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Abstract

We deal here with a class of integral transformations with respect to parameters
of hypergeometric functions or the index transforms. In particular, we treat the
familiar Olevskii transform, which is associated with the Gauss hypergeometric
function as a kernel. It involves, in turn, as particular cases index transforms of
the Mehler-Fock type which are used in the mathematical theory of elasticity. It
is shown that boundedness Lo- properties for the Olevskii transform are based on
the corresponding properties for the so-called Gamma-product transform, which
has been introduced recently by the author. Analogs of the Plancherel theorems
are proved. It gives that the Olevskii and the Gamma-product transforms are
isometric isomorphisms between two weighted Lo - spaces. More examples of such
isomorphisms are exhibited for the Mehler- Fock type transforms.
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1 Introduction and Preliminary Results

Let f : R, — C be a measurable function. Fixing real positive parameters ¢, a we will
deal with the following Olevskii transformation [15], [21], [22]
o0 1

Ocaf(z) = / ID(a +i7) > Y <a+i7’,a—i7’;c;——) f(r)dr, x>0, (1.1)
0 x
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where integral (1.1) is with respect to parameters of the Gauss hypergeometric function
oF [1, Chapter 2]. It exists in a definite sense, which will be defined below. In the sequel
we will use the weighted Lebesgue spaces L,(§2;w(z)dz) with respect to the measure
w(z)dx equipped with the norm

1111y = ( / |f(:v)|’”w(ﬂs)da:) e

|| f1loc = ess suplf(x)].

We note that I'(z) in (1.1) is Euler’s Gamma-function [1] and ¢ is the imaginary unit.
The operator (1.1) is called also the Jacobi transform, the Fourier-Jacobi transform,
the generalized Fourier transform, the index hypergeometric transform, the 5/} - index
transform (see [2], [7], [8], [11], [13], [14], [23]). It is not difficult to verify that under
conditions on the parameters the Gauss hypergeometric function in (1.1) is represented
by the power series for x > 1,7 € R

N (a it a—iTc —é) - i (a+ir), (a—im), (=" (1.2)

— (¢)n axnn!

When 0 < x < 1 this function is understood by the relation (cf. [1], [12])

. . 1 ['(e)(—2iT)

F e | —

2 1(a+z¢,a e x) F(a—iT)F(c—a—z’T)x
XoF (a+it,1 —c+a+ir;1+ 2it; —x)

[(c)T'(2i7)
F(a+it)l (¢ —a+ir)

a+1iT

:Ea_iTgFl (a—z¢,1—c+a—ZT,1 _2Z7—a —.T) (13)

On the other hand we consider the Gauss function as the following Mellin-Barnes integral
[1, Ch. I} (cf. formula (8.4.50.2) from [17])

r )2 1

—l (aF—é_ ;T>| T % <a +T,a — iT; ¢ ——)
c T

1 [tiee I'(a—s)

_ 1 P+ =i 50— )

== x%ds, >0, 0 <y <a. (1.4)
2me

y—1i00
Series (1.2) can be reobtained if we evaluate integral (1.4) as the sum of residues of the
right-hand simple poles s = a +n, n = 0,1,2,... of Gamma-functions of the integrand,
which are separated from the left-hand ones s = it — n, n = 0,1,2,... . However,
evaluating the same integral as the sum of residues at the left-hand simple poles we
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obtain series (1.3). We put down here some of important properties of the Gauss function
1], [20], [22]
2F1(a,b;¢; 2) = 2 F1(b, a5 ¢; 2),
oF1(a,b;b;2) = (1 —2)77,
2F1(a,b;c;0) = 2 F1(0,b;¢;2) = 1,
L(e)'(c—a—0)

gFl(a,b;c;l):F(C_a)r(c_b), Re(c —a—b) >0,
oFi(a,b;c;2) = (1 — 2) % F) ( — b - 1) (1.5)
oI (a,b;¢;2) = (1 — 2) " " Fi(c —a,c — b; c; 2). (1.6)

Formula (1.5) is called as the Boltz formula and relation (1.6) is called the self-transformation
formula.

One can mention also the integral representation of the Gauss function in terms of the
product of Bessel functions (see [16, relation (2.16.21.1)], [22, formula (1.101)])

21_2a+6$1_CF(C>

; S, 2\ _
o (a—I—ZT,a—ZT,c, — ) = T(a+ir)P

/ Y2 Ty (2y) Koir (y)dy, > 0. (1.7)
0

It is easily seen by the asymptotic behavior of the Bessel functions near origin and at the
infinity (cf. [12]) that integral (1.7) is absolutely convergent for any ¢,a > 0. We recall

that the Gauss function in (1.1) has the following asymptotic behavior for each 7 € R,
when = — 0+ (cf. [1], [12], [22])

1
o (a+z’7',a—z'7'; c;——) =0 (z%logz), © — 0+. (1.8)
x

We note that kernel (1.8) is a continuous function with respect to 7 > 0. Furthermore
via [22, Theorem 1.12] we see that when 7 — 400 it behaves for each z > 0 as

1
oF (a +iT,a —iT; C; ——> =0 (7'1/2’0) , T — +00. (1.9)
T

We mention here that the modified Bessel function Ko, (24/2) is real-valued and it rep-
resents the kernel of the Kontorovich-Lebedev transform [18], [19], [21], [22]

KLf|(x / Ko (V) f(7)dr (1.10)

At the same time it can be given by the Mellin-Barnes integral (see [22, relation (1.113)])

Y+ico
Koir (2y/7) = ! / I'(s+im)T (s —ir)a*ds, (1.11)

4mi o
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where z > 0,7 > 0,7 € R. As it is known [12], [17], theory of the Mellin - Barnes integrals
is based on the Mellin direct and inverse transforms, which are defined by the formulas

= /OOO f(x);ps_ld$7 (112)

1 Y4100

flz) = —/ fM(s)z™5ds, s =y +it, v >0, (1.13)
2T )y

where integrals (1.12)- (1.13) exist as Lebesgue integrals or, in particular, in mean with

respect to the norm of spaces Lo(y — ic0, vy +i00) and Ly(R,; 2?7~1), respectively. In the

latter case, the Parseval equality holds

/0 F) P e = o / 1P i (1.14)

The Kontorovich-Lebedev transformation (1.10) (cf. [22], [23]), in turn, is an isomorphism
between the spaces Lo(R,;|T'(2i7)[?dr) and Lo(R ;2 tdx) with the Parseval equality of

the form
de 7

| iken@e =5 [T i@ (1.15)

The corresponding inverse operator in the mean convergence sense is written in the form

f(r) = / Koir (V)KL )() (1.16)

W\F (2i7)|

The aim of this paper is to prove the Plancherel type theorem for the Olevskii transfor-
mation (1.1). To do this we will study in the sequel the Ls- boundedness of the so-called
Gamma-product transformation, which was introduced for the first time by the author in
[24]

Gfl(z) = P.V. /OOO [ (i(z + )T (i(z — 7)) f(r)dr, z € R. (1.17)

Since I'(z) ~ 1, 2 — 0, we have that at the point 7 = |z| integral (1.17) is understood in
the Cauchy principal value sense. The Gamma-product transform (1.17) is well-defined
for instance, when f € L{(R,;dr).

The Ls- properties for the Olevskii transform (1.1) and its particular cases we note
that the case ¢ = 2a was considered in [21, p. 136]. The Olevskii transformation for some
particular values of ¢ has been treated in [13], [14]. About the distributional analog of the
Olevskii transform and its particular cases see in [6], [9], [10]. Some mapping properties
for these index operators have been investigated also in [3], [4], [5]. Finally, we will exhibit
the related results for the Mehler-Fock type transforms (see also in [23], [25]).
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2 The Gamma-Product Transformation

Let us first consider the Gamma-product transformation (1.17) in the weighted Lo-spaces.
Our goal is to prove an analog of the Plancherel theorem for this transformation. The
result will be used in the sequel to study the Lo-properties for the Olevskii transformation

(1.1).

Theorem 1. Let f(7) € Ly(Ry; |T'(2i7)|?d7). The Gamma-product transform (1.17),
where the integral converges in mean with respect to the norm in Lo(R;dx) forms the
1somorphism

G : Ly(Ry; |T(2i7)|?d7) « Lo(R; dw),

where the reciprocal inverse operator is given by

1 N
TP /N

with the convergence with respect to the norm in Ly(R 5 |T(2i7)2d7). If f, g € Ly(Ry; |T(2i7)|2dT)
then the Plancherel identity is true

f(r)=lLim.y_oP. V. U(—i(x+ 7)) T (i(r — x)) [Gf](z)dz, (2.1)

| en@Eawa - 1 / F(r)a(r) T (2ir) (2.2)
In particular, the Parseval equality holds
[ len@p s =z [ 1Rk 23)

Proof. We suppose first that f € C§°(R, ), i.e belongs to the space of smooth functions
with compact support on R,. Hence taking a > 0 we introduce the following function

Ds(z) = /OOO ['(z+ir)0 (2 —ir) f(7)dT, (2.4)

where z = a+ iz. By the elementary inequality for Euler’s Gamma-function [1] [I'(z)] <
IT'(Rez)| we get that integral (2.4) converges uniformly with respect to z € C,0 < ag <
a< A, A>0since

/Ooo T (2 +im)T (= — ir) f(7)] dr < r?(a)/s F(r)|dr < CA/ F(7)|dr < oo,

upp f supp f

where C'4 > 0 is a constant. But the integrand is analytic with respect to z and A > 0
is arbitrary. Consequently, we immediately conclude that ®;(z) is analytic in the right
half-plane. Further, we invoke integral (1.11) for the modified Bessel function Ky;, (2+/7)
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and the inverse Mellin transform (1.13) to represent the product of Gamma-functions as
(see (1.12))

C(z+in) T (z—ir) = 2/ Koir (2¢/7)2" . (2.5)
0
Substituting (2.5) into (2.4), we change the order of integration via Fubini’s theorem and

we write ®(z) as a composition of the Kontorovich-Lebedev transform (1.10) and the
Mellin transform (1.12)

Qr(z) = 2/ [KLf](z)z* 'da. (2.6)
0
Hence by the Parseval equality (1.14) for the Mellin transform we obtain
/ 1@ (a + i) 2 = 87 / K LFI(8) 22 dt. (2.7)
—o0 0

However, letting o € (0, A) we appeal to the Parseval equality (1.15) and to the inequality
| K2 (2V/1)] < Ko(2v/1) (cf. [1], [22]) for the modified Bessel functions in order to majorize
the integral at the right-hand side of (2.7) as

/0 (KLt dt = (/ /)KLf )22t
/|KLf y? / K2(2v/D)2Adt </Suppf]f(7)|dr>2<oo. (2.8)

Consequently, the left-hand side of (2.7) is bounded with respect to a € (0, A) and

Dr(2) € HéO’A), where H;O’A) denotes the Hardy space [19] of analytic functions in the
strip Rez € (0, A) such that

sup / P (v + iz) [P dx < oo.
a€e(0,A) J —c0

Moreover, invoking again (2.7) we have

/ Doy +ix) — Dp(ag + iz)[*de = 87r/ [[KLf]() (2 — ¢7°2) < (2.9)
. 0

The right-hand side of the equality (2.9) tends to zero when «; — 04, ¢ = 1,2 since via
(2.8) and the dominated convergence theorem we can pass to the limit under the integral
sign. Thus ®;(a + ix) when o — 0+ converges in mean to some function ®(iz). Hence
denoting its inverse Mellin transform by ¢(t) € Ly(Ry; ¢t~ 'dt) we find from (1.14) that

/OO | (iz) — @p(a + ix)Pdr = 2 /000 lo(t) — 2[KLf](t)t°‘|2% — 0,0 - 0+. (2.10)

—00
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By Fatou’s lemma this implies the equality
dt

| ety =2z <o

which means that () = 2[KLf](t) almost for all ¢ € R,. Taking into account equality

(1.15) we arrive at the following Parseval identities

| stiopar=st [ KLA@P S =4 [ If@PT@nPa (21
o 0 0

If we prove that ®(ix) = [Gf](x) almost for all x € R then we establish (2.3) for any

f € CP(Ry). Indeed, let |z| ¢ suppf. Then appealing to the dominated convergence

theorem we immediately pass to the limit under the integral sign in (2.4) when o« — 0+
to obtain

Py (i) :ali%lJr I'(a+i(z+7)T(a+i(z—71))f(r)dr
suppf
- / T (i(x+ 7)) T (i(x — 7)) f(r)dr = [Gf](2). (2.12)
suppf

Otherwise let x > 0 be such that x € suppf (the case x < 0 can be considered in the
same manner). By definition of the Cauchy principal value we write integral (1.17) in the
form

G/)(z) = lim </ /m) ( + 7)) T (i(x — 7)) f(r)dr. (2.13)

0—0+

Our goal is to prove that equality (2.12) holds in this case. In fact, it is easily seen that
one can write (2.13) as the iterated hrmt

2—6 %
[Gfl(z) = 6lirél+ali%l+ (/0 —1—/“6) M'a+i(zx+71) 0 (a+i(z—71)) f(r)dr
w46

= ali%lJr P+ ix) — 61Lr51+ O}E& - IM'a+i(zx+7) 0 (a+i(z—7)) f(r)dr
and equality (2.12) will be true if we show that for all x > 0

x40
I(z) = lim lim I'a+i(x+71)) ' (a+i(z—71)) f(r)dr = 0.
5*>O+ a—0+ r—38
Indeed, making use the mean value theorem we have f(x +t) — f(z) = tf'(x + t&(t)),
where 0 < £ < 1. Therefore,

0

I(x) = 515& alir& . T'(a+i(2x +t)) T (a —it) f(x +t)dt
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0

= Jim lim [T (o i(2e 4+ 0)T (o= i) tf (o + tE(0)dr

d

+f(x) 51_i)151+alir011+ 7511 (a+i(2x 4+ 1)) [ (o —it) dt = I1(x) + ().

It is clear that [;(x) = 0 for all z > 0 since invoking the relation I'(1 4 z) = 2I'(z) we find

0 I(1+a—it)

[ Iraitze s )T @ - itef o e i = | ViR

=

I'(a+i(2x + 1))

X tf' (x4 t&(t))|dt < CLo — 0, § — 0+,

where C,, > 0 is a constant, which depends only on z. Considering Ir(x) we use a

representation for the product of Gamma-functions as the following cosine Fourier integral
(cf. [22, relation (1.104)]

Ma+ilz+7)T(a+i(z—71)) = Féz((iz)ixl)) /000 cosh;zzi;;y(y/mdy (2.14)

Hence we obtain

z+0
B() = f(@) Jim Ty [ T(atite =) (ot ite ) dr
T (2ix) y sin 0y cos zy
F(@) S5 92(iz—1) 53& aE(I)lJr/ yCosh2(°‘+m<Z//2) v

where the change of the order of integration is allowed by virtue of the absolute and
uniform convergence of the integral with respect to y for each o > 0. However, the latter
integral is uniformly convergent with respect to a > 0 via the Abel test. Thus, passing
to the limit through the integral sign when oo — 04 we have

o D(2ir) [ sindycoszy
12<x>—f<x>m£i%1/o yeosh®(y/2)"

It remains to show that the latter limit is zero. Indeed, splitting it on two integrals
over (0,1) and (1,00) we find that in the first integral we can easily pass to the limit by
0 — 0+ via the absolute and uniform convergence and this gives zero. Appealing again
to the Abel test we conclude that the second integral

*cosry  sindy
%iz dy
1 Yy cosh™(y/2)

converges uniformly by ¢ > 0 for each z > 0. Thus it tends to zero when § — 0+ and
I)(x) =0 for all x > 0. Combining with the above arguments and returning to (2.12) we
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establish that ®(iz) = [G f](z) almost for all x € R. Consequently, the Parseval equality
(2.3) holds for any f € Cg°(R ). Since this set of functions is dense in Lo (R ; [T'(2i7)|?dT),
we extend the equality (2.3) for the whole space. Hence with the parallelogram identity
we immediately establish the Plancherel equality (2.2) and we continuously extend the
Gamma-product transform (1.17) on the whole space Lo(R,;|T(2i7)[*d7). As in [24] we
show that this transformation forms the isomorphism

G : Ly(Ry; |T0(2i7)?dT) <« Lo(R; dx)
and its extension can be represented by the following limit with respect to the norm in

Ly(R; dx)

[Gf](x) =Llim.y_P.V. /0 L(i(z+7) T (i(x—71)) f(1)dT.

We show that reciprocal formula (2.1) follows from the Plancherel equality (2.2). Let us
fix £ > 0 and take

o) = {7’, if 7 €10,¢],

0, ifre (& 00),

which evidently belongs to the space Lo(R.;|['(2i7)|?d7). Hence from (2.2) we arrive at
the equality

3 00 3
47?2/ Tf(7)|T(2i7) |PdT = / G fl(x) / I (—=i(z+ 7)) 0 (i(t — ) drde.  (2.15)
0 —o0 0
Choosing sufficiently big N € N and denoting by

[G/1(x), ifze[-N,N],

G fln(z) = {07 if x ¢ [N, NJ,

we observe that ||[G f] =[G f]n||L.m) — 0, N — oo. Moreover the corresponding sequence
{f~} by Parseval equality (2.3) converges to f and from (2.15) we obtain

3 N 3
47r2/0 7 fn(7)|D(267)|PdT = /N[Qf](x) /0 I (—i(x + 7)) (i(7 — x)) drdzx.
Since by the Cauchy- Schwarz inequality 7 fx(7)|T(2i7)]* € Ly(0,&) it implies
N §
f(r) = W% /_N[gf](x)/o T (—iw +7) T (i(r — 2)) drdz.  (2.16)

and we found that f(7) = Li.m.n_ . fn(7) with respect to the norm in Lo (R ; |T'(2i7)|%d7).
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Meanwhile, fixing N € N the order of integration in (2.16) may be inverted due to the
familiar Poincaré - Bertrand formula. Hence we derive

¢ N
fu(r) = WM%/} T/N[gf](x)F(—i(l’—i—T))F(i(T—:E))dJJdT. (2.17)

dz

But
B e e
_ %/_N[Gf](m)r (1—i(z+ 7;—))—’_1;:(1 + (T — a:))dx B %/_N[gf](x)

G/1(x)

r—T 2

XF(l—i(x—i—T))F(l—l—i(T—x))dx_ 1/N

N

XF(l—i(m—i—T))F(l—i—i(T—x))—F(l+2i7‘)dl_+ I (1+ 2ir) /N [gf}(a;)dx

T4 2 N Ttz

| [ gttt N0 ) 0 20,

r—T

2

I (1—2ir) /N [gf](ﬁ)dm = Ji(1) + Jo(7) = J3(7) — Ju(7).

2 _N xr — T

Appealing to the M.Riesz theorem about the L,-boundedness of the Hilbert transform
(cf. Theorem 101 in [19]) we conclude that functions Jy(7), Ju(7) € L1((0,£);dr). At the
same time by the mean value theorem we easily get that Ji(7), J3(7) are bounded, i.e.
belong to L;1((0,&);dr) for each £ > 0. Thus differentiating in (2.17) with respect to &
and passing to the limit by the norm in Lo(R; |T'(2i7)|?d7) when N — oo we establish
(2.1). This ends the proof of Theorem 1.

Remark 1. Via the asymptotic by 7 — +o0o of the ratio of Gamma-functions (see
the Stirling formula, for instance in [1], [12], [22]) we have for each z € R

L(i(z+7)T(i(x—1)) 1 e
T (2i7) “o(z) ree

Hence one can show that for f € Lo(R,;|T'(2i7)|>d7) integral (1.17) generally does not
exist. Nevertheless according to Theorem 1 it converges in mean with respect to the norm
in Ly(R; dz).

Now we describe the class of functions f € Ly(R,;|T'(2i7)|?d7), having the corre-
sponding Gamma-product transform [Gf](z) € Lo(R;dx) as a limit almost everywhere
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when a — 0+ of the function (2.4) ®,(2) € Hy, 2z = a + iz. This means that @ is
analytic in the right half-plane o > 0 and satisfies the condition

Sup/ | (a + ix)|*dx < 0. (2.18)

a>0 — 00
Theorem 2. Let f € Ly(Ry;|[(2i7)|?dr). The Gamma-product transform G f](x)
is the limit of ®f(a + ix) € Hy almost everywhere when o — 0+ if and only if the
Kontorovich-Lebedev transform (1.10) [KLf](z) is equal to zero almost for all x > 1.

Proof. Necessity. The necessity follows immediately from equality (2.7). Indeed,
since its left-hand side keeps bounded when o« — 0o, we have for any A > 1

/Oo \[KLf](t)\Q% < A /Oo K Lf)() 22t

A A

—2a o0
< sup/ |® (o + iz)|[*dx = const. A™** — 0, a — oo.
87r Oé>0 —00

Therefore,

| keawrs =o

A

and [KLf](x) = 0 almost for all z > 1. Since when o« — 0+ the left-hand side of (2.7) is
bounded we find via Fatou’s lemma that [KLf](x) € Lo((0,1); 27 dx).

Sufficiency. Conversely, let f € Lo(R,; |T'(2i7)|?dr) be such that [K Lf](z) = 0 almost
for all x > 1. Hence by (2.6) we put

1
B (o + i) = 2 / KLt > 0,
0

Since by the Cauchy- Schwarz inequality

[esioneas ([ ienopt) ([ ea)”

- ( / 1 |[KLf]<t>|2%)l/2 < o0

we have that ®;(a + iz) is analytic in the right half-plane and invoking equality (2.7) we
obtain

- ' ! dt
/ | (o + iz) Pdr = 87r/ [[KLf](t) [ttt < 87r/ \[KLf](t)P? < 0.
_ o ;

(e}
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Thus it satisfies the condition (2.18) and according to the theory of Hardy’s spaces @ ¢(a+
ix) attains in the mean sense and almost for all = € R its limit value in Hy Of(x) when
a — 0+.

However, if we take a sequence {f,}>2, of C5°(R)-functions, which converges to f
with respect to the norm in Lo(R;|T'(2i7)|?dr), then (see (2.6))

Qs (v +ix) =2 / oo[KL fal @)ttt
0

and analogously we derive that almost for all z € R and n € N &y (a + ix) — Oy, (v)
when o« — 0+. Consequently, owing to Theorem 1 we get that Oy, (r) = [Gf,](x) almost
for all x € R. Furthermore, by (2.3) we have

| 160w ~ 1651 P = [0 - )@l
= 4r? /000 |f(T) — fo(D)|?|T(2i7) PdT — 0,n — oc. (2.19)

On the other hand invoking (1.15) we find

/ 104(z) — Oy, ()|*dz = li%1+/ (o +iz) — Py, (o + ix)|Pda

o0

= tim sx [ IIRLAG) ~ KLAIO P ar = i sr | KL - 0P a
- /100 L] <t>I2t2"“1dt] = 87 { / KL~ f 0P

dt

d [oe)
R A I

+ [z
But under conditions of the theorem the latter integral is zero. Thus, combining with
(2.19) we obtain ©(x) = [Gf](x) almost for all x € R. This completes the proof of
Theorem 2.
We will establish now a generalization of Theorem 2.
Theorem 3. Let f € Ly(Ry; |T(2i7)2d7). Let also @y(a+ix) is analytic in the right
half-plane o > 0 and satisfies the condition

/ D4 (o + iz)[’dz = O (y**) , y > 0. (2.20)

o0
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The Gamma-product transform [G f](z) is the limit of ®(a+ix) almost everywhere when
a — 0+ if and only if the Kontorovich-Lebedev transform [K Lf](x) is equal to zero almost
for all x > y. Besides, if y is a least of such numbers, then

1 oo
lim % log/ (o + iz)[*dx = log y. (2.21)
a—o00 20Y —o

Proof. The first part of the theorem can be proved by previous Theorem 2. Indeed,
denoting by W(z) =y *®(z) we invoke condition (2.20) to derive

/ 0 (o + i) P = y—M/ 1@, + i) [2de = O(1).
Hence Wy(z) — V¢(iz), a — 0+ almost for all x € R. Moreover, since (see (2.7))

y~ 2 / (v + iz) [*de = 87y~ / [[KLf](t)* > tdt = 8w / [ Lf](ty) |t dt,
— 0 0

it follows again that for A > 1
= 2 dt = 2 dt a0 [T 2,201
[KLAGy) — = | |[KLA@)— < A [[KLf(ty) e dt
A 4 Ay t A

< const. A% = 0, o — o0.

Therefore [K Lf](z) is zero almost for all # > y. In the same manner as in Theorem 2 we
prove the sufficiency of this condition.

Further,
* N2 Y 2,201 N 2 dt
D (e + iz)|*dr = 87 [[KLf](t)|t** " dt < 8y [[KLf](t)] e (2.22)
—00 0 0
Thus
Ly, /oo 1B (o + i) 2de < logy + —— log (8 /oo|[KLf](t)|2dt
— a+ix) | dx — T — .
2a & . ! =08y 2cv & 0 t
Passing to the limit when o — oo in the latter inequality we get
1 o
lim —log/ |® (o + iz)[*dx < logy. (2.23)
a—o0 Lk —o0

On the other hand letting
du
?—
u

o(t) = / " \IKLf)(w)
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and taking sufficiently small positive ¢ after integration by parts we arrive at the estimate

Y Yy
87T/ HKLf] (t)|2t2a*1dt = 167-(&/ /)(t)t%‘*ldt
0 0

y—09
> 16ma p(y — 6)/ t* 7t = 8mp(y — 6) (y —6)**
0

Thus combining with (2.22) we take a logarithm from the both sides of the latter inequality
and we divide it by 2a. Hence

1 > 2 1
— > — — — .
o log/ |D (v +ix)|*dx > log(y — §) + 50 log(8mp(y — 9))

Passing to the limit when o — oo we obtain

1 o0
lim % log/ | (v + iz) [*dx > log(y — 6).
a—oo 20/ oo

Since d > 0 is an arbitrary small number it gives
1 * N
lim 2—10g |D (v + iz)|*dz > logy.
a—oo 200 oo

Taking into account inequality (2.23) we get (2.21). This proves the second part of the
theorem. Theorem 3 is proved.

3 The Olevskii Transformation

We return to the Olevskii transformation (1.1) in order to prove the following Plancherel
type theorem. We have
Theorem 4. Let ¢ > a > 0. The Olevskii transformation (1.1) is the isomorphism

I'(2i7)T(a + i7) |
['(c—a+ir)

T

Oc,(z : L2 (R—H

dT) e Ly (R+; (1+ m)2“0d—$> : (3.1)

where integral (1.1) converges in mean with respect to the norm in Ly (Ry; (1 + z)?*¢4).

The inverse operator is given by the formula

T(c—a+ir)]> [V

2rL(e)|T(2i7)[2 Jiw

1
f(r)=lim.y_oo (14z)* 2™ Fy (a +iT,a —iT; C; ——) Ocof(x)dx,
x

(3.2)
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['(2i7)T(a+iT)
I'(c—a+iT)

2
where the limit is in mean square with respect to the norm in the space Lo <R+; dT) .

(2i7)T(atir) |
I'(c—a+irt)

Besides, if f,g € Lqy (IEL;

dT) then the Plancherel formula holds

[(2i7)(a + iT) ? F(r)g(m)dr (3.3)

I(c—a+ir)

N el [
/0 Oc,af(x)oc,ag(@(l + ) r 27T/o ‘

with the Parseval equality

/OO |Oc,af(l‘)|2 (14 x)2a—cd_37 - /OO ‘F(QiT)F(a +i7)
" 0

x I(c—a+ir) [FrPdr. (34)

Proof. Let f € C°(Ry). Then we use integral representation (1.4) to substitute it in
(1.1) and to invert the order of integration via Fubini’s theorem. This is indeed possible
due to the absolute and uniform convergence of the integral (1.4) with respect to 7 € R..
Thus taking into account equality (2.4) we arrive at the representation

1 [ o Na—a—1dy)
Oca = — d : TWdy, x>0, 0 < a<a. 3.5
af (@) 27r/oo f<a+ly)1“(c—a+oz+zy)x b a=a (35)

On the other hand, employing the self-transformation formula (1.6) for the Gauss function
we represent the Olevskii transform in the form

a—c(q c—2a o] 1
Ocuf (z) = (1t ) / |F(a+i7)|22F1 c—a-+it,c—a—ir;c;—— | f(7)dr,
7 ['(c) 0 z

which gives the following operational relation

Ocaf () = (14+2) 20, _oh (1), (3.6)

2
with h(1) = ‘F(Fc(f;:l )‘ f(7). Hence taking into account (3.5), (3.6), as the consequence

of the Parseval equality for the Mellin transform (1.14) with the parallelogram identity
we obtain

/ |Ocyaf(1‘)|2 (14 z)2 22 dy = / Opoah(2)Op o f (z)2* da
0 0

INa—a+iy) T(c—a—a—1iy)
(c—a+a—iy) TI'(a+ a+iy)

1 [~ _—
=§;Kméﬂa+wﬂﬂa+w%1 dy.  (37)
Equality (3.5) yields (see (1.13)) that

Ia —a—1y)
I'c—a+a+iy)

Oc,af(x) = q)f(a + Zy)
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I(c—a—a—iy)

Oc,cfah (QJ) = (I)h(O‘ +Zy) F(CL +o+ Zy)

Y

where 0 < o < b < min(a,c — a) are Mellin’s Lo-pairs and all integrals in (3.7) are finite.
In fact, we will show that for any f € C§°(Ry)

> o Dla—a+iy)

SUPg<a<h O (v +iy) Te—ata—iy) dy < oo, (3.8)
e Dlc—a—a—iy)|?

SUPg<a<b » Oy (v + iy) Tlatatiy) dy < 0. (3.9)

Then since the integrands in (3.8), (3.9) are analytic in the strip 0 < o < min(a,c — a)
we will get immediately that each one belongs to the Hardy space H3<“§b. Thus almost
everywhere one admits the limit Lo- values, which by Theorem 3 are equal correspondingly,

[Qf](y)%, (3.10)
and r .
[Qh](y)w (3.11)

Furthermore, in the same manner as in (2.10) we conclude that O.,f(x), Oc._oh (z) are
reciprocal Mellin’s transforms (1.13) from Lo(R,;z 'dx). Moreover, by (1.14) we have
the Parseval equalities

2

[0l % = 5 [ lonm s ay (3.12)
[T10m@r = o [ lonw St e ey

Hence returning to (3.7) and employing the Cauchy-Schwarz inequality we find by using
Fatou’s lemma that

00 d -
/0 ’Oc,af($)‘2 (1 + x)Qa—c?x < lim infa_,0+/0 ‘Oc,af(l'MQ (1 + x)Qa—ch(x—ldx

[ oo ot Lo,

1
= —lim inf,_, ; '
5 lim infoo. _ lc—a+a—iy) Dla+a+iy)

™

1 o
< Sup0<a§b% /

[e.e]

IMNa—a+iy) I'(c—a—a—1iy)
MNe—a+a—iy) D(a+a+iy)

dy

Oy (o +iy)Ps(a + iy)
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1/2
1 & ) INa—a+1 2
< sup0<agb% </ ‘q)f(oc + iy) ( Y) )‘ dy)

~ I'c—a+a—iy
(/

So in order to prove (3.8), (3.9) we appeal again to integral representation (2.14)
for the product of Gamma-functions. We substitute it into (2.4), change the order of
integration and the result we write in the form

. T2 +iy) [~df  dt .
Pr(a+iy) = \/;W/o U o pEerw g 0 <a<b<min(a,c—a), (3.14)

M(c—a—a—iy)| v
P ’ d .
wla+iy) I'(a+ a+iy) ' y) =

where f(t) denotes the following Fourier sine integral

fo =2 [ ot

After integration by parts and elimination of the outintegrated terms in (3.14) we use the
relation I'(22)2z = I'(1 + 2z) and the substitution e = cosh?t. Thus we arrive at the
following Fourier integral

, D142+ i) [ s
Qr(a+iy) = \/g ( 22(£i.y) i)) /o e~ @t £ (arccosh e8/2)de.

Hence

> . I(a—a+iy)
o
/_w‘ At WS e ap)

Qd__ ™ /m T(1+2(a+iy))C(a—a+iy)|?
2%+l [ I(c—a+a—1iy)

2
X dy. (3.15)

/ e~ @+ WE f(arccosh e¢/2)dg

0

However, the Gamma-ratio in (3.15) is bounded on (a — ico,a 4+ i0), 0 < a < b <
min(a, c — a) since via Stirling’s asymptotic formula [1] we have

I'(142(a+w)la—a+iy) _ _
=0 lyl|,,|12a—c+1/2 ]
R (e My -e172), Jy] - oo

Consequently, applying twice the Parseval equality for the Fourier transform and making
elementary substitutions we obtain from (3.15)

e . Tla—a+iy) | e
<
/_m‘q’f(a“y’mc—aw—iw‘ <o f

2

/ e~ (@+HWE f(arccosh ef/2)d¢| dy
0
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= CQ/ e’hglf(arccosh 65/2)\2615 < Cg/ ]f(arccosh 65/2)\2615
0 0

20, / F(y)? tanhy dy < 20, / FPE
0 suppf T

where C4,Cy are absolute positive constants. Thus we have proved (3.8). In the same
manner we establish (3.9). Combining now with (3.6), (3.12), (3.13) and applying (1.14),
(2.2) as a consequence of (3.7) we derive the chain of equalities

[ 10mi@P 0oL~ [T o, 0w

1 ['(2i7)T(a + i7) |
T or [(c—a+ir) ()l dr.

which prove (3.4) for any f € Ci°(R;). Moreover, it gives the validity of the Plancherel
identity (3.3). As in Theorem 1 we continuously extend these equalities from the dense
set of smooth functions with compact support on the whole weighted Lo-spaces to obtain
the desired isomorphism (3.1). The Olevskii transform (1.1) is understood as a limit
in the mean square with respect to the norm in the space Lo (R+; (1+ :L')Qa_c%”). The
reciprocal formula (3.2) can be proved as follows. From the Plancherel identity (3.3) it is
not difficult to arrive at the equality

2 1 d IS T o
s [ Ot [ e

1
X o Fy (a +it,a — it; c; ——) (14 z)** cx~* 'dtdx.
T

[ W) G >dy—2w/

0

| Tle—a+ir)
1) = ‘F(a +ir)D(2i7)

Hence f(7) = lim.n_oofn(7), where the limit is in the mean square sense with respect
2

T'(2im)(a+iT)

Teatin) ) and

to the norm in the space Ly <R+; ‘

Tc—a+ir) |° 1 d [V T NY
= Oca t F t
In(T) ‘Fm+4ﬂr@w) %T@wdT[m ’f@ﬁA [Pla+ )l
: . 1 2a—c,.,—a—1
XoFy | a+it,a —it;c;—— ) (1 4+ 2)* “x dtdx
x
_D(c—a+ir)|?

1
_ 1 2a—c,,—a—1 F ; e d
27T ()T (2ir) |2 1/N( +x)* o F (a +iT,a —IT; C; x) Ocof(x)dz

since we can put the derivative under the sign of the latter integral via its uniform con-
vergence with respect to 7. Theorem 4 is proved.
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Let us consider particular cases of the Olevskii transform (1.1), which are associated
with the Mehler-Fock integrals [18], [21], [22]. Precisely, putting in (1.4) a = 3,¢ =
1 —p, 1 < 5 we employ relation (8.4.41.12) in [17] to obtain

11 1 _ 2
o F (5—1—27,5—27;1—”;—5) =T —-p)(l+x) “/QPfl/ZHT <5—|—1>,

where PH(z) is associated Legendre function of the first kind [20]. Thus we arrive at the
formula of the generalized Mehler-Fock transform

Rle) = 1) [ 2 iR, (1 + 2) f(r)dr,  (3.16)

where integral (3.16) is convergent with respect to the norm in Lo (R+; (1+ x)“df) . Ac-
cording to Theorem 4 it forms the isometric isomorphism

? dx
d7'> — Ly (R+; (1+ a:)“—)

T

L(2i7)T(1/2 + i7)
['(1/2 — p+ir)

[Puf] : Lo <R+§

with the Parseval equality

[ s R

|f(7)[*dr.

The reciprocal inverse operator is written in the form

1
o

I'(1/2 — p+ir)

1(7) T (2i7)

2
e _ 2
/0 (1+ x)“/QSU 3/2Pfl/2+” (E + 1> [P.f](x)dz,

D(2ir)T(1/2+4i7) |2
T (1/2—phir)

Finally, if we set ¢ = a + 1, then by virtue of the formula (7.3.1.52) in [17] we have

where the latter integral converges with respect to the norm in Lo <R+;

uT

2 2
x x

Thus we obtain the following transformation of the Mehler-Fock type

Pf) = 1+ 00 [T | prg (142) < e (14 2) | 10 %

T

1 T Dz (1 (1—a)/2
2 I (a+i7,a—z’7;a+1;——) (a+1)2*(1+2)
T
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D(2i7)T(a+iT)

It isomorphically maps the space Lg (]R+; ’ T(irin)

2
dT) onto the space Ly (Ry; (1 + z)*142),

Moreover, the Parseval equality

Iy gt

[f(r)*dr

holds. The inverse operator is given by the formula

o= O [y T (14 2) - pig (142) | P &

2
d7'> .

I'(2i7)(a+iT)
T(11ir)

where the convergence is with respect to the norm in Lo <R+;
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