Maximal dense ideal extensions of locally
Inverse semigroups

F. J. Pastijn and L. Oliveira*

Abstract

Every locally inverse semigroup has, within the class of all locally
inverse semigroups, a maximal dense ideal extension.

1 Introduction

We shall use [3, 8, 9] as general references. The basics on locally inverse
semigroups may be found in Section 6.1 of [3], and in [5, 6]. [7, 8] give a
background on dense ideal extensions. We recall some of the definitions in
what follows.

Let C be a class of semigroups. An ideal extension of a semigroup S
is an injective homomorphism ¢ : S — 1" where S is an ideal of the semi-
group 7. We shall say that this ideal extension is within C if both S and T’
belong to C. The ideal extensions ¢, : S — T} and ¢, : S — T, are said
to be equivalent if there exists an isomorphism ¢ : T} — T5 which extends
o7 o, If ¢ : S — T is an ideal extension within C then we shall say that
this is a dense ideal extension within C if whenever ¢y : T' — U is a
homomorphism such that ¢y : S — U is an ideal extension within C, then
Y is injective. If ¢ : S — T is a dense ideal extension within C then we
call ¢ : S — T a maximal dense ideal extension within C if whenever
Y T — U is a homomorphism such that ¢y : S — U is a dense ideal
extension within C, then ¢ is an isomorphism of 7" onto U. If p; : S — T}
and ¢, : S — T, are maximal dense ideal extensions within C, then these
ideal extensions are equivalent.
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Dense ideal extensions play an important role in the construction of ideal
extensions in general, and as we are often only interested in constructing
ideal extensions within a given class C, we are led into considering dense
ideal extensions within C. A considerable simplification in this construction
occurs if every semigroup of C has a maximal dense ideal extension within
C. Unfortunately it seems that there are only a few naturally defined classes
C for which this is the case. Not every semigroup has a maximal dense ideal
extension within the class of all semigroups [2, 14]: a semigroup has a maxi-
mal dense ideal extension within the class of all semigroups if and only if it is
weakly reductive. And, though every regular semigroup is weakly reductive,
not every regular semigroup has a maximal dense ideal extension within the
class of all regular semigroups.

The class of all inverse semigroups behaves nicely however, for it so hap-
pens that if S is an inverse semigroup and ¢ : S — T a maximal dense
ideal extension within the class of all semigroups, then 71" needs to be an in-
verse semigroup [11]. Also, if NBG denotes the class of all normal bands of
groups, then for every S € NBG there exists a maximal dense ideal exten-
sion p : S — T within NBG, but ¢ : S — T need not be a maximal dense
ideal extension within the class of all semigroups [10]. Recall that a regular
semigroup S is a locally inverse semigroup if eSe is an inverse semigroup for
every idempotent e of S. Every inverse semigroup and every normal band of
groups is locally inverse. An ideal extension within the class LI of all locally
inverse semigroups will also be called an ideal extension of locally inverse
semigroups. Given the complicated nature of the maximal dense ideal ex-
tensions of completely 0-simple semigroups within the class of all semigroups
(see Section 5 of [7] and Section V.3 of [8]) the theorem announced in the
abstract should be curious and unexpected.

Dense ideal extensions are usually realized by using the concept of the
translational hull, as introduced in [2]. In this paper we leave translatio-
nal hulls out of our discussion. We follow instead the more natural approach
initiated by Schein in [12] for inverse semigroups which fully exploits the fact
that a partial order, compatible with the multiplication, is available. This
line of investigation was also followed by Petrich in [10]. The idea will be to
consider a canonical embedding 7¢ of the locally inverse semigroup S into a
sufficiently large semigroup O(S) and then to take the regular part 7'(S) of
the idealizer I(S) of S7g in O(S), therewith to produce the desired maximal
dense ideal extension.

To keep our exposition short we resisted the temptation to derive some



results of [10] and [12] from the work done in the present paper. We avoided
to be side-tracked by examples and special cases (completely 0-simple semi-
groups, strict locally inverse semigroups, straight locally inverse semigroups).
However, for future reference we formulate and prove some results in greater
generality than is strictly necessary for proving our main Theorem 4.7.

It remains to recall some commonly used notation and terminology. For
a regular semigroup S we let E(S) be the set of idempotents of S. On E(S)
define w!, w™ and w by: for e, f € E(S),

ewf & ef=e,
ew'f & fe=e,

ewf & ef=e= fe.

Then w! and w" are quasi-orders and w is a partial order. For f € E(S) we
put w'(f) = {e € E(S) | ew!f} and we define w"(f) and w(f) similarly.

In a regular semigroup S we put a < bifa = eb = bf for some idempotents
e and f. The relation < is a partial order, usually called the natural par-
tial order on S. The partial order < was introduced by Nambooripad in [5].
In Corollary 2.3 we remind the reader of Nambooripad’s result which states
that a regular semigroup is a locally inverse semigroup if and only if < is
compatible with the given multiplication. We shall assume that the reader
is familiar with the other equivalent characterizations of < listed in Section
6.1 of [3].

If S is a regular semigroup, a € S and e € E(S), then a < e implies that
a € E(S). Fore, f € E(S), ewf if and only if e < f. We shall most often use
the notation < instead of w, and in keeping with the notation which will be
introduced in the next section we shall prefer to use the notation (e] instead
of w(e) for e € E(S).

If S is a regular semigroup and a € S, then V(a) denotes the set of
inverses of a. For e, f € E(S), the set S(e, f) = V(ef) N fSe consists of
idempotents and will be called the sandwich set of e and f. For a,b € S,
idempotents e and f in L, and R, respectively, and h € S(e, f), we have that

abR ah LhR hb L ab,

where ab = ahb = (ah)(hb), ah < a and bh < b.



2 Order i1deals

Let S be a regular semigroup and P(S) the set of all nonempty subsets
of S. For A, B € P(S) we define AB by

AB ={ab|a € A, be B}.

Then P(S) becomes a semigroup which we shall call the global semigroup
of S. For a € S and B € P(S) we shall also write {a}B as aB and B{a} as
Ba.

A nonempty subset H of the regular semigroup S will be called an order
ideal of S if the following is satisfied:

beH a<binS = acH.

The set of all order ideals of S will be denoted by O(S). In particular,
O(S) C P(S). We emphasize the fact that an order ideal of S need not be a
subsemigroup of S. For a € S, we use the notation

() ={be S|b<ain S},
and we call (a] the principal order ideal generated by a.

Proposition 2.1. If S is a regular semigroup then O(S) is an ideal of P(S).

Proof. Let H € O(S), a € S and b € H. Assume that ¢ < ab, thus ¢ € Sab
and ¢ = abe for some idempotent e € L.. Then be < b and so be € H since H
is an order ideal. It follows that ¢ = abe € aH. We proved that aH € O(S).
Thus, for any A € P(S), AH = UgeaaH € O(S). In a dual way we can show
that HA € O(S). Therefore O(S) is an ideal of P(S). n

We shall give a characterization of locally inverse semigroups in terms of
order ideals. Recall that the natural partial order < on the regular semigroup
S is said to be right compatible if for all a, b, c € S with a < b in S we have
that ac < be. Left compatibility is defined in a dual way, and we say that
< is compatible if it is both left and right compatible. It may be of interest
to characterize the regular semigroups for which < is right compatible.

Recall that a regular semigroup S is called L-unipotent if every L-class
of S contains a unique idempotent, and S is called locally L-unipotent if
for every e € E(S), eSe is L-unipotent. L} will denote the two-element left
zero semigroup Lo with an identity adjoined.
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Proposition 2.2. For a regular semigroup S the following are equivalent:
(1) < is right compatible,
(ii) S does not contain a copy of Ly as a subsemigroup,

(¢7i) S is locally L-unipotent,

(v) for alle, f € E(S), S(e, f) forms a right zero semigroup,

)

)

)

(iv) for every e € E(S), w'(e) forms a right regular subband of S,

)

(vi) for all e, f € E(S), |S(e, f)f] = 1,
)

(vii) for all a,b € S with L, < Ly, there exists a unique ¢ € L, such that
c < b,

(viii) (alb = (ab] for all a,b € S,
(iz) aH = (alH for alla € S, H € O(S),
() a(b] = (a](b] for all a,b € S.

Proof. The proof of the equivalence of the statements (i)-(vii) follows from
[1] and the results of Section 6.1 of [3]. We concentrate here on what is new.

(i) = (viii). Let a,b € S. We know from Proposition 2.1 that (a]b €
O(S), and so (ab] C (a]b since ab € (a]b. If ¢ < a, then ¢b < ab since < is
right compatible. Therefore the equality (ab] = (a]b prevails.

(viit) = (iz). Let a € S and H € O(S). Clearly aH C (a]H. Let ¢ < a
in S and b € H. Then ¢b € (a]b = (ab]. Using Proposition 2.1 we have that
aH € O(S), thus since ab € aH, so ¢b € aH. We conclude that aH = (a|H.

(iz) = (z) is obvious.

(x) = (7). Let a,b,c¢ € S such that ¢ < a in S. We need to show that
cb < ab. Since ¢b € (a](b] = a(b], there exists d < b such that ¢b = ad. Thus
d € bS and so ¢b = ad € abS. There exists an idempotent f in R, such
that ¢ = fa. We choose an idempotent g € R. Then since Ry = Ry <
R, = R; we have that gw" f, whence gf is an idempotent in R.,. Moreover
gfab = gcb = ¢b. From cb € abS and gfab = cb we have that c¢b < ab, as
required. ]

Clearly a regular semigroup is a locally inverse semigroup if and only if it
is both a locally £-unipotent and a locally R-unipotent semigroup. Therefore
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Corollary 2.3. A regular semigroup is a locally inverse semigroup if and
only if it satisfies both any of the conditions (i) — (x) and the dual of any of
the conditions (i) — (z) of Proposition 2.2.

The following variant of Corollary 2.3 will turn out to be useful.
Proposition 2.4. For a regular semigroup S the following are equivalent:
(1) S is a locally inverse semigroup,

(i7) (a]b = a(b] = (a](b] = (ab] for all a,b € S,

)
)
(i17) aH = (a]H and Ha = H(a] for alla € S, H € O(S),
(iv) the mapping

175: S — O(5), a— (a

15 an injective homomorphism.

Proof. The equivalence of (i), (i7) and (éiz) follows from Proposition 2.2 and
Corollary 2.3. That (i) implies (iv) is also immediate.

Assume that (iv) holds, hence for all a,b € S, (ab] = (a](b]. Further
(a]b C (a](b] obviously holds since b € (b], whereas (ab] C (a]b by Proposition
2.1. Therefore (a]b = (a](b] = (ab], and by duality (i¢) holds. We proved that
(1v) implies (7). ]

Throughout this paper, S will be a locally inverse semigroup and the
mapping 75 : S — O(S) of Proposition 2.4 will be called the canonical
embedding of S into O(S).

Using the condition (v) of Proposition 2.2 we have from Corollary 2.3
that a regular semigroup S is a locally inverse semigroup if and only if for
all e, f € E(S), |S(e, f)] = 1. Therefore, if S is a locally inverse semi-
group, then we can introduce a binary operation A on FE(S) by putting
S(e, f)={fNe} fore, f € E(S). The binary algebra (E(S), A) is called the
pseudosemilattice of S. Pseudosemilattices were characterized abstractly
by Nambooripad in [6] (see also [13]). From [6] we collect or easily derive the
following

Result 2.5. Let S be a locally inverse semigroup. Then
(1) fore, f € E(S),



ewfeoe=eNf, ewfee=fNhe, ewfeeAf=c=fAe,
w'(e) NW!(f) =w(eA f),

(ii) for e € E(S), w'(e) is a left normal subband of S, and if g,h € W'(f),
then gh = g A h,

(iii) for e € E(S), w(e) is a subsemilattice of S and if g,h € w(e), then
gh=gnh,

(iv) fore,f € E(S), ef = fe if and only if e N f = f Ne, and if this is the
case, then e N\ f =ef.

For a locally inverse semigroup S and F' a nonempty subset of E(S), we
shall say that F' is an order ideal if F' € O(S). We call F' a subpseu-
dosemilattice of E(S) if (F,A) is a subalgebra of (E(S),A). If this is the
case then F' is called a subsemilattice of E(S) if (F, A) is a semilattice. By
Result 2.5 F is a subsemilattice of F(S) if and only if F' is a subsemigroup
of S which is itself a semilattice: the multiplication in F' coincides with the
operation A. In the next section we shall be interested in subsemilattices
of E(S) which are also order ideals. Such order ideals of S are necessarily
idempotents of O(S5).

3 The locally inverse semigroup 7(.5)

Throughout the remainder of this paper S will be a locally inverse se-
migroup and 75 : S — O(S) the canonical embedding mentioned in the
statement of Proposition 2.4. We let I(S) be the idealizer of St in O(S),
that is, the largest subsemigroup of O(S) which contains S7g as an ideal. We
let T'(S) = Reg I(S) be the set of all the regular elements of I(S). Clearly
Sts C T(S). There is no reason to believe that I(S) is a regular semigroup,
and at this stage we also do not know whether T'(S) is a subsemigroup of
I(S). In this section we shall show that 7'(S) constitutes a locally inverse se-
migroup and in the next section we prove that 7g : S — T'(S) is a maximal
dense ideal extension of S within the class of all locally inverse semigroups.

Our interest in the set T'(S) stems from the following

Proposition 3.1. Let S and T be locally inverse semigroups where S is an
tdeal of T. Then the mapping

Yv: T — O(S), t— (NS
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is a homomorphism which induces s on S and T C T(S).

Proof. Lett € T, a € S and choose an idempotent e in R;,. Then et € Ry, =
R, < R, and so et € (t]N S since S is an ideal of T. We conclude that (¢|N.S
is nonempty for every ¢ € T, and then clearly (] NS € O(S).

Let s,t € T. From Proposition 2.4 it follows that (s](¢] = (st], and
thus also that ((s] N S)((¢)NS) C (st]JN S. In order to show that ¢ is a
homomorphism, we need to prove that the equality holds. Therefore, let
a € S such that a € (st]. Let e and f be any idempotents in L; and R,
respectively, so that f A e is the unique element of S(e, f). Then

st=s(fAe)- (fAtRs(fAe)LfANeR(fAe)tLs(fNe) (fAe)t=st

in T'. We use Proposition 2.2 and its dual several times. From R, < Ry
we know that there exists a unique s’ € R, such that s’ < s(f A e); since
Ly < Lgsae) there exists a unique h € Ly such that h < f A e; since
R;, < Ry there exists a unique t' € Ry such that ¢ < (f Ae)t. From
s < s(fAe) <sandt' < (f Ae)t < tit follows that s't" < st. From
s’ LhRt and since h is an idempotent it follows that s't' R s’ R a. Thus a
and s't" are R-related, a < st, s't’ < st and so by the dual of Proposition
2.2, a = s't'. Here s’ € (s]N S and ¢’ € (t]N S since S is an ideal of T'. We
conclude that a € ((s]N.S)((¢] N S).

The remaining statements are easily verified. [ |

In order to prove that 7'(S) is a subsemigroup of I(S) we shall focus our
attention on the idempotents of I(S).

Lemma 3.2. Let S be a locally inverse semigroup. Then
(1) if H € 1(S), then no distinct elements of H are L- or R-related in S,

(i1) if F is an idempotent of O(S) such that no distinct elements of F are
L- or R-related in S, then F is a subsemilattice and an order ideal of

S.

Proof. (7). Let H € I(S) and a,b € H such that a £Lb in S. We choose an
idempotent e in L, = L, and we find that H(e] = (¢| for some ¢ € S since
St1s is an ideal of I(S). Hence a,b € (c] since a = ae, b = be. From a Lb,
a < ¢, b < cit follows that @ = b by Proposition 2.2. Thus (i) follows by
symimetry.



(17). Let F' be an idempotent of O(S) such that no distinct elements of
F are £- or R-related in S. Since F'? = F we have that F is a subsemigroup
of S.

Let s € F. Since F = F?, there exist a,b € F such that s = ab. By
Proposition 2.2 and since L, < L; there exists a unique ' € L, such that
b' < b. Since F is an order ideal and b € F, so b’ € F. But then s Lb' with
s,b' € F and so s = ', whence s < b. By duality s < a.

We choose idempotents e and f in L, and Ry respectively and consider
the unique element fAe € S(e, f). Then s =abL (fAe)b, s <b, (fAe)b <b
and so by Proposition 2.2, s = (f A e)b. Using a dual argument we find that
s=ua(f ANe). Hence s =ab=a(f Ae)-(f Ae)b=s*>and F is a band. Since
no distinct elements of F' are L£- or R-related in S we conclude that F'is a
subsemilattice of S. |

If £ and F are nonempty subsets of the set E(S) of idempotents of the
locally inverse semigroup S, then we shall put

ENF={eNnfle€E, feF}.
For e € E(S) we put
eNF={enf]|feF}
and
Fne={fANel|feF}.

Lemma 3.3. Let E, F € O(S) such that E and F are subsemilattices of S.
Put G =ENF. Then

(i) G € O(S) and G is a subpseudosemilattice of E(S),
(it) G={g € E(S)|eRgLf for somee€ E, f € F},
(iii) EG =G = GF.

Proof. Let g € G, hence g = e A f for some e € F and f € F. Then ge <e
and fg < f, where fg L gR ge. Here ge € F and fg € F since E and F' are
order ideals. Therefore G C {g € E(S) |eR gL f for some e € E, f € F}.
The reverse inclusion also holds because if g € E(S) such that eR g L f for
some e € Fand f € F, then g =eA f € EAF. We conclude that (i7) holds.
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Let ge Gand h < ginS. Then g =eA f forsomee € E, f € F', whence
R, < R, and L, < Ly, so ehRhLhf with eh < e and hf < f. Since F
and F' are order ideals, we have eh € F and hf € F, thus h € G by (ii). We
conclude that G is an order ideal of S.

Let g,h € G. By (ii) there exist e € E and f € F such that e R g and
hLf. ThusgAh=eA f € G. We proved (i).

If ¢ € G, then by (ii) there exists e € F such that e R g. Therefore
g = eg € FG, and we conclude that G C EG. If e; € E, then e;g =
er(gNer)g=ei(eNer)g. Since E is a subsemilattice of S, so e;(e Aey) <e
by Result 2.5(iv), whence e;g < eg = g. By (i) G is an order ideal of S, so
e1g € G. We proved that FG = G, and in a dual way we can prove that
GF =F. [ |

Lemma 3.4. If E and F are idempotents of 1(S) then E N F is a subsemi-
lattice and an order ideal of S.

Proof. We shall put G = E A F. From Lemmas 3.2 and 3.3 we know that
G is a subpseudosemilattice of F(S) and an order ideal of S. Using duality
and the final remark of Section 2 it suffices to show that G does not contain
distinct R-related idempotents.

Let g,h € G such that g R h in S. By Lemma 3.3 there exist fi, fo € F
such that f; Lg and fy Lh. Since F' € I(S) we have F(g] = (a] for some
a € S. Then a € Sg and f; = fig € F(g] = (a] C Sa, so aL f; Lg. But
then a £ fi and f; < a, hence a = f; by Proposition 2.2. We conclude that
F(g] = (f1]. It follows that fog € F(g] = (f1], where fog € L, = Ly, since
foLhRg. Hence fog € Ly, and fog < fi, so fag = fi. Also fo R fag since
faLhR g, whence fi R fo. It follows that f; = f, since F' is a semilattice.
From fi LgR h L fo = f it follows that g = h. [ |
Lemma 3.5. Let F' € O(S) be a subsemilattice of S. Then for every e €
E(S),eNF = (e]A\F.

Proof. Let g € (e] A F. By Lemma 3.3 we have that ¢’ R g L f for some
¢ € (e]and f € F, and then g =€’ A f € w(e) Nw!(f) =w(eA f). On the
other hand, e A fw!fLg. From eA fwlgweA f we have e A f = (e f)g =g,
whence g € e A F. =

Lemma 3.6. Let F' be a nonempty subset of S. Then F' is an idempotent
of 1(S) if and only if F € O(S), F is a subsemilattice of S, and for every
e € E(S), there exist k,l € E(S) such that

Fnane=(k], enNF=(l].
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Proof. Let F' be an idempotent of I(S). By Lemma 3.2 F is a subsemilatti-
ce and an order ideal of S. Let e € E(S). Since F' € I(S) we have from
Proposition 2.4 that Fe = F(e] = (p| for some p € S. Thus p = fe for some
f € F. We shall put [ = e A f and we shall prove that e A F = (I]. From
Lemmas 3.4 and 3.5 we know that e A F' = (¢] A F' is a subsemilattice and an
order ideal of S, thus in particular (/] CeA F.

Let e ANg € e ANF for some g € F. Since gle A g) Rge € Fe = (p]
and f(e A f)R fe = p, so gle AN g)w"f(e A f). Since gle Ag) < g € F,
flenf) < f € F,wehave that g(eAg), f(eAf) € F. Since F is a semilatti-
ce, gleNg)w"f(eA f) implies that g(e A g) < f(eA f). Since e AgL g(eA g)
and e A f L f(e A f) we then need to have e A gw'e A f. Since e A F is a
semilattice this entails e A g < e A f =1. We conclude that e A F' = (I]. In a
dual way we can show that F' A e = (k] for some k € E(S).

We set out to prove the converse. Therefore let F' be a subsemilattice and
an order ideal of S such that for every e € E(S) both e A F and F A e are
principal order ideals. Let @ € S and e an idempotent in R,. Let | € E(S)
such that e A F = (I]. Thus [ = e A f for some f € F. By Proposition 2.4
we clearly have that (fa] = (f](a] C F(a]. We shall prove that the equality
prevails. Let g € F. TheneAg <[l =eAf. Since eAg L g(eNg) < g € F and
eNfLfleNf)<feF wehavethat gleAg)w'f(eA f), where both g(eAg)
and f(e A f) belong to the semilattice F. Therefore g(e A g) < f(e A f).
Hence

ga=glengla< fleA fla= fa

and it follows that F'a C (fa|. Using Proposition 2.4 we may now conclude
that F'(a] = (fa]. Using duality we see that F' is an idempotent of 7(S). =

Lemma 3.7. If E and F are idempotents of I(S) then EAF is an idempotent
of 1(S).

Proof. Let E and F be idempotents of I(S) and put G = E A F. From
Lemma 3.4 we know that G is a subsemilattice and an order ideal of S.
Using Lemma 3.6 and duality it suffices to show that if £ € E(S) then there
exists j € E(S) such that k A G = (j].

Let k € E(S). By Lemma 3.6 there exist [, m € E(S) such that kAF = ([]
and E Al = (m]. Then mw'l and so m LIlm < [. We want to show that
kNG = (Im)].

From the details of the proof of Lemma 3.6 there exists f € F' such that
[ =kAfand (fk] = Fk = F(k]. From mw'lw'f we have that m L fm <
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f € F, and so fm € F since F' is an order ideal. By Lemmas 3.3 and
3.6 and the dual of Lemma 3.5 there exists e € E such that e R m. Thus
m =-eA fm € G since eRmL fm. Since Im < [ = k A f we have that
Imw'k, thus Imk € E(S) with ImRImk < k. Using Lemma 3.5 it then
follows that Im = Imk Am € k AG, and since k AG € O(S) by Lemmas 3.3,
3.5,s0 (Im] CkAG.

Let g € k A G. By Lemmas 3.3, 3.5 there exist idempotents v, h € E(S)
such that v < k, h € G and vRgLh. Again by Lemma 3.3 there exist
u € F and w € F such that u R h Lw. Hence g =vAw € kA F = (I]. Since
uRh L g we have that h =uAg € EA(l]= EAIl=(m] by Lemma 3.6 and
the dual of Lemma 3.5. From h L g < [ we have that ¢ = [h by Proposition
2.2. Hence g = [h < Im and we see that k AG C (Im]. We conclude that the
equality £ A G = (Im] prevails. ]

Lemma 3.8. If E and F are idempotents of 1(S), then FE and E N F are
pairwise inverse elements of 1(5).

Proof. We shall put G = EA F. Clearly FE € I(S) and by Lemma 3.7 also
G € I1(S). By Lemmas 3.2 and 3.3, GFEG = G* = G and FEGFE = FGE.
It remains to show that FE = FGE. For f € F and e € E we have that
fe= f(en f)e € FGE, whence FE C FGE. It remains to show the reverse
inclusion. It suffices to show that GE C E.

Let ge € GFE for some g € G and e € E. We let h = e A g. By
Lemma 3.3 there exists f € F such that gL f, thus h = e A f € G. Since
G is a semilattice by Lemma 3.6, g,h € G and hw'g, so h < g. Therefore
ge = ghe = he < e and so ge € F since F is an order ideal. We proved that
GE C E, as required. [ |

Theorem 3.9. Let S be a locally inverse semigroup. Then T'(S) is a locally
inverse semigroup. The N-operation of the pseudosemilattice of T'(S) is given
by: if E and F are idempotents of T(S), then

ENF={eNnfle€E, feF}.

Proof. Let H,K € T(S) and let H' and K’ be inverses of H and K res-
pectively within 7'(S). We put F = H'H, F = KK' and G = E A F. Then
by Lemma 3.7 E, F' and G are idempotents of I(S) and by Lemmas 3.3 and
3.6 EG = G = GF. It follows that HGK and K'GH' are pairwise inverse
elements of 7'(S). Further

HGK = HH'HEGFKK'K = HFEGFEK = HFEK = HK
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by Lemma 3.8. We proved that 7'(S) is a regular semigroup.

Let E be an idempotent of T'(S) and F' and G idempotents in ET(S)E.
By Lemma 3.6 F' and G are order ideals and thus also ideals of the semilattice
E. Therefore FG = F NG = GF. It follows that ET(S)FE is an inverse se-
migroup. We conclude that T'(S) is a locally inverse semigroup.

Let E and F be any idempotents of T'(S), and put G = {eAf |e € E, f €
F}. By Lemma 3.3 and 3.8, G is an inverse of FE in T'(S) and G € ET(S)F.
Hence since T'(S) is a locally inverse semigroup, G is the unique element in
the sandwich set S(F, E). We proved that the A-operation of Lemma 3.7
coincides with the A-operation of the pseudosemilattice of T'(S). n

It will be useful to give some details about the structure of 7'(S).

Lemma 3.10. Let E, F € O(S) such that E and F are subsemilattices of S.
Then EF = FE = FE if and only if E C F.

Proof. If E C F then FE is an order ideal, and thus also an ideal of F|
hence FF = FE = FE. Assume that conversely FF = FFE = FE and let
e € E. Then e = e f; = foey for some e1,e5 € E and fi, fo € F, and so
e €W (fi)Nw(fa) =w(foA fi). By Result 2.5 e < fo A fi = fof1 € F, and
since F' € O(S), e € F. We proved that £ C F. ]

Lemma 3.11. Let H and H' be pairwise inverse elements of O(S) such that
both E = HH' and FF = H'H are subsemilattices of S. Then for every
a € H there exists a unique inverse a' of a in S which belongs to H', and the
mapping

H—H, a—d

is an order isomorphism. Every e € E can be written uniquely as e = hh'
for some h € H and h' € H', with hReLh in S, and then h and h' are
pairwise inverse elements of S.

Proof. Let a € H. Since H = HH'H there exist a;,as € H and o”" € H'
such that a = a;a”ay. Using the fact that E and F are subsemilattices we
have

ad’a = a;(a

= ay(a"ay)(a"az)(a"as)
= ay(a"ay)(a"az)
= (a1a")(a1a")ay

=aa"as = a

13



and so o' = a"aa"” € H'HH' = H' is an inverse of a which belongs to H'.
If a},al, € H' NnV(a) then ad} Rad, € F, and since E is a semilattice, so
aa) = aal. Dually we also have that aja = ala, hence a| = af,. Thus for
every a € H there exists a unique o’ € V(a) N H'. By symmetry we conclude
that H — H', a — d' is a bijection.

Let a1,ay € H such that a; < as. Let o) € V(ay) N H', a}), € V(az) N H',
ey = aya] € F and ey = ayal, € E. Then a; < ay entails e;w”eq, and since F
is a semilattice, so e; < ey. Hence Ly < Ly, and by Proposition 2.2 there
exists a’ € L, such that ' < aj. Therefore o' € H' since H' € O(S), and
so a'a; L ajay, whence o' = af, thus ¢} < a@),. By symmetry we conclude that
H — H', a — d' is an order isomorphism.

Every e € E can be written as e = ab’ for some a € H and b’ € H'. Then
e = (ea)(b'e) and it follows that ea and b'e are pairwise inverse elements.
From e = ab' it follows that ea R e L b'e with ea < a and b'e < b. Since H
and H' are order ideals, so ea € H and b'e € H'. We proved that every e € E
can be written in the form e = hh' for some h € H, h' € H', with hRe L}/,
and if this is the case then h and h' are pairwise inverse elements. It remains
to prove the uniqueness.

Assume that e € F, ay,a2 € H, by,by € H' such that e = a;b; = asbs
with a1 Ras ReLb; Lby. By the foregoing a; and b; are pairwise inverse
elements, whence bya; R bia, in the semilattice F', whence bya; = bias and it
follows that a; = a1b1a1 = a1bias = eay = ao. By symmetry, b; = bs. ]

Proposition 3.12. Let S be a locally inverse semigroup and H, K € T(S).
Then

(1) HR K in T(S) if and only if there exists a bijection ¢ : H — K such
that h' R hy for every h € H,

(i1) H <K inT(S) if and only if H C K.

Proof. (i). It suffices to give a proof for the case where K = F' is an idem-
potent of T'(S). Let HR E in T(S), and let H' be an inverse of H in T'(S)
such that HH' = FE. By Lemma 3.11 there exists for every h € H a unique
h' € V(h) N H', hence ¢ : H — E, h —» hh' is a well-defined mapping
and obviously h R hy for every h € H. By Lemma 3.2(i) the mapping ¢ is
injective and by Lemma 3.11 ¢ is onto.

We now assume that H, E € T(S), E an idempotent of T'(S), and that
there exists a bijection ¢ : H — E such that AR hy for every h € H. We
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let H' be any inverse of H in T'(S) and put F' = HH'. It suffices to prove
that the idempotents £’ and F' are R-related. Using the result proved in the
above paragraph we know that there exists a bijection ¢ : E — F' such that
e R ey for every e € E.

Let e € Eand f € F. Then fAeR(fAe)f < fandso (fAe)f € F
since F is an order ideal. Let e; € F be such that e;tp = (f Ae)f. Then
es R fAeLle(fAe) <eandthuse(fAe) € E since E is an order ideal. The
idempotents e; and e(f Ae) commute since they belong to the semilattice F,
whence e; = f Ae=re(f Ae). It follows that ef =e(fAe)f = (fAe)f € F.
We proved that EF C F. Since every element of F' is of the form ey for
some e € E, and ey = e(er)), so EF = F holds. By symmetry we conclude
that 'R F', as required.

(7). Assume that H < K in T(S). Let F be any idempotent in the
L-class of K. From Proposition 2.2 we know that there exists a unique
idempotent E in the L-class of H such that E < F in T'(S) and then H =
KFE. From Lemma 3.10 we have F C F and therefore H = KE C KF = K.

To prove the converse, assume that H C K. Let K’ be an inverse of K
in 7(S) and let a € H. By Lemma 3.11 there exists a unique o’ € V(a)NK’,
thus @ = ad’'a € HK'K. We proved that H C HK'K. Let ab\b, € HK'K
for some a € H, b} € K’ and by, € K. Then by Proposition 2.2 there exists a
unique a, € Rabfle such that a; < a. Here a; € H since H is an order ideal.
Since abiby € KK'K = K we see that a; and ab|b, are R-related elements
of K and so a; = abjby by Lemma 3.2. Hence abjby, € H. We proved that
H = HK'K. Since HK' is an order ideal of the semilattice K K’ it follows
that HK' is an idempotent of 7'(S). In a dual way we show that H = KK'H
where K'H is an idempotent of T'(S). Therefore H < K in T'(S). n

4 Dense ideal extensions

So far we have seen that for every locally inverse semigroup S the mapping
Ts : S — T(S) is an ideal extension within the class of all locally inverse
semigroups. We set out to prove that 7¢ is, within this class, a maximal
dense ideal extension. We shall need some auxiliary results. The following
simple proof was communicated to us by P. R. Jones.

Proposition 4.1. Let S be a locally inverse semigroup and I an ideal of S.
If p is a congruence relation on I and vs the equality on S, then pU g is a
congruence relation on S.
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Proof. Welet t € S and a,b € I such that apb. By duality it suffices to show
that taptb. We let e be an idempotent in R, and choose (ta)’ € V(ta) and
(tb) € V(tb). Then

(ta(ta)
(ta(ta)

(tb(tb)'e )(ta(ta e)th
(since ta(ta)'e and tb(th)'e are commuting idempotents in eSe).

’e) p (ta(ta)'e)tb (since ta(ta)'et € I and et = t)

From this it follows that (ta)p < (tb)p in I/p. By symmetry we conclude
that ta ptb. ]

The reader should not attempt to generalize Proposition 4.1 for regular
semigroups S in general, even if the ideal I is itself a locally inverse semi-
group. For this it suffices to contemplate the example mentioned in Section
4.5 of [12]: the full transformation semigroup on a set X contains the se-
migroup I of constant transformations as an ideal. If |X| > 3, then [ is a
locally inverse semigroup - in fact an | X |-element right zero semigroup - while
the full transformation semigroup is regular. However, no proper nontrivial
congruence on I can be extended to a congruence on the full transformation
semigroup.

Lemma 4.2. Let S and T be locally inverse semigroups and ¢ : T — S
a homomorphism. If a,b € T such that ap < by then there exists ¢ € TaT
such that ap = cp and ¢ < b in T.

Proof. We let e be an idempotent in L, and f an idempotent in L,.. Since
L,. < L, we know from Proposition 2.2 that bf is the unique element of
Lge such that bf < b. From ap < by Lep it follows that ap = (ap)(ep) =
(ae)p L (bf)p. Since (bf)p < bp, ap < bp and ap L (bf)p in the locally
inverse semigroup S, we have ap = (bf)p by Proposition 2.2. Since bf L ae,
sobf € TaTl. [

Theorem 4.3. Let ¢ : S; — T be an ideal extension of locally inverse
semigroups and « : S1 — Sy a surjective homomorphism. Then

VT — T(Sy), t— (t]NSip)p'a (1)

is a homomorphism. 1 is the unique homomorphism which extends p~ ars, :
Sl(p — T(SZ)
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Proof. aa~"! is the congruence relation induced on S; by «, and by Propo-

sition 4.1 p = ¢~ '(aa™")p Ui is a congruence relation on T. Therefore
0:Sy — T/p, a — aa 'y is an ideal extension of S;. By Proposition 3.1
the mapping

YT — T(Sy), t — ((tp] N S/ taa tp)d ! (2)
is a homomorphism. For any s € S; we have that

((s@)p) N Sip/e aa™ o = ((sp)p] = (sab]
and thus by (2),

(sp)Y = (sa] = sars, = spp tars,.

Therefore ¢ extends ¢ lars,.

We claim that the mappings given by (1) and (2) coincide. For this we
need to show that the equality

(tN Sip)e = ((tp] N Sip/e taa )0 (3)

holds true for all ¢t € T'.
Let a € ((t] N S1p)p ta, thus there exists s € S such that a = sa with
sp < t. Then

af = aa~"p = saa”p = (sp)p "aa"p = (sp)p

and so a € ((tp] N S1p/o taa tp)g~ 1
Let a € ((tp] N Sip/p~taa™ @)™, that is, a = sa for some s € S; with

(s0)p a0 p = saa~'p = af € (9] N S/ aa e,

thus (s@)p < tp in T/p. By Lemma 4.2 there exists ¢ € T'(s¢)T such that
¢ <t and cp = (sp)p. Since Sip is an ideal of T we have ¢ € S;¢, whence
¢ (p'aa"lp) s since p induces p'aa'p on Sip. Therefore a = cp™'a €
(1] N S1p)p~ta. We proved the equality (3).

We set out to prove the uniqueness. We let y : 7" — T'(S2) be any
homomorphism which extends ¢ tars, and for t € T we put ty = H. If for
some s € Sy, sp < tin T, then sars, = spp lars, = spx < ty = H and
thus sats, C H by Proposition 3.12, hence saw € H. Assume that conversely
s € S} is such that s € H. Then spx = spp~'ars, = (sa] C H and thus
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again by Proposition 3.12, spxy < H = ty in T(S). By Lemma 4.2 there
exists ¢ € T'(s¢)T such that ¢ <t and ¢y = spx. Since Sy is an ideal of T,
so ¢ € S1p and there exists u € Sy such that ¢ = up. We then have up <t
and

(ua] = uats, = (up)p ™ ats, = cx = spx = (s0]

whence ua = sa. We conclude that
tx =H={sa|seS and sp <t}
= (N Sip)pla=t
for all £ € T, and thus x = . [ |

There are two special cases of Theorem 4.3 which are of particular interest.
The first one concerns the case where ¢ = 7, and T'= T'(S} ), and the second
one where S; = S5 and « is the identity transformation.

Corollary 4.4. Let o : S; — Sy be a surjective homomorphism of locally
tnverse semigroups. Then

T(S)) —T(S2), H— Ha
is the unique homomorphism of T(S1) into T(S,) which extends 4 aTs,.
Proof. In view of Theorem 4.3 one need only verify that for all H € T(S;),
H=((H]N 5’17'51)7'5?11.
This follows immediately from Proposition 3.12. |

Corollary 4.5. Let ¢ : S — T be an ideal extension of locally inverse
semigroups. Then

VT —T(S), t— (t]NSp)p~"
18 the unique homomorphism which extends the isomorphism

¢ g1 Sp — Sy, s — (s].
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Theorem 4.6. Let S be a locally inverse semigroup and T a locally inver-
se semigroup such that Stg C T C T(S). Then s : S — T is a dense
ideal extension. Conversely, every dense ideal extension of S within the class
of all locally inverse semigroups is equivalent to a unique ideal extension
Tg S — T obtained in this way.

Proof. Let T be a locally inverse semigroup such that St C T C T(S5).
Obviously 7¢ : S — T is an ideal extension of locally inverse semigroups,
and we need to prove that this ideal extension is dense. Our proof resembles
in part the proof of Theorem 2.9(iv)(g) of [12].

Let ¢ : T — U be a homomorphism such that 741 : S — U is an
ideal extension. Assume that H, K € T such that Hy = K. Let H and H'
be pairwise inverse elements of 7" and h € H. By Lemma 3.11 there exists
a unique h' € V(h) N H'. Since H and K belong to I(S), both H(h'] and
K (1] belong to S7g and using Lemma 3.11 again it is not difficult to see
that H(h'| = (hh']. Since 751 is injective we derive from

(hh)rsp = (b1 = (H (W)Y
= (HP) (W) = (K9) (W)
= (K()¢

that (hh'] = K(h']. Therefore also
(h] = (pM'](h] = K (h'](h] € KH'H.

Therefore H C KH'H and thus also H < KH'H by Proposition 3.12. By
Proposition 2.2 we then have H = K H'H and by duality also H = HH'K,
whence H < K. By symmetry we also find that K < H, thus H = K.
We conclude that v is injective and therefore 7¢ : S — T' is a dense ideal
extension.

Let ¢ : S — T be a dense ideal extension of locally inverse semigroups
and let v : T — T(S) be the homomorphism of Corollary 4.5. Since
@ is a dense ideal extension, i) = 75 : S — T(S) an ideal extension
since 1) extends p~l'7g, so v is injective. It follows that the ideal exten-
sions ¢ : S — T and 75 : S — T are equivalent via the isomorphism
Y T" — Thp. That the extension ¢ : S — T is equivalent to a unique
extension of the form 75 : S — V for some St C V C T'(S) follows from
the uniqueness in the statement of Corollary 4.5. ]

19



The technique of proof for the following theorem derives from the proof
of Theorem 2.9(iv)(g) of [12].

Theorem 4.7. Let S be a locally inverse semigroup. Then s : S — T'(S)
s a maximal dense ideal extension of S within the class of all locally inverse
SEMLGroups.

Proof. From Theorem 4.6 we already know that 7¢ : S — T'(S) is a dense

ideal extension. We let ¢ : T'(S) — U be a homomorphism of locally inverse

semigroups such that 749 : S — U is a dense ideal extension. We must

show that ¢ is an isomorphism of T'(S) onto U. Clearly # is injective since

7s : S — T'(S) is a dense ideal extension. It remains to show that 1) is onto.
By Corollary 4.5

§:U—T(S), u— ((u]nSrs)(rsyp) ™

is the unique homomorphism of U into T'(S) which extends (75t) '7s. More-
over, £ is injective since 751 : S — U is a dense ideal extension. Then, ap-
plying Proposition 3.12 and the fact that ¢ is injective, we have for H € T'(S)
and s € S,

seH & (s|]CH
& (s] < HinT(S)
& st < Hep in T(S)y
& st < HYin U
& sty € (HY) N Sts1p
& se (HY]NSts)(rsh)
& s e Hyg

and thus H = Hy¢ for every H € T(S). In particular £ : U — T(S) is
onto, and since £ is also injective, it follows that ¢ and £ are pairwise inverse
isomorphisms. [ ]
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