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Abstract

In this paper we present two models for the free pseudosemilattices.
We then use these models to study the relations w”, w!, w, R, and £
on the free pseudosemilattices.

1 Introduction

Given a regular semigroup S, we denote by F(S) the set of idempotents
of S. The relation w! on F(S) is defined by: for e, f € E(S),

ew'f o e=ef.

We denote by w” the dual relation on E(S), and by w the relation w™ N w'
on E(S). Then w' and w" are quasi-orders, while w is a partial order. For
ve{w,wwlletv(f)={eec E(S)|evf}.

A locally inverse semigroup is a regular semigroup S such that all local
submonoids eSe, e € F(S), are inverse semigroups. The locally inverse
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semigroups can be characterized as the regular semigroups such that for any
e, f € E(S) there exists a unique element e A f € F(S) satisfying

W'(e) NW'(f) = wleA f).

We can therefore define a new binary algebra (E(S), A) from any locally in-
verse semigroup S. These algebras are called pseudosemilattices and they
were characterized abstractly by Nambooripad [5] who showed that an alge-
bra (E, A) is a pseudosemilattice if and only if it satisfies the identities

TN X,
(xAY)A(zA2)= (xAY) Az,
(xAy)AN(zA)AN(xAw) = (xAy)A((xA2)A(@Aw)).

together with the right-left duals of the last two. We denote by PS the variety
of all pseudosemilattices. This result was then generalized by Auinger [1] who
showed that the mapping

o : L(LI) — L(PS), V+—{(E(S),AN)|SeV}

is a surjective complete homomorphism from the lattice £.(LI) of e-varieties
of locally inverse semigroups to the lattice L(PS) of varieties of pseudosemi-
lattices. The structure of the pseudosemilattices and its connections to the
structure of locally inverse semigroups have been studied in [3, 8, 9, 10].

The relations w”, w! and w can be defined in any pseudosemilattice (E, A)
in terms of the operation A instead of the semigroup operation:

ewf & eNf=ce,
ew'f & fAe=e,
ewf & eNf=e=fAe

Define the relation R and £ on E as follows: R = w" N (w")™" and £ =
w'N (wh)~L. If S is a locally inverse semigroup such that (F, A) is isomorphic
to (E(S),A), then R and L correspond to the restriction of the Green’s
relations with the same designation on S to E(S).

Let (F»(X), A) be the absolutely free binary algebra on X. Foru € F»(X),
we denote by uR and ulL the first and last letter of wu, respectively. Let
B ={0,1} and < be the partially order on the free monoid B* on B defined
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as follows: a < b if and only if b is a prefix of a. In [6] we associated in
a natural fashion to each u € F,(X) a finite partially ordered subset I' of
(B, %) with its elements labeled by words from Fy(X):

[:T — F(X), a— aq.

We denoted by T'(u) the pair (I',7) and called it the labeled binary poset
associated with u. We introduced also three ways to transform labeled binary
posets into other labeled binary posets: M, € and 8. Each one of this rules
induces a binary relation on F5(X) which is denoted also by the same symbol.

Let o be the relation on F5(X) defined by: for u,v € F5(X), uov if and
only if (u,v) € 8 or ¢(u) = ¢(v) = {z} for some x € X, where 8§* denotes the
reflexive and transitive closure of § and ¢(u) denotes the content of u, that is,
the set of all letters from X occurring in u. Then o is a congruence relation
on F5(X) and we denote by [u] the o-class of u. Consider also the reflexive
and transitive closure § of MU E. A word u € Fy(X) is called reduced if
uév € Fo(X) implies u = v. We denote by RF,(X) the set of all reduced
words. By [6, Section 4 and Theorem 5.7] we have

Result 1.1 Let u,v € Fy(X). Then
(1) there exists u; € RFy(X) such that uduy,
(i7) if [u] = [v] and uduy, vovy for some ui, vy € RFy(X) then [uq] = [v1],

(¢7i) the identity u ~ v is satisfied by all pseudosemilattices if and only if
[u1] = [v1] for some [any] uy, vy € RFy(X) such that udu,, viv;. ]

Thus, for each u € F5(X), we can talk about the o-class containing all
reduced words v such that udv. We denote this o-class by [u],. We define
Fps(X) = RF,(X)/o and introduce a binary operation A on Fpg(X) as
follows: for u,v € RFy(X), [u] A [v] = [u A v],. This A-operation is well-
defined by Result 1.1(4i) and since o is a congruence. By Result 1.1(iii) we
have therefore that (Fpgs(X),A) is a free pseudosemilattice on X. The free
pseudosemilattices have been studied in [2, 4, 6].

2 Models for the free pseudosemilattices

For any set Y and any s in the free monoid Y™ on Y, we denote by s,
and s, the first and last letter of s, respectively. Let B = {0,1} and a € B™.
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Then, there are n > 1, ¢; € B and k; > 1 for i € {1,---,n} such that

a=¢e"--efnand e; # ejyy for j € {1,--- ,n —1}. Let ay = ¢, where ¢ is
the empty word, and a; = ¥ ... ¥ for i € {1,.--,n}. We denote by v(a)
the vector (ag, a1, -+ ,a,). We define also v(r) = (1).

Let u € Fo(X)\ X, I'(u) = (I',1), and @ € T\ {¢}. We denote by I'j, the
set of minimal elements of I" and by @ the element ad* € T';, such that a, = d.
Let v(a) = (ag,--- ,a,) for some n > 1, and define k,(a) = (ay);--- (@),
Let

Ko(u) = {ky(a)|a €T, ay =0} = {ky(a)|a € Ty, ay = 0},
Ki(u) ={ky(a)|a €T, ay =1} ={ky(a)|a €T, ay =1},

and consider K(u) = (Ky(u), Ki(u)). Define Ko(z) = K;(z) = {z} and
K(x) = ({z},{z}) for each x € X.

By definition of RF,(X) and o, we have Ky(u) = Ky(v), K;(u) = K,(v),
and K(u) = K(v) for any u,v € RFy(X) such that [u] = [v]. We can define
therefore Ky([u]) = Ko(u), Ki([u]) = K;(u) and K([u]) = K(u) for any
[u] € Fpg(X).

Let P be the set of all A C X7 satisfying the following conditions:

(Cy) A is a finite subset of xX* for some z € X.

Cy) A is closed for prefixes from X .

C3) xyx is not a subword of s for any z,y € X and s € A.

(C1)
(C2)
(Cs)
(Cy) 1If sz? € A for some s € X* and z € X, then there is y € X such

that sz?y € A.
Let X be the set of all pairs (Ag, A1) € P x P such that

(C5) For any z,y € X such that © € Ay and y € A;, we have that
xy € Ay and yr € Aj.

The next lemma follows easily from the definition of M and €.
Lemma 2.1 Let u € RFy(X). Then K([u]) € KX and the mapping

s well defined. [



We show now that ¢y is in fact a bijection.
Lemma 2.2 The mapping i : Fps(X) — X is a bijection.

Proof: Let us show first that ¢y is surjective. Let (Ap, A1) € K. We show
there exists u € RFy(X) such that ¢k ([u]) = (Ao, A1) by induction on n =
|Ao| +]A1]. If n =2, then Ag = {x¢} and A; = {x1}. Take u = x¢ if zg = z1,
or take u = xg A x1 € RFy(X) if xg # 2.

Assume n > 2. Thus [A4g] > 2 or |A;| > 2. We shall assume also that
|Ag| > 2 since the case |A;| > 2 can be shown dually. Then there exists
rox1 € Ap for some xg, 21 € X. Let

A01 = {S | S\ = 1, TpS € Ao}

and Agy = A \ 2oAo1, and observe that (Agp, Ag1) € K. By induction we
have (Ago, Ao1) = @r([uo]) for some uy € RF5(X).

If Ay = {uy1}, take uy = y;. If |A1]| > 2, let yyyp € Ay for some yp,y0 € X
and define A10 = {S|S/\ = Yo, Y18 € Al} and AH = Al \ ylAIO- Again
(A1p, A1) € K and by induction (Ayg, A11) = @r([uq]) for some uy € RF>(X).

Let u = ug N\ Uy. Then Ko(u) = AOO U IL’OAOl = AO and Kl(u) = Al, and
so u € RFy(X) since ug,u; € RF(X) and Ay and A; satisfy (Cy) and (Cj).
Thus @g([u]) = (Ag, A1) and ¢y is a surjective mapping.

Let us show now that ¢y is injective. Let u,v € RF,(X) such that
or([u]) = (Ao, A1) = @i([v]). Obviously uR = vR and uL = vL. We show
that [u] = [v] by induction on n = |Ap| + |A;|. If n =2, then Ay = {z,} and
Ay ={x1}. If xg = 21 then [u] = [zo] = [v]. If 29 # 21 then u =29 Ax; = 0.

Assume n > 2. Then u = ug A u; and v = vy A vy for some ug, uq, vy, V1 €
RFy(X). Let I'(u) = (T',1) and '(v) = (I'1,{1). Let yo = upL and w, €
RF5(X) such that [wy] = [ve] A [yo]. Clearly, there is exactly one 7 > 1 such
that 0°1 € 'y and k,(0°1) = (uR)yo. Thus

Ki(wo) = {s|(uR)s € Ay, sx = yo} = Ki(uo)

and Ky(wy) = Ao \ (uR)K;(wy) = Ko(up). By induction we conclude that
[uo] = [wo].

Let 1 = uy R and wy € RF5(X) such that [wy] = [x1] A [v1]. Similarly we
conclude that [w;] = [u4], and so

[u] = [uo] ATur] = ([vo] A fyo]) A ([za] A fn]) = [wo] A o] = [v].

Consequently ¢y is an injective mapping. [ |
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Let (Ao, A1), (Bo,B1) € X and u,v € RF,(X) such that ¢g([u]) =
(Ao, A1) and ¢k ([v]) = (By, By). If we define a A-operation on X by

(Ao, A1) A (Bo, By) = @i([u] A [v]),

then ¢y, becomes an isomorphism by Lemma 2.2, and thus (X, A) is a model
for the free pseudosemilattice on X. We can determine the operation A
abstractly as follows. For i € {0, 1} let x;, y; € X such that A; C z; X* and
B; C y; X*, and for j € {00,01,10,11} let A; and B, as the following sets:

[ A01 = {S | ToS - Ao, S\ — yl} and AOO = Ag\.’L’gAOl,
o if Al = {ZUU} then AIU = All = (b, and if Al % {ZCU} then

Apn={scAilsyx=y} and Ay = {zos|sc A\ An},

o if BO = {yl} then BOI = BOO = @, and if Bg §£ {yl} then

BUO = {S € BU | S\ = .fUU} and BUI = {y18 | S € BU \ BOO};

e Big={s|yis € By, sx =xo} and By; = By \ y1Bio.-
Using the definition of M and € it is now straightforward to check that
ok ([u] A [v]) = (Ago U Ay U Byg U Big, Ag1 U Ay U By U Byy).
Therefore we have
Theorem 2.3 Using the notation above, for (Ag, A1), (Bo, B1) € X define
(Ag, A1) A (By, Br) = (Ago U Ao U Byg U Byg, Ag1 U Ay U By U Byy).

Then A is a well-defined binary operation on X and (I, A) is a model for the
free pseudosemilattice on X . [ |

Let H be the set of all pairs (A, y) such that A C X satisfies (C1), (Cs),
(C3) and

(Cs) if sz®> € A for some s € X* and ¢ € X, then there is 2’ € X \ {z}
such that (i) s = and 2’ € A, or (ii) sz’ € A,

and y € X satisfies



(C7) either A ={y} or zy € A for some = € X,

(Cg) if 2 € A for some x € X and 2%z’ ¢ A for any 2’ € X, then
y =1

The next lemma is immediate:

Lemma 2.4 Let (Ag, A1) € K such that (Ao, A1) # ({z},{z}) for any x €
X. Let x; € X such that A; C z;X* fori € {0,1}, and let A = Ay U xoA;.
Then (A, z,) € H. ]

Consider the mapping ¢y, : K — H defined by ¢, (({z}, {z})) = ({z}, z)
for any z € X and by ¢, ((Ao, 41)) = (Ag U xgAy, z1) for any (Ap, A1) € K
such that A; C z;X* and (Ao, A1) # ({x}, {z}) for any z € X. The mapping
Yy, is well defined due to the previous lemma. In fact ¢, is a bijection whose
inverse mapping is the mapping ¢ : H — K defined by ¢(({z},x)) =
({z},{zx}) forany x € X and by ((A,x1)) = (A\zoA;, A1) for any (A, ;) €
H such that A C 2o X* and |A| > 2, where Ay = {s|xzgs € A, s\ = x1}.

Let (A, x1), (B,y1) € H such that A C 2o X* and B C y,X* for some
Zo, Yo € X, and define

oA’—{ A\{z2} ifz2€ A and 22y ¢ A forany ye X

A otherwise,
0 if BC {yn}UypX*
o By=1 {s€B|s&yy} ifB,@{%}U?J%X*aﬂdyo:Io

{zoyr1s|s € B, s £ yoy1} otherwise,
e Bl ={xoy1} U{s|yoyis € B, sy = xo} U{xoy15|yoy1s € B, sx # xo},

o 0] tu} if og=2, =y =y, and A=B={y}
A"UB{UB, otherwise.

Theorem 2.5 Let (A, x1),(B,y1) € H such that A C xoX* and B C yoX*
for some xy,yo € X, and define

(A, 1) A (Byyn) = (C ).

Then A is a well defined binary operation on H and (H,A) is a model for
the free pseudosemilattice on X.



Proof: Let ¥((A,x1)) = (Ao, A1) and ¥ ((B,y1)) = (Bo, By). If we show that

(Ao, A1) A (Bo, Br)) = (C, y1), (1)

then 1)y, is an isomorphism from (K, A) to (H,A) and so (H,A) is a model
for the free pseudosemilattice on X.

Clearly (1) holds true for A = B = {y,}. Assume (A, B) # ({z}, {z}) for
any © € X. Then A; C z;X* and B; C 3, X* for i € {0,1}, and

Un((Ao, A1) A(By, By)) =
= (Ago U A1p U By U Byg U zp(Agr U Ayp U By U Byy), y1)-
We can check now that A" = AOO U Alg U IL’O(AOl U AH), B(l] = BOO U IL’OBOl,

and B = By U zyBy;. Consequently (1) holds true in this case also, and
therefore 1y, is an isomorphism. [ |

Observe that we can construct, in a dual manner, a third model by con-
sidering the pairs (x149 U Ay, o) instead of the pairs (Ag U xgA;,x1). This
third model is the dual of H.

Next we characterize the relations w”, w', w, R, and £ on X.

Proposition 2.6 Let (Ag, A1), (Bo, B1) € X and z;,y; € X such that A; C
2; X* and B; C y; X* fori € {0,1}. Then

(i

(id

Bg, Bl w”(Ag, Al) Zf and O’Illy Zf Ag U .'L’gAl U {l‘g} g Bg U y0B1 U {yg},
By, By) w'(Ao, Ar) if and only if £1A, U Ay U{z?} C 1 ByU By U {yi},

Bg, Bl R(Ao,Al) Zf and only ZfAO U.’L’gAl U {l‘g} = BO Uy0B1 U{yg},

) ( )
) ( )
(i4i) (Bo, Bi)w (Ao, A1) if and only if Ay C By and A, C By,
(iv) ( )
(v) ( )

PT‘OOf.' (Z) Let A = AOO U A10 U BOO U Blg and B = Agl U AH U B01 U B11.
Assume (Bo, Bl) w” (Ag, Al) Then

Bg, Bl L (Ag, Al) Zf and O’Illy Zf l‘lAg U Al U {IL’%} = leO U Bl U {y%}

(Bg,Bl) - (Ao,Al) /\ (Bo,Bl) — (A,B),

and zy = yp. Furthermore



AO = AUO U l'()A[]l g B[] U xOBla
z0A1 C Ajp UaoAn U{xg} C By UxoBy U {3}

Thus Ag U l‘oAl U {l‘g} g Bg U ygBl U {yg}

Assume Ag U l‘oAl U {IL’%} g BO U ygBl U {yg} Then To = Yo, B10 = @,
By U {x¢} = By, and z¢ € Agg U Ayp C By U {z3}. Consequently By C A C
By U {x3}. If 22 € A, then z2x € A for some z € X by (C4), and thus ziz
and z2 belong to By. Hence A = By. We show that B = B; similarly, and
therefore (Bo, Bl) w”(AO, Al)

(17) is shown using dual arguments.

(ZZZ) Assume that (Bg,Bl) w (Ao,Al). Then Ag g Bg U y0B1 U {yg},
o = yo and x; = y; by (i) and (iz). Thus Ag NyeB; = 0 due to (Cs) and
(Cy). Consequently Ay C By U {y2}. If y2 € Ay then there is x € X such
that y2z € Ay by (Cy4), whence y2z and y3 belong to By. We have shown
that Ay C By. We show that A; C By similarly. The reverse implication
follows immediately from (i) and (ii).

(iv) and (v) follow from (¢) and (ii), respectively. ]

Corollary 2.7 Let (A, x1), (B,y1) € H and zo,yo € X such that A C o X*
and B C yyX*. Then

(Z) (Bayl) wr(Aaxl) lf and only ZfA U {ZL‘%} C BU {y§}7
(17) (B,y1)w (A, 1) if and only if A C B and x1 =y,
(4ii) (B,y1) R (A, 1) if and only if AU {22} = BU{y3}.

Proof: Observe that AU {x3} = Ag U zgA; U {x3} if (Ag, A1) = ¢((A, z1)).
Thus (7), (74) and (zii) follow from Proposition 2.6 (i), (ii7) and (iv), respec-
tively, via the pairwise inverse isomorphisms v and . [ ]

We can also obtain conditions characterizing w' and £ on H. However,
contrarily to w”, w and R, w' and £ do not have a nice description in .
The reader can find these conditions in [7, Proposition 4.2]. We remark also
that w!, w, and £ have nice descriptions on the dual model of H{ mentioned
before Proposition 2.6, but w” and R do not have such a nice description ([7,
Proposition 4.4]).



3 The relations & and & on Fy(X)

We begin by defining the relation 8¢ on F5(X). 8y is a relation similar to
the relation 8 introduced in [6]. Let u € F5(X) and I'(u) = (T',1). Let £ >0
such that 0¥*! € T and define

I"'={acT|ak1l, a0 1}u{0f1b|1b €T} U {1c|0"1c € T}
and I' : [, — X as

a; if a £1 and a £ 0F1
ap = (lb)l if o =0%1b¢€ PIL
(0¥1c), if a=1cel’

Clearly (I”,1') is a labeled binary poset, and let v € F5(X) such that T'(v) =
(I",1"). We say that I'(v) is obtained from I'(u) by switching 1 with one
of its neighbors. Let 8y be the set of all pairs (u,v) € Fy(X) such that
u=uv=2x € X or ['(v) is obtained from I'(u) by switching 1 with one of its
neighbors.

Similarly, we define the concept of switching 0 with one of its neighbors.
The binary relation induced by this new concept is denoted by 8;. Let

Se:SUSULJSl.

The relations 8y, 81, and 8, are clearly reflexive and symmetric.
For u € F5(X) define

v’ if u=u' A (uR) for some u' € Fp(X)
Yo(u) =
u  otherwise,
(1) = v if u=(ul) Au' for some u' € Fp(X)
! u  otherwise,

(u) = v if u=u A (uR) or u= (uL) Au'" for some v € Fy(X)
W=\ w  otherwise.

Thus, if u € RFy(X) then 7yo(u), y1(u), v(u) € RFy(X). Further, if u8yv
and u = y(u) € RFy(X), then v € RFy(X). Similarly, if ©8; v and u =
v1(u) € RFy(X), then v € RFy(X). Thus if u8.v and u = y(u) € RFy(X),
then v € RFy(X). Let 8¢ denote the transitive closure of §..

Let u € RF,(X). We denote by Ry, and Ly, the R-class and the L-class,
respectively, of [u] in Fpg(X).
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Proposition 3.1 If u € RF,(X), then
(1) Ry = {[v]|70(u) So v} U{[u] A[uR]};
(#0) Ly = {[v] [ 71(u) Sy o} U{[ul] A [y ()]}

Proof: (i). Clearly [u] R [vo(u)]. Let T'(yo(u)) = (T',1), uR = x = (y(u))R,
and G ox(170(u)]) = (A, y). Then v ([v]) = (A, /) for any v € Fy(X) such
that vo(u) 8o v. Furthermore, ¥y or([ui]) = (AU {x2} z) for uy € RFy(X)

such that [ui] = [vo(u)] A [uR] = [u] A [uR]. Therefore

Ry 2 {[o] [ v0(w) 8o v} U {[u] A [uR]}

by Corollary 2.7.

Let v € RF5(X) such that [v] € Ry, and [v] # [u] A [uR)]. Let pp([v]) =
(A',y). Then AU {2?} = A’ U {2?} due to Corollary 2.7, and zy' € A’
Since [v] # [u] A [uR], we must have A = A’. Thus, there is £ > 0 such
that 01 € I and (0*1); = /. Let u' € RFy(X) such that I'(u') is obtained
from I'(yo(u)) by switching 1 with 0¥1, and observe that v, ([u]) = (A4,9).
Hence [v] = [«/] and

= {[vl[70(u) 8o v} U {[u] A [uR]}.

(i) is shown using dual arguments. We need to consider the dual result
of Corollary 2.7 for the dual model of J. [ |

Now, the following corollary can be proved easily:

Corollary 3.2 Let u € RFy(X), uR =z, uL =y, and I'(u) = (T',1). Let
ko = max{k > 0]0* € T} and k; = max{k > 0]1% € T'}. Then
(4) |Rugl = ko if (0F1); = z for some 0 < k < ko, or |Rp)| = ko + 1

otherwise,

(i) |Lpg| = ki if (1%0), = y for some 0 < k < ki, or |Ly)| = ki + 1
otherwise. [

Let F' be a pseudosemilattice. An FE-sequence in F' is a sequence
€, €1, ,en, € F such that ;1 (RUL)e; for 1 < i < n. We say that
an E-sequence eg,---,e, € F is an F-chain if (i) e; # e; for i # j, and
(17) e;_1 Re; if and only if e; Le;4q for 1 < i < n — 1. Since R and L are
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equivalence relations in F', we can construct an E-chain from e to f from any
E-sequence e = ey, e1,--- ,e, = f by deleting some e;. We say that e, f € F
are connected if there is an E-chain (or an E-sequence) eg, ey, -+ ,e, € F
such that ey = e and e, = f.

Proposition 3.3 Let u,v € RFy(X). Then [u] and [v] are connected ele-
ments of Fps(X) if and only if v(u) 8 ~v(v).

Proof: Assume that [u] and [v] are connected elements of Fpg(X). Then
[v(u)] and [y(v)] are connected too, and there exists an F-chain

[w()]a [wl]v ) [wn] € FPS(X)

such that v(u) = wy, v(v) = wy,, and w; € RF;(X) for every 0 < i < n.

Observe that if y(w) # w for some w € RFy(X), then |Rp,| = 1 or
|Lp| = 1 due to Corollary 3.2. Thus, y(w;) = w; for any 0 < i < n
since [wp], [wi],- -+, [wy,] is an E-chain. Hence, there is w] € [w;] such that
w;—1 8¢ w; due to Proposition 3.1 for all 0 < j < n. Therefore w;_; 8 w; for
all 1 <i <mn, and so y(u) 8 y(v).

Assume 7y(u) 8% v(v). There are wy,---,w, € RFy(X) such that wy =
y(u), w, = v(v), and w; 1 8, w; for all 1 < i < n. Thus [w; 1] R U L [w;] by
Proposition 3.1, and [y(u)] and [y(v)] are connected. Therefore [u] and [v]
are connected too. [

Next, we define the relation €, on F5(X). The relation &, is a generali-
zation of the relation € introduced in [6]. Let u € F5(X), I'(u) = (T, 1), and
a = bd € T such that b € B* and d € B. Let e € B\ {d}. Then we denote b
and be by a and @, respectively. Let now a € T such that 01 or 10 is a suffix
of a. Define

I'={beT|b%a}uU{ab|ab €T}
and [' : [, — X as follows:

o =4 if c4a

YT @), if c=al
Then (I",1') is a labeled binary poset, and let v € F5(X) such that I'(v) =
(I",1"). We say that I'(v) is obtained from I'(u) by erasing the vertex a. We
define &, to be the set of all pairs (u,v) € Fp(X) x F5(X) such that I'(v) is

obtained from I'(u) by erasing some vertex. We denote by £ the reflexive
and transitive closure of &,.
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Proposition 3.4 Let u,v € RFy(X). Then [v]w(u] in Fps(X) if and only
if vEiu for some u' € [u].

Proof: (=). Assume [v]w [u]. Then uR = vR, uL = vL, and |c(v)| > |c(u)].
If |e(u)] = 1, then [u] = [z] and = vR = vL for some z € X. This case
is now immediate. We shall assume that |c(u)| > 2. Let ¢ ([u]) = (Ao, A1)
and ¢y ([v]) = (Bo, B1). Thus Ay C By and A; C B; (Proposition 2.6(ii7)).

Let vg = v and I'(vg) = (To, lp). Assume Ay # By and let sy be a word of
minimal length amongst all words from By \ Ay. Clearly |so| > 2 and there
exists by € (I'g)r such that (by)y = 0 and k,,(by) = so. Furthermore by = ad*
for some k > 1, d € {0,1}, and a # ¢ such that a, # d. Let v; be such
that I'(v;) is obtained from I'(vy) by erasing the vertex ad. Clearly |c(vy)| >
le(u)] > 1. By the minimality of the length of s, observe that v; € RF»(X)
and @ ([v1]) = (By, B1) for some By € X such that Ay C By G By.

The process explained above can be applied recursively to construct a
sequence

Vo, V1, ", Un

of words from RF,(X) such that v,y E.v; and ¢g([v,]) = (Ao, By). Let
u' = vy,. Then [v/] = [u] and v EXu'.

(«<). Assume v€Xu’ for some u' € [u]. Then I'(v) is obtained from I'(vAu')
by applying M and € successively, and so [v] = [v] Au'] = [v] A[u]. Similarly
[u] A [v] = [v] and consequently [v]w [u]. ]

Proposition 3.5 Let u,v € RFy(X) such that p([u]) = (Ag, A1) and
or([v]) = (Bo, B1). Let uR = g and uL = xy.

(1) [v]w" [u] if and only if

(a) o =m1, or x1 = vL, or zox; € By,

(b) there are v' € [v] A [x1] and u' € [u] such that v EXu'.
(ii) [v]w'[u] if and only if

(¢) g =m1, or xg = VR, or x1x9 € By,

(d) there are v' € [xo] A [v] and u' € [u] such that v' EXu'.

Proof: Observe that [v]w" [u] if and only if [v] R [v] A [#1]w[u]. Thus (7)
follows from Propositions 3.1 and 3.4. The proof of (i) is similar. n
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4 Morphisms.

In this section we introduce the notion of morphism between labeled
binary posets. Let u,v € F3(X). A morphism from I'(u) = (T',]) to
['(v) = (I'",I') is a mapping ¢ : ' — I such that

(My) for every a € T'r, (¢(a))r = a,

(M) if a € T'\ Ty, then p(a) € T, ©((a0)”) = (p(a)0)” and
p((al)7) = (p(a)1)™.

The proof of the next result is long but straightforward, and we decided to
omit it here. However a complete proof can be found in Lemmas 4.16, 4.17
and 4.18 of [7].

Lemma 4.1 Let I'(u) = (I',1) and T'(v) = (I",l') for some u,v € F»(X).
Let p : T' — TV be a morphism from T'(u) to T'(v).
(1) ¢ is one-to-one if and only if ¢ : T — '} is one-to-one.
(17) ¢ is surjective if and only if ¢ : Ty — T} is surjective.
(i7i) If u € RFy(X), then ¢ is one-to-one.
)

(iv) If u € RF>(X) and ¢ is surjective, then v € RFy(X) except if p(1) # 1
and y(u) # u. ]

Let u,v € F5(X) such that u8, v, I'(u) = (I',1) and T'(v) = (I',I'). Let
ag,a; € I' such that ag < a; and T'(v) is obtained from I'(u) by switching ag
and a;. Then either

e 01 or 10 is a suffix of both ag and a; (if uSv), or
e a; =1 and ay = 0*1 for some k > 0 (if u 8y v), or
e a; =0 and ay = 1%0 for some k > 0 (if u 8, v).

Obviously IV = {a € T'|a £ ag, a # a1} U {ai1b|agh € T} U{aph|a1b € T'}.
Let d = (ag),; = (a1), and define the mapping ¢ : I' — T as follows:

arc if ¢ = agd for some ¢ € {1} UdB*
o(c) =1 agcd if ¢ =ay¢ for some ¢ € {t} UdB*
c otherwise.
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The mapping ¢ is a natural isomorphism from I'(u) to I'(v). Furthermore,
(1) =1, p(0) =0 and (1) = Tif uSwv; (0) =0 if u8yv; and ¢(1) =1 if
TESTROR

Proposition 4.2 Let u,v € F5(X) such that |c(u)| > 2.

(1) There is an isomorphism ¢ from I'(u) to I'(v) such that (1) = ¢ if and
only if [u] = [v].

(it) There is an isomorphism @y from T(u) to T'(v) such that p(0) = 0 if
and only if uSgv' for some v' € [v].

(iit) There is an isomorphism 1 from T(u) to T'(v) such that p(1) =1 if
and only if u8;v' for some v' € [v].

Proof: Let T'(u) = (T',1) and T'(v) = (I",').

(7). (=). Assume there is an isomorphism ¢ from I'(u) to I'(v) such that
©(1) = 1. We show that [u] = [v] by induction on |I'|. The statement of this
proposition assumes |c¢(u)| > 2. However, to help us implement the induction
process, we do not consider this assumption on u for this implication. Thus,
we show, by induction on |T'|, that [u] = [v] even if |c(u)] = 1. If |T'| = 1,
then v =z = v for some z € X.

Let |[T'| = n > 2. Then |I| = |T'| > 2. Let ug, u1,vg,v1 € F5(X) such
that u = ug A u; and v = vy A vy. Let T'(u;) = (T, 1;) and T'(v;) = (T}, I}) for
i € {0,1}. Since ¢(1) =, we must have p(0) =0 and (1) = 1.

Let a € T such that ay = 0. Let v(a) = (ag,ai,- - ,ax) for some k > 1.
If kK =1, then a = 0° and p(a) = 0/ for some i,j > 1. Assume k > 1 and
(pla;)))x =0forall 1 <i < k. Let a =a; = ak_ldff for some 7, > 1 and
di € {0,1}. Then

(@) = p(ar_1)dy and o(a) = (ar)d,

for some i > 1 and j > 0, and (p(ax))r = (¢(ax_1))x = 0 since p(ay) # .

We have just shown (by induction on k) that (p(a)), = 0 for every a € T’
such that a), = 0. Similarly, (¢(a))y = 1 for every a € T" such that a), = 1.
As a consequence we have

{¢(0a)|0a €T} ={beTl"|b< 0},

{p(la)|laeT}={beT’|b< 1},
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and thus ¢y : 'y — I’y and ¢y : 'y — T} defined by ¢(0a) = 0py(a) and
©(la) = 1¢1(a), respectively, are well defined isomorphisms from T'(ug) to
['(vp) and from T'(u;) to T'(vy), respectively.

Let by = o(t). Then 0by = (0) = 0* for some k > 1. Hence by = 0% for
some ko > 0. If by # ¢, then let vj € F5(X) such that I'(v}) is obtained from
['(vg) by switching byl and 1, and let ¢y be the natural isomorphism from
I'(vy) to I'(vg) as described prior to this proposition. If by = ¢, let v, = vy
and 1y be the identity automorphism of T'(vy). Thus, in both cases, vy 8¢ v},
and 1)y o g is an isomorphism from I'(ug) to T'(v}) such that ¢y o @o(1) = .
By induction hypothesis (|I'y| < |T'|) we have [ug] = [v{].

In the same way we can define a word v{ such that v; 8; v and [u;] = [v]].
Thus [u] = [v) Avi] = [vg A v1] = [v].

(<). If [u] = [v], then u 8* v because |c(u)| > 2. This implication follows
now from the observation made prior to this proposition.

(i7). (=). Assume there is an isomorphism ¢ from I'(u) to I'(v) such
that (0) = 0. Then @5 (1) = 0% for some k& > 0. Let v such that T'(v')
is obtained from I'(u) by switching 1 with 0¥1. Hence u 8y v'. Let ¢ be the
natural isomorphism from I'(u) to I'(v') as described prior to this proposition,
and observe that ¢y o ¢! is an isomorphism from I'(v') to I'(v) such that
w00 (1) = 1. Consequently [v'] = [v] by (7).

(<). If uSyv' for some v' € [v], then let ¢ be the natural isomorphism
from TI'(u) to ['(v'), and let 1)y be the isomorphism from I'(v") to I'(v) given
by (i). Thus ¢(0) =0, 19(0) = 0, and ¢y = 1 o © is an isomorphism from
['(u) to T'(v) such that ¢y(0) = 0.

The proof of (iii) is analogous to the proof of (i7). ]

Proposition 4.3 Let u,v € Fy(X) such that |c(u)| > 2. Then u 8% v if and
only if T'(u) and T'(v) are isomorphic.

Proof: The direct implication follows from Proposition 4.2. Assume that ¢
is an isomorphism from I'(u) to ['(v). Let I'(u) = (T',1) and a € T such that
¢(a) = 1. If a =1 then u 8* v by Proposition 4.2(3).

We shall assume that a # 1. Then a = d¥* - .. d* for some d; € {0,1} and
k; > 1 such that d; # d; 1. Let d,,; € {0,1} such that d,, # d, 1. Observe
that ad,, 41 € . Fori € {0,---,n}, define recursively u; € F»(X) as follows:
up = u and I'(u;) is obtained from I'(u; 1) by switching d;,; with dfidiﬂ.

By construction we have u;_1 8, u;, and so u 8} u,. Let 1); be the natural
isomorphism from T'(u;_1) to ['(u;). Then ¢ = 1), 0- - -0y is an isomorphism
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from T'(u) to T'(u,) such that ¢(a) = ¢, and ¢’ = p 0o ~! is an isomorphism
from T'(u,) to I'(v) such that ¢'(¢) = ¢. Thus u, 8" v (Proposition 4.2(7)) and
ud;v. [

The next result follows from Propositions 4.3 and 3.3.

Corollary 4.4 Let u,v € RFy(X). Then [u] and [v] are connected elements
in Fps(X) if and only if T'(y(u)) and T'(y(v)) are isomorphic. ]

Proposition 4.5 Let u,v € Fy(X) such that |c(u)| > 2. Then v&E:u' for
some u' € [u] if and only if there is an embedding ¢ of T'(u) into I'(v) such
that p(1) = .

Proof: (=). Assume first that v €, v’ for some u' € [u]. Then I'(u') = (TV, 1)
is obtained from I'(v) = (T, /) by erasing some a € I" such that 01 or 10 is a
suffix of a. Let d € B such that d # a, and define ¢ : ' — T" by

b if b#£a
vib) = { ade  if b= ac for some ¢ € B*
Observe that ¢ is an embedding of I'(v') into I'(v) such that (1) = ¢
By Proposition 4.2(i) there is an embedding ¢ of I'(u) into T'(v) such that
©(1) = 1. The general case now follows immediately.
(«<). Let ¢ be an embedding of T'(u) = (I'y,[;) into I'(v) = (T',1) such
that p(1) = . Let

Q={ael|pb) #a forall beT,}.

We show there is u' € [u] such that v & «' by induction on |Q]. If Q = 0,
then ¢ is an isomorphism and v € [u] (Proposition 4.2(i)). We shall assume
1] > 1. Let Q' ={a € Q|be Q for every b= a}. Clearly Q' # (). Let a be
an element of minimal length amongst all elements of ©'. Observe that 01
or 10 is a suffix of a since (1) = ¢. Let v’ € F5(X) such that I'(v') = (I",1")
is obtained from I'(v) by erasing @ € I'. Thus v &,v'. Furthermore, the
mapping ¢’ : I'y — I defined by

d@:{g@ Hw@ig

ac if ¢(b) de for some d € B and ¢ € B*
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is an embedding of T'(u) into I'(v") such that ¢'(¢) = ¢. Since
1] > [{c e T"|¢'(b) # ¢ for any b e I'1}],

there is u’ € [u] such that v’ €%« by induction hypothesis. Therefore v £ v/
for some u' € [u]. ]

Corollary 4.6 Let u,v € RFy(X) such that |c(u)| > 2.

(1) [V]R[u] in Fps(X) if and only if there is an isomorphism ¢ from

[(vo(u)) to T'(yo(v)) such that ¢(0) = 0;

(17) [v] L]u] in Fps(X) if and only if there is an isomorphism ¢ from
T(11(w)) to T(11(v)) such that (1) = T;

(171) [v]w[u] in Fps(X) if and only if there is an embedding ¢ of T'(u) into
['(v) such that (1) = ¢;

(iv) [v]w"[u] in Fps(X) if and only if there is an embedding ¢ of T'(7o(u))

into T'(vo(v)) such that p(0) = 0;

(v) [v]w'u] in Fps(X) if and only if there is an embedding ¢ of T'(v1(u))
into T'(v1(v)) such that (1) = 1.

Proof: From Proposition 3.1(7), [v] R [u] if and only if yo(u) 8 v" for some
v' € [v(v)]. (i) follows now from Proposition 4.2(4i). The statement (i7) is
the dual of (7). (i) follows from Propositions 3.4 and 4.5.

(iv). (=). Assume [v]w"[u] in Fpg(X). Then [v] R [w]w [u] for some
w € RF,(X) such that [w] = [v] A [uL]. Clearly |c¢(w)| > 2. By (i), there
is an isomorphism ¢’ from T'(vy(w)) to T'(79(v)) such that ¢'(0) = 0; and
by (iii), there is an embedding ¢’ of I'(u) into ['(w) such that ¢'(1) = &
Since vo(w) = w if yo(u) = u, ¢ induces an embedding v of T'(yo(u)) into
T'(vo(w)) such that ¢(0) = 0. Thus ¢ = ¢’ 09 is an embedding of T'(yy(u))
into T'(7p(v)) such that ¢(0) = 0.

(«<). Let ¢ be an embedding of T'(yy(u)) into I'(yo(v)) such that ¢(0) =
0. Let a = ©(1). Then a = 0% for some k > 0. Let w € RFy(X) such
that T'(w) is obtained from T'(yy(v)) by switching 1 with 0¥1 and let ¢ be
the natural isomorphism from T'(yy(v)) to T'(w). Then [w]R[v] and ¢' =
1 o ¢ is an embedding of I'(yp(u)) into T'(w) such that ¢'(v) = «. Thus
[V] R [w]w [yo(u)] R [u] and [v] wu].

(v) is the dual of (iv). ]

18



5 Connectedness in Fpg(X).

Let w € F5(X) and I'(w) = (T',1). We say that b € 'y, is paired in I'(w)
if there is @ € I'\ I';, such that (a0); = (al); and b € {(a0)", (al)~}. We
denote the set of all paired elements of I'(w) by I',(w).

Let u € RFy(X) such that |c(u)| > 2, and T'(y(u)) = (I',{). Define
u, = y(u). Let a € T\ T'z. Then a = d*" ---d* for some n > 1, k; > 1, and
d; € {0,1} such that d;_; # d;, where i € {1,--- ,n}. Let dp41 € {0,1} such
that d, # d,41. Recursively, define uj, = v(u) and u} € F5(X) such that I'(u})
is obtained from I'(u!_,) by switching d;; with d¥d;,,, for i € {1,---,n}.
Thus y(u) 8t u!, u! € RFy(X), and y(u)) = ul,. Denote u/, by u,. Let ¢! be
the natural isomorphism from I'(u} ;) to I'(u;). Then ¢, = ¢}, 0---0¢] is
an isomorphism from T'(y(u)) onto I'(u,) such that ¢,(a) = ¢.

Consider now b € 'y, and let a € T" such that b = ad for some d € {0,1}.
Let x = b, € X and define u;, € F5(X) as follows:

_Jusnz ifd=0
U= xAu, if d=1.

In fact, if b = cd* for some k > 1 and

y JoucANe if d=0
v xAu, if d=1,

then [u'] = [up]. Observe that vy(up) = u, and that u, € RF,(X) if and only
if b ¢ T'p(y(u)). Furthermore u, € RF,(X) if and only if v’ € RF,(X).

Let Dy = {[us) € Fps(X)|a € T\ T,(y(u))} for u € RF;(X) such that
e(u)] = 2.

Proposition 5.1 Let u € RFy(X) such that |c(u)| > 2. Then
Dy = {[v] € Fps(X) | [u] and [v] are connected}.
Proof: Let T'(y(u)) = (T,1).
(©). f a e '\ 'y, then I'(y(u)) and T'(u,) are isomorphic. Thus [u] and
[u,] are connected by Corollary 4.4. If b € ', \ I',(y(u)) and b = cd for some

c € B* and d € {0,1}, then [u] and [up] are connected since y(u;) = u. and
[u] and [u,] are connected. Hence

Dy, € {[v] € Fps(X) | [u] and [v] are connected }.
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(D). Let v € RFy(X) such that [u] and [v] are connected and (v) =
v. From Corollary 4.4, there is an isomorphism ¢ from I'(y(u)) to I'(v) =
[(y(v)). Let a € T such that p(a) = +. Then ¢, o ¢! is an isomorphism
from I'(v) to ['(u,) such that o, o o (1) = . Consequently [u,] = [v] by
Proposition 4.2(7), and [v] € Dy,;.

If v(v) # v, then v = v" A (vR) or v = (vL) A v' for some v' € RF»(X).
Thus [u] and [v'] are connected and y(v') = v'. Hence [v'] = [u,] for some
ce\T'y. If v =" A (vR), then [v] = [up] for b = (c0)~. If v = (vL) AV,
then [v] = [up] for b = (c1)~. Observe also that, in both cases, b & I'y(v(u)).
Consequently [v] € Dy, ]

Define Dy = {[z]} for any € X. Clearly Dy, is the set of all [v] €
Fpg(X) such that [z] and [v] are connected. In the following lemma we call
a word u € F5(X) M-reduced if we cannot apply M to T'(u).

Lemma 5.2 If u € F5(X) is M-reduced, then there is no automorphism ¢
of T'(u) such that o(1) # &

Proof: Assume the statement of this lemma is false and let A be the set of
all M-reduced words for which there exists an automorphism ¢ such that
©(1) # 1. Let u be a word from A of minimal length amongst all words from
A and let ¢ be an automorphism of I'(u) = (T', ) such that ¢(¢) # ¢. Since
u is M-reduced and (1) # ¢, either (1) < 0'1 or p(:) < 1'0 for some [ > 1.
We shall assume ¢(:) < 0'1 for some [ > 1. The case ¢(:) < 1'0 for some
[ > 1 is similar. Thus (©(0)" = ©(0) = (¢(:)0)” and ¢(0') < 0'1. So
p(0') # 0"

Observe that 012 € T since (1) € T'z. Let u; € Fy(X) such that I'(uy) is
obtained from I'(u) by switching 1 with 0'1. Then u; is M-reduced, |u| = |u],
and 02,12 € Ty for ['(uy) = (T'y, ;). Let ¢ be the natural isomorphism from
['(u) to T'(uy). Hence o = 9 oo™t is an automorphism of T'(u;) such
that (1) # ¢ since p(0') # 0. Thus u; € A.

Let a € (T'y); with suffix 10 or 01. Let ap = a and a; = ¢i(a) (p! =
@1 0+ 0 i-times). Then a; € (T'y),, for all .. Furthermore, 10 or 01 is a
suffix of all a; since ¢ is an automorphism and 02,12 € I';. Thus there are
i > 0 and j > 1 such that a; = a;;, and so we can choose a sequence

bo, -+ ,bn € (1)L

for some n > 0 such that (i) @1(b;_1) = b; for 1 < i < n and ¢;(b,) = bo,
and (i7) 10 or 01 is a suffix of all b;.
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From (ii) we can apply €. and erase all vertices b; from I'(uy). Let u' €
F5(X) such that I'(u') is obtained from I'(u;) by erasing simultaneously all
the vertices bg, - - - , b,. Then v’ is M-reduced. Due to condition (i), observe
that the automorphism ¢ of I'(u;) induces naturally an automorphism ¢’ of
['(u'). Clearly ¢'(1) # ¢ since (1) # ¢. Hence v’ € A and |u/| < |uy| = |u]
contradicting the choice of . Therefore A = () and the statement of this
lemma is true. u

Proposition 5.3 If u € RF5(X), then |Dyy| = |I'(u)| — |Tp(u)].

Proof: Clearly the result holds true for |c(u)] = 1. We shall assume that
le(u)| > 2. Let I'(y(u)) = (I',1) and a,b € I'\ T'y(v(u)) such that [u,] = [u).
Due to Proposition 4.2(i), there is an isomorphism ¢ from I'(u,) to I'(u;) such
that ¢(¢) = ¢. Thus either a,b € 'y, or a,b ¢ I'f, as otherwise |uy| # |up|.

If a,b ¢ 'z, then there are isomorphisms ¢, and ¢, from T'(y(u)) to T'(u,)
and to I'(uy), respectively, such that ¢,(a) =1 and @y(b) = 1. If a # b, then
¢ = o, o, is an automorphism of I'(u) such that ¢'(1) # 1. Thus
a = b by Lemma 5.2.

If a,b € Ty, then a, = b, = d € {0,1}. Let a = a;d. There are by € T
and isomorphism ¢; from I'(u,,) to I'(up,) such that (1) = ¢, for some
by € T such that (byd)~ = b. From the previous paragraph, we conclude that
a; — by since ai, by € I';. Thus a = bijd = (bld)i = b.

It is now clear that |Dy,j| = [I'(v(u))| = |I'p(v(u))|. Finally, observe that if
v(u) # u, then |I'(u)| = |T'(y(u))|+2 and |Ty(u)| = |Tp(y(u))|+2. Therefore
Dyl = I (w)] — [T ()] .

The following corollary is now straightforward:
Corollary 5.4 If u € RF,(X) such that u # = A x for any x € X and
\u| = n, then n < |Dp,| < 2n — 1. ]
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