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Harmonic Analysis of the Lebedev- Stieltjes integrals
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Abstract

We expand the Bochner technique on the following Lebedev- Stieltjes integrals

F (x) =
∫

R

Kiτ (ex)
|Γ(iτ)| dV (τ), x ∈ R

which are related to the Kontorovich-Lebedev transformation. Mapping and inver-
sion properties are investigated. The Fourier type series with respect to uncountable
orthonormal system of the modified Bessel functions are considered in the Bohr type
pre-Hilbert space. The Bessel inequality and Parseval equality are proved.
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1 Introduction and auxiliary results

The aim of this paper is to expand the Bochner technique [2] given for the Fourier- Stieltjes
integrals on the following integral

F (x) =

∫

R

Kiτ (e
x)

|Γ(iτ)| dV (τ), x ∈ R. (1.1)

Here i is the imaginary unit, Γ(iτ) is Euler’s gamma-function, V (τ) is a distribution
function in the Bochner sense [2], which is bounded and monotone increasing on R, and
satisfies everywhere the following equality

V (τ) =
1

2
[V (τ + 0) + V (τ − 0)].

We note that Kiτ (e
x) is the modified Bessel function [3]

Kiτ (e
x) =

π

2i sinh πτ
[I−iτ (e

x)− Iiτ (e
x)] , (1.2)

1Work supported by Fundação para a Ciência e a Tecnologia (FCT, the project ”POCI 2010”)
through the Centro de Matemática da Universidade do Porto (CMUP). Available as a PDF file from
http://www.fc.up.pt/cmup.
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where Iiτ (e
x) is, in turn, the modified Bessel function given in terms of the series

Iiτ (e
x) =

∞∑
m=0

(ex/2)2m+iτ

m!Γ(m + iτ + 1)
. (1.3)

Generally Kµ(z) satisfies the differential equation

z2d2u

dz2
+ z

du

dz
− (z2 + µ2)u = 0,

and has the asymptotic behaviour

Kµ(z) =
( π

2z

)1/2

e−z[1 + O(1/z)], z →∞, (1.4)

and near the origin

z|Reµ|Kµ(z) = 2µ−1Γ(µ) + o(1), z → 0, µ 6= 0, (1.5)

K0(z) = − log z + O(1), z → 0. (1.6)

Moreover it can be defined by the following integral representations [6]

Kµ(x) =

∫ ∞

0

e−x cosh u cosh µu du, x > 0, (1.7)

Kµ(x) =
1

2

(x

2

)µ
∫ ∞

0

e−t−x2

4t t−µ−1dt, x > 0. (1.8)

Hence we easily find that Kiτ (x), τ ∈ R is real-valued when τ ∈ R and an even function
with respect to the index iτ . In the sequel we will appeal to the following integrals (cf.
[6], relations 1.12.3.3, 2.16.33.2)

∫ ∞

x

Kµ(x)Kν(x)
dx

x
=

x

µ2 − ν2

[
Kµ(x)K ′

ν(x)−K ′
µ(x)Kν(x)

]
, (1.10)

∫ ∞

0

Kiτ (x)Kit(x)xα−1dx =
2α−3

Γ(α)

∣∣∣∣Γ
(

α + i(τ + t)

2

)∣∣∣∣
2 ∣∣∣∣Γ

(
α + i(τ − t)

2

)∣∣∣∣
2

, (1.11)

where α > 0 and ′ denotes a derivative with respect to x.
We show that integral (1.1) is related to the Kontorovich-Lebedev transformation (see

[4], [7], [8]). Indeed, putting V (τ) =
∫ τ

−∞ f(t)dt, where f is nonnegative and belongs to
L1(R; dt), y = ex, ϕ(y) = F (log y) and taking into account the value of the modulus of
the gamma- function |Γ(iτ)| = √

π
τ sinh πτ

, integral (1.1) becomes

ϕ(y) =
1√
π

∫

R

√
τ sinh πτKiτ (y)f(τ)dτ, y > 0, (1.12)
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which corresponds to the Kontorovich-Lebedev transformation. Finally in this section we
note two inequalities for the modified Bessel functions ( cf. [4], [5]), which we will use in
the sequel. Precisely, for all x > 0 and τ ∈ R it satisfies

∣∣∣∣
Kiτ (x)

Γ(iτ)

∣∣∣∣ ≤ ex, (1.13)

∣∣∣∣
Kiτ (x)

Γ(iτ)

∣∣∣∣ ≤ C

√
|τ |

x1/4
, (1.14)

where C > 0 is an absolute constant.
The structure of the paper is as follows: in Section 2 we will study mapping properties

of functions, which are representable in terms of the Lebedev -Stieltjes integrals and will
prove an inversion theorem for the Bochner class of distribution functions V (τ). In Section
3 we will construct the Fourier type series with respect to an uncountable orthonormal
system of the modified Bessel functions in the pre-Hilbert space of the Bohr type [1].
Finally we will establish the Bessel inequality and the Parseval equality for these series.

2 Mapping properties and inversion formula

Appealing to the inequality (1.13) we immediately obtain the estimates

∣∣∣∣
∫ a

−∞

Kiτ (e
x)

|Γ(iτ)| dV (τ)

∣∣∣∣ ≤ eex

[V (a)− V (−∞)] , (2.1)

∣∣∣∣
∫ ∞

b

Kiτ (e
x)

|Γ(iτ)| dV (τ)

∣∣∣∣ ≤ eex

[V (∞)− V (b)] , (2.2)

for any b ∈ R. This means that for each distribution function V (τ) integral (1.1) exists
for all x ∈ R. Moreover, we have

|F (x)| ≤ eex

[V (∞)− V (−∞)] . (2.3)

Consequently, F (x) is a real bounded function on any bounded set of R. If we put

Fn(x) =

∫ n

−n

Kiτ (e
x)

|Γ(iτ)| dV (τ)

then (see (2.1), (2.2))

|F (x)− Fn(x)| ≤ eex

[V (∞)− V (n) + V (−n)− V (−∞)] ,
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which tends to 0 when n →∞ on any compact set of R. Thus the sequence {Fn(x)}∞n=1

converges uniformly to F (x) on any compact set and represents there a continuous func-
tions.

The main goal of this section is to prove an inversion formula for the integral (1.1). To
do this we will modify the inversion theorem for the Lebedev integrals from [9] proving
it for absolutely continuous distributions. Therefore V (τ) can be represented by the
indefinite integral of a nonnegative summable function g(t), i.e.

V (τ) =

∫ τ

a

g(t)dt, a ∈ R. (2.4)

Thus we have
Theorem 1. For a class of distributions (2.4) the Lebedev integral (1.1) has the

following inversion

1

2
[V (τ)− V (−τ) + V (−a)] = lim

ε→0+

∫ ∞

−∞
eεxK(τ, x)F (x)dx, (2.5)

where

K(τ, x) =
1

π

∫ τ

a

Kiy(e
x)

|Γ(iy)| dy.

Proof. Taking into account (2.4) we multiply both sides of (1.1) on 1
π|Γ(iτ)|e

εxKiτ (e
x)

for each ε > 0 and τ ∈ R and we integrate with respect to x over R. However asymptotic
formulas (1.4), (1.5) and inequalities (2.1), (2.2) allow us to invert the order of integration
by virtue of Fubini’s theorem. Making elementary substitution ex = u we appeal to
formula (1.11) to calculate the inner integral. As a result we come out with the equality

1

π|Γ(iτ)|
∫ ∞

−∞
eεxKiτ (e

x)F (x)dx =
2ε−3

πΓ(ε)

∫ ∞

−∞

∣∣∣Γ
(

ε+i(y+τ)
2

)
Γ

(
ε+i(τ−y)

2

)∣∣∣
2

|Γ(iτ)Γ(iy)|

×g(y)dy, (2.7)

where g(y) ∈ L1(R; dy). Fixing a small δ > 0 we split the integral in the right-hand side
of (2.7) for each τ ∈ R as follows

2ε−3

πΓ(ε)

∫ ∞

−∞

∣∣∣Γ
(

ε+i(y+τ)
2

)
Γ

(
ε+i(τ−y)

2

)∣∣∣
2

|Γ(iτ)Γ(iy)| g(y)dy

=
2ε−3

πΓ(ε)

(∫

|τ±y|≤δ

+

∫

|τ±y|>δ

) ∣∣∣Γ
(

ε+i(y+τ)
2

)
Γ

(
ε+i(τ−y)

2

)∣∣∣
2

|Γ(iτ)Γ(iy)| g(y)dy
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= (I1εg)(τ) + (I2εg)(τ). (2.8)

But it is easily seen appealing to the Stirling asymptotic formula for gamma-functions [3,
Vol. I] that for each ε > 0, τ ∈ R

∫

|τ±y|>δ

∣∣∣Γ
(

ε+i(y+τ)
2

)
Γ

(
ε+i(τ−y)

2

)∣∣∣
2

|Γ(iy)| g(y)dy

= O

(∫

|τ±y|>δ

e−
π
2
|y|g(y)dy

)
< ∞.

Hence with the reduction formula for gamma-function Γ(1 + z) = zΓ(z) we have

lim
ε→0+

(I2εg)(τ) = lim
ε→0+

2ε−3ε

πΓ(1 + ε)

∫

|τ±y|>δ

∣∣∣Γ
(

ε+i(y+τ)
2

)
Γ

(
ε+i(τ−y)

2

)∣∣∣
2

|Γ(iτ)Γ(iy)| g(y)dy = 0.

Further,

(I1εg)(τ) =
2ε−1

πΓ(ε)

∫

|τ±y|≤δ

∣∣∣Γ
(
1 + ε+i(y+τ)

2

)
Γ

(
1 + ε+i(τ−y)

2

)∣∣∣
2

τy|Γ(iτ)Γ(iy)|(ε2 + (τ − y)2)
g(y)dy

− 2ε−1

πΓ(ε)

∫

|τ±y|≤δ

∣∣∣Γ
(
1 + ε+i(y+τ)

2

)
Γ

(
1 + ε+i(τ−y)

2

)∣∣∣
2

τy|Γ(iτ)Γ(iy)|(ε2 + (τ + y)2)
g(y)dy

= (J±1εg)(τ)− (J±2εg)(τ). (2.9)

Let us treat integral (J±1εg)(τ) noting that integral (J±2εg)(τ) can be treated in the same
manner. Moreover it is easy to verify that integrals (J+

1εg)(τ), (J−2εg)(τ) tend to zero when
ε → 0+ for all τ ∈ R. At the same time we have

(J−1εg)(τ) =
2ε−1

πΓ(ε)

∫

|τ−y|≤δ




∣∣∣Γ
(
1 + ε+i(y+τ)

2

)
Γ

(
1 + ε+i(τ−y)

2

)∣∣∣
2

τy|Γ(iτ)Γ(iy)|

−Γ2
(
1 +

ε

2

) ∣∣∣∣∣
Γ

(
1 + ε

2
+ iτ

)

Γ(1 + iτ)

∣∣∣∣∣

2

 g(y)

ε2 + (τ − y)2
dy

+
2ε−1

πΓ(ε)
Γ2

(
1 +

ε

2

) ∣∣∣∣∣
Γ

(
1 + ε

2
+ iτ

)

Γ(1 + iτ)

∣∣∣∣∣

2 ∫

|τ−y|≤δ

g(y)

ε2 + (τ − y)2
dy. (2.10)
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But the modulus of the expression in brackets in the first integral at the right-hand side
of (2.10) is less than ε as soon as |τ − y| ≤ δ. Therefore from the estimate

2ε−1

πΓ(ε)

∫

|τ−y|≤δ

∣∣∣∣∣∣∣




∣∣∣Γ
(
1 + ε+i(y+τ)

2

)
Γ

(
1 + ε+i(τ−y)

2

)∣∣∣
2

τy|Γ(iτ)Γ(iy)|

−Γ2
(
1 +

ε

2

) ∣∣∣∣∣
Γ

(
1 + ε

2
+ iτ

)

Γ(1 + iτ)

∣∣∣∣∣

2



∣∣∣∣∣∣
|g(y)|

ε2 + (τ − y)2
dy <

2ε−1

πΓ(1 + ε)

∫

|τ−y|≤δ

g(y)dy < ∞

and the dominated convergence theorem we conclude that the first term at the right-hand
side of (2.10) tends to zero when ε → 0+. Meanwhile, for any small finite δ > ε

1

Γ(ε)

∫

|τ−y|≤δ

g(y)

ε2 + (τ − y)2
dy =

1

Γ(ε)

∫

|τ−y|≤δ

g(y)− g(τ)

ε2 + (τ − y)2
dy

+
2

Γ(1 + ε)
arctan

(
δ

ε

)
g(τ), (2.11)

and at each Lebesgue point of g we obtain

1

Γ(ε)

∣∣∣∣
∫

|τ−y|≤δ

g(y)− g(τ)

ε2 + (τ − y)2
dy

∣∣∣∣ ≤
1

Γ(ε)

∫

|τ−y|≤δ

|g(y)− g(τ)|
ε2 + (τ − y)2

dy

=
1

Γ(ε)

[∫

|τ−y|<ε

+

∫ |τ−y|≤δ

|τ−y|>ε

]
|g(y)− g(τ)|
ε2 + (τ − y)2

dy

<
1

εΓ(1 + ε)

∫

|τ−y|<ε

|g(y)− g(τ)|dy +
1

Γ(ε)

∫ δ

ε

1

ρ2
d

∫ ρ

0

|g(y + τ)− g(τ)|dy

=
1

εΓ(1 + ε)

∫

|τ−y|<ε

|g(y)− g(τ)|dy +
1

Γ(ε)

[
1

δ2

∫ δ

0

|g(y + τ)− g(τ)|dy

− 1

ε2

∫ ε

0

|g(y + τ)− g(τ)|dy + 2

∫ δ

ε

1

ρ3

∫ ρ

0

|g(y + τ)− g(τ)|dydρ

]

<
5

Γ(1 + ε)
max0<ρ≤δ

[
1

ρ

∫ ρ

0

|g(y + τ)− g(τ)|dy

]
= o(1), δ → 0.

Now we first find a δ > 0 such that the first term at the right-hand side of (2.11) is
sufficiently small and then we let ε go to 0. Thus

lim
ε→0+

1

Γ(ε)

∫

|τ−y|≤δ

g(y)

ε2 + (τ − y)2
dy = πg(τ)
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and with (2.10) we find limε→0+(J−1εg)(τ) = g(τ)
2

. Analogously we have limε→0+(J+
2εg)(τ) =

−g(−τ)
2

. Combining with (2.7), (2.8), (2.9) we obtain finally that at each Lebesgue point
of g

lim
ε→0+

1

2π|Γ(iτ)|
∫ ∞

−∞
eεxKiτ (e

x)F (x)dx =
g(τ) + g(−τ)

2
. (2.12)

Moreover, from the above estimates it follows that for all ε ∈ (0, 1/2]

1

π|Γ(iτ)|

∣∣∣∣
∫ ∞

−∞
eεxKiτ (e

x)F (x)dx

∣∣∣∣ < Cτ (1 + g(τ) + g(−τ)),

where Cτ > 0 is a constant depending only on τ . Consequently, one can integrate through
in (2.12) with respect to τ over any compact [a, τ ] and take out the limit by ε in its left-
hand side via the dominated convergence theorem. With simple substitutions and taking
into account (2.4) we obtain,

lim
ε→0+

1

π

∫ τ

a

1

|Γ(iy)|
∫ ∞

−∞
eεxKiy(e

x)F (x)dxdy =
1

2
[V (τ)− V (−τ) + V (−a)] . (2.13)

Hence formula (2.5) comes immediately after the change of the order of integration in the
left-hand side of (2.13) by virtue of the uniform convergence of the inner integral with
respect to y for each 0 < ε < 1/2. Indeed, this fact can be achieved by the estimate (see
(1.4), (1.6), (1.7), (2.3))

∫ ∞

−∞
eεx|Kiy(e

x)F (x)|dx < const.

∫ ∞

−∞
eεxK0(e

x)eex

dx

= const.

∫ ∞

0

tε−1K0(t)e
tdt < ∞, 0 < ε <

1

2
.

Theorem 1 is proved.

3 Spectral decompositions of the Lebedev- Stieltjes

integrals. Fourier type series.

As it is known (cf. [2]), the distribution function V (τ) has at most a countable set of
discontinuous points, which we denote by λ0, λ1, λ, . . . , λν , . . . , and the corresponding
jumps by aν . Hence as usual aν = V (λν + 0)− V (λν − 0) and

∑
ν aν ≤ V (∞)− V (−∞).

Furthermore, let us assume that there exists an equivalent odd distribution function [2],
which differs from V (τ) on a constant and which we will denote again as V (τ). Then
integral (1.1) can be written as

F (x) = 2

∫

R+

Kiτ (e
x)

|Γ(iτ)| dV (τ), x ∈ R. (3.1)
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Meanwhile, V (τ) can be represented as a sum of two distribution functions, namely

V (τ) = S(τ) + D(τ), (3.2)

where S(τ) is continuous and D(τ) is a jump function of the distribution V (τ). D(τ) is
defined as follows: at each point τ , where V (τ) is continuous the value of D(τ) is equal
to the sum of jumps of V (τ) from the left of τ , i.e.

D(τ) =
∑

λν<τ

aν . (3.3)

Hence we immediately obtain

D(λν + 0)−D(λν − 0) = V (λν + 0)− V (λν − 0).

When V (τ) is continuous, then D(τ) ≡ 0. Another least case takes place when S(τ) =
const.

Denoting by ϕτ (x) = 2Kiτ (ex)
|Γ(iτ)| we easily find that ϕ0(x) = 0 for all x ∈ R. Taking into

account (3.1) we write the Lebedev-Stieltjes integral (1.1) as F (x) = G(x) + h(x), where

G(x) =

∫

R+

ϕτ (x) dD(τ), (3.4)

h(x) =

∫

R+

ϕτ (x) dS(τ). (3.5)

Let us consider function (3.4). By the properties of the Stieltjes integral it can be written
in terms of series

G(x) =
∑

ν

aνϕλν (x). (3.6)

Conversely one can show that each series of type (3.6) with positive aν such that
∑

ν aν

is convergent, represents a function of type (3.4). Moreover, D(τ) should be defined as
follows: if τ is different from λν for any ν then (3.2) holds. Otherwise we have the equality

D(τ) =
1

2
[D(τ + 0) + D(τ − 0)] .

We will appeal now at the Bohr type mean value [1], [2]

M{f(x)} = lim
ω→∞

1

2ω

∫ ω

−ω

f(x)dx. (3.7)

First we prove the following lemma.
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Lemma 1. The uncountable system of functions ϕλn(x) = 2
Kiλn(ex)

|Γ(iλn)| , λn ∈ R+, n ∈ N0

is orthonormal in a sense that

M{ϕλn(x)ϕλm(x)} = 0, λn 6= λm, (3.8)

M{ϕ2
λn

(x)} = 1, λn > 0, (3.9)

hold true.
Proof. In fact, considering different nonzero positive values λn, λm we fix some δ > 0

and after simple substitution we split the integral in the left-hand side of (3.7) as follows

M{ϕλn(x)ϕλm(x)} = lim
ω→∞

1

ω

∫ e−ω+δ

e−ω

Kiλn(x)Kiλm(x)

|Γ(iλn)Γ(iλm)|
dx

x

+ lim
ω→∞

1

ω

∫ eω

e−ω+δ

Kiλn(x)Kiλm(x)

|Γ(iλn)Γ(iλm)|
dx

x
. (3.10)

But the second limit in the right-hand side of (3.10) is zero via asymptotic formula (1.4)
for the modified Bessel function and the boundedness of the following integral

∫ eω

e−ω+δ

|Kiλn(x)Kiλm(x)|dx

x
<

∫ ∞

δ

K2
0(x)

dx

x
< ∞.

The first limit one can treat taking (1.2), (1.3) and writing the product of the modified
Bessel functions in terms of the of series

Kiλn(x)Kiλm(x) = − π2

4 sinh πλn sinh πλm

[
xiλn

2iλnΓ(1 + iλn)
− x−iλn

2−iλnΓ(1− iλn)

+
∞∑

k=1

(x/2)2k+iλn

k!Γ(k + iλn + 1)
−

∞∑

k=1

(x/2)2k−iλn

k!Γ(k − iλn + 1)

] [
xiλm

2iλmΓ(1 + iλm)
− x−iλm

2−iλmΓ(1− iλm)

+
∞∑

k=1

(x/2)2k+iλm

k!Γ(k + iλm + 1)
−

∞∑

k=1

(x/2)2k−iλm

k!Γ(k − iλm + 1)

]
.

Consequently, when x → 0+ we get

Kiλn(x)Kiλm(x) = − π2

4 sinh πλn sinh πλm

[
xiλn

2iλnΓ(1 + iλn)
− x−iλn

2−iλnΓ(1− iλn)

]

×
[

xiλm

2iλmΓ(1 + iλm)
− x−iλm

2−iλmΓ(1− iλm)

]
+ O(x2). (3.11)
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Hence

lim
ω→∞

1

ω

∫ e−ω+δ

e−ω

Kiλn(x)Kiλm(x)
dx

x
= − π2

4 sinh πλn sinh πλm

(
[2i(λn+λm)Γ(1 + iλn)

×Γ(1 + iλm)i(λn + λm)]−1 lim
ω→∞

(e−ω + δ)i(λn+λm) − e−iω(λn+λm)

ω

+[2i(λn−λm)Γ(1 + iλn)Γ(1− iλm)i(λn − λm)]−1 lim
ω→∞

(e−ω + δ)i(λn−λm) − e−iω(λn−λm)

ω

+[2i(λm−λn)Γ(1 + iλm)Γ(1− iλn)i(λm − λn)]−1 lim
ω→∞

(e−ω + δ)i(λm−λn) − e−iω(λm−λn)

ω

+[2−i(λm+λn)Γ(1− iλm)Γ(1− iλn)i(λm + λn)]−1

× lim
ω→∞

(e−ω + δ)−i(λm+λn) − eiω(λm+λn)

ω

)
= 0

and we prove (3.8). In the case of (3.9) we come again to (3.11) appealing to the supple-
ment formula for gamma- function Γ(z)Γ(1− z) = π

sin πz
. Therefore we obtain

K2
iλn

(x) = − π2

4 sinh2(πλn)

[
xiλn

2iλnΓ(1 + iλn)
− x−iλn

2−iλnΓ(1− iλn)

]2

+ O(x2)

=
|Γ(iλn)|2

2
− π2

4 sinh2(πλn)

[
x2iλn

4iλnΓ2(1 + iλn)
+

x−2iλn

4−iλnΓ2(1− iλn)

]
+ O(x2), x → 0 + .

Thus for any λn > 0 and a fix δ > 0 (3.9) becomes

M{ϕ2
λn

(x)} = lim
ω→∞

2

ω|Γ(iλn)|2
∫ e−ω+δ

e−ω

K2
iλn

(x)
dx

x
= lim

ω→∞
1

ω

∫ e−ω+δ

e−ω

dx

x
= 1.

Lemma 1 is proved.
This lemma allows us to consider Fourier type series (3.6) with respect to the system

ϕλn(x) = 2
Kiλn(ex)

|Γ(iλn)| in the Bohr type pre-Hilbert space (cf. [1], [2]) equipped with the inner
product

M{f(x)g(x)} = lim
ω→∞

1

2ω

∫ ω

−ω

f(x)g(x)dx. (3.12)

As it is known [1], [2], the corresponding Hilbert space contains the space of almost
periodic functions. Here below we will establish in a similar manner the fundamental
results for the so-called spectral decompositions of the Lebedev- Stieltjes integrals F (x)
in terms of the Fourier type series (3.6). However, first we prove the following theorem.
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Theorem 2. Let the sequence {λν}∞0 be with distinct positive numbers and the series
(3.6) be with non zero coefficients such that

∑
ν aν < ∞. Then this series is the Fourier

series of its sum G(x).
Proof. Appealing to the inequality (1.13) we have the estimate

|G(x)| ≤
∑

ν

aν |ϕλν (x)| ≤ 2eex
∑

ν

aν ,

which yields the uniform convergence of the series (3.6) with respect to x from any com-
pact set of R. Hence we multiply (3.6) by ϕλn(x) and integrate with respect to x over
[−ω, ω], ω > A > 0. Changing the order of integration and summation we obtain

1

2ω

∫ ω

−ω

G(x)ϕλn(x)dx =
∑

ν

aν
1

2ω

∫ ω

−ω

ϕλn(x)ϕλν (x)dx. (3.13)

But
1

2ω

∫ ω

−ω

|ϕλn(x)ϕλν (x)|dx ≤ 2

ω|Γ(iλn)|
∫ eω

e−ω

|Kiλn(x)|ex dx

x

=
2

ω|Γ(iλn)|
∫ e−ω+δ

e−ω

|Kiλn(x)|ex dx

x
+

2

ω|Γ(iλn)|
∫ eω

e−ω+δ

|Kiλn(x)|ex dx

x

and via asymptotic formula (1.4) we find that

2

ω|Γ(iλn)|
∫ eω

e−ω+δ

|Kiλn(x)|ex dx

x
<

C

A|Γ(iλn)|
∫ ∞

δ

dx

x3/2
< ∞, δ > 0,

where C > 0 is an absolute constant. At the same time again with (1.13) we have

2

ω|Γ(iλn)|
∫ e−ω+δ

e−ω

|Kiλn(x)|ex dx

x
<

2

ω

∫ e−ω+δ

e−ω

e2x dx

x

< 2e2(e−A+δ) log(e−ω + δ) + ω

ω
= 2e2(e−A+δ) log(1 + eωδ)

ω
< 2e2(e−A+δ)

[
1 +

log(1 + δ)

A

]
.

Consequently, by virtue of the condition
∑

ν aν < ∞ a series in the right-hand side of
(3.13) converges absolutely and uniformly with respect to ω > A > 0 and the mean value
process may be taken termwise. Thus passing to the limit through in (3.13) when ω →∞
and taking into account relations (3.7), (3.8), (3.9) we get the formula for coefficients of
the Fourier type series (3.6)

aν ≡ a(λν) = M{G(x)ϕλν (x)}, ν ∈ N0, (3.14)

and we conclude the proof of Theorem 2.
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Now we consider the following formula

M




∣∣∣∣∣F (x)−
N∑

n=0

cnϕλn(x)

∣∣∣∣∣

2


 = M{|F (x)|2} −

N∑
n=0

[a(λn)]2 +
N∑

n=0

|cn − a(λn)|2, (3.15)

where F (x) is defined by (3.1), a(λn) are Fourier coefficients (3.14) and cn are arbitrary
complex numbers. This formula can be easily proved by using Lemma 1, the properties
of the inner product (3.12) and the mean value (3.7). If the numbers a(λn) are chosen for
the constants cn, the there follows the formula

M




∣∣∣∣∣F (x)−
N∑

n=0

a(λn)ϕλn(x)

∣∣∣∣∣

2


 = M{|F (x)|2} −

N∑
n=0

[a(λn)]2. (3.16)

This immediately yields the Bessel type inequality

N∑
n=0

[a(λn)]2 ≤M{|F (x)|2}. (3.17)

Assuming that the right-hand side of (3.17) is finite, we observe from (3.17) by similar
discussions as for Fourier coefficients of the almost periodic functions (cf. [1]) that a(λ) is
zero for all λ > 0 with the exception of an at most enumerable set of values of positive λ,
which we denote by λ0, λ1, λ2, . . . . Thus the series in (3.17) when N →∞ is convergent
and we have ∞∑

n=0

[a(λn)]2 ≤M{|F (x)|2}. (3.18)

We will prove below that for the class of the Lebedev- Stieltjes integrals F (x) the equality
sign always holds in (3.18), i.e. we will establish the Parseval equality for this class of
functions

M{|F (x)|2} =
∞∑

n=0

[a(λn)]2. (3.19)

Lemma 2. Under conditions of Theorem 2 each function F (x), which is defined by
the Lebedev- Stieltjes integral (3.1) satisfies the equality

a(λν) = M{F (x)ϕλν (x)}, ν ∈ N0, (3.20)

where a(λν) are given by (3.14).
Proof. Taking into account relations (3.4), (3.5) and the equality F (x) = G(x)+h(x)

it is sufficient to prove that M{h(x)ϕλ(x)} = 0 for all λ > 0. Fixing a small δ > 0 we
have

h(x) =

∫

R+

ϕτ (x) dS(τ) =

∫

|τ−λ|≤δ

ϕτ (x) dS(τ)
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+

∫

|τ−λ|>δ

ϕτ (x) dS(τ).

Hence via the uniform convergence of the latter integrals with respect to x ∈ [−ω, ω], ω >
A > 0 we derive

1

2ω

∫ ω

−ω

h(x)ϕλ(x)dx =
1

2ω

∫

|τ−λ|≤δ

∫ ω

−ω

ϕλ(x)ϕτ (x)dx dS(τ)

+
1

2ω

∫

|τ−λ|>δ

∫ ω

−ω

ϕλ(x)ϕτ (x)dx dS(τ). (3.21)

The second integral in the right-hand side of (3.21) is zero when ω → ∞ by virtue of
Lemma 1 and the uniform convergence with respect to ω > A > 0. Considering the first
integral we use the boundedness of

1

2ω

∫ ω

−ω

ϕλ(x)ϕτ (x)dx

for all λ, τ > 0, ω > A > 0 (see the proof of Theorem 2) and the continuity of the
distribution S(τ). Thus we find the estimate

1

2ω

∣∣∣∣
∫

|τ−λ|≤δ

∫ ω

−ω

ϕλ(x)ϕτ (x)dx dS(τ)

∣∣∣∣ ≤ const.

∫

|τ−λ|≤δ

dS(τ)

= S(λ + δ)− S(λ− δ),

where the latter difference can be made arbitrarily small choosing an appropriate small
positive δ. Then passing to the limit in (3.21) when ω → ∞ we conclude the proof of
Lemma 2.

Finally we prove the Parseval equality (3.19). To do this it is sufficient to establish
the following limit (see (3.16)) of the convergence in the mean of the partial sums of the
Fourier series to F (x)

lim
N→∞

M




∣∣∣∣∣F (x)−
N∑

n=0

a(λn)ϕλn(x)

∣∣∣∣∣

2


 = 0. (3.22)

Invoking the properties of the inner product, taking termwise the mean value in the series
and using Lemma 2 we deduce the equalities

M




∣∣∣∣∣F (x)−
N∑

n=0

a(λn)ϕλn(x)

∣∣∣∣∣

2


 = M





∣∣∣∣∣G(x)−
N∑

n=0

a(λn)ϕλn(x) + h(x)

∣∣∣∣∣

2
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= M




∣∣∣∣∣
∞∑

n=N+1

a(λn)ϕλn(x) + h(x)

∣∣∣∣∣

2


 =

∞∑
n=N+1

[a(λn)]2 +M{|h(x)|2} .

But
∑∞

n=N+1[a(λn)]2 → 0, N → ∞ since the series
∑∞

n=0 a(λn) with positive terms is
convergent. In order to conclude our proof we have to show thatM{|h(x)|2} = 0. Indeed,

M{|h(x)|2} = lim
ω→∞

∫

R+

1

2ω

∫ ω

−ω

h(x)ϕλτ (x)dxdS(τ).

But as we see above the latter iterated integral converges absolutely and uniformly with
respect to ω ∈ R+. Hence passing to the limit under integral sign and appealing to Lemma
2 we get

lim
ω→∞

∫

R+

1

2ω

∫ ω

−ω

h(x)ϕλτ (x)dxdS(τ) =

∫

R+

M{h(x)ϕλτ (x)} dS(τ) = 0.

Thus we summarize our results by the following
Theorem 3. A function F (x), which is represented by the Lebedev- Stieltjes integral

(3.1) can be decomposed in the Fourier type series in the Bohr type pre-Hilbert space (3.12)

F (x) = 2
∞∑

n=0

an
Kiλn(ex)

|Γ(iλn)| , λn > 0, x ∈ R, (3.23)

with positive coefficients an and the convergent sum
∑

n an. Series (3.23) converges in the
mean to F (x) and the Parseval equality

M{|F (x)|2} =
∞∑

n=0

a2
n

holds.
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