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Abstract

The Kontorovich-Lebedev transformation
[e.e]
(KLf)(x) :/ Kir(z)f(r)dr, * € Ry
0

is considered as an operator, which maps the weighted space L,(Ry;w(7)dr), 2 <
p < oo into the Sobolev type space Sfov’o‘(RQ with the finite norm

N . 1/p
k _
Huls,iv’”‘(m):(E: [ 1k 1da:> <.
k=0

where o = (ag, a1,...,an),ar € R,k =0,...,N, and A, is the differential opera-
tor of the form

and A means k-th iterate of A,, A%u = u. Elementary properties for the space
Sf)v “(R4) are derived. Boundedness and inversion properties for the Kontorovich-
Lebedev transform are studied. In the Hilbert case (p = 2) the isomorphism between
these spaces is established for the special type of weights and Plancherel’s type
theorem is proved.
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1 Introduction

The object of the present paper is to extend the theory of the important Kontorovich-
Lebedev transformation [8], [11]

(KLf)(z) = / " Ko (@) f(r)dr, (11)

on the so-called Sobolev type spaces, which will be defined below. In the following,
x € Ry = (0,00), K;-(z) is the modified Bessel function or the Macdonald function (cf.
[1], [8, p- 355]), and the pure imaginary subscript (an index) i7 is such that 7 is restricted
to Ry. The function K, (z) satisfies the differential equation

Pt z— — (2 +1)u =0, (1.2)

for which it is the solution that remains bounded as z tends to infinity on the real line.
The modified Bessel function has the asymptotic behaviour (cf. [1], relations (9.6.8),
(9.6.9), (9.7.2))

Ko (2) = (2”—2)1/2 L+ 0(1/2)], 2 — oo, (1.3)

and near the origin
K,(2)=0 (z_‘ReW) , 2 — 0, (1.4)
Ko(z) = O(log z), z — 0. (1.5)

Meanwhile, when z is restricted to any compact subset of R, and 7 tends to infinity we
have the following asymptotic [11, p. 20]

21

Kir(2) = < )1/2 e™/2sin G +rlog 2;7 . T) 1+0(1/7)], 7—o0. (L6

The modified Bessel function can be represented by the integrals of the Fourier and Mellin
types [1], [8], [11]

T

Kl,(:c):/ e~ et cosh vudu, (1.7)
0

1o\ [ _, .2
Ky(x):§(g) /O ettt (1.8)

Hence it is not difficult to show that K;.(x) is infinitely differentiable with respect to x
and 7 on R, real-valued funtion. We also note that the product of the modified Bessel
functions of different arguments can be represented by the Macdonald formula [1], [6],
[11]

du

. (1.9)

1o o (w® e
Kile)Kinlt) =5 [ ¢ ( ) Kot
0
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In this paper we deal with the Lebesgue weighted L,(R.;w(z)dx) spaces over the
measure w(z)dr with the norm

111l = ( | |f(9:)|pw(x)dx) M lepes, (1.10)

[ flloc = ess sup|f(z)]. (1.11)

In particular, we will use the spaces L,, = L,(R;; 2?7 !'dz), 1 < p < oo,v € R, which
are related to the Mellin transforms pair [7], [8], [9]

fM(s) = /000 f(z)z*du, (1.12)

1 V+100

f(z) = —/ fM(s)z™5ds, s =v+it, x> 0. (1.13)
2mi V—100

The integrals (1.13)- (1.14) are convergent, in particular, in mean with respect to the

norm of the spaces Ly(v —i00, v +ioo;ds) and Ly(R.y; 2%~ 1dx), respectively. In addition,

the Parseval equality of the form

| i@ = 5
0

%/Z|fM(l/+it)|2dt (1.15)

holds true.

As it is proved in [12], [13], the Kontorovich-Lebedev operator (1.1) is an isomorphism
between the spaces Ly(Ry; [rsinh77]7'dr) and Ly(R;z 'dx) with the identity for the
square of norms

°O de 7w [ dr
KL 2 = z 1.1
| i@ =5 [ rer—, (1.16)
and the Parseval equality of type
o — dx w [*% —— dr
KL KL — = — _ 1.1
| L@ ERL@ S =5 [ e . (1.17)

where f,g € Lo(Ry; [rsinh7w7]~'d7). We note that the convergence of the integral (1.1)
in this case is with respect to the norm (1.10) for the space Lo(Ry; 2z 'dx).

However, our goal is to study the Kontorovich-Lebedev transformation in the space
Sév"‘(RQ, 1 < p < oo, which we call the Sobolev type space with the finite norm

N s 1/p
[ullsyor,) = <Z/ |A§U\p$ak“dﬂ?) < oo. (1.18)
k=00
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Here o = (g, a1, ..., an),a € RyE=0,..., N, and A, is the differential operator (1.2),
which is written in the form
9 d | du

Ayu = x*u(x) T {xdl} . (1.19)
As usual we denote by AF the k-th iterate of A,, A% = u. The differential operator (1.19)
was used for instance in [4], [16] in order to construct the spaces of testing functions to
consider the Kontorovich-Lebedev transform on distributions (see also in [10]). Recently
(see [15]) it is involved to investigate the corresponding class of the Kontorovich-Lebedev
convolution integral equations.

In the sequel we will derive imbedding properties for the spaces SZ])V *(Ry) and we
will find integral representations for the functions from SN*(R.). Finally we will study
the boundedness and inversion properties for the Kontorovich-Lebedev transformation
as an operator from the weighted L,-space L,(Ry;w(z)dr) into the space SN*(Ry).

When p = 2, = 0 we will prove the Plancherel type theorem and we will establish an
isomorphism for the special type of weights between these spaces.

2 Elementary properties for the space Sjﬁv *(R.)

Let ¢(z) belong to the space C§°(R.) of infinitely differentiable functions with a compact
support on R,. Hence taking (1.19), we integrate by parts for any twice continuously
differentiable function v € C*(R.;) and we derive the following equality

[ = [T o) (2.1)

Now if furthermore we suppose, that for any ¢ € Cj°(R;) and some locally integrable
function v € Lj,.(Ry) it satisfies

| u@a = [ ote) o)

x
then subtracting these equalities we immediately obtain

dx

X

/ Asu— v(@)] @)™ = 0. (2.2)
0

Consequently, via Du Bois-Reymond lemma we find that v(x) = A,u almost everywhere
in Ry. Thus we use (2.2) to define the so-called generalized derivative v(z) for the
function u(x) in terms of the operator A,. A k-th generalized derivative can be easily
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defined from (2.1). Indeed, for any ¢ € C3°(R;) we have that A,¢ € C3°(R;) and we
will call vy,(z) € Lioe(Ry) a k-th generalized derivative for u € Lj.(Ry) (vp(7) = AFu) if
it satisfies the equality

/Ooo u(w)Aiwi—x = /OOO on(@) (). 2.3)

T

Further, from the norm definition (1.18) and elementary inequalities it follows that there
are positive constants C', Cy such that

n

0o 1/1) N 0o 1/p
Ch Z (/0 \Aiu\pxakpldx) < (Z/o |A§u|px°‘“’1d:c>
k=0

k=0

N 1/p

< Oy Z (/ |A’;u\pxo‘k’p_1dm) . (2.4)
0

k=0

Hence by (1.10) we have the equivalence of norms

N N
Ch Z ||A§u||Lp(R+;makP*1dx) < ||u||51§Vaa(R+) < Cy Z ||Aiu||Lp(R+;xakp’1dm)‘ (2.5)
k=0 k=0

In order to show that S;V *(Ry),1 < p < oo is a Banach space we take a fundamental
sequence uy,(z), i.e. ||u, — umHSév,a(R” — 0, m,n — oo. This will immediately imply
that

Hun - U’m||Lo¢0,p - O?

AR, — Afu|p,, , — 0, k=1,...,N,

when m,n — oo. Since spaces L,,,k = 0,1,..., N are complete, there are functions
Vo € Lagp, Uk € Lq, p such that

|[tn = vol|L0,, — 0, (2.6)

|ASun — vkllL,, , — 0, k=1,...,N, (2.7)

when n — oo. If we show that v, is a k-th generalized derivative of vy then we prove that
the sequence wu, converges to vy € S)"*(R,) with respect to the norm (1.18). In fact,
from (2.6), (2.7) for any ¢ € C°(R) we have the limit equalities
, o dz > dz
lim [ un@o@) S = [ ) o)
0

n—oo 0 €T €T

i [ A, o) = [T ) e

n—oo fq xz

dx
-
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But on the other hand,

> d > d
lim Ak, go(x)—x = lim Un () Akgo—x

n—oo [ €T n—oo [ €T

:/ vo() A’;god—x.
0 T

Therefore invoking (2.3) we get v(z) = Afvo and we prove that SY*(R4) is a Banach
space.

For the space S;’Q(RJF) we establish an imbedding theorem into Sobolev’s weighted
space oW, (Ry; 277~ dz) with the norm

1/p

[e.@]
|’uHoWI}(R+;zW—1dx) = (/ ’u/(x)’px'ypld$)
0

Indeed, we have the following result.
Theorem 1.Let 1 <p <oo, a=(2—,—0),0 > 0. The imbedding

SL(Ry) C oW} (Rys 2P )

18 true.
Proof. Appealing to the classical Hardy’s inequality [2]

/0 T /0 )t

where 1 < p < oo, r > 1 we put f(z) = Ayu/x,r = fp+ 1, § > 0 and we have the

estimate
e 1/p 00 T A p 1/p
(/ ]Amu]pxﬂpldx) > const. (/ P / 20 dx)
0 0 o t
0 T P 1/p 00 1/p
= const. (/ gl / tu(t)dt — zu'(x) dx) > const. (/ P01/ ()P dx)
0 0 0
o0 T p 1/p
- (/ g~ PPl / tu(t)dt dx) :
0 0
Thus we get

0 1/P [e%¢} 1/p
(/ 2PA=B=1 1/ (z)|P dm) < const. (/ |Axu|px_ﬂp_1dx>
0 0

p

dr < const./ 27| f(2)|P dx, (2.8)
0
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[e%¢) T p 1/P
+( / PPl / tu(t)dt dx)
0 0

Invoking again Hardy’s inequality (2.8) to estimate the latter term in (2.9) it becomes

oo T P 1/p S L/p
</ z PPl / tu(t)dt dx) < const. (/ 2P fu(z) [P dx) :
0 0 0

Combining with (2.9) and (1.18) we obtain

0 1/p 00 1/p
(/ P01 1y (z)|P d.:z:) < const. (/ |Axu\px_ﬁp_1da:)
0 0
) 1/p
+ (/ 2P~y ()| dm)
0

Theorem 1 is proved.

Our goal now is to derive integral representations for functions from the space Sév “(Ry).
For this we will use a technique from [14]. Precisely, let us introduce for any u(z) €
L,,, veRande e (0,7) the following regularization operator

(2.9)

< const.||u||sé,a(R+), a=(2-03,-5),8>0.

_wsine [ K (2% + y* — 22y cose)'/?)

Ue u(y)dy, x > 0. (2.10)

a;2 +y? — 2zy cose)l/?

We are ready to prove the Bochner type representation theorem.
We have
Theorem 2. Let u(x) € L,,, 0 <v <1, 1 <p<oo. Then

u(x) = lii%ua(x), (2.11)

with respect to the norm in L, ,. Besides, for 1 < p < oo the limit (2.11) exists for almost
all x > 0.

Proof. We first show that (2.10) is a bounded operator in L,,, under conditions of the
theorem. To do this we make the substitution y = z(cose + tsine) in the corresponding
integral and it becomes

zsine [*  Kj(rsinevt?+1)
u(z) =
—cote

T t2+1

u(z(cose + tsine))dt. (2.12)

Hence owing to the generalized Minkowski inequality and elementary inequality for the
modified Bessel function zK;(x) < 1,2 > 0 (see (1.7)) we estimate the norm of the
integral (2.12) as follows

1 [ dt
luel| L, < ;/_COM o 1||u(m(cos€+tsin5))||,;y,p
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1 *  (cose +tsine)™
~ lfale., | 1D =
—cote
sine [ coshvé
X d¢, 0 < v <1,
s /0 cosh & — cose ¢ g

where we have made the substitution e = cose + tsine in the latter integral. However,
via formula (2.4.6.6) in [5] we find accordingly,

sine /°° cosh V€ ge — sin(l{(w —€)) <14 s.in ve
7 Jy cosh& —cose sin v sin v
§1+.m =C, 0<v<l.
sin v
Thus for all € € (0, 7) we get
||ua||Lu,p S CV“U'HLV,I)' (213)

Further, by using the identity
1 / o at L€
T J—cote t2 + 1 B @

R(x,t,e) = xsineVt? + 1K (rsinevit? + 1) (2.14)

and denoting by

we find that

1 [ dt
o=l < 5 [ G Ilu(eteose + tsine) (e t.2)
-1
- (1 - E) u(x)

- (1 - E) - u(ac)} R(z,t,¢)

™

< l/_OO dt ||[u(x(cose + tsine))

2
Lu,p ™ cote t + 1

s [ @R

_ 2
Lu, T—&J-cotet®+1

—Ullz,, = Li(e) + L(e).

But since [1]

d
%[33[(1(55)] = —xKo(z),

and zK;(z) — 1,  — 0 we obtain the following representation

:1r:sin‘€(t2—&—1)l/2
R(z,t,e) —1= —/ yKo(y)dy.
0
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Hence appealing again to the generalized Minkowski inequality we deduce

1 > dt o acsine(tz-}—l)l/? p 1/p
] = - vp—1 K d Pd
2(€> W_g/cots t2_|_1 (A z (A Yy O(y) y) |U/(I’)| ,flj‘)

1 > dt > % - ) 1/p
< 27 yaly) @)z ) dy
T—¢ ) cote t+1Jo y/(sine(#24+1)1/2)

<[ e (o) (f

sine

([ e (e (

sin €

1/p
x”p_1|u($)|pd:p) d¢

1/p
zP! |u(x)|pda:) d¢

< L[ e () (f

<
sine

1/p
1> dt (™ .
+7T—€/cotst2+1/o ERo(€)dE (/ ZL‘Vp_1|u(aj)|Pdm>

B Ve

1/p
x"p_l\u(x)]pda:) d¢

o0

]z, / @415 tde [ e vo()de

0

v/2
<

m™—E£&

T o v T
+ (/ x”p_1|u(x)|pdx> =
m™T—E£ 1 ™ —
Ve

£

o 1/p
+ (/ x”p1|u(m)|pdx) —0,e—=00<v<Ll

(=201 = )l

1

v

Concerning the integral I; we first approximate v € L, ,(R;) by a smooth function
¢ € C°(Ry). This implies that there exists a function ¢ € C§°(R.) such that ||f —
¢||z,, < € for any € > 0. Hence since the kernel (2.14) R(z,t,e) < 1 then in view of the

representation

cose+tsine d

o(z(cose + tsine)) — plz) = / et dy

cose+tsine
= / z¢' (vy)dy.
1
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In a similar manner we have

1 [ dt
Li(e) < —/ ||u(z(cose + tsine)) — p(z(cose + tsing))HLup

oo cote t2+1
1 &0 e\ 1
+— x(cose + tsine)) — (1 — —> u(x)
T J_cote t2+1 T I
v,p
1 [ (cose+tsine)™"dt 1/°° dt i
<lu— — + = xr)— u(x
- H (pHLy’pﬂ-/—cote t2+1 m —cote t2+1 (p( ) m—=g ( ) Lu,p

cose+tsine

71/ ldy

, 1> dt
+H(IO ||Ll+u,p; t2 + 1

cote
o' |L1s0p /OO |1 — (cose +tsine) ™|
U84 _ t2+1

(Cy + Dlfu—¢llL,,

dt.

cote

The latter integral we treat by making the substitution e = cose + tsine. Then it takes

the form
/°° \1—(cos5+tsin6)_”|dtzsin€/°° sinh v/¢ it
_cote 241 o cosh& —cose
sinh v¢ . 1
— < _
=sine </ / ) coshE — cossdg < sine (log(cosh & — cose) g
> h
+/1 cosgify—gld§> <sine [log (2_1 sin 2 g) + AV} ,
where

> sinhv¢
A, =1 ———d¢, O<v <1,
+/1 cosh& — 1 ¢ g

Thus we immediately obtain that lim._ /;(¢) = 0. Therefore by virtue of the above
estimates lim._o ||u. — ||z, , = 0 and relation (2.11) is proved.

In order to verify the convergence almost everywhere we use the fact that any sequence
of functions {¢,} € C§°(R;) which converges to u in L, ,-norm contains a subsequence
{¢n, } convergent almost everywhere, i.e. limy .o ¢n, () = u(z) for almost all x > 0.
Then we find

lue(z) — u(x)| < ! /OO |u(z(cose +tsine))R(x,t,¢)

(-2

dt 1 [~ dt
< —/ |u(z(cose + tsine) — ¢y, (z(cose + tsine))|

t2+1 cot e t2+1
1 [ dt
[ Jplateose + tsin) = g (0)] 5
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dt
t2+1

On, (T)R(z,t,€) — <1 — E) - u(z)

™

T /—
_l__
cote

But,

= J15<ZE) + J28($) + Jgg(.l?).

1 [ e\ 1 dt 1 o dt
r@ <z [ @) = (1-2) u@)| g [ ) A e) -1 55
—cote —cote
: 2 1/2
c |’LL($)| 00 zsine(t?+1) dt
<l @) = (@) + Zlut)| + 222 [ VEo()d| 5
—cote

< i (0) = )| + St + L [ s vpian [Ty

m—=£ —0o0 0
ml'(1 —v)ez?

m™—£&

Z\sonk(x)—U(ﬂf)H;u(w)H u(z)] = 0, 0 <v <1,

when ¢ — 0, k > ko for almost all > 0. Similarly,

1 00 cose+tsine
m@=1 [ [ e ey
—cote 1

o] . v dt . 1 . _28 xX Liv
X/_COtJl—(Cose—l—tSlne) ‘t2+1 Ssme[log (2 sin 5) +Au] E?,g%)y |en, (zY)],

dt T
< - 14+v /
1S Y |, (2y)]

which tends to zero almost for all z > 0 when ¢ — 0. Meantime, by taking 1 < p <
00, q = St for any € > 0 such that [[u — ¢y, ||z, < for k> ko we have

—v oo ) o "
Jla(ﬂf) < X Hu — Pry, ‘ ‘Ly,p / (COS&? + tsin g)q(l ) Lt
WSlnl/pE —cote (t2 + 1)(1

. (%9 é‘q(l-”)-ldé‘ 1/q
<z €Sln€</0 (52—2500854—1)‘1) .

But the latter integral can be treated in terms of the Legendre functions [1] appealing to
relation (2.2.9.7) from [5]. This gives the value

o0 (I—V)—ld : 1/2—¢q T _ r 1 -
/0 (&2 fqQéhcossj—l)q B <SH21€) Hat1/2) il +V))P1/2 2 (= cose).

When ¢ — 04+ we have

o gillge ['(qg—1/2) 1 4,
/0 (&2 — 2€cose + 1)1 ~ VT I'(q) e,
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Thus
Jie(x) < const. 271 — 0,6 — 0,2 > 0

and we prove Theorem 2.

Appealing to Theorem 2 we will approximate functions from SZJ,V “(Ry) by singular
integral (2.10). Indeed we have

Corollary 1. Singular integral (2.10) is defined on functions from SIJ)V’Q(R+)7 a =
(g, 01, ...,an), 0<ap <1, k=0,1,...,N and 1 < p < co. Besides

u(x) = }713(1) us(x), (2.15)
with respect to the norm in S)*(Ry.).

Proof. Indeed, choosing a fundamental sequence {¢,} of C§°(R.)- functions, which
belongs to S)*(R) we get that it converges to some function v € S)**(R.). This means
(see (2.6), (2.8)) that Akp, — AFu, n — oo with respect to the norm in L, ,, k =
0,1,..., N, respectively.

Defining by

on(y)dy, x>0, (2.16)

_ wsine /°° Ky ((2® + y? — 2wy cose)'/?)
o

Sps,n(x) - T xr2 —+ y2 — 2:L‘y COSZ‘I)l/2

we employ the relation (2.16.51.8) in [6]
/ rsinh((r — &)7) K (2) Ko (y)dr
0

T Ki((#® +y® — 2zycose)'/?)
= —xysine SR 7
2 (2% + y? — 2zy cose)

,x,y >0 0<e<

and we substitute it in (2.16). Changing the order of integration by the Fubini theorem

we find 5 oo - p
. Y
pun(®) = 55 [ mn(n = 7)) [ Kirln() .
™ Jo 0 Yy
Meantime, we apply the operator A k = 0,1...,N (1.19) through both sides of the
latter integral. Then via its uniform convergence with respect to x € (¢, Xo) C R, and
by using the equalities (see (1.2)) A*K;, (z) = 72*K;.(x), (2.1) we come out with

2 [ > d
pen = 25 [ rsinh((r = D)Ko (o) [ P Her ()
0 0

2 [ > d
== 7sinh((7m — &)7) K (1) / KiT(y)Az@ngy-
0

2 Jo



KONTOROVICH-LEBEDEV TRANSFORM 13

This is equivalent to

. rsine Ki((2? +y? — 2wy cose)/?) |
Arpen = / (2 F 4 — 20y cos )12 Ay ondy. (2.16)
Hence
k Ry _ asine Ki((2% 4+ y? — 2zycose)/?) . L
Aspen = (Agu / (22 + y? — 2wy cose)l/? [Aygon B Ayu] dy

and due to (2.13) we have that lim,, .., A¥p.,, = (A*u). with respect to the norm in L,, ,,
for each ¢ € (0, 7). By Theorem 2 we derive that

|| (Abu). — 0, -0, k=0,1,...,N.

|
z Lﬂkvp

If we show that almost for all > 0 (A*u). = Aku., k=10,1,2,..., N then via (2.5) we
complete the proof of Corollary 1. When k = 0 it is defined by (2.10). At the same time
according to Du Bois-Reymond lemma it is sufficient to show that for any ¢ € C5°(R)

/Oo [(Afu)e — Afu.] @d:v = 0. (2.17)

/OOO — Ak, ] xz/O [(Afw). —
] v@), /OOO [(AFu), — AFe. ] @dw

We have

1/’(;3)d Ak(ﬂe n} ¢(xx) dr

+/ (A — Abu,
0 X

+/ [Qpe,n - us]
0

Now as it is easily seen the right-hand side of the last equality is less than an arbitrary
d > 0 when n — oo. Thus we prove (2.17) and we complete the proof of Corollary 1.

A
T

3 The Kontorovich - Lebedev transformation in Sév “(Ry)

Our goal in this section is to establish the boundedness of the Kontorovich-Lebedev trans-
formation (1.1) as an operator KL : Ly(Ry;wa(7)dr) — S2*(R4), where the measure
wa(r)dr will be defined below. Finally, we will prove the Plancherel theorem and an
analog of the Parseval equality (1.17) when o, =0, £ =0,1,..., N.
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We begin with the use of the following inequality for the transformation (1.1), which

is proved in [13]
0o 2 oy 1 7T3/22—2y—1 o) ) )
KL Yl dr < ——— ' )| d 0. 3.1
| L@t < o [T e s inpin v 0. @)
It gives the boundedness for the Kontorovich-Lebedev transformation as an operator
KL : Ly(Ry; |T'(2v + i7)|*dT) — L, 2. Moreover, when v — 0+ it attains equality (1.16)
where the measure (see in [1]) [[(i7)|? = 7 [r sinh 7] "
Let f € C§°(Ry). Hence since K;,(z) is analytic in the right half-plane Rez > 0 (cf.
in (1.7)) and integral (1.1) is uniformly convergent on every compact set of R, we may

repeatedly differentiate under the integral sign to obtain
(3.2)

AYKLf = /OOO ARK (x) f(T)dr = /OOO 7K (2) f(r)dr, k=0,1,...,N.

Invoking with (3.1), (1.18) we deduce
1/2

N oo 1/2 o
KLf||cNan = AFK Lf|?2%1d T)|Pwea (7)dT
KL lgem, (Z/ ASK LS ) < ([ v patn)
(3.3)

= | fll LRy swa(r)dr)»

where we denoted by
N 9-20n— 104K D (20, + i) |2
, a0 >0, k=0,1,...,N. (3.4)

wa(T) = 72 kZ:O (204 + 1/2)

By virtue of the density of the C§°(R)-functions in Ly over the measure (3.4) we get
that inequality (3.3) is true for any f(7) € Lo(R;ws(7)dT). The Kontorovich-Lebedev

transformation (1.1) in the space S5 *(R.) we define as follows. Denoting by

f(r), ifre [ ,n},

Jalr) = {O, if 7 ¢ [

S=3 =

771}7

we easily see that ||f — ful|L.R wa(r)ar)y — 0, when n — oo. But with the asymptotic
formula (1.6) and Schwarz’s inequality we find that integral (1.1) for (K Lf,,) exists as a

Lebesgue integral for any n. Moreover, from (3.3) we have

IKLfn — KLmeséV»a(R” <||fu = finllLa@® i swa(ryar) — 0,m,m — oo,
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Therefore the sequence {KLf,} converges in the space S *(R.) and the corresponding
integral (1.1) is understood as a limit

n

(KLf)(z) = lim K (z) f(T)dT (3.5)

n—o0 J1/n

with respect to the norm (1.18). Thus we obtain that the Kontorovich-Lebedev trans-
formation (3.5) is a bounded operator KL : Ly(Ry;we(r)dr) — S5 *(Ry), where the
weighted function w,(7) is given by (3.4).

In the case a = 0 we can prove the Plancherel type theorem, which will establish
an isometric isomorphism between the corresponding Lo- spaces. Indeed, in this case we
easily have from (3.4) that

2 1— 7_4(N+1)
WO(T) = ?(

. 3.6
1 — 74 7sinhnr (3.6)
Theorem 3. Let f € Lo(Ry;wo(7)dr), where the weighted function wq is defined

by (3.6). Then the integral (3.5) for the Kontorovich-Lebedev transform converges to
(KLf)(x) with respect to the norm in the space Sy °(Ry); and

Fulr) = 3Tsmhm / K (@)(KLf)(2) % (3.7)

2 T

converges in mean to f(7) with respect to the norm in Lo(Ry;wo(7)dT). Moreover, the
following Parseval equality is true

N

00 d 2 foo 1 — 74N+ d
EQ/A%MAMwﬁzgffMWﬁ - . (38)
k=0 "0 v 0

1—7%  rsinhnr
where f,g € Ly(Ry;wo(7)dT). In particular,

||KLf||séVa0(R+) = ||f||L2(R+§WO(T)d7)

that is

N
o de 7w [ 1 — 74N+ dr
ARKLf|P— = —/ 2 : 3.9
kZ:O/O A KL x 2 Jo £ 1—7% rsinh7nr (3.9)

Finally, for almost all T and x from R the reciprocal formulas take place

(KLf)(x) = — / / K (y) f(T)dydr, (3.10)

— 9 sinh 77 y VD
) = S0 d/t/w@ S w@ ey

2 1— 7-4 (N+1)

15
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Proof. Let f € Ly(Ri;wo(7r)dT). We consider a sequence {f,(7)} of C§°(R;)-
functions, which converges to f. First we find that 72*f, (1) € C°(Ry) for all k =
0,1,..., N. Hence we invoke (3.2) and we apply the Parseval identity (1.16). As a result
we obtain

o0 2 poo ak—1
/ ASKLf, P - ”—/ [fulT)]> ——dr, k=0,1,...,N.
0 x 2 Jo sinh 77
Making elementary summations we immediately arrive at the equality (3.9). Since {(KLf,)(z)}
is a Cauchy sequence in the space S3°(R,), then it converges to (KLf)(x) and can be
written through the limit (3.5). Moreover passing to the limit we get that (3.9) is true
for any f € Lay(Ry;wo(7)dT). Further, taking x > 0 we easily have

[ Lawds= [ [ Kt saridur
Hence we prove that

tim [ (KLE)(y)dy = /0 (KL (y)dy = /0 ) /O CKe()f(dydr. (312)

n—oo 0

The latter integral with respect to 7 in (3.12) is absolutely convergent and therefore
exists in Lebesgue’s sense. Indeed, with Schwarz’s inequality we derive (cf. in [11], [12],

see (1.6))
1/2
dr
/ 27' dy‘ ’f ‘dT < HfHLg(R+ swo (T)dT) (/ / K’LT dy w0(7)> < 0.
Consequently,

/0 (KLfu)(y) — (KLf)(y)] dy‘ < const.||f — fn||L2(R+;wo(T)dT) — 0, n— o0

and we prove (3.12). Differentiating with respect to = almost for all z > 0 we arrive at
(3.10).
Meantime with the parallelogram identity we easily derive (3.9) the Parseval equality

(3.8). In particular, putting
y, ifyel0,7],
o(v) :{ ity € [0,7]

0, ifye(1,00),

we find

N

o) T d 4(N+1) d
Z/ AR Lf A’;/ nene: )dyﬁ__/ fly S g (3.13)
k=0 V0

0 sinh 7y
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But the left-hand side of (3.13) can be represented by taking into account (2.1) and the
limit equalities (see (1.3), (1.6))

T

lim Yy K, (2)dy = 0,
z—0+ J,

T

lim [ y**™ K, (7)dy =0,

T—00 0

for all k =0,1,..., N. Thus we obtain

N
S [ atwry Ak [ gy - Z / (KLA@) [ 5y
k=0 0 0

B 00 T — y4(N+1) dr
- | wLpe [ Ky

Combining with (3.13) and differentiating with respect to 7 we arrive at the reciprocal for-
mula (3.11). Finally we prove (3.7). For a sequence g, (z) = (KLf)(x), z € [I/n,n],n =

1,2,... of SY°(R,)- functions, which vanishes outside of the interval [1/n,n] we have
2 (1—7%sinh7r d y N+ dydx
W) = 5= ¢4<N+1) / / yHu(@ 1 —y gn(@) =
2 (1 -7 sinh7r d y N+ dydx
e o A bl e O CE )

Meantime for every n we differentiate under the integral sign in (3.14), which gives

fu(T) = 37' sinh 7 /" K”(x)(KLf)(x)d;

2

and it is possible via the uniform convergence with respect to 7 of the last integral. If
now f is defined by (3.11) then Parseval equality (3.9) implies that

N
ee dx
1 = Bl nrin = WELE = gl = [ IASKLIPSE — 0. = .
k=0 "

Thus we prove (3.7) and we complete the proof of Theorem 3.
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4 On the boundedness in S)“(R.), p > 2

In this final section we will interpolate the norm of the Kontorovich-Lebedev transforma-
tion (1.1) as an operator KL : Ly(Ry; ppo(7)dr) — SN*(R4), where 2 < p < co. The
weighted function p,,(7) will be indicated below. In the case p = oo we understand the
norm in the space SY*(R,) as (see (1.18))

N s 1/p
follsgogn,) = Jim (Z / |Azu|pxw1dx) . (@)
k=0

From the equivalence of norms (2.5) we immediately derive that

N N
Cr Y AUl oy oo < MMl gogg,) < Co ) 1ATUlIL,, (4.2)

k=0 k=0

where the norm in L, o, is defined by (see (1.10), (1.11))

S 1/p
111 = ess suple*f (o) =l ([ Ipoypar-iac) (13)

p—00

We begin to derive an inequality for the modulus of the modified Bessel function |K;.(z)].
We will apply it below to estimate the L, -norm for the (K'Lf)(x). Indeed, taking the
Macdonald formula (1.9) and employing the Schwarz inequality we obtain

> 0 1/2
0 u 0

00 1/2
X (/ KET(U)UQZ’ldu) , v>0. (4.4)
0

Hence invoking with (1.8) and relation (2.16.33.2) from [6] we calculate the latter product
of integrals in (4.4). Thus we get

r 1/2
K2 (x) < nl/420=1/2 (F(—I/))) ID(v + it)|z Y K)/? (2\/§x> :

(v+1/2
or finally
4
' < 1/8(v—1)/4 ['(v) Y . N11/2, —v/2 7-1/4 V2
| K ()] < 7/°2 T+ 1/2) |T(v+ar) |/ 27" K, (2v2z ) . (4.5)
v
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Invoking with inequality 2°Ks(z) < 2°71T(3), 8 > 0 (see (1.8)) we find from (1.1), (1.11),
(4.5) by straightforward calculations that

o0

(KL ()] < [|]]ac / K @))dr < 277201 L / (v + ir)[V2dr

= Cl/||f||oov

where C, > 0 is a constant
C, = 27VP73AT2 () /Oo ID(v +ir)['2dr, v >0.
0
Therefore via (4.3) we obtain that the Kontorovich-Lebedev transformation is a bounded
operator KL : Ly(Ry;dT) — L, o of type (00, 00) and
KLz, < Collfllo- (4.6)

But inequality (3.1) says that this operator is of type (2,2) too. Consequently, by the
Riesz-Thorin convexity theorem [3] the Kontorovich-Lebedev transformation is of type
(p,p), where 2 < p < oo i.e. maps the space L,(R;|T'(2v + i7)|?d7) into L,,. Moreover
for 2 < p < oo we arrive at the inequality

/ T (KL @) 2dx < B,, / T PNy +in)dr, v >0, (A7)
0 0

where we denoted by B, , the constant

Fp/2—1<1/) 00 p—2
B , = 3/22—(p/2+1)v—3p/4+1/2 / r . 1/2d )
D, n 1’\<2y+1/2> 0 | (V+ZH)| 1%

Hence by the same method as in previous section we prove an analog of the inequality
(3.3). Thus we obtain

HKLJCHS;Q”“(RJF) < HfHLp(R+;Pp,a(7—)dT)7 (4‘8)
where
ppa Z P, T k’F2CYk+ZT)‘,Oék>0,]€:0,1,...,N.
In particular, we have pQ,Q(T) = wqo(7) (see (3.4)). So the boundedness of the Kontorovich-
Lebedev transformation (1.1) is proved. Finally we show that for all x > 0 it exists as

a Lebesgue integral for any f € L,(Ry;ppa(7)d7), p > 2. Indeed, it will immediately
follow from the inequality

/ |Kzr($)f(7)| dr < ||f||LP(R+;|F(2u+ir)\2d7)
0



20 Semyon B. YAKUBOVICH

1/q

([T ey i) g = 2
0 p—1

and from the convergence of the latter integral with respect to 7. This is easily seen from
(1.6) and the Stirling asymptotic formula for gamma-functions [1] since the integrand

behaves as O (e“q(%’%)T%(l"l”)’%) , T — +00.
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