Models for the free pseudosemilattices

Luís Oliveira*

Dep. Matemática Pura, F.C.U.P. R. Campo Alegre 687, 4169-007 Porto, Portugal loliveir@fc.up.pt http://www.fc.up.pt/cmup

Abstract

In this paper we present two models for the free pseudosemilattices. We then use these models to study the relations ω^r , ω^l , ω , \mathcal{R} , and \mathcal{L} on the free pseudosemilattices.

1 Introduction

Given a regular semigroup S, we denote by E(S) the set of idempotents of S. The relation ω^l on E(S) is defined by: for $e, f \in E(S)$,

$$e\,\omega^l f \quad \Leftrightarrow \quad e = ef.$$

We denote by ω^r the dual relation on E(S), and by ω the relation $\omega^r \cap \omega^l$ on E(S). Then ω^l and ω^r are quasi-orders, while ω is a partial order. For $\nu \in \{\omega^r, \omega^l, \omega\}$ let $\nu(f) = \{e \in E(S) \mid e \nu f\}$.

A locally inverse semigroup is a regular semigroup S such that all local submonoids eSe, $e \in E(S)$, are inverse semigroups. The locally inverse

^{*}This work was partially supported by the Fundação para a Ciência e a Tecnologia (FCT) through grant no. PRAXIS XXI/BD/19651/99 and through Centro de Matemática da Universidade do Porto (CMUP), and by Fundação Calouste Gulbenkian

semigroups can be characterized as the regular semigroups such that for any $e, f \in E(S)$ there exists a unique element $e \land f \in E(S)$ satisfying

$$\omega^r(e) \cap \omega^l(f) = \omega(e \wedge f).$$

We can therefore define a new binary algebra $(E(S), \wedge)$ from any locally inverse semigroup S. These algebras are called pseudosemilattices and they were characterized abstractly by Nambooripad [5] who showed that an algebra (E, \wedge) is a pseudosemilattice if and only if it satisfies the identities

$$x \wedge x \approx x,$$

$$(x \wedge y) \wedge (x \wedge z) \approx (x \wedge y) \wedge z,$$

$$((x \wedge y) \wedge (x \wedge z)) \wedge (x \wedge w) \approx (x \wedge y) \wedge ((x \wedge z) \wedge (x \wedge w)).$$

together with the right-left duals of the last two. We denote by \mathbf{PS} the variety of all pseudosemilattices. This result was then generalized by Auinger [1] who showed that the mapping

$$\varphi: \mathcal{L}_e(\mathbf{LI}) \longrightarrow \mathcal{L}(\mathbf{PS}), \quad \mathbf{V} \longmapsto \{(E(S), \wedge) \mid S \in \mathbf{V}\}$$

is a surjective complete homomorphism from the lattice $\mathcal{L}_e(\mathbf{LI})$ of e-varieties of locally inverse semigroups to the lattice $\mathcal{L}(\mathbf{PS})$ of varieties of pseudosemilattices. The structure of the pseudosemilattices and its connections to the structure of locally inverse semigroups have been studied in [3, 8, 9, 10].

The relations ω^r , ω^l and ω can be defined in any pseudosemilattice (E, \wedge) in terms of the operation \wedge instead of the semigroup operation:

$$e \omega^l f \Leftrightarrow e \wedge f = e,$$

 $e \omega^r f \Leftrightarrow f \wedge e = e,$
 $e \omega f \Leftrightarrow e \wedge f = e = f \wedge e.$

Define the relation \mathcal{R} and \mathcal{L} on E as follows: $\mathcal{R} = \omega^r \cap (\omega^r)^{-1}$ and $\mathcal{L} = \omega^l \cap (\omega^l)^{-1}$. If S is a locally inverse semigroup such that (E, \wedge) is isomorphic to $(E(S), \wedge)$, then \mathcal{R} and \mathcal{L} correspond to the restriction of the Green's relations with the same designation on S to E(S).

Let $(F_2(X), \wedge)$ be the absolutely free binary algebra on X. For $u \in F_2(X)$, we denote by uR and uL the first and last letter of u, respectively. Let $\mathcal{B} = \{0, 1\}$ and \leq be the partially order on the free monoid \mathcal{B}^* on \mathcal{B} defined

as follows: $a \leq b$ if and only if b is a prefix of a. In [6] we associated in a natural fashion to each $u \in F_2(X)$ a finite partially ordered subset Γ of (\mathcal{B}, \leq) with its elements labeled by words from $F_2(X)$:

$$l: \Gamma \longrightarrow F_2(X), \quad a \longmapsto a_l.$$

We denoted by $\Gamma(u)$ the pair (Γ, l) and called it the labeled binary poset associated with u. We introduced also three ways to transform labeled binary posets into other labeled binary posets: \mathcal{M} , \mathcal{E} and \mathcal{S} . Each one of this rules induces a binary relation on $F_2(X)$ which is denoted also by the same symbol.

Let σ be the relation on $F_2(X)$ defined by: for $u, v \in F_2(X)$, $u\sigma v$ if and only if $(u, v) \in \mathbb{S}^*$ or $c(u) = c(v) = \{x\}$ for some $x \in X$, where \mathbb{S}^* denotes the reflexive and transitive closure of \mathbb{S} and c(u) denotes the content of u, that is, the set of all letters from X occurring in u. Then σ is a congruence relation on $F_2(X)$ and we denote by [u] the σ -class of u. Consider also the reflexive and transitive closure δ of $\mathbb{M} \cup \mathcal{E}$. A word $u \in F_2(X)$ is called **reduced** if $u\delta v \in F_2(X)$ implies u = v. We denote by $RF_2(X)$ the set of all reduced words. By [6, Section 4 and Theorem 5.7] we have

Result 1.1 Let $u, v \in F_2(X)$. Then

- (i) there exists $u_1 \in RF_2(X)$ such that $u\delta u_1$,
- (ii) if [u] = [v] and $u\delta u_1$, $v\delta v_1$ for some $u_1, v_1 \in RF_2(X)$ then $[u_1] = [v_1]$,
- (iii) the identity $u \approx v$ is satisfied by all pseudosemilattices if and only if $[u_1] = [v_1]$ for some $[any] \ u_1, v_1 \in RF_2(X)$ such that $u\delta u_1, v\delta v_1$.

Thus, for each $u \in F_2(X)$, we can talk about the σ -class containing all reduced words v such that $u\delta v$. We denote this σ -class by $[u]_r$. We define $F_{PS}(X) = RF_2(X)/\sigma$ and introduce a binary operation \wedge on $F_{PS}(X)$ as follows: for $u, v \in RF_2(X)$, $[u] \wedge [v] = [u \wedge v]_r$. This \wedge -operation is well-defined by Result 1.1(ii) and since σ is a congruence. By Result 1.1(iii) we have therefore that $(F_{PS}(X), \wedge)$ is a free pseudosemilattice on X. The free pseudosemilattices have been studied in [2, 4, 6].

2 Models for the free pseudosemilattices

For any set Y and any s in the free monoid Y^+ on Y, we denote by s_{λ} and s_{τ} the first and last letter of s, respectively. Let $\mathcal{B} = \{0, 1\}$ and $a \in \mathcal{B}^+$.

Then, there are $n \geq 1$, $e_i \in \mathcal{B}$ and $k_i \geq 1$ for $i \in \{1, \dots, n\}$ such that $a = e_1^{k_1} \cdots e_n^{k_n}$ and $e_j \neq e_{j+1}$ for $j \in \{1, \dots, n-1\}$. Let $a_0 = \iota$, where ι is the empty word, and $a_i = e_1^{k_1} \cdots e_i^{k_i}$ for $i \in \{1, \dots, n\}$. We denote by $\nu(a)$ the vector (a_0, a_1, \dots, a_n) . We define also $\nu(\iota) = (\iota)$.

Let $u \in F_2(X) \setminus X$, $\Gamma(u) = (\Gamma, l)$, and $a \in \Gamma \setminus \{l\}$. We denote by Γ_L the set of minimal elements of Γ and by \overline{a} the element $ad^k \in \Gamma_L$ such that $a_{\tau} = d$. Let $\nu(a) = (a_0, \dots, a_n)$ for some $n \geq 1$, and define $k_u(a) = (\overline{a_1})_l \cdots (\overline{a_n})_l$. Let

$$K_0(u) = \{k_u(a) \mid a \in \Gamma, a_\lambda = 0\} = \{k_u(a) \mid a \in \Gamma_L, a_\lambda = 0\},\$$

$$K_1(u) = \{k_u(a) \mid a \in \Gamma, a_\lambda = 1\} = \{k_u(a) \mid a \in \Gamma_L, a_\lambda = 1\},\$$

and consider $K(u) = (K_0(u), K_1(u))$. Define $K_0(x) = K_1(x) = \{x\}$ and $K(x) = (\{x\}, \{x\})$ for each $x \in X$.

By definition of $RF_2(X)$ and σ , we have $K_0(u) = K_0(v)$, $K_1(u) = K_1(v)$, and K(u) = K(v) for any $u, v \in RF_2(X)$ such that [u] = [v]. We can define therefore $K_0([u]) = K_0(u)$, $K_1([u]) = K_1(u)$ and K([u]) = K(u) for any $[u] \in F_{PS}(X)$.

Let P be the set of all $A \subseteq X^+$ satisfying the following conditions:

- (C_1) A is a finite subset of xX^* for some $x \in X$.
- (C_2) A is closed for prefixes from X^+ .
- (C_3) xyx is not a subword of s for any $x, y \in X$ and $s \in A$.
- (C₄) If $sx^2 \in A$ for some $s \in X^*$ and $x \in X$, then there is $y \in X$ such that $sx^2y \in A$.

Let \mathcal{K} be the set of all pairs $(A_0, A_1) \in P \times P$ such that

(C₅) For any $x, y \in X$ such that $x \in A_0$ and $y \in A_1$, we have that $xy \notin A_0$ and $yx \notin A_1$.

The next lemma follows easily from the definition of \mathfrak{M} and \mathcal{E} .

Lemma 2.1 Let $u \in RF_2(X)$. Then $K([u]) \in \mathcal{K}$ and the mapping

$$\varphi_k: F_{PS}(X) \longrightarrow \mathfrak{K}, \quad [u] \longmapsto K([u])$$

is well defined.

We show now that φ_k is in fact a bijection.

Lemma 2.2 The mapping $\varphi_k : F_{PS}(X) \longrightarrow \mathcal{K}$ is a bijection.

Proof: Let us show first that φ_k is surjective. Let $(A_0, A_1) \in \mathcal{K}$. We show there exists $u \in RF_2(X)$ such that $\varphi_k([u]) = (A_0, A_1)$ by induction on $n = |A_0| + |A_1|$. If n = 2, then $A_0 = \{x_0\}$ and $A_1 = \{x_1\}$. Take $u = x_0$ if $x_0 = x_1$, or take $u = x_0 \land x_1 \in RF_2(X)$ if $x_0 \neq x_1$.

Assume n > 2. Thus $|A_0| \ge 2$ or $|A_1| \ge 2$. We shall assume also that $|A_0| \ge 2$ since the case $|A_1| \ge 2$ can be shown dually. Then there exists $x_0x_1 \in A_0$ for some $x_0, x_1 \in X$. Let

$$A_{01} = \{ s \mid s_{\lambda} = x_1, \, x_0 s \in A_0 \}$$

and $A_{00} = A_0 \setminus x_0 A_{01}$, and observe that $(A_{00}, A_{01}) \in \mathcal{K}$. By induction we have $(A_{00}, A_{01}) = \varphi_k([u_0])$ for some $u_0 \in RF_2(X)$.

If $A_1 = \{y_1\}$, take $u_1 = y_1$. If $|A_1| \ge 2$, let $y_1y_0 \in A_1$ for some $y_1, y_0 \in X$ and define $A_{10} = \{s \mid s_{\lambda} = y_0, y_1s \in A_1\}$ and $A_{11} = A_1 \setminus y_1A_{10}$. Again $(A_{10}, A_{11}) \in \mathcal{K}$ and by induction $(A_{10}, A_{11}) = \varphi_k([u_1])$ for some $u_1 \in RF_2(X)$.

Let $u = u_0 \wedge u_1$. Then $K_0(u) = A_{00} \cup x_0 A_{01} = A_0$ and $K_1(u) = A_1$, and so $u \in RF_2(X)$ since $u_0, u_1 \in RF_2(X)$ and A_0 and A_1 satisfy (C_4) and (C_5) . Thus $\varphi_k([u]) = (A_0, A_1)$ and φ_k is a surjective mapping.

Let us show now that φ_k is injective. Let $u, v \in RF_2(X)$ such that $\varphi_k([u]) = (A_0, A_1) = \varphi_k([v])$. Obviously uR = vR and uL = vL. We show that [u] = [v] by induction on $n = |A_0| + |A_1|$. If n = 2, then $A_0 = \{x_0\}$ and $A_1 = \{x_1\}$. If $x_0 = x_1$ then $[u] = [x_0] = [v]$. If $x_0 \neq x_1$ then $u = x_0 \wedge x_1 = v$.

Assume n > 2. Then $u = u_0 \wedge u_1$ and $v = v_0 \wedge v_1$ for some $u_0, u_1, v_0, v_1 \in RF_2(X)$. Let $\Gamma(u) = (\Gamma, l)$ and $\Gamma(v) = (\Gamma_1, l_1)$. Let $y_0 = u_0 L$ and $w_0 \in RF_2(X)$ such that $[w_0] = [v_0] \wedge [y_0]$. Clearly, there is exactly one $i \geq 1$ such that $0^i 1 \in \Gamma_1$ and $k_v(0^i 1) = (uR)y_0$. Thus

$$K_1(w_0) = \{s \mid (uR)s \in A_0, s_\lambda = y_0\} = K_1(u_0)$$

and $K_0(w_0) = A_0 \setminus (uR)K_1(w_0) = K_0(u_0)$. By induction we conclude that $[u_0] = [w_0]$.

Let $x_1 = u_1 R$ and $w_1 \in RF_2(X)$ such that $[w_1] = [x_1] \wedge [v_1]$. Similarly we conclude that $[w_1] = [u_1]$, and so

$$[u] = [u_0] \wedge [u_1] = ([v_0] \wedge [y_0]) \wedge ([x_1] \wedge [v_1]) = [v_0] \wedge [v_1] = [v].$$

Consequently φ_k is an injective mapping.

Let (A_0, A_1) , $(B_0, B_1) \in \mathcal{K}$ and $u, v \in RF_2(X)$ such that $\varphi_k([u]) = (A_0, A_1)$ and $\varphi_k([v]) = (B_0, B_1)$. If we define a \wedge -operation on \mathcal{K} by

$$(A_0, A_1) \wedge (B_0, B_1) = \varphi_k([u] \wedge [v]),$$

then φ_k becomes an isomorphism by Lemma 2.2, and thus (\mathcal{K}, \wedge) is a model for the free pseudosemilattice on X. We can determine the operation \wedge abstractly as follows. For $i \in \{0, 1\}$ let $x_i, y_i \in X$ such that $A_i \subseteq x_i X^*$ and $B_i \subseteq y_i X^*$, and for $j \in \{00, 01, 10, 11\}$ let A_j and B_j as the following sets:

- $A_{01} = \{s \mid x_0 s \in A_0, s_\lambda = y_1\}$ and $A_{00} = A_0 \setminus x_0 A_{01}$,
- if $A_1 = \{x_0\}$ then $A_{10} = A_{11} = \emptyset$, and if $A_1 \neq \{x_0\}$ then $A_{11} = \{s \in A_1 \mid s_{\lambda} = y_1\} \text{ and } A_{10} = \{x_0 s \mid s \in A_1 \setminus A_{11}\},$
- if $B_0 = \{y_1\}$ then $B_{01} = B_{00} = \emptyset$, and if $B_0 \neq \{y_1\}$ then $B_{00} = \{s \in B_0 \mid s_{\lambda} = x_0\} \text{ and } B_{01} = \{y_1 s \mid s \in B_0 \setminus B_{00}\},$
- $B_{10} = \{ s \mid y_1 s \in B_1, \ s_{\lambda} = x_0 \} \text{ and } B_{11} = B_1 \setminus y_1 B_{10}.$

Using the definition of \mathcal{M} and \mathcal{E} it is now straightforward to check that

$$\varphi_k([u] \land [v]) = (A_{00} \cup A_{10} \cup B_{00} \cup B_{10}, A_{01} \cup A_{11} \cup B_{01} \cup B_{11}).$$

Therefore we have

Theorem 2.3 Using the notation above, for (A_0, A_1) , $(B_0, B_1) \in \mathcal{K}$ define

$$(A_0, A_1) \wedge (B_0, B_1) = (A_{00} \cup A_{10} \cup B_{00} \cup B_{10}, A_{01} \cup A_{11} \cup B_{01} \cup B_{11}).$$

Then \wedge is a well-defined binary operation on \mathcal{K} and (\mathcal{K}, \wedge) is a model for the free pseudosemilattice on X.

Let \mathcal{H} be the set of all pairs (A, y) such that $A \subseteq X^+$ satisfies $(C_1), (C_2), (C_3)$ and

(C₆) if $sx^2 \in A$ for some $s \in X^*$ and $x \in X$, then there is $x' \in X \setminus \{x\}$ such that (i) $s = \iota$ and $xx' \in A$, or (ii) $sx^2x' \in A$,

and $y \in X$ satisfies

- (C_7) either $A = \{y\}$ or $xy \in A$ for some $x \in X$,
- (C₈) if $x^2 \in A$ for some $x \in X$ and $x^2x' \notin A$ for any $x' \in X$, then y = x.

The next lemma is immediate:

Lemma 2.4 Let $(A_0, A_1) \in \mathcal{K}$ such that $(A_0, A_1) \neq (\{x\}, \{x\})$ for any $x \in X$. Let $x_i \in X$ such that $A_i \subseteq x_i X^*$ for $i \in \{0, 1\}$, and let $A = A_0 \cup x_0 A_1$. Then $(A, x_1) \in \mathcal{H}$.

Consider the mapping $\psi_h: \mathcal{K} \longrightarrow \mathcal{H}$ defined by $\psi_h((\{x\}, \{x\})) = (\{x\}, x)$ for any $x \in X$ and by $\psi_h((A_0, A_1)) = (A_0 \cup x_0 A_1, x_1)$ for any $(A_0, A_1) \in \mathcal{K}$ such that $A_i \subseteq x_i X^*$ and $(A_0, A_1) \neq (\{x\}, \{x\})$ for any $x \in X$. The mapping ψ_h is well defined due to the previous lemma. In fact ψ_h is a bijection whose inverse mapping is the mapping $\psi: \mathcal{H} \longrightarrow \mathcal{K}$ defined by $\psi((\{x\}, x)) = (\{x\}, \{x\})$ for any $x \in X$ and by $\psi((A, x_1)) = (A \setminus x_0 A_1, A_1)$ for any $(A, x_1) \in \mathcal{H}$ such that $A \subseteq x_0 X^*$ and $|A| \geq 2$, where $A_1 = \{s \mid x_0 s \in A, s_\lambda = x_1\}$.

Let (A, x_1) , $(B, y_1) \in \mathcal{H}$ such that $A \subseteq x_0 X^*$ and $B \subseteq y_0 X^*$ for some $x_0, y_0 \in X$, and define

- $A' = \left\{ \begin{array}{ll} A \setminus \{x_0^2\} & \text{if } x_0^2 \in A \text{ and } x_0^2 y \not\in A \text{ for any } y \in X \\ A & \text{otherwise,} \end{array} \right.$
- $B'_0 = \begin{cases} \emptyset & \text{if } B \subseteq \{y_1\} \cup y_1^2 X^* \\ \{s \in B \mid s \not\preccurlyeq y_0 y_1\} & \text{if } B \not\subseteq \{y_1\} \cup y_1^2 X^* \text{ and } y_0 = x_0 \\ \{x_0 y_1 s \mid s \in B, \ s \not\preccurlyeq y_0 y_1\} & \text{otherwise,} \end{cases}$
- $B'_1 = \{x_0y_1\} \cup \{s \mid y_0y_1s \in B, \ s_\lambda = x_0\} \cup \{x_0y_1s \mid y_0y_1s \in B, \ s_\lambda \neq x_0\},\$
- $C = \begin{cases} \{y_1\} & \text{if } x_0 = x_1 = y_0 = y_1 \text{ and } A = B = \{y_1\} \\ A' \cup B'_0 \cup B'_1 & \text{otherwise.} \end{cases}$

Theorem 2.5 Let $(A, x_1), (B, y_1) \in \mathcal{H}$ such that $A \subseteq x_0 X^*$ and $B \subseteq y_0 X^*$ for some $x_0, y_0 \in X$, and define

$$(A, x_1) \wedge (B, y_1) = (C, y_1).$$

Then \wedge is a well defined binary operation on \mathcal{H} and (\mathcal{H}, \wedge) is a model for the free pseudosemilattice on X.

Proof: Let $\psi((A, x_1)) = (A_0, A_1)$ and $\psi((B, y_1)) = (B_0, B_1)$. If we show that

$$\psi_h((A_0, A_1) \wedge (B_0, B_1)) = (C, y_1), \tag{1}$$

then ψ_h is an isomorphism from (\mathcal{K}, \wedge) to (\mathcal{H}, \wedge) and so (\mathcal{H}, \wedge) is a model for the free pseudosemilattice on X.

Clearly (1) holds true for $A = B = \{y_1\}$. Assume $(A, B) \neq (\{x\}, \{x\})$ for any $x \in X$. Then $A_i \subseteq x_i X^*$ and $B_i \subseteq y_i X^*$ for $i \in \{0, 1\}$, and

$$\psi_h((A_0, A_1) \land (B_0, B_1)) =$$

$$= (A_{00} \cup A_{10} \cup B_{00} \cup B_{10} \cup x_0 (A_{01} \cup A_{11} \cup B_{01} \cup B_{11}), y_1).$$

We can check now that $A' = A_{00} \cup A_{10} \cup x_0(A_{01} \cup A_{11})$, $B'_0 = B_{00} \cup x_0B_{01}$, and $B'_1 = B_{10} \cup x_0B_{11}$. Consequently (1) holds true in this case also, and therefore ψ_h is an isomorphism.

Observe that we can construct, in a dual manner, a third model by considering the pairs $(x_1A_0 \cup A_1, x_0)$ instead of the pairs $(A_0 \cup x_0A_1, x_1)$. This third model is the dual of \mathcal{H} .

Next we characterize the relations ω^r , ω^l , ω , \mathcal{R} , and \mathcal{L} on \mathcal{K} .

Proposition 2.6 Let (A_0, A_1) , $(B_0, B_1) \in \mathcal{K}$ and $x_i, y_i \in X$ such that $A_i \subseteq x_i X^*$ and $B_i \subseteq y_i X^*$ for $i \in \{0, 1\}$. Then

- (i) $(B_0, B_1) \omega^r(A_0, A_1)$ if and only if $A_0 \cup x_0 A_1 \cup \{x_0^2\} \subseteq B_0 \cup y_0 B_1 \cup \{y_0^2\}$,
- (ii) $(B_0, B_1) \omega^l(A_0, A_1)$ if and only if $x_1 A_0 \cup A_1 \cup \{x_1^2\} \subseteq y_1 B_0 \cup B_1 \cup \{y_1^2\}$,
- (iii) $(B_0, B_1) \omega (A_0, A_1)$ if and only if $A_0 \subseteq B_0$ and $A_1 \subseteq B_1$,
- (iv) $(B_0, B_1) \mathcal{R}(A_0, A_1)$ if and only if $A_0 \cup x_0 A_1 \cup \{x_0^2\} = B_0 \cup y_0 B_1 \cup \{y_0^2\}$,
- (v) $(B_0, B_1) \mathcal{L}(A_0, A_1)$ if and only if $x_1 A_0 \cup A_1 \cup \{x_1^2\} = y_1 B_0 \cup B_1 \cup \{y_1^2\}$.

Proof: (i). Let $A = A_{00} \cup A_{10} \cup B_{00} \cup B_{10}$ and $B = A_{01} \cup A_{11} \cup B_{01} \cup B_{11}$. Assume $(B_0, B_1) \omega^r(A_0, A_1)$. Then

$$(B_0, B_1) = (A_0, A_1) \wedge (B_0, B_1) = (A, B),$$

and $x_0 = y_0$. Furthermore

$$A_0 = A_{00} \cup x_0 A_{01} \subseteq B_0 \cup x_0 B_1$$

$$x_0 A_1 \subseteq A_{10} \cup x_0 A_{11} \cup \{x_0^2\} \subseteq B_0 \cup x_0 B_1 \cup \{x_0^2\}.$$

Thus $A_0 \cup x_0 A_1 \cup \{x_0^2\} \subseteq B_0 \cup y_0 B_1 \cup \{y_0^2\}.$

Assume $A_0 \cup x_0 A_1 \cup \{x_0^2\} \subseteq B_0 \cup y_0 B_1 \cup \{y_0^2\}$. Then $x_0 = y_0$, $B_{10} = \emptyset$, $B_{00} \cup \{x_0\} = B_0$, and $x_0 \in A_{00} \cup A_{10} \subseteq B_0 \cup \{x_0^2\}$. Consequently $B_0 \subseteq A \subseteq B_0 \cup \{x_0^2\}$. If $x_0^2 \in A$, then $x_0^2 x \in A$ for some $x \in X$ by (C_4) , and thus $x_0^2 x$ and x_0^2 belong to B_0 . Hence $A = B_0$. We show that $B = B_1$ similarly, and therefore $(B_0, B_1) \omega^r(A_0, A_1)$.

- (ii) is shown using dual arguments.
- (iii). Assume that $(B_0, B_1) \omega$ (A_0, A_1) . Then $A_0 \subseteq B_0 \cup y_0 B_1 \cup \{y_0^2\}$, $x_0 = y_0$ and $x_1 = y_1$ by (i) and (ii). Thus $A_0 \cap y_0 B_1 = \emptyset$ due to (C_5) and (C_2) . Consequently $A_0 \subseteq B_0 \cup \{y_0^2\}$. If $y_0^2 \in A_0$ then there is $x \in X$ such that $y_0^2 x \in A_0$ by (C_4) , whence $y_0^2 x$ and y_0^2 belong to B_0 . We have shown that $A_0 \subseteq B_0$. We show that $A_1 \subseteq B_1$ similarly. The reverse implication follows immediately from (i) and (ii).
 - (iv) and (v) follow from (i) and (ii), respectively.

Corollary 2.7 Let $(A, x_1), (B, y_1) \in \mathcal{H}$ and $x_0, y_0 \in X$ such that $A \subseteq x_0 X^*$ and $B \subseteq y_0 X^*$. Then

- (i) $(B, y_1) \omega^r(A, x_1)$ if and only if $A \cup \{x_0^2\} \subseteq B \cup \{y_0^2\}$,
- (ii) $(B, y_1) \omega(A, x_1)$ if and only if $A \subseteq B$ and $x_1 = y_1$,
- (iii) $(B, y_1) \mathcal{R}(A, x_1)$ if and only if $A \cup \{x_0^2\} = B \cup \{y_0^2\}$.

Proof: Observe that $A \cup \{x_0^2\} = A_0 \cup x_0 A_1 \cup \{x_0^2\}$ if $(A_0, A_1) = \psi((A, x_1))$. Thus (i), (ii) and (iii) follow from Proposition 2.6 (i), (iii) and (iv), respectively, via the pairwise inverse isomorphisms ψ and ψ_h .

We can also obtain conditions characterizing ω^l and \mathcal{L} on \mathcal{H} . However, contrarily to ω^r , ω and \mathcal{R} , ω^l and \mathcal{L} do not have a nice description in \mathcal{H} . The reader can find these conditions in [7, Proposition 4.2]. We remark also that ω^l , ω , and \mathcal{L} have nice descriptions on the dual model of \mathcal{H} mentioned before Proposition 2.6, but ω^r and \mathcal{R} do not have such a nice description ([7, Proposition 4.4]).

3 The relations \mathcal{S}_e^* and \mathcal{E}_e^* on $F_2(X)$

We begin by defining the relation S_0 on $F_2(X)$. S_0 is a relation similar to the relation S introduced in [6]. Let $u \in F_2(X)$ and $\Gamma(u) = (\Gamma, l)$. Let $k \geq 0$ such that $0^{k+1} \in \Gamma$ and define

$$\Gamma' = \{a \in \Gamma \mid a \nleq 1, a \nleq 0^k 1\} \cup \{0^k 1b \mid 1b \in \Gamma\} \cup \{1c \mid 0^k 1c \in \Gamma\}$$

and $l': \Gamma_L' \longrightarrow X$ as

$$a_{l'} = \begin{cases} a_l & \text{if } a \not \leq 1 \text{ and } a \not \leq 0^k 1\\ (1b)_l & \text{if } a = 0^k 1b \in \Gamma_L'\\ (0^k 1c)_l & \text{if } a = 1c \in \Gamma_L' \end{cases}$$

Clearly (Γ', l') is a labeled binary poset, and let $v \in F_2(X)$ such that $\Gamma(v) = (\Gamma', l')$. We say that $\Gamma(v)$ is obtained from $\Gamma(u)$ by switching 1 with one of its neighbors. Let S_0 be the set of all pairs $(u, v) \in F_2(X)$ such that $u = v = x \in X$ or $\Gamma(v)$ is obtained from $\Gamma(u)$ by switching 1 with one of its neighbors.

Similarly, we define the concept of switching 0 with one of its neighbors. The binary relation induced by this new concept is denoted by S_1 . Let

$$S_e = S \cup S_0 \cup S_1$$
.

The relations S_0 , S_1 , and S_e are clearly reflexive and symmetric. For $u \in F_2(X)$ define

$$\gamma_0(u) = \begin{cases} u' & \text{if } u = u' \land (uR) \text{ for some } u' \in F_2(X) \\ u & \text{otherwise,} \end{cases}$$

$$\gamma_1(u) = \begin{cases} u' & \text{if } u = (uL) \land u' \text{ for some } u' \in F_2(X) \\ u & \text{otherwise,} \end{cases}$$

$$\gamma(u) = \begin{cases} u' & \text{if } u = u' \land (uR) \text{ or } u = (uL) \land u' \text{ for some } u' \in F_2(X) \\ u & \text{otherwise.} \end{cases}$$

Thus, if $u \in RF_2(X)$ then $\gamma_0(u)$, $\gamma_1(u)$, $\gamma(u) \in RF_2(X)$. Further, if $u \, \mathbb{S}_0 \, v$ and $u = \gamma_0(u) \in RF_2(X)$, then $v \in RF_2(X)$. Similarly, if $u \, \mathbb{S}_1 \, v$ and $u = \gamma_1(u) \in RF_2(X)$, then $v \in RF_2(X)$. Thus if $u \, \mathbb{S}_e \, v$ and $u = \gamma(u) \in RF_2(X)$, then $v \in RF_2(X)$. Let \mathbb{S}_e^* denote the transitive closure of \mathbb{S}_e .

Let $u \in RF_2(X)$. We denote by $R_{[u]}$ and $L_{[u]}$ the \mathcal{R} -class and the \mathcal{L} -class, respectively, of [u] in $F_{PS}(X)$.

Proposition 3.1 If $u \in RF_2(X)$, then

- (i) $R_{[u]} = \{[v] \mid \gamma_0(u) \, \mathbb{S}_0 \, v\} \cup \{[u] \wedge [uR]\};$
- (ii) $L_{[u]} = \{ [v] \mid \gamma_1(u) \, S_1 \, v \} \cup \{ [uL] \wedge [\gamma_1(u)] \}.$

Proof: (i). Clearly $[u] \mathcal{R} [\gamma_0(u)]$. Let $\Gamma(\gamma_0(u)) = (\Gamma, l)$, $uR = x = (\gamma_0(u))R$, and $\psi_h \varphi_k([\gamma_0(u)]) = (A, y)$. Then $\psi_h \varphi_k([v]) = (A, y')$ for any $v \in F_2(X)$ such that $\gamma_0(u) \mathcal{S}_0 v$. Furthermore, $\psi_h \varphi_k([u_1]) = (A \cup \{x^2\}, x)$ for $u_1 \in RF_2(X)$ such that $[u_1] = [\gamma_0(u)] \wedge [uR] = [u] \wedge [uR]$. Therefore

$$R_{[u]} \supseteq \{[v] \mid \gamma_0(u) \, \mathcal{S}_0 \, v\} \cup \{[u] \wedge [uR]\}$$

by Corollary 2.7.

Let $v \in RF_2(X)$ such that $[v] \in R_{[u]}$ and $[v] \neq [u] \land [uR]$. Let $\psi_h \varphi_k([v]) = (A', y')$. Then $A \cup \{x^2\} = A' \cup \{x^2\}$ due to Corollary 2.7, and $xy' \in A'$. Since $[v] \neq [u] \land [uR]$, we must have A = A'. Thus, there is $k \geq 0$ such that $0^k 1 \in \Gamma$ and $(0^k 1)_l^- = y'$. Let $u' \in RF_2(X)$ such that $\Gamma(u')$ is obtained from $\Gamma(\gamma_0(u))$ by switching 1 with $0^k 1$, and observe that $\psi_h \varphi_k([u']) = (A, y')$. Hence [v] = [u'] and

$$R_{[u]} = \{ [v] \mid \gamma_0(u) \, \mathbb{S}_0 \, v \} \cup \{ [u] \wedge [uR] \}.$$

(ii) is shown using dual arguments. We need to consider the dual result of Corollary 2.7 for the dual model of \mathcal{H} .

Now, the following corollary can be proved easily:

Corollary 3.2 Let $u \in RF_2(X)$, uR = x, uL = y, and $\Gamma(u) = (\Gamma, l)$. Let $k_0 = \max\{k \ge 0 \mid 0^k \in \Gamma\}$ and $k_1 = \max\{k \ge 0 \mid 1^k \in \Gamma\}$. Then

- (i) $|R_{[u]}| = k_0$ if $(0^k 1)_l^- = x$ for some $0 \le k < k_0$, or $|R_{[u]}| = k_0 + 1$ otherwise,
- (ii) $|L_{[u]}| = k_1$ if $(1^k 0)_l^- = y$ for some $0 \le k < k_1$, or $|L_{[u]}| = k_1 + 1$ otherwise.

Let F be a pseudosemilattice. An E-sequence in F is a sequence $e_0, e_1, \dots, e_n \in F$ such that $e_{i-1}(\mathcal{R} \cup \mathcal{L}) e_i$ for $1 \leq i \leq n$. We say that an E-sequence $e_0, \dots, e_n \in F$ is an E-chain if (i) $e_i \neq e_j$ for $i \neq j$, and (ii) $e_{i-1} \mathcal{R} e_i$ if and only if $e_i \mathcal{L} e_{i+1}$ for $1 \leq i \leq n-1$. Since \mathcal{R} and \mathcal{L} are

equivalence relations in F, we can construct an E-chain from e to f from any E-sequence $e = e_0, e_1, \dots, e_n = f$ by deleting some e_i . We say that $e, f \in F$ are **connected** if there is an E-chain (or an E-sequence) $e_0, e_1, \dots, e_n \in F$ such that $e_0 = e$ and $e_n = f$.

Proposition 3.3 Let $u, v \in RF_2(X)$. Then [u] and [v] are connected elements of $F_{PS}(X)$ if and only if $\gamma(u) \, \mathbb{S}_e^* \, \gamma(v)$.

Proof: Assume that [u] and [v] are connected elements of $F_{PS}(X)$. Then $[\gamma(u)]$ and $[\gamma(v)]$ are connected too, and there exists an E-chain

$$[w_0], [w_1], \cdots, [w_n] \in F_{PS}(X)$$

such that $\gamma(u) = w_0$, $\gamma(v) = w_n$, and $w_i \in RF_2(X)$ for every $0 \le i \le n$.

Observe that if $\gamma(w) \neq w$ for some $w \in RF_2(X)$, then $|R_{[w]}| = 1$ or $|L_{[w]}| = 1$ due to Corollary 3.2. Thus, $\gamma(w_i) = w_i$ for any $0 \leq i \leq n$ since $[w_0]$, $[w_1]$, \cdots , $[w_n]$ is an E-chain. Hence, there is $w'_i \in [w_i]$ such that $w_{i-1} \, \mathbb{S}_e \, w'_i$ due to Proposition 3.1 for all $0 \leq j \leq n$. Therefore $w_{i-1} \, \mathbb{S}_e^* \, w_i$ for all $1 \leq i \leq n$, and so $\gamma(u) \, \mathbb{S}_e^* \, \gamma(v)$.

Assume $\gamma(u) \, \mathbb{S}_e^* \, \gamma(v)$. There are $w_0, \dots, w_n \in RF_2(X)$ such that $w_0 = \gamma(u), w_n = \gamma(v)$, and $w_{i-1} \, \mathbb{S}_e \, w_i$ for all $1 \leq i \leq n$. Thus $[w_{i-1}] \, \mathcal{R} \cup \mathcal{L} \, [w_i]$ by Proposition 3.1, and $[\gamma(u)]$ and $[\gamma(v)]$ are connected. Therefore [u] and [v] are connected too.

Next, we define the relation \mathcal{E}_e on $F_2(X)$. The relation \mathcal{E}_e is a generalization of the relation \mathcal{E} introduced in [6]. Let $u \in F_2(X)$, $\Gamma(u) = (\Gamma, l)$, and $a = bd \in \Gamma$ such that $b \in \mathcal{B}^*$ and $d \in \mathcal{B}$. Let $e \in \mathcal{B} \setminus \{d\}$. Then we denote b and be by \overleftarrow{a} and \overrightarrow{a} , respectively. Let now $a \in \Gamma$ such that 01 or 10 is a suffix of a. Define

$$\Gamma' = \{ b \in \Gamma \mid b \not\preccurlyeq \overleftarrow{a} \} \cup \{ \overleftarrow{a}b' \mid \overleftarrow{a}b' \in \Gamma \}$$

and $l': \Gamma'_L \longrightarrow X$ as follows:

$$c_{l'} = \begin{cases} c_l & \text{if } c \not\preccurlyeq \overleftarrow{a} \\ (\overleftarrow{a}b')_l & \text{if } c = \overleftarrow{a}b' \end{cases}$$

Then (Γ', l') is a labeled binary poset, and let $v \in F_2(X)$ such that $\Gamma(v) = (\Gamma', l')$. We say that $\Gamma(v)$ is obtained from $\Gamma(u)$ by erasing the vertex a. We define \mathcal{E}_e to be the set of all pairs $(u, v) \in F_2(X) \times F_2(X)$ such that $\Gamma(v)$ is obtained from $\Gamma(u)$ by erasing some vertex. We denote by \mathcal{E}_e^* the reflexive and transitive closure of \mathcal{E}_e .

Proposition 3.4 Let $u, v \in RF_2(X)$. Then $[v] \omega [u]$ in $F_{PS}(X)$ if and only if $v \mathcal{E}_e^* u'$ for some $u' \in [u]$.

Proof: (\Rightarrow). Assume $[v] \omega[u]$. Then uR = vR, uL = vL, and $|c(v)| \ge |c(u)|$. If |c(u)| = 1, then [u] = [x] and x = vR = vL for some $x \in X$. This case is now immediate. We shall assume that $|c(u)| \ge 2$. Let $\varphi_k([u]) = (A_0, A_1)$ and $\varphi_k([v]) = (B_0, B_1)$. Thus $A_0 \subseteq B_0$ and $A_1 \subseteq B_1$ (Proposition 2.6(iii)).

Let $v_0 = v$ and $\Gamma(v_0) = (\Gamma_0, l_0)$. Assume $A_0 \neq B_0$ and let s_0 be a word of minimal length amongst all words from $B_0 \setminus A_0$. Clearly $|s_0| \geq 2$ and there exists $b_0 \in (\Gamma_0)_L$ such that $(b_0)_\lambda = 0$ and $k_{v_0}(b_0) = s_0$. Furthermore $b_0 = ad^k$ for some $k \geq 1$, $d \in \{0,1\}$, and $a \neq \iota$ such that $a_\tau \neq d$. Let v_1 be such that $\Gamma(v_1)$ is obtained from $\Gamma(v_0)$ by erasing the vertex ad. Clearly $|c(v_1)| \geq |c(u)| \geq 1$. By the minimality of the length of s_0 , observe that $v_1 \in RF_2(X)$ and $\varphi_k([v_1]) = (B'_0, B_1)$ for some $B'_0 \subseteq X^+$ such that $A_0 \subseteq B'_0 \subsetneq B_0$.

The process explained above can be applied recursively to construct a sequence

$$v_0, v_1, \cdots, v_n$$

of words from $RF_2(X)$ such that $v_{i-1} \mathcal{E}_e v_i$ and $\varphi_k([v_n]) = (A_0, B_0)$. Let $u' = v_n$. Then [u'] = [u] and $v \mathcal{E}_e^* u'$.

 (\Leftarrow) . Assume $v\mathcal{E}_e^*u'$ for some $u' \in [u]$. Then $\Gamma(v)$ is obtained from $\Gamma(v \wedge u')$ by applying \mathcal{M} and \mathcal{E} successively, and so $[v] = [v] \wedge [u'] = [v] \wedge [u]$. Similarly $[u] \wedge [v] = [v]$ and consequently $[v] \omega [u]$.

Proposition 3.5 Let $u, v \in RF_2(X)$ such that $\varphi_k([u]) = (A_0, A_1)$ and $\varphi_k([v]) = (B_0, B_1)$. Let $uR = x_0$ and $uL = x_1$.

- (i) $[v] \omega^r [u]$ if and only if
 - (a) $x_0 = x_1$, or $x_1 = vL$, or $x_0x_1 \in B_0$,
 - (b) there are $v' \in [v] \wedge [x_1]$ and $u' \in [u]$ such that $v' \mathcal{E}_e^* u'$.
- (ii) $[v] \omega^l [u]$ if and only if
 - (c) $x_0 = x_1$, or $x_0 = vR$, or $x_1x_0 \in B_1$,
 - (d) there are $v' \in [x_0] \wedge [v]$ and $u' \in [u]$ such that $v' \mathcal{E}_e^* u'$.

Proof: Observe that $[v] \omega^r[u]$ if and only if $[v] \mathcal{R}[v] \wedge [x_1] \omega[u]$. Thus (i) follows from Propositions 3.1 and 3.4. The proof of (ii) is similar.

4 Morphisms.

In this section we introduce the notion of morphism between labeled binary posets. Let $u, v \in F_2(X)$. A **morphism** from $\Gamma(u) = (\Gamma, l)$ to $\Gamma(v) = (\Gamma', l')$ is a mapping $\varphi : \Gamma \longrightarrow \Gamma'$ such that

- (M_1) for every $a \in \Gamma_L$, $(\varphi(a))_{l'} = a_l$,
- (M_2) if $a \in \Gamma \setminus \Gamma_L$, then $\varphi(a) \notin \Gamma'_L$, $\varphi((a0)^-) = (\varphi(a)0)^-$ and $\varphi((a1)^-) = (\varphi(a)1)^-$.

The proof of the next result is long but straightforward, and we decided to omit it here. However a complete proof can be found in Lemmas 4.16, 4.17 and 4.18 of [7].

Lemma 4.1 Let $\Gamma(u) = (\Gamma, l)$ and $\Gamma(v) = (\Gamma', l')$ for some $u, v \in F_2(X)$. Let $\varphi : \Gamma \longrightarrow \Gamma'$ be a morphism from $\Gamma(u)$ to $\Gamma(v)$.

- (i) φ is one-to-one if and only if $\varphi: \Gamma_L \longrightarrow \Gamma'_L$ is one-to-one.
- (ii) φ is surjective if and only if $\varphi: \Gamma_L \longrightarrow \Gamma'_L$ is surjective.
- (iii) If $u \in RF_2(X)$, then φ is one-to-one.
- (iv) If $u \in RF_2(X)$ and φ is surjective, then $v \in RF_2(X)$ except if $\varphi(\iota) \neq \iota$ and $\gamma(u) \neq u$.

Let $u, v \in F_2(X)$ such that $u \otimes_e v$, $\Gamma(u) = (\Gamma, l)$ and $\Gamma(v) = (\Gamma', l')$. Let $a_0, a_1 \in \Gamma$ such that $a_0 \preccurlyeq a_1$ and $\Gamma(v)$ is obtained from $\Gamma(u)$ by switching a_0 and a_1 . Then either

- 01 or 10 is a suffix of both a_0 and a_1 (if $u \otimes v$), or
- $a_1 = 1$ and $a_0 = 0^k 1$ for some $k \ge 0$ (if $u S_0 v$), or
- $a_1 = 0$ and $a_0 = 1^k 0$ for some $k \ge 0$ (if $u S_1 v$).

Obviously $\Gamma' = \{ a \in \Gamma \mid a \not\preccurlyeq a_0, a \not\preccurlyeq a_1 \} \cup \{ a_1 b \mid a_0 b \in \Gamma \} \cup \{ a_0 b \mid a_1 b \in \Gamma \}.$ Let $d = (a_0)_{\tau} = (a_1)_{\tau}$ and define the mapping $\varphi : \Gamma \longrightarrow \Gamma'$ as follows:

$$\varphi(c) = \begin{cases} \overleftarrow{a_1}c' & \text{if } c = \overleftarrow{a_0}c' \text{ for some } c' \in \{\iota\} \cup d \mathcal{B}^* \\ \overleftarrow{a_0}c' & \text{if } c = \overleftarrow{a_1}c' \text{ for some } c' \in \{\iota\} \cup d \mathcal{B}^* \\ c & \text{otherwise.} \end{cases}$$

The mapping φ is a natural isomorphism from $\Gamma(u)$ to $\Gamma(v)$. Furthermore, $\varphi(\iota) = \iota$, $\varphi(\overline{0}) = \overline{0}$ and $\varphi(\overline{1}) = \overline{1}$ if $u \, \mathbb{S} \, v$; $\varphi(\overline{0}) = \overline{0}$ if $u \, \mathbb{S}_0 \, v$; and $\varphi(\overline{1}) = \overline{1}$ if $u \, \mathbb{S}_1 \, v$.

Proposition 4.2 Let $u, v \in F_2(X)$ such that $|c(u)| \ge 2$.

- (i) There is an isomorphism φ from $\Gamma(u)$ to $\Gamma(v)$ such that $\varphi(\iota) = \iota$ if and only if [u] = [v].
- (ii) There is an isomorphism φ_0 from $\Gamma(u)$ to $\Gamma(v)$ such that $\varphi_0(\overline{0}) = \overline{0}$ if and only if $u \otimes_0 v'$ for some $v' \in [v]$.
- (iii) There is an isomorphism φ_1 from $\Gamma(u)$ to $\Gamma(v)$ such that $\varphi_1(\overline{1}) = \overline{1}$ if and only if $u \, \mathbb{S}_1 \, v'$ for some $v' \in [v]$.

Proof: Let $\Gamma(u) = (\Gamma, l)$ and $\Gamma(v) = (\Gamma', l')$.

(i). (\Rightarrow) . Assume there is an isomorphism φ from $\Gamma(u)$ to $\Gamma(v)$ such that $\varphi(\iota) = \iota$. We show that [u] = [v] by induction on $|\Gamma|$. The statement of this proposition assumes $|c(u)| \geq 2$. However, to help us implement the induction process, we do not consider this assumption on u for this implication. Thus, we show, by induction on $|\Gamma|$, that [u] = [v] even if |c(u)| = 1. If $|\Gamma| = 1$, then u = x = v for some $x \in X$.

Let $|\Gamma| = n \geq 2$. Then $|\Gamma'| = |\Gamma| \geq 2$. Let $u_0, u_1, v_0, v_1 \in F_2(X)$ such that $u = u_0 \wedge u_1$ and $v = v_0 \wedge v_1$. Let $\Gamma(u_i) = (\Gamma_i, l_i)$ and $\Gamma(v_i) = (\Gamma'_i, l'_i)$ for $i \in \{0, 1\}$. Since $\varphi(\iota) = \iota$, we must have $\varphi(\overline{0}) = \overline{0}$ and $\varphi(\overline{1}) = \overline{1}$.

Let $a \in \Gamma$ such that $a_{\lambda} = 0$. Let $\nu(a) = (a_0, a_1, \dots, a_k)$ for some $k \geq 1$. If k = 1, then $a = 0^i$ and $\varphi(a) = 0^j$ for some $i, j \geq 1$. Assume k > 1 and $(\varphi(a_i))_{\lambda} = 0$ for all $1 \leq i < k$. Let $a = a_k = a_{k-1}d_k^{i_k}$ for some $i_k \geq 1$ and $d_k \in \{0, 1\}$. Then

$$\varphi(\overline{a_k}) = \varphi(a_{k-1})d_k^i$$
 and $\varphi(\overline{a_k}) = \varphi(a_k)d_k^j$

for some $i \geq 1$ and $j \geq 0$, and $(\varphi(a_k))_{\lambda} = (\varphi(a_{k-1}))_{\lambda} = 0$ since $\varphi(a_k) \neq \iota$.

We have just shown (by induction on k) that $(\varphi(a))_{\lambda} = 0$ for every $a \in \Gamma$ such that $a_{\lambda} = 0$. Similarly, $(\varphi(a))_{\lambda} = 1$ for every $a \in \Gamma$ such that $a_{\lambda} = 1$. As a consequence we have

$$\{\varphi(0a) \mid 0a \in \Gamma\} = \{b \in \Gamma' \mid b \leq 0\},\$$

$$\{\varphi(1a)\,|\,1a\in\Gamma\}=\{b\in\Gamma'\,|\,b\preccurlyeq1\},$$

and thus $\varphi_0 : \Gamma_0 \longrightarrow \Gamma'_0$ and $\varphi_1 : \Gamma_1 \longrightarrow \Gamma'_1$ defined by $\varphi(0a) = 0\varphi_0(a)$ and $\varphi(1a) = 1\varphi_1(a)$, respectively, are well defined isomorphisms from $\Gamma(u_0)$ to $\Gamma(v_0)$ and from $\Gamma(u_1)$ to $\Gamma(v_1)$, respectively.

Let $b_0 = \varphi_0(\iota)$. Then $0b_0 = \varphi(0) = 0^k$ for some $k \geq 1$. Hence $b_0 = 0^{k_0}$ for some $k_0 \geq 0$. If $b_0 \neq \iota$, then let $v_0' \in F_2(X)$ such that $\Gamma(v_0')$ is obtained from $\Gamma(v_0)$ by switching $b_0 1$ and 1, and let ψ_0 be the natural isomorphism from $\Gamma(v_0)$ to $\Gamma(v_0')$ as described prior to this proposition. If $b_0 = \iota$, let $v_0' = v_0$ and ψ_0 be the identity automorphism of $\Gamma(v_0)$. Thus, in both cases, $v_0 \otimes_0 v_0'$ and $\psi_0 \circ \varphi_0$ is an isomorphism from $\Gamma(u_0)$ to $\Gamma(v_0')$ such that $\psi_0 \circ \varphi_0(\iota) = \iota$. By induction hypothesis $(|\Gamma_0| < |\Gamma|)$ we have $[u_0] = [v_0']$.

In the same way we can define a word v_1' such that $v_1 \, \mathbb{S}_1 \, v_1'$ and $[u_1] = [v_1']$. Thus $[u] = [v_0' \wedge v_1'] = [v_0 \wedge v_1] = [v]$.

- (\Leftarrow). If [u] = [v], then $u \, \mathbb{S}^* \, v$ because $|c(u)| \geq 2$. This implication follows now from the observation made prior to this proposition.
- (ii). (\Rightarrow). Assume there is an isomorphism φ_0 from $\Gamma(u)$ to $\Gamma(v)$ such that $\varphi_0(\overline{0}) = \overline{0}$. Then $\varphi_0^{-1}(\iota) = 0^k$ for some $k \geq 0$. Let v' such that $\Gamma(v')$ is obtained from $\Gamma(u)$ by switching 1 with $0^k 1$. Hence $u \, \mathbb{S}_0 \, v'$. Let φ be the natural isomorphism from $\Gamma(u)$ to $\Gamma(v')$ as described prior to this proposition, and observe that $\varphi_0 \circ \varphi^{-1}$ is an isomorphism from $\Gamma(v')$ to $\Gamma(v)$ such that $\varphi_0 \circ \varphi^{-1}(\iota) = \iota$. Consequently [v'] = [v] by (i).
- (\Leftarrow). If $u \otimes_0 v'$ for some $v' \in [v]$, then let φ be the natural isomorphism from $\Gamma(u)$ to $\Gamma(v')$, and let ψ_0 be the isomorphism from $\Gamma(v')$ to $\Gamma(v)$ given by (i). Thus $\varphi(\overline{0}) = \overline{0}$, $\psi_0(\overline{0}) = \overline{0}$, and $\varphi_0 = \psi_0 \circ \varphi$ is an isomorphism from $\Gamma(u)$ to $\Gamma(v)$ such that $\varphi_0(\overline{0}) = \overline{0}$.

The proof of (iii) is analogous to the proof of (ii).

Proposition 4.3 Let $u, v \in F_2(X)$ such that $|c(u)| \ge 2$. Then $u \, \mathbb{S}_e^* \, v$ if and only if $\Gamma(u)$ and $\Gamma(v)$ are isomorphic.

Proof: The direct implication follows from Proposition 4.2. Assume that φ is an isomorphism from $\Gamma(u)$ to $\Gamma(v)$. Let $\Gamma(u) = (\Gamma, l)$ and $a \in \Gamma$ such that $\varphi(a) = \iota$. If $a = \iota$ then $u \, \mathbb{S}^* \, v$ by Proposition 4.2(i).

We shall assume that $a \neq \iota$. Then $a = d_1^{k_1} \cdots d_n^{k_n}$ for some $d_i \in \{0, 1\}$ and $k_i \geq 1$ such that $d_i \neq d_{i-1}$. Let $d_{n+1} \in \{0, 1\}$ such that $d_n \neq d_{n+1}$. Observe that $ad_{n+1} \in \Gamma$. For $i \in \{0, \dots, n\}$, define recursively $u_i \in F_2(X)$ as follows: $u_0 = u$ and $\Gamma(u_i)$ is obtained from $\Gamma(u_{i-1})$ by switching d_{i+1} with $d_i^{k_i}d_{i+1}$.

By construction we have $u_{i-1} \, \mathcal{S}_e \, u_i$, and so $u \, \mathcal{S}_e^* \, u_n$. Let ψ_i be the natural isomorphism from $\Gamma(u_{i-1})$ to $\Gamma(u_i)$. Then $\psi = \psi_n \circ \cdots \circ \psi_1$ is an isomorphism

from $\Gamma(u)$ to $\Gamma(u_n)$ such that $\psi(a) = \iota$, and $\varphi' = \varphi \circ \psi^{-1}$ is an isomorphism from $\Gamma(u_n)$ to $\Gamma(v)$ such that $\varphi'(\iota) = \iota$. Thus $u_n \, \mathbb{S}^* \, v$ (Proposition 4.2(i)) and $u \, \mathbb{S}_e^* \, v$.

The next result follows from Propositions 4.3 and 3.3.

Corollary 4.4 Let $u, v \in RF_2(X)$. Then [u] and [v] are connected elements in $F_{PS}(X)$ if and only if $\Gamma(\gamma(u))$ and $\Gamma(\gamma(v))$ are isomorphic.

Proposition 4.5 Let $u, v \in F_2(X)$ such that $|c(u)| \geq 2$. Then $v \mathcal{E}_e^* u'$ for some $u' \in [u]$ if and only if there is an embedding φ of $\Gamma(u)$ into $\Gamma(v)$ such that $\varphi(\iota) = \iota$.

Proof: (\Rightarrow). Assume first that $v \, \mathcal{E}_e \, u'$ for some $u' \in [u]$. Then $\Gamma(u') = (\Gamma', l')$ is obtained from $\Gamma(v) = (\Gamma, l)$ by erasing some $a \in \Gamma$ such that 01 or 10 is a suffix of a. Let $d \in \mathcal{B}$ such that $d \neq a_{\tau}$ and define $\psi : \Gamma' \longrightarrow \Gamma$ by

$$\psi(b) = \begin{cases} b & \text{if } b \not\preccurlyeq \overleftarrow{a} \\ \overleftarrow{a}dc & \text{if } b = \overleftarrow{a}c \text{ for some } c \in \mathcal{B}^* \end{cases}$$

Observe that ψ is an embedding of $\Gamma(u')$ into $\Gamma(v)$ such that $\psi(\iota) = \iota$. By Proposition 4.2(i) there is an embedding φ of $\Gamma(u)$ into $\Gamma(v)$ such that $\varphi(\iota) = \iota$. The general case now follows immediately.

 (\Leftarrow) . Let φ be an embedding of $\Gamma(u) = (\Gamma_1, l_1)$ into $\Gamma(v) = (\Gamma, l)$ such that $\varphi(\iota) = \iota$. Let

$$\Omega = \{ a \in \Gamma \mid \varphi(b) \neq a \text{ for all } b \in \Gamma_1 \}.$$

We show there is $u' \in [u]$ such that $v \, \mathcal{E}_e^* \, u'$ by induction on $|\Omega|$. If $\Omega = \emptyset$, then φ is an isomorphism and $v \in [u]$ (Proposition 4.2(i)). We shall assume $|\Omega| \geq 1$. Let $\Omega' = \{a \in \Omega \mid b \in \Omega \text{ for every } b \preccurlyeq a\}$. Clearly $\Omega' \neq \emptyset$. Let a be an element of minimal length amongst all elements of Ω' . Observe that 01 or 10 is a suffix of a since $\varphi(\iota) = \iota$. Let $v' \in F_2(X)$ such that $\Gamma(v') = (\Gamma', l')$ is obtained from $\Gamma(v)$ by erasing $a \in \Gamma$. Thus $v \, \mathcal{E}_e \, v'$. Furthermore, the mapping $\varphi' : \Gamma_1 \longrightarrow \Gamma'$ defined by

$$\varphi'(b) = \begin{cases} \varphi(b) & \text{if } \varphi(b) \not\preccurlyeq \stackrel{\leftarrow}{a} \\ \stackrel{\leftarrow}{a}c & \text{if } \varphi(b) = \stackrel{\leftarrow}{a}dc \text{ for some } d \in \mathcal{B} \text{ and } c \in \mathcal{B}^* \end{cases}$$

is an embedding of $\Gamma(u)$ into $\Gamma(v')$ such that $\varphi'(\iota) = \iota$. Since

$$|\Omega| > |\{c \in \Gamma' \mid \varphi'(b) \neq c \text{ for any } b \in \Gamma_1\}|,$$

there is $u' \in [u]$ such that $v' \mathcal{E}_e^* u'$ by induction hypothesis. Therefore $v \mathcal{E}_e^* u'$ for some $u' \in [u]$.

Corollary 4.6 Let $u, v \in RF_2(X)$ such that $|c(u)| \geq 2$.

- (i) $[v] \mathcal{R}[u]$ in $F_{PS}(X)$ if and only if there is an isomorphism φ from $\Gamma(\gamma_0(u))$ to $\Gamma(\gamma_0(v))$ such that $\varphi(\overline{0}) = \overline{0}$;
- (ii) $[v] \mathcal{L}[u]$ in $F_{PS}(X)$ if and only if there is an isomorphism φ from $\Gamma(\gamma_1(u))$ to $\Gamma(\gamma_1(v))$ such that $\varphi(\overline{1}) = \overline{1}$;
- (iii) $[v] \omega [u]$ in $F_{PS}(X)$ if and only if there is an embedding φ of $\Gamma(u)$ into $\Gamma(v)$ such that $\varphi(\iota) = \iota$;
- (iv) $[v] \omega^r[u]$ in $F_{PS}(X)$ if and only if there is an embedding φ of $\Gamma(\gamma_0(u))$ into $\Gamma(\gamma_0(v))$ such that $\varphi(\overline{0}) = \overline{0}$;
- (v) $[v] \omega^l[u]$ in $F_{PS}(X)$ if and only if there is an embedding φ of $\Gamma(\gamma_1(u))$ into $\Gamma(\gamma_1(v))$ such that $\varphi(\overline{1}) = \overline{1}$.

Proof: From Proposition 3.1(i), $[v] \mathcal{R}[u]$ if and only if $\gamma_0(u) S_0 v'$ for some $v' \in [\gamma_0(v)]$. (i) follows now from Proposition 4.2(ii). The statement (ii) is the dual of (i). (iii) follows from Propositions 3.4 and 4.5.

- (iv). (\Rightarrow). Assume $[v] \omega^r[u]$ in $F_{PS}(X)$. Then $[v] \mathcal{R}[w] \omega[u]$ for some $w \in RF_2(X)$ such that $[w] = [v] \wedge [uL]$. Clearly $|c(w)| \geq 2$. By (i), there is an isomorphism φ' from $\Gamma(\gamma_0(w))$ to $\Gamma(\gamma_0(v))$ such that $\varphi'(\overline{0}) = \overline{0}$; and by (iii), there is an embedding ψ' of $\Gamma(u)$ into $\Gamma(w)$ such that $\psi'(\iota) = \iota$. Since $\gamma_0(w) = w$ if $\gamma_0(u) = u$, ψ' induces an embedding ψ of $\Gamma(\gamma_0(u))$ into $\Gamma(\gamma_0(w))$ such that $\psi(\overline{0}) = \overline{0}$. Thus $\varphi = \varphi' \circ \psi$ is an embedding of $\Gamma(\gamma_0(u))$ into $\Gamma(\gamma_0(v))$ such that $\varphi(\overline{0}) = \overline{0}$.
- (\Leftarrow) . Let φ be an embedding of $\Gamma(\gamma_0(u))$ into $\Gamma(\gamma_0(v))$ such that $\varphi(\overline{0}) = \overline{0}$. Let $a = \varphi(\iota)$. Then $a = 0^k$ for some $k \geq 0$. Let $w \in RF_2(X)$ such that $\Gamma(w)$ is obtained from $\Gamma(\gamma_0(v))$ by switching 1 with 0^k 1 and let ψ be the natural isomorphism from $\Gamma(\gamma_0(v))$ to $\Gamma(w)$. Then $[w] \mathcal{R}[v]$ and $\varphi' = \psi \circ \varphi$ is an embedding of $\Gamma(\gamma_0(u))$ into $\Gamma(w)$ such that $\varphi'(\iota) = \iota$. Thus $[v] \mathcal{R}[w] \omega [\gamma_0(u)] \mathcal{R}[u]$ and $[v] \omega^r[u]$.

(v) is the dual of (iv).

5 Connectedness in $F_{PS}(X)$.

Let $w \in F_2(X)$ and $\Gamma(w) = (\Gamma, l)$. We say that $b \in \Gamma_L$ is **paired** in $\Gamma(w)$ if there is $a \in \Gamma \setminus \Gamma_L$ such that $(a0)_l^- = (a1)_l^-$ and $b \in \{(a0)^-, (a1)^-\}$. We denote the set of all paired elements of $\Gamma(w)$ by $\Gamma_p(w)$.

Let $u \in RF_2(X)$ such that $|c(u)| \geq 2$, and $\Gamma(\gamma(u)) = (\Gamma, l)$. Define $u_i = \gamma(u)$. Let $a \in \Gamma \setminus \Gamma_L$. Then $a = d_1^{k_1} \cdots d_n^{k_n}$ for some $n \geq 1$, $k_i \geq 1$, and $d_i \in \{0, 1\}$ such that $d_{i-1} \neq d_i$, where $i \in \{1, \cdots, n\}$. Let $d_{n+1} \in \{0, 1\}$ such that $d_n \neq d_{n+1}$. Recursively, define $u'_0 = \gamma(u)$ and $u'_i \in F_2(X)$ such that $\Gamma(u'_i)$ is obtained from $\Gamma(u'_{i-1})$ by switching d_{i+1} with $d_i^{k_i}d_{i+1}$, for $i \in \{1, \cdots, n\}$. Thus $\gamma(u) \otimes_e^* u'_n$, $u'_n \in RF_2(X)$, and $\gamma(u'_n) = u'_n$. Denote u'_n by u_a . Let φ'_i be the natural isomorphism from $\Gamma(u'_{i-1})$ to $\Gamma(u'_i)$. Then $\varphi_a = \varphi'_n \circ \cdots \circ \varphi'_1$ is an isomorphism from $\Gamma(\gamma(u))$ onto $\Gamma(u_a)$ such that $\varphi_a(a) = \iota$.

Consider now $b \in \Gamma_L$ and let $a \in \Gamma$ such that b = ad for some $d \in \{0, 1\}$. Let $x = b_l \in X$ and define $u_b \in F_2(X)$ as follows:

$$u_b = \begin{cases} u_a \wedge x & \text{if } d = 0\\ x \wedge u_b & \text{if } d = 1. \end{cases}$$

In fact, if $b = cd^k$ for some $k \ge 1$ and

$$u' = \begin{cases} u_c \wedge x & \text{if } d = 0\\ x \wedge u_c & \text{if } d = 1, \end{cases}$$

then $[u'] = [u_b]$. Observe that $\gamma(u_b) = u_a$ and that $u_b \in RF_2(X)$ if and only if $b \notin \Gamma_p(\gamma(u))$. Furthermore $u_b \in RF_2(X)$ if and only if $u' \in RF_2(X)$.

Let $D_{[u]} = \{[u_a] \in F_{PS}(X) \mid a \in \Gamma \setminus \Gamma_p(\gamma(u))\}$ for $u \in RF_2(X)$ such that $|c(u)| \geq 2$.

Proposition 5.1 Let $u \in RF_2(X)$ such that $|c(u)| \geq 2$. Then

$$D_{[u]} = \{[v] \in F_{PS}(X) \mid [u] \text{ and } [v] \text{ are connected}\}.$$

Proof: Let $\Gamma(\gamma(u)) = (\Gamma, l)$.

(\subseteq). If $a \in \Gamma \setminus \Gamma_L$, then $\Gamma(\gamma(u))$ and $\Gamma(u_a)$ are isomorphic. Thus [u] and $[u_a]$ are connected by Corollary 4.4. If $b \in \Gamma_L \setminus \Gamma_p(\gamma(u))$ and b = cd for some $c \in \mathcal{B}^*$ and $d \in \{0,1\}$, then [u] and $[u_b]$ are connected since $\gamma(u_b) = u_c$ and [u] and $[u_c]$ are connected. Hence

$$D_{[u]} \subseteq \{[v] \in F_{PS}(X) \mid [u] \text{ and } [v] \text{ are connected}\}.$$

(\supseteq). Let $v \in RF_2(X)$ such that [u] and [v] are connected and $\gamma(v) = v$. From Corollary 4.4, there is an isomorphism φ from $\Gamma(\gamma(u))$ to $\Gamma(v) = \Gamma(\gamma(v))$. Let $a \in \Gamma$ such that $\varphi(a) = \iota$. Then $\varphi_a \circ \varphi^{-1}$ is an isomorphism from $\Gamma(v)$ to $\Gamma(u_a)$ such that $\varphi_a \circ \varphi^{-1}(\iota) = \iota$. Consequently $[u_a] = [v]$ by Proposition 4.2(i), and $[v] \in D_{[u]}$.

If $\gamma(v) \neq v$, then $v = v' \wedge (vR)$ or $v = (vL) \wedge v'$ for some $v' \in RF_2(X)$. Thus [u] and [v'] are connected and $\gamma(v') = v'$. Hence $[v'] = [u_c]$ for some $c \in \Gamma \setminus \Gamma_L$. If $v = v' \wedge (vR)$, then $[v] = [u_b]$ for $b = (c0)^-$. If $v = (vL) \wedge v'$, then $[v] = [u_b]$ for $b = (c1)^-$. Observe also that, in both cases, $b \notin \Gamma_p(\gamma(u))$. Consequently $[v] \in D_{[u]}$.

Define $D_{[x]} = \{[x]\}$ for any $x \in X$. Clearly $D_{[x]}$ is the set of all $[v] \in F_{PS}(X)$ such that [x] and [v] are connected. In the following lemma we call a word $u \in F_2(X)$ M-reduced if we cannot apply M to $\Gamma(u)$.

Lemma 5.2 If $u \in F_2(X)$ is \mathfrak{M} -reduced, then there is no automorphism φ of $\Gamma(u)$ such that $\varphi(\iota) \neq \iota$.

Proof: Assume the statement of this lemma is false and let A be the set of all \mathcal{M} -reduced words for which there exists an automorphism φ such that $\varphi(\iota) \neq \iota$. Let u be a word from A of minimal length amongst all words from A and let φ be an automorphism of $\Gamma(u) = (\Gamma, l)$ such that $\varphi(\iota) \neq \iota$. Since u is \mathcal{M} -reduced and $\varphi(\iota) \neq \iota$, either $\varphi(\iota) \leq 0^l 1$ or $\varphi(\iota) \leq 1^l 0$ for some $l \geq 1$. We shall assume $\varphi(\iota) \leq 0^l 1$ for some $l \geq 1$. The case $\varphi(\iota) \leq 1^l 0$ for some $l \geq 1$ is similar. Thus $(\varphi(0^l))^- = \varphi(\overline{0}) = (\varphi(\iota)0)^-$ and $\varphi(0^l) \leq 0^l 1$. So $\varphi(0^l) \neq 0^l$.

Observe that $0^l 1^2 \in \Gamma$ since $\varphi(\iota) \notin \Gamma_L$. Let $u_1 \in F_2(X)$ such that $\Gamma(u_1)$ is obtained from $\Gamma(u)$ by switching 1 with $0^l 1$. Then u_1 is \mathfrak{M} -reduced, $|u_1| = |u|$, and $0^2, 1^2 \in \Gamma_1$ for $\Gamma(u_1) = (\Gamma_1, l_1)$. Let ψ be the natural isomorphism from $\Gamma(u)$ to $\Gamma(u_1)$. Hence $\varphi_1 = \psi \circ \varphi \circ \psi^{-1}$ is an automorphism of $\Gamma(u_1)$ such that $\varphi_1(\iota) \neq \iota$ since $\varphi(0^l) \neq 0^l$. Thus $u_1 \in A$.

Let $a \in (\Gamma_1)_L$ with suffix 10 or 01. Let $a_0 = a$ and $a_i = \varphi_1^i(a)$ ($\varphi_1^i = \varphi_1 \circ \cdots \circ \varphi_1$ *i*-times). Then $a_i \in (\Gamma_1)_L$ for all *i*. Furthermore, 10 or 01 is a suffix of all a_i since φ_1 is an automorphism and $0^2, 1^2 \in \Gamma_1$. Thus there are $i \geq 0$ and $j \geq 1$ such that $a_i = a_{i+j}$, and so we can choose a sequence

$$b_0, \cdots, b_n \in (\Gamma_1)_L$$

for some $n \geq 0$ such that (i) $\varphi_1(b_{i-1}) = b_i$ for $1 \leq i \leq n$ and $\varphi_1(b_n) = b_0$, and (ii) 10 or 01 is a suffix of all b_i .

From (ii) we can apply \mathcal{E}_e and erase all vertices b_i from $\Gamma(u_1)$. Let $u' \in F_2(X)$ such that $\Gamma(u')$ is obtained from $\Gamma(u_1)$ by erasing simultaneously all the vertices b_0, \dots, b_n . Then u' is \mathcal{M} -reduced. Due to condition (i), observe that the automorphism φ_1 of $\Gamma(u_1)$ induces naturally an automorphism φ' of $\Gamma(u')$. Clearly $\varphi'(\iota) \neq \iota$ since $\varphi_1(\iota) \neq \iota$. Hence $u' \in A$ and $|u'| < |u_1| = |u|$ contradicting the choice of u. Therefore $A = \emptyset$ and the statement of this lemma is true.

Proposition 5.3 If $u \in RF_2(X)$, then $|D_{[u]}| = |\Gamma(u)| - |\Gamma_p(u)|$.

Proof: Clearly the result holds true for |c(u)| = 1. We shall assume that $|c(u)| \geq 2$. Let $\Gamma(\gamma(u)) = (\Gamma, l)$ and $a, b \in \Gamma \setminus \Gamma_p(\gamma(u))$ such that $[u_a] = [u_b]$. Due to Proposition 4.2(i), there is an isomorphism φ from $\Gamma(u_a)$ to $\Gamma(u_b)$ such that $\varphi(\iota) = \iota$. Thus either $a, b \in \Gamma_L$ or $a, b \notin \Gamma_L$ as otherwise $|u_a| \neq |u_b|$.

If $a, b \notin \Gamma_L$, then there are isomorphisms φ_a and φ_b from $\Gamma(\gamma(u))$ to $\Gamma(u_a)$ and to $\Gamma(u_b)$, respectively, such that $\varphi_a(a) = \iota$ and $\varphi_b(b) = \iota$. If $a \neq b$, then $\varphi' = \varphi \circ \varphi_a \circ \varphi_b^{-1}$ is an automorphism of $\Gamma(u_b)$ such that $\varphi'(\iota) \neq \iota$. Thus a = b by Lemma 5.2.

If $a, b \in \Gamma_L$, then $a_{\tau} = b_{\tau} = d \in \{0, 1\}$. Let $a = a_1 d$. There are $b_1 \in \Gamma$ and isomorphism φ_1 from $\Gamma(u_{a_1})$ to $\Gamma(u_{b_1})$ such that $\varphi_1(\iota) = \iota$, for some $b_1 \in \Gamma$ such that $(b_1 d)^- = b$. From the previous paragraph, we conclude that $a_1 = b_1$ since $a_1, b_1 \notin \Gamma_L$. Thus $a = b_1 d = (b_1 d)^- = b$.

It is now clear that $|D_{[u]}| = |\Gamma(\gamma(u))| - |\Gamma_p(\gamma(u))|$. Finally, observe that if $\gamma(u) \neq u$, then $|\Gamma(u)| = |\Gamma(\gamma(u))| + 2$ and $|\Gamma_p(u)| = |\Gamma_p(\gamma(u))| + 2$. Therefore $|D_{[u]}| = |\Gamma(u)| - |\Gamma_p(u)|$.

The following corollary is now straightforward:

Corollary 5.4 If $u \in RF_2(X)$ such that $u \neq x \land x$ for any $x \in X$ and |u| = n, then $n \leq |D_{[u]}| \leq 2n - 1$.

References

- [1] K. Auinger, On the lattice of existence varieties of locally inverse semigroups, Canad. Math. Bull. 37 (1994), 13–20.
- [2] J. Meakin, The free local semilattice on a set, J. Pure and Applied Algebra 27 (1983), 263–275.

- [3] J. Meakin and F. Pastijn, The structure of pseudo-semilattices, Algebra Universalis 13 (1981), 355–372.
- [4] J. Meakin and F. Pastijn, The free pseudo-semilattice on two generators, Algebra Universalis 14 (1982), 297–309.
- [5] K. S. S. Nambooripad, Pseudo-semilattices and biordered sets I, Simon Stevin 55 (1981), 103–110.
- [6] L. Oliveira, A solution to the word problem for free pseudosemilattices, Semigroup Forum 68 (2004), 246–267.
- [7] L. Oliveira, Varieties of Pseudosemilattices, Ph.D. dissertation (2004).
- [8] F. Pastijn, Rectangular bands of inverse semigroups, Simon Stevin **56** (1982), 1–97.
- [9] F. Pastijn, The structure of pseudo-inverse semigroups, Trans. Amer. Math. Soc. 273 (1982), 631–655.
- [10] F. Pastijn and M. Petrich, Straight locally inverse semigroups, Proc. London Math. Soc. 49 (1984), 307–328.