1) duydy;
2 j=1 J
_ @ opype [ LE (w)u?] (§)I” i,

re [ [y (1+ €)1
where F[f(u)u] (€) is the Fourier transform (2.5) of f(u)u*. Hence combining with (3.5),

e bt Flr] ©F . 1
b €= [ e

X H 7jsinh(277;) |[T(A + i7) |2d7;. (3.6)

j=1
Since for any smooth f with compact support F[f(u)u*] (§) € Lo(R™) and continuous
with respect to A € (0, %] we can pass to the limit under the integral sign when A — 1

2
and apply the Parseval identity for the Fourier transform [10]. Therefore we have

|F[f(w)u?] (&)
Allffl?* re [[oy (14 E)V2A = R™ flfe’ du.

On the other hand, similarly to [13], Chapter 2 we find that

KL[f](r) =0 ((Tl)_3”/2 exp (—g ZT])) , T — 00
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Moreover, as a consequence of the Stirling formula for gamma-functions [3], Vol. 1
coshmv [D(\ + iv)|? < V2mp?A1el/BN,

Hence one can pass to the limit when A — %— under the integral sign in the right-hand
side of (3.6). Consequently, by straightforward calculations we establish the Parseval
identity for the Kontorovich-Lebedev transform (2.1) of smooth functions with compact

support
/

which coincides with the classical case (cf. [9], [13]) when n = 1. Now taking an arbi-
trary function f(z) € Lyo(R; z'dx) we will approximate it by a sequence {f;} of smooth
functions with compact support in Qn = [%, N]n, N >0, ie.

S ([ fie = fllea@uiwtan) = 0. (3.8)

|F(w)Put du = (%)YL/]R+ y/cz[f](T)yZETj sinh 77y dr;. (3.7)

n
+

Furthermore, it follows that f € Ly (Qx), p > 1 and denoting by

n n

on(r) = | f@) ][] K, (zj)dzs,  gyn(r) = [ fule) ][] Kir, (2))da;

QN j=1 QN j=1

it gives by Theorem 1, estimates (2.3), (3.8) the inequality

n(l1—p)

0sr) v < (2) 7 U~ Sligon — 0 k—oe. (9

Thus the sequence {gn}(7) converges uniformly to gn(z)(7) with respect to 7. Mean-
while, from (3.7) we know that

9\ "
2 2
||fk||L2(QN;a:1dx) = (F) ||gN,k||L2(Rj_;H?=1 7j sinh wrjdry)

Therefore

2 n
2 2
(P) gng — gN,mHL2(R1;H;:17j sinhwrjdr;) | fx = meLz(QN;xldz)

and making use of (3.9) we get as m — oo

2 " 2 2
<F) ||ngk7 - gNHLQ(Rl;H?:l 7j sinh w7;d7;) = ||fk - f||L2(QN;x1dx) :
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Hence with the aid of (3.8) we have

2\ "
2 2
(F) HgNHLQ(Ri;Hn 1T Sinhﬂ"Tdej) = HfHL2(QN;xldz)'

j=

Analogously,

2 " 2 2
<P) ||gN B gNlHLQ(R’fr;H?:l 7; sinh wrjd7y) - Hf”LQ(QN\QNl;g;ldz)? N > Nlu

i.e {gn} is a Cauchy sequence of Ly(R'};[[}_, 7;sinh 77;d7;) and there exists a function

G(1) = KLIfI(7) € Lo(R; [T}, 7y sinh w7ydr;), G(7) = Lim.n_.oogn(7) and the Parseval
equality

2 " 2 2
(ﬁ) ||G||L2(Ri;nyzlrjsinhwjd7j) - ||f||L2(Ri;x1dx)

holds. Further, from (3.7) we easily deduce

— 2\" .
flw)h(u)u' du = <—2> G(r)H(7) [ 7 sinh w7 dr (3.10)
R} T R} i1
for any two Lo(R" ; 2'dx)- functions f, h and their Kontorovich-Lebedev transforms G, H €
Lo (R’jr; [[;_, 7jsinh ﬂTdej>. In particular, taking h(u) = [[j_, hj(u;), where

() 1, ifu; €0,z
I 0, ifu; € (xj,00), j=1,...,n,

we substitute it in (3.10) and we arrive after differentiation at the reciprocal inversion
formula, which is valid for almost all z € R’}, namely

f(z) = (3>”ip; G(T)f[Tj sinh 77 / " K, (t)dt dr, (3.11)
0

2 1
m xr
R% j=1

On the other hand, taking

G (7) G(r), ifTeQn,
T =
N 0, otherwise,

we prove similarly that the sequence {fx}, where

Jula) = (2)n ! / G [ [ 7 sinhmry Ko (1) iy (3.12)

2 1
T x
QN j=1

11
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which is obtained from (3.11) by differentiation under the integral sign is approximating
the function f, i.e. f(z) =1lim.y o fn(z) with respect to the norm in Ly(R'}; z'dx). So
we have proved the following Plancherel theorem for the multidimensional Kontorovich-
Lebedev transform.

Theorem 4. The Kontorovich-Lebedev transform (2.1) written in the form

n

(KL (1) =G(1) = Lim.N—oo f(x) HKiT].(xj)dacj

3y j=1

forms an isometric isomorphism

KL: Ly(RY; ' dr) — Lo(RY; HT]- sinh 7w7;d;)

J=1

and the Plancherel identity (3.7) and the Parseval equality (3.10) for two functions f,h €
Lo(R'}; 2'dx) hold. Furthermore, the inverse operator has the form

(KL @) () = f(2) = Liim.ymo (%)n ! / 6 [ 7 sinhmr Ko ()

1
T JQn j=1

which is equivalent to formula (3.11) for almost all x € R.

4 Essentially multidimensional transforms

In this section we will consider an analog of the essentially multidimensional Kontorovich-
Lebedev transform, which was announced formally in [13], basing on the modified Laplace
transform (1.23). We note, that an analog of the multidimensional Watson transforms
was investigated in [11].

Let us consider the following kernel function

1
Kpax(z,7) = on / exp (—max(zy coshuy, ..., x, coshu,) + (T, u)) du, (4.1)

where € R}, 7 € R"}. Letting n = 1 we easily arrive at the integral representation (1.7)
of the modified Bessel function, which is, in turn, the kernel of the Kontorovich-Lebedev

transforms (1.1), (1.3). From (4.1) and the estimate

| K max (2, 7)| < / exp (— max(xy coshuy, ..., x, coshu,)) du (4.2)
RY

it follows that this kernel is continuous by 7 for a fixed € R if the integral (4.2) is
finite. However, the latter fact will be verified via Fubini’s theorem and from the formula
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for the Mellin transform (1.17) of Kpyax(x, 7), which can be calculated making use (1.24)
and the relation (2.5.46.6) in [8], Vol. 1. Precisely we obtain

Krtlax(sﬂ—) = / Kmax(xa T)x871d33 =TI (1 + 814+ Sn)

L 2%~ Sj+iTj Sj—iTj
xHF ( 5 )F( 5 : (4.3)

j=1 Sj+

where s; € C, Res; =v; >0, j=1,...,n and the corresponding change of the order of
integration is possible due to the estimate (see [2], Chapter 4)

/ |Kmax(m, T)xs_ldx‘ < / exp (—max(ty, ..., t,))t"  dt
" t
o du
X — < 00
3'1;[1/0 cosh” u

/ d:c/ exp (—max(zy coshuy, ..., x, coshu,)) du
% 1

* du \" T\"
pu— —_— pu— ' _—
/1 exp (—max(ty,...,t,))dt </0 Coshu) n! <2)

and therefore the integral in the right-hand side of (4.2) is finite for almost all x € R’}.

Hence

Moreover, if it is convergent for some a = (as,...,a,), a; > 0, j = 1,...,n then it is
evidently convergent for all z = (x1,...,2,), ¥; > a;, j=1,...,n. Thus the kernel (4.1)
is continuous by x = (#1,...,2,), v; > a; >0, j =1,...,n and 7 € R’} and tends to

zero when |7| — oo. Returning to (4.3) we observe with the use of the Stirling asymptotic
formula for gamma-functions [3], Vol. I that its right-hand side is summable by s for a
fixed 7. Consequently, owing to (1.19) it leads to the representation

Koo, / / (1+ 51 -t s)
max 271'2 (1) (vn) 81 +1 F(Sn + 1)

" S5 +17; S; — 1T} T\ 5
p (5 \p (54 <_J> ds. 4.4
H(z)(2>2 (44

which can be written in terms of the multiple hypergeometric functions [4]. However, in
the meantime we can express the kernel (4.1) as a one-dimensional integral containing a
product of the associated Legendre functions [3], Vol. I of different arguments and indices.

13



14 SEMYON YAKUBOVICH

In fact, appealing to relation (8.4.41.4) in [8], Vol. 3 and making use Euler’s integral and
duplication formula for gamma-function we derive the equality

n 1 o0
Kmax(ajaT) — (ﬁ) F/ e_y yn/2

2 max(T1,...,Tn)

n 2
1/4 5—1/2 2y

x H (v* - x?) P < 2 1) dy. (4.5)
J

Again, letting n = 1 in (4.5) by straightforward calculations it gives the value K;.(z),
which coincides with the kernel of the Kontorovich-Lebedev transforms (1.1), (1.3).

Our goal is to study the mapping properties and prove the inversion formula of the
following transformation

Kuax|[fl(x) = Kax(z, 7) f(T)dT. (4.6)

RY

Let f € L, (R’j) , 1 < p < 2. Then making use the Holder inequality and the Hausdorff-
Young inequality for the cosine Fourier transform [10] we will show that integral (4.6)
exists in the Lebesgue sense. In fact, we have

1/q 1/p
Ko £1(0)] < ( I |Kmax<w>|qch> ( /. |f<¢>|f°d¢)

+

_ 1/p
2 n/q
< (—) 1 f1] L, &) (/ exp (—pmax(z; coshuy, . .., x, coshuy,)) du) < oo. (4.7)
In order to estimate the latter integral in (4.7) we will employ representation (4.4). In
particular, with the duplication formula for gamma-functions [3], Vol. 1 we obtain

/

1/p
exp (—pmax(zy coshuy, ..., x, coshu,)) du) = KM (pz,0)

max
n
+

n 1/p
S@ﬁW?H<L> ]|%0‘

Let f belong to the space of C°°-functions with compact support on R’,. Substituting
(4.4) in (4.6) and changing the order of integration by Fubini’s theorem we derive (see
(1.18), (1.19))

I"(s;/2)
sl ((s; +1)/2)

Kax|fl(x) = (2732)” /(Vl) . /(Vn) L1481+ +s,)05(s)z*ds, (4.8)
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where
n

T ((sj +1i73)/2) T ((s5 —175)/2
P (R L ICELAE

f(r)dr.

+ 7=1

However, calling again the relation (2.5.46.6) in [8], Vol. 1 we integrate by parts in the
corresponding integral (see [15]). Hence the function O¢(s) can be easily rewritten in the

form P
o (2\" f v tanhu; du;
o= (2) [ n|L| oI, (49
+ J=1
where

roie = (2)" | 4 T

j=1

is the sine Fourier transform. Therefore (4.6) becomes

1 2 —n/2
Kax f1(2) = 75— <—> / / D(1+s+-+s8,)a°
(2mi)™ \ 7 () (vn)
" tanh uj
s ———du;ds. 4.10
% /n |:7'1:| 31:[1 cosh™ u; 43S ( )
Then making the substitution e% = coshu;, j = 1,...,n in the latter integral with respect

to u we appeal to the Parseval equalities for the Mellin and the Fourier transforms [10]
to represent the Lo-norm of the operator K., as

||Kmax[ ]||L2(R” T2V — 1d;c> = /n |Kmax[f](l')|2$2y_1dx

R%

2 2
/ e~ (vHit) (FS [il}) (arccosh e®)d¢| dt
n 7_

+

2
/ e~ vHite) <Fs [%}) (arccosh €)d¢| dt
" T
+

2

dg

— 2—2n /
Rn

r <1 + zi:(uj + z’tj)> '
L.
@y [ ( . z)] [ 20| ([ 4] e

<FS [%}) (arccosh e*)
R" T

dg

15
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LI

H tanh u;du;

j=1

n 2 2
T\ ™ f
< (§> r <1+Zyj)‘ / (F {ﬁD ()| du
j=1 +
_(mY" | 2_dr
-(3) | <1 - ZVJ)] / IOF
j=1 +
T
= (3) |r(1+ Zvj HfHL2 Rt (ry-20r) (4.11)
Now via Fatou’s lemma we observe that when v — 0+ (v; — 0+,7 = 1,...,n) we arrive
at the following norm inequality
T\ /2
||Kmax[f]HL2(R?_;fE_ldx) < (5) ||f||L2(Ri; (Tl)_QdT)7 (412)

which is valid for any C'*°-function with compact support on R’}. Taking an arbitrary
function f € Ly (R%; (7')72dr) we approximate it by a sequence {fy} of C*°-function
with Compact support. From (4.12) it follows that {Ky.x[fn]} is a Cauchy sequence in
Ly (R%; 27 dx), which converges to a limit, say, Kuyax|f]. But from (4.6)

Kmax[fN](x) = KmaX<x7T)fN(7-)dT

R}

and
[ 0 Randidie= [ [ o0t . 19

Appealing to the Schwarz inequality by straightforward estimation we can pass to the
limit under the integral sign in the left-hand side of (4.13). The same can be done in the
right-hand side since (see (4.4))

5 1/2

dr

/ ()2 / (2 — 1) Ko (. 7t
T H?:l[ovxj}

+

) </1(Tl)2 (2732')71 /(m"'/(yn) F((llts;);b.,_:)fn)
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5 1/2

n 255~ Sj +iTj Sj —iTj 2—s;
XHF ( 5 )F( 5 T ds;| dr

7=1

x/zw/ / T (145814 +s,)|
(v1) (vn) 1—8 2 S>1’
1/2
/ H SJ—HTJ /2) (s iTj)/Q) dr lds|, 0<v; <1, j=1 n

: S] +1) ) J ) AR |

The inner integral with respect to 7 can be calculated employing again relation (2.5.46.6)
n [8], Vol. 1 (see also [15]). Therefore it gives

/ o

/2
IT(1+ 51 + + sn )| / !
ds | | < o0.
(2v/2m)™ /(1,1) /(Vn (1—-s5)1(2~ ds] cosh2”3 u

Thus passing to the limit through equality (4.13) and differentiating then twice with
respect to x we obtain that for any f € Lo (R’}r; (Tl)*QdT) and for almost all z € R"}
transformation (4.6) takes the form

Kax [ f1( D1 /n / o ( — ) Kpax (t, 7) f(T) dtdr. (4.14)

1/2

dr

/ (7 — ) Kpax (t, T)dt
H;L 110,7;]

So we arrive at
Theorem 5. Integral operator K.y : Lo (Ri; (7’1)_2d7') — Ly (Rﬁ; x_lda:) is bounded
and its norm ||Kpax|| < (%)n/Z, n € N by inequality (4.12). Moreover, for almost all

x € RY representation (4.14) holds true.
Remark 1. It is not difficult to verify that for the one-dimensional case (n = 1)
one can differentiate twice in (4.14) under the integral sign and derive the classical

Kontorovich-Lebedev transform (1.3).
In order to derive an inversion formula for the transformation (4.6) let us consider the

following one-parametric family of auxiliary operators
Ks[f](z) = Ks(x,7)f(r)dr, 0>0, x € R, (4.15)
R%

where
1 + 51) F(l + sp)

L4514+ sp)

Ks(z, 1) =

Vn
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5_ C— AT Si .
XH25 S]‘—2I‘( S;+ZTJ>F(%) rids;, 0 <v; <9, j=1,...,n. (4.16)

Hence for smooth functions with compact support f, g taking into account the Mellin -
Parseval equality (1.20), representation (1.10) and a direct product analog of the Kontorovich-
Lebedev transformation (1.3) we come out with the equalities

/ Kl f)@) Kslolw) 55 = [ 50gta)

2n
R-‘r

e, L (57 (557

T (#) r (HT—W) ds; dr du

:/n (KLf)(x) (KLg)(z) 2% dx, (4.17)
where
(KLf)(x / HKWJ x;) (1) dr. (4.18)

Meanwhile the kernel (4.16) can be expressed in terms of the modified Bessel functions
by using (1.20), (1.27). Therefore we find

Ks(z,7) = 2' D} (21)° /;po, . HKiTj(xjyj) v ldy. (4.19)

ttun<t | g=1

Further, similarly, as in (4.10), (4.11) we deduce

2

‘|K6[f]||i2([g¢;g;2vfldz) =2 /n HJ:l T (1 _ Zﬂ_ (v; + Zt))

2
/ e~ OFvHite) (FS {il]) (arccosh €°)d¢| dt
" T
+

I, T —v)T(1+d+v;)

7=1

r (n -2 l/j) r (n(l +0)+ >0, Vj)

X

< 2—2n
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2

) / r <n (v + z'tj)) r (n(l +0) + 30 (v + z’tj))
. P (1= +it)

But the gamma-ratio under the integral sign in (4.20) is uniformly bounded with respect
tot; >0, j=1,...,n owing to the Mellin transform of the Kummer function 1 #3(a; ¢; )
and its asymptotic behavior (see in [3], Vol. I). Precisely, we have

2

X dt. (4.20)

e (0+vit,s) (Fs {il]) (arccosh ef)dg

T

n
+

C(n =iy i) T (r0 46+ L0 +i)) | rng2 4 6)
r (1 — 2w+ itj)) T (” +1-2300, ”J‘)

/ e B (1 —n(l46) =23 v n+1-23 v x> 2T ) gy
0

[(n(2+9)) g
a F(n—l—l—ZZ?:ll/j) /0 ’

X

j=1 j=1

X" I Ei=Yidy = Chrps < 00.

Hence combining with (4.20) and passing v;, j = 1,...,n to zero, we obtain as in (4.12)
the final estimate for each > 0

HK5[me2(Rﬁ;z*1dx) < An,EHfHLQ(Ri; (71)72(17), (4.21)
where
(I +0) (L +0)n [T, . : n-1
Ans = (§> Wl(n — 1) /0 e WF(1—=n(l+06); n+1; z)|z" dz,

(@), is the Pochhammer symbol [3], Vol. I and the latter constant is uniformly bounded by

a small positive §. Similarly as above we extend (4.21) for an arbitrary f € Ly (R7; (71)7%dr).
Further, returning to (4.17) and using the Plancherel theorem for the one-dimensional
Kontorovich-Lebedev transform (4.18) (cf. [15]), we can pass to the limit when § — 0 to
get the equality

i [ Kl 0) il 5 = (5) [ f00 [ a2

=0+ Jgn xt 2
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and the latter integral in (4.22) with respect to 7 is absolutely convergent since f,g €
Lo (Rﬁr; (Tl)_2d7). On the other hand the Mellin-Parseval equality [10] and estimates
(4.20), (4.21) say

1
||K5[ﬂ||LQ(R1;$2u—ldz) = WHK;U]HLQ(H?ZI(W); dt) <M (4'23>

when M > 0 is an absolute constant. Furthermore, using (4.15), (4.16) we show that the

Mellin transform
[(1—=s1)...T(1—sy,)

F(l—s—-—8,)

- | 5+ 55 + i 0+ 55 — i
Sts5,—2 J J J J
X/Rn”Q F( 5 )F( 5 )f(T)dT,5>O, (4.24)

T=1

K5[f1(s) =

is analytic in the domain s € C", —§ < Re s; < 1, j = 1,...,n and via (4.23) attains
its limit when 6 — 0, Re s; =v; =0, j =1,...,n in the mean square sense and almost
everywhere (see in [10]). Hence equality (4.23) guarantees the existence of the limit in
mean of Ky[f](z) when § — 0, which we call K[f](z). Therefore (4.22) implies

n

[ Kottt K@) 5 = (5) [ g0 [ )

! L 7;sinh 7T
J=1

for any f,g € Ly (R7; (7')72dr). Let, in particular,

ut, ifu; €[0,7],
guy= U BT
0, ifu;€(r,00), j=1,...,n

Then it belongs to Ly (R%; (71)7%dr) and from (4.25) after differentiation of its both
sides with respect to 7 we get an inversion formula of the transformation (4.6) ((4.14))
for almost all 7 € R”

J) = (%) [Tsinhr, D! / , Kol f1(2) Ko (0 i

j=1

- (4.26)

Here KT(x) is the corresponding kernel, which can be represented due to (4.24) and
Fubini’s theorem (see also (4.9)) in the form

n

X 1— "y
KT(x):/ Htanhvj Sl L

v.
+ j=1 J
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[T=, T(1 = s;)I'(1 + s5) (x; coshv;)=%
ds dv, (4.27)
27TZ (Vl) (vn) r (1 — 81— — Sn)
where 0 < v; < 1, j = 1,...,n. Hence choosing 0 < v; < %, J = 1,...,n the inner

integral with respect to s will be treated by using again the Mellin transform of the
Kummer function. We have

1 / [[-, T(1 = s;)(1 + s5) (2; coshv;)™ y
—_— Ce S
2mi ” () F(l—sy—-—sp)

(5 — Sj)
27TZ /V1 /yn 2 — 81— - Sn)

(:vj coshv;)™ (1 —s; —---—s,)ds

1 -1 - a 1 1 =
) (St o (S

y1+-+yn<1 J=1

1 1
X Fi{—-1+—; 1+ —; z; yjcoshwv; | coshv; dy,
H 141 ( n o il J) i Ay
where [ is the identity operator. Substituting this expression into (4.27) and changing
the order of integration and differentiation owing to the uniform convergence by z from

any compact set of R, we get the formula for the kernel KT(x) of the inverse transform
(4.26), namely

K- (z) = [F (%H)} <I+me ) /anth] _CoﬁTava

+ =1 Uj
% /y1>0, ey Yn >0, exp (_ ZI'] Y cosh UJ>
y1+-+yn<1 j=1
n - 1 . 1 . b % o \
]:

It is not difficult to derive from (4.28) that the case n = 1 corresponds to the kernel
K, (z) = Jo vEiy(2)dv, which is related to the classical Kontorovich-Lebedev transform.
We summarize these results by
Theorem 6. Let Ly (R7; (7')72dr). Then for almost all 7 € R’} the essentially
multidimensional Kontorovich-Lebedev transformation (4.6) can be inverted by formula
(4.26) with the kernel (4.28).
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