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Abstract

Two complexity functions αr and βr are defined to measure the maximal possible gap be-
tween the norm of an automorphism (respectively outer automorphism) of Fr and the norm of
its inverse. The exact complexity of α2 and β2 is computed. For rank r > 3, polynomial lower
bounds are provided for αr and βr, and the existence of a polynomial upper bound is proved
for βr.

1 Introduction

Let Ar = {a1, . . . , ar, a
−1
1 , . . . , a−1

r } be an alphabet of r symbols together with their formal
inverses (a total of 2r symbols different from each other). All along the paper we assume r > 2
to avoid trivial cases.

The set of all words on Ar, including the empty one denoted 1, together with the operation
of concatenation of words, forms a free monoid denoted A∗r . For any subset S ⊆ A∗r , the symbol
S∗ denotes the submonoid generated by S, namely the set of all (arbitrarily long) finite formal
products of elements in S. For example, {a1, . . . , ar}∗ is precisely the set of all positive words
on the alphabet Ar.
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Let Fr = 〈a1, . . . , ar〉 be the free group (of rank r) on the alphabet Ar, i.e. A∗r/ ∼ where ∼
is the congruence generated by the elementary reductions aia−1

i ∼ a−1
i ai ∼ 1. A word of A∗r is

said to be (cyclically) reduced if it contains no (cyclic) factor of the form aεia
−ε
i , ε = ±1. Given a

word w ∈ A∗r , we shall denote by w its reduction, namely the unique reduced word representing
the same element of Fr as w. We shall do the standard abuse of notation consisting on using
words, specially reduced ones, to refer to elements of Fr.

The length of an element w ∈ Fr, denoted |w|, is the total number of letters in w, under-
standing |1| = 0. It is straightforward to see that |wn| 6 |n||w| and |vw| 6 |v|+ |w| hold for all
v, w ∈ Fr.

We are interested in the automorphism group of Fr, denoted AutFr. We let automorphisms
act on the right, so we write ϕ : Fr → Fr, w 7→ wϕ. Since every ϕ ∈ AutFr is determined
by the images of a1, . . . , ar, say a1ϕ = u1, . . . , arϕ = ur, we shall adopt the notation ϕ =
ηu1, ..., ur on occasions. When all of the ui’s are positive words, we say that ηu1, ..., ur is a
positive automorphism (also known in the literature as invertible substitutions, see e.g. [7]).
The submonoid of AutFr consisting of all positive automorphisms is denoted by Aut+ Fr. An
automorphism ηu1, ..., ur is said to be cyclically reduced when u1, . . . , ur are all cyclically reduced.
For every w ∈ Fr, we denote by λw the right conjugation by w, namely xλw = w−1xw. Since
λwϕ = ϕλwϕ, it follows easily that Λr = {λw | w ∈ Fr} is a normal subgroup of AutFr. Each of
the cosets [ϕ] = ϕΛr is said to be an outer automorphism of Fr. We write OutFr = (AutFr)/Λr.

Given ϕ ∈ AutFr, we consider

‖ϕ‖1 = |a1ϕ|+ · · ·+ |arϕ|,

as a measure of its complexity. Note that there is no ϕ ∈ AutFr with ‖ϕ‖1 6 r−1, and there are
exactly r!2r automorphisms with ‖ϕ‖1 = r, namely those of the form a1 7→ aε11π, . . . , ar 7→ aεrrπ,
where π ∈ Sr is a permutation of {a1, . . . , ar} and εi = ±1. These automorphisms are the
simplest ones and are called letter permutation automorphisms of Fr. They will be useful to
reduce the number of cases in our arguments below. Note that, for increasing values of n > r,
there is an increasing number of automorphisms ϕ with ‖ϕ‖1 6 n, but only finitely many for
every fixed n.

This measure induces a measure on OutFr defined as follows. Given Φ ∈ OutFr, let

‖Φ‖1 = min {‖ϕ‖1 | ϕ ∈ Φ}.

Once again, for every fixed n, there exists a finite number of outer automorphisms Φ with
‖Φ‖1 6 n.

Very little is known in general about the relation between the complexity of an (outer)
automorphism of Fr and the complexity of its inverse. In order to establish a first step into this
direction, we define the following complexity functions:

αr(n) = max {‖ϕ−1‖1 | ϕ ∈ AutFr, ‖ϕ‖1 6 n},

βr(n) = max {‖Φ−1‖1 | Φ ∈ OutFr, ‖Φ‖1 6 n}.

Clearly, αr(n) 6 αr(n + 1), hence αr is a non-decreasing function, and so is βr. It is easy
to see that βr(n) = max {‖[ϕ−1]‖1 | ϕ ∈ AutFr, ‖ϕ‖1 6 n}, hence βr(n) 6 αr(n) for every n.
Observe also that the natural inclusion AutFr ↪→ AutFr+1 defined by fixing the last generator,
gives the inequality αr+1(n+ 1) > 1 + αr(n).

Note that ‖ϕ‖1 depends on the prefixed basis {a1, . . . , ar} in which one computes the norm;
in other words, given ψ ∈ AutFr, ‖ϕ‖1 and ‖ψ−1ϕψ‖1 are not equal in general, although they
differ only by a multiplicative constant, as stated in Corollary 2.3 below. However, the functions
αr and βr do not depend on the chosen basis and constitute canonical invariants of the group
Fr.
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The goal of this paper is to investigate the asymptotic behavior of αr(n) and βr(n). We can
complete this project for the rank two case, which is quite special compared with higher ranks.
On one hand, we show that, for every Φ ∈ OutF2, ‖Φ−1‖1 = ‖Φ‖1 and so β2(n) = n, while
the same equality in higher rank is far from true. On the other hand, we prove that α2(n) is
bounded above and below by quadratic functions, i.e. there is an exact quadratic gap between
‖ϕ‖1 and ‖ϕ−1‖1 in the rank two case. Collecting Theorems 3.5, 3.6 and 3.7, we have

Theorem.

(i) For n > 4, α2(n) 6 (n−1)2

2 ,

(ii) for n > 10, n2

4 − 6n+ 42 6 α2(n),

(iii) for n > 1, β2(n) = n.

For higher rank, the problem is much more tricky and our results are less precise. We show
that αr(n) grows at least polynomially with degree r, and βr(n) grows polynomially with degree
at least r − 1. Collecting Theorem 4.4 and Corollary 4.6, we have

Theorem. For every r > 3, there exist constants Kr,K
′
r,K

′′
r ,Mr > 0 such that, for every

n > 1,

(i) Krn
r 6 αr(n),

(ii) K ′rn
r−1 6 βr(n) 6 K ′′r n

Mr .

Finally, we write a couple of interesting open questions.

2 Preliminaries

2.1 The p-norm of an automorphism

To prove the main results in the paper, we need to use standard facts about norms on real
(or complex) vectors and matrices. Recall that the maps ‖·‖p : Rk → R, ‖(x1, . . . , xk)‖p =
(|x1|p + · · ·+ |xk|p)1/p (for p ∈ R+) and ‖·‖∞ : Rk → R, ‖(x1, . . . , xk)‖∞ = max {|x1|, . . . , |xk|}
are vector norms, i.e. they satisfy the following axioms: (1) ‖x‖p > 0 with equality if and only
if x = 0; (2) ‖µx‖p = |µ|‖x‖p; and (3) ‖x + y‖p 6 ‖x‖p + ‖y‖p.

Let us extend these notions to the non-abelian context, via the length function. For p ∈
R+

= R+ ∪ {∞} and w = (w1, . . . , wk) ∈ F kr , we define

‖w‖p = ‖(w1, . . . , wk)‖p = (|w1|p + · · ·+ |wk|p)1/p

for p ∈ R+, and
‖w‖∞ = ‖(w1, . . . , wk)‖∞ = max {|w1|, . . . , |wk|}

for p =∞. Note that the notation is coherent with the fact ‖w‖∞ = limp→∞ ‖w‖p.
Observe that this map F kr → R can be expressed in terms of the corresponding vector norm,

‖(w1, . . . , wk)‖p = ‖(|w1|, . . . , |wk|)‖p. Hence, it satisfies the following properties:

1) (positivity) ‖w‖p > 0 with equality if and only if w = (1, . . . , 1);

2) (powers) ‖(wn1 , . . . , wnk )‖p 6 |n|‖(w1, . . . , wk)‖p;
3) (triangular inequality) ‖(v1w1, . . . , vkwk)‖p 6 ‖(v1, . . . , vk)‖p + ‖(w1, . . . , wk)‖p.

By analogy, we shall emphasize on these three properties by referring to ‖·‖p as the p-norm in
F kr .

Let us move now to morphisms. Thinking endomorphisms of Fr (and, in particular, automor-
phisms) as r-tuples of elements, ϕ↔ (a1ϕ, . . . , arϕ), we define the p-norm of an endomorphism
ϕ ∈ EndFr, p ∈ R+

, as
‖ϕ‖p = ‖(a1ϕ, . . . , arϕ)‖p.
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Given Φ ∈ OutFr, define also

‖Φ‖p = min {‖ϕ‖p | ϕ ∈ Φ}.

Further, we define the corresponding complexity functions αr and βr, in an attempt to measure
the deviation in size between an automorphism (outer automorphism) and its inverse:

αpr(n) = max {‖ϕ−1‖p | ϕ ∈ AutFr, ‖ϕ‖p 6 n},

βpr (n) = max {‖Φ−1‖p | Φ ∈ OutFr, ‖Φ‖p 6 n}.

Note that αr and βr above are α1
r and β1

r , respectively. However, as expressed in the following
proposition, for the different values of p ∈ R+

, all functions αpr are closely related to each other,
like βpr do. For this reason, we shall restrict our attention to the case p = 1 (with occasional
references to the ∞-norm for some technical arguments).

Proposition 2.1. For all p, q ∈ R+
there exists a natural number C = Cp,q,r > 0 such that

1
C
‖ϕ‖q 6 ‖ϕ‖p 6 C‖ϕ‖q and

1
C
‖Φ‖q 6 ‖Φ‖p 6 C‖Φ‖q

hold for all ϕ ∈ EndFr and Φ ∈ OutFr. Furthermore,

1
C
αpr

( n
C

)
6 αqr(n) 6 Cαpr(Cn) and

1
C
βpr

( n
C

)
6 βqr (n) 6 Cβpr (Cn),

for all n multiple of C.

Proof. It is well-known (see [4, Corollary 5.4.5]) that the exact similar fact holds for the corre-
sponding vector norms: there exists a positive constant, and so a natural number C = Cp,q,r
such that

1
C
‖x‖q 6 ‖x‖p 6 C‖x‖q

for every x ∈ Rr. Now 1
C ‖ϕ‖q 6 ‖ϕ‖p 6 C‖ϕ‖q follows immediately from the equality

‖ϕ‖p = ‖(a1ϕ, . . . , arϕ)‖p = ‖(|a1ϕ|, . . . , |arϕ|)‖p.

On the other hand, since ‖Φ‖q = ‖θ‖q for some θ ∈ Φ, we get

‖Φ‖p = min {‖ϕ‖p | ϕ ∈ Φ} 6 ‖θ‖p 6 C‖θ‖q = C‖Φ‖q

and 1
C ‖Φ‖q 6 ‖Φ‖p 6 C‖Φ‖q follows by symmetry.

For the second part of the statement, we have

αqr(n) = max {‖ϕ−1‖q | ϕ ∈ AutFr, ‖ϕ‖q 6 n}
6 max {‖ϕ−1‖q | ϕ ∈ AutFr, ‖ϕ‖p 6 Cn}
6 C max {‖ϕ−1‖p | ϕ ∈ AutFr, ‖ϕ‖p 6 Cn}
= Cαpr(Cn)

for all n. Symmetrically, αpr(n) 6 Cαqr(Cn) and so 1
Cα

p
r(
n
C ) 6 αqr(n) for all n multiple of C.

The same argument gives the corresponding inequalities for the β functions.

The following lemma states some initial properties of norms of automorphisms, that will be
useful later. As a corollary, we deduce the fact that, up to multiplicative constants, ‖·‖1 (and
so ‖·‖p) do not depend on the (prefixed) basis of Fr chosen to compute norms.

Lemma 2.2. Let ϕ, θ, ψ1, ψ2 ∈ AutFr with ψ1 and ψ2 letter permuting, and let w ∈ Fr \ {1}.
Then:
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(i) ‖ϕ‖1
r 6 ‖ϕ‖∞ < ‖ϕ‖1,

(ii) ‖ψ1ϕψ2‖p = ‖ϕ‖p for all p ∈ R+
,

(iii) ||ϕθ||1 6 ||ϕ||1 · ||θ||∞ < ||ϕ||1 · ||θ||1,

(iv) ||λwϕ||1 6 (2r|w|+ r − 2)||ϕ||∞ < (2r|w|+ r − 2)||ϕ||1.

Proof. (i) and (ii) are clear from the definitions.
(iii) For every a ∈ Ar, we have |aϕθ| 6 |aϕ| · ||θ||∞ and so

||ϕθ||1 =
r∑
i=1

|aiϕθ| 6
r∑
i=1

|aiϕ| · ||θ||∞ = ||ϕ||1 · ||θ||∞ < ||ϕ||1 · ||θ||1.

(iv) Since w 6= 1, exactly one of the words w−1aiw is non reduced, and so

||λwϕ||1 =
r∑
i=1

|(w−1aiw)ϕ| 6 (r − 1)(2|w|+ 1)||ϕ||∞ + (2|w| − 1)||ϕ||∞

= (2r|w|+ r − 2)||ϕ||∞ < (2r|w|+ r − 2)||ϕ||1.

Corollary 2.3. Let ψ ∈ AutFr (thought as a change of basis), and let C = ‖ψ‖1 · ‖ψ−1‖1.
Then:

(i) for every ϕ ∈ AutFr, we have 1
C ‖ϕ‖1 6 ‖ψ

−1ϕψ‖1 6 C‖ϕ‖1,

(ii) αr(n) = max {‖ψ−1ϕ−1ψ‖1 | ϕ ∈ AutFr, ‖ψ−1ϕψ‖1 6 n}, i.e. the definition of αr(n)
does not depend on the basis chosen to compute norms.

Proof. (i) By Lemma 2.2(iii), ‖ψ−1ϕψ‖1 6 ‖ψ−1‖1 · ‖ϕ‖1 · ‖ψ‖1 = C‖ϕ‖1. Analogously, ‖ϕ‖1 =
‖ψ(ψ−1ϕψ)ψ−1‖1 6 ‖ψ‖1 · ‖ψ−1ϕψ‖1 · ‖ψ−1‖1 = C‖ψ−1ϕψ‖1.

(ii) Considering the change of variable ν = ψ−1ϕψ in AutFr, we get ν−1 = ψ−1ϕ−1ψ and
so max {‖ψ−1ϕ−1ψ‖1 | ϕ ∈ AutFr, ‖ψ−1ϕψ‖1 6 n} = {‖ν−1‖1 | ν ∈ AutFr, ‖ν‖1 6 n} =
αr(n).

Lemma 2.4. Let Φ, Θ ∈ OutFr and let ψ1, ψ2 ∈ AutFr be letter permuting. Then:

(i) ‖[ψ1]Φ[ψ2]‖1 = ‖Φ‖1,

(ii) ‖ΦΘ‖1 6 ‖Φ‖1‖Θ‖1.

Proof. We have [ψ1]Φ[ψ2] = ψ1ΛrΦψ2Λr = ψ1ΛrΦΛrψ2 = ψ1Φψ2. Now Lemma 2.2(ii) yields

‖[ψ1]Φ[ψ2]‖1 = min {‖ψ1ϕψ2‖1 | ϕ ∈ Φ} = min {‖ϕ‖1 | ϕ ∈ Φ} = ‖Φ‖1

and so (i) holds.
For (ii), we use Lemma 2.2(iii) to get

‖ΦΘ‖1 = min {‖ψ‖1 | ψ ∈ ΦΘ} = min {‖ϕθ‖1 | ϕ ∈ Φ, θ ∈ Θ}
6 min {‖ϕ‖1‖θ‖1 | ϕ ∈ Φ, θ ∈ Θ} = (min {‖ϕ‖1 | ϕ ∈ Φ})(min {‖θ‖1 | θ ∈ Θ})
= ‖Φ‖1‖Θ‖1 .

Now, similarly to Corollary 2.3, one could prove that the definition of βr(n) does not depend
on the basis chosen to compute norms.

The proof of the following lemma is immediate:

Lemma 2.5. Let ϕ ∈ AutFr be cyclically reduced. Then ‖[ϕ]‖1 = ‖ϕ‖1.
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2.2 Abelianizing

Abelianizing will be a valuable tool to derive lower bounds for ‖ϕ‖1 and ‖Φ‖1.
The 1-norm for vectors ‖(x1, . . . , xr)‖1 = |x1|+· · ·+|xr| gives rise to the 1-norm for matrices,

namely
‖M‖1 =

∑
i,j

|mi,j |,

where M = (mi,j) ∈ GLr(Z). It is straightforward to verify that, for all x, y ∈ Zr and
M,N ∈ GLr(Z), we have the inequalities ‖x + y‖1 6 ‖x‖1 + ‖y‖1, ‖xM‖1 6 ‖x‖1 · ‖M‖1,
‖M +N‖1 6 ‖M‖1 + ‖N‖1, and ‖MN‖1 6 ‖M‖1‖N‖1.

Let us denote the abelianization map by (·)ab : Fr � Zr, w 7→ wab = ([w]a1 , . . . , [w]ar ).
Here, [w]ai is the total exponent of ai in w, i.e. the total number of times the letter ai occurs in
w, taking into account the exponents’ signs (for example, [a1a2a

−2
1 ]a1 = −1 and [a1a

−1
1 a2]a1 =

[a2]a1 = 0).
Every automorphism ϕ ∈ AutFr abelianizes to an automorphism ϕab of Zr which we shall

represent by its r×r (invertible) matrix over Z. We want automorphisms to act on the right, and
so we write matrices by rows, i.e. with the i-th row describing the image of the i-th generator:

ϕab =

[a1ϕ]a1 · · · [a1ϕ]ar
· · · · · · · · ·

[arϕ]a1 · · · [arϕ]ar

 ∈ GLr(Z).

This way, for every w ∈ Fr, (wϕ)ab = wabϕab. Furthermore, (ϕθ)ab = ϕabθab, and (ϕ−1)ab =
(ϕab)−1.

Observe that, for every w ∈ Fr, |w| > ‖wab‖1 = |[w]a1 | + · · · + |[w]ar | with equality if and
only if no letter occurs in w with the two opposite signs. This can be expressed in the following
useful way:

Lemma 2.6. For every ϕ ∈ AutFr, ‖ϕ‖1 > ‖[ϕ]‖1 > ‖ϕab‖1, with equalities if and only
if, for every i = 1, . . . , r, no letter occurs in aiϕ with the two opposite signs. In particular,
‖ϕ‖1 = ‖ϕab‖1 for positive automorphisms.

Proof. Clearly, ‖ϕ‖1 > ‖[ϕ]‖1. We may write ‖[ϕ]‖1 = ‖ϕλw‖1 for some w ∈ Fr. Then

‖ϕ‖1 > ‖[ϕ]‖1 = ‖ϕλw‖1 =
∑r
i=1 |aiϕλw| >

∑r
i=1 ‖(aiϕ)ab‖1 =

∑r
i=1 ‖aab

i ϕ
ab‖1

=
∑r
i=1

∑r
j=1 |[aiϕ]aj | = ‖ϕab‖1,

where aab
i is the i-th canonical vector and so, aab

i ϕ
ab is the i-th row in ϕab. It is immediate

that the inequality ‖ϕ‖1 > ‖ϕab‖1 becomes an equality if and only if, for every i = 1, . . . , r, no
letter occurs in aiϕ with the two opposite signs. This is the case when ϕ ∈ Aut+ Fr.

3 The rank two case

In this section we shall deal with the rank 2 case. Along it, we simplify our notation to A =
A2 = {a, b, a−1, b−1}.

We start by proving that inversion preserves the norm in the case of positive automor-
phisms. It is known that positive automorphisms of F2 are generated as a monoid by ∆ =
{ηb,a, ηa,ab, ηa,ba}, that is, they all can be obtained as a composition of these elementary ones,
i.e. Aut+ F2 = ∆∗ (see [7]).

Lemma 3.1. Let ϕ ∈ Aut+ F2 and write ϕ−1 = ηu,v. Then either u ∈ {a, b−1}∗ and v ∈
{a−1, b}∗, or u ∈ {a−1, b}∗ and v ∈ {a, b−1}∗. In particular, ϕ−1 is cyclically reduced.
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Proof. The result is clear for the three elementary positive automorphisms, η−1
b,a = ηb,a, η−1

a,ab =
ηa,a−1b, η

−1
a,ba = ηa,ba−1 . Since all positive automorphisms are compositions of elements in ∆,

we are reduced to show that, given a positive automorphism ϕ and θ ∈ ∆, the lemma holds for
ϕθ whenever it holds for ϕ. To see this, write ϕ−1 = ηu,v and assume u and v are like in the
statement. Then we get

(ϕηb,a)−1 = ηb,aηu,v = ηv,u,

(ϕηa,ab)−1 = ηa,a−1bηu,v = ηu,u−1v,

(ϕηa,ba)−1 = ηa,ba−1ηu,v = ηu,vu−1 ,

completing the proof.

Proposition 3.2. Let ϕ ∈ Aut+ F2. Then ‖ϕ−1‖1 = ‖ϕ‖1.

Proof. Abelianizing, we have

ϕab =
(

[aϕ]a [aϕ]b
[bϕ]a [bϕ]b

)
and (ϕ−1)ab = ±

(
[bϕ]b −[aϕ]b
−[bϕ]a [aϕ]a

)
;

hence, ‖(ϕ−1)ab‖1 = ‖ϕab‖1. Also, ‖ϕab‖1 = ‖ϕ‖1 since ϕ is positive (see Lemma 2.6). Now,
write ϕ−1 = ηu,v. By Lemma 3.1 no letter occurs with both signs in neither u nor v so, again
by Lemma 2.6, ‖(ϕ−1)ab‖1 = ‖ϕ−1‖1, concluding the proof.

From positive automorphisms we can gain control of all cyclically reduced ones.

Lemma 3.3. For every cyclically reduced ϕ ∈ AutF2, there exist two letter permuting auto-
morphisms ψ1, ψ2 ∈ AutF2 and θ ∈ Aut+ F2 such that ϕ = ψ1θψ2.

Proof. Write ϕ = ηu,v. Since both u and v are cyclically reduced, the main result in [2] tells
us that at most two letters of A occur in u, and at most two of them (not necessarily the same
ones) occur in v. Without loss of generality, we may assume that two different letters occur in
either u or v, say in u. Inverting all possibly negative letters in u, we can write ηu,v = ηu′,v′ηaε,bδ
with ε, δ = ±1, u′ ∈ {a, b}∗ and |u′| = |u| and |v′| = |v|.

If v′ ∈ {a, b}∗, i.e. is a positive word, then ηu′,v′ ∈ Aut+ F2 and we are done. If v′ ∈
{a−1, b−1}∗, take ηu,v = ηa,b−1ηu′,v′−1ηaε,bδ and we are also done. The remaining cases to
consider are v′ ∈ {a−1, b}∗ or v′ ∈ {a, b−1}∗ with exactly two letters occurring in v′; they will
lead us to contradiction. Indeed, abelianizing we get u′ab = ([u]a, [u]b) = (p, q) with p, q > 0,
and v′ab = ([v]a, [v]b) = (r, s) with rs < 0. This contradicts ps− qr = ±1 coming from the fact
that ηu′,v′ is an automorphism of F2.

And from those, we can reach the general case:

Lemma 3.4. For every ϕ ∈ AutF2, there exist two letter permuting automorphisms ψ1, ψ2 ∈
AutF2, θ ∈ Aut+ F2, and an element g ∈ F2 such that ϕ = ψ1θψ2λg and ‖θ‖1 + 2|g| 6 ‖ϕ‖1.

Proof. Note that, by Lemmas 2.2(ii) and 3.3, we are reduced to show that there exists a cyclically
reduced ϕ′ ∈ AutF2 and g ∈ F2, such that ϕ = ϕ′λg and ‖ϕ′‖1 + 2|g| 6 ‖ϕ‖1. Let us prove this
claim by induction on ‖ϕ‖1.

If ‖ϕ‖1 = 2 the claim is trivial since ϕ is cyclically reduced. So, suppose ϕ = ηu,v ∈ AutF2

is given with ‖ηu,v‖1 > 2, and let us assume the claim holds for all automorphisms of smaller
1-norm. Again, if u and v are cyclically reduced the claim is trivial so, by symmetry, we can
assume that u is not cyclically reduced, say u = c−1u′c for some c ∈ A and u′ ∈ F2. If v neither
begins with c−1 nor ends with c then it could be easily seen that c would not be contained
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in 〈u, v〉 contradicting the fact that {u, v} generates F2. Hence, v ∈ c−1A∗ ∪ A∗c, and so
|cvc−1| 6 |v|. Now, factoring ηu,v as ηu,v = η

u′,cvc−1λc, we have

‖η
u′,cvc−1‖1 = |u′|+ |cvc−1| 6 |u| − 2 + |v| = ‖ηu,v‖1 − 2,

and we can apply the induction hypothesis to get a factorization η
u′,cvc−1 = ϕ′λh with ϕ′

cyclically reduced and ‖ϕ′‖1 +2|h| 6 ‖η
u′,cvc−1‖1. Thus, we have ηu,v = η

u′,cvc−1λc = ϕ′λhλc =
ϕ′λhc with

‖ϕ′‖1 + 2|hc| 6 ‖ϕ′‖1 + 2|h|+ 2 6 ‖η
u′,cvc−1‖1 + 2 6 ‖ηu,v‖1 = ‖ϕ‖1.

This completes the proof of the claim and so, of the lemma.

Theorem 3.5. For every n > 4, we have α2(n) 6 (n−1)2

2 .

Proof. Let ϕ ∈ AutF2 with ‖ϕ‖1 6 n, and let us prove that ‖ϕ−1‖1 6 (n−1)2

2 . Consider the
decomposition given in Lemma 3.4, ϕ = ψ1θψ2λg for some letter permuting ψ1, ψ2 ∈ AutF2,
some θ ∈ Aut+ F2, and some g ∈ F2 such that ‖θ‖1 + 2|g| 6 ‖ϕ‖1.

If g = 1 then

‖ϕ−1‖1 = ‖ψ−1
2 θ−1ψ−1

1 ‖1 = ‖θ−1‖ = ‖θ‖1 = ‖ϕ‖1 6 n 6
(n− 1)2

2
,

by Lemma 2.2(ii) and Proposition 3.2 (and using in the last step that n > 4).
So, let us assume g 6= 1 in which case we have ϕ−1 = λg−1ψ−1

2 θ−1ψ−1
1 . By Lemma 2.2 and

Proposition 3.2,

‖ϕ−1‖1 6 4|g| · ‖ψ−1
2 θ−1ψ−1

1 ‖∞ = 4|g| · ‖θ−1‖∞ 6 4|g|(‖θ−1‖1 − 1) = 4|g|(‖θ‖1 − 1).

Since we also have ‖θ‖1 + 2|g| 6 ‖ϕ‖1 6 n, we deduce |g| 6 n−‖θ‖1
2 and so,

‖ϕ−1‖1 6 2(n− ‖θ‖1)(‖θ‖1 − 1).

Finally, since the parabola f(x) = 2(n − x)(x − 1) has its absolute maximum in the point
x = n+1

2 , we conclude

‖ϕ−1‖1 6 2(n− ‖θ‖1)(‖θ‖1 − 1) 6 2
(
n− n+ 1

2

)(n+ 1
2
− 1
)

=
(n− 1)2

2
.

In order to establish lower bounds for α2(n), we need to construct explicit automorphisms
of F2 having inverses with big 1-norm compared to that of themselves.

Theorem 3.6. For n > 10, we have α2(n) > n2

4 − 6n+ 42.

Proof. For k > 0 consider the automorphisms

ψk = ηab2k, ab2k+1λa−kb = ηb−1ak+1b2ka−kb, b−1ak+1b2k+1a−kb.

We have ‖ψk‖1 = 8k + 7. For the inverse, we have

ψ−1
k = λb−1akη

−1
ab2k, ab2k+1 = λb−1akηa(b−1a)2k, a−1b = ηu, v,

where u and v are the two words u = ((a−1b)2ka−1)ka−1ba(b−1a)2kb−1a(a(b−1a)2k)k and v =
((a−1b)2ka−1)ka−1b(a(b−1a)2k)k. Hence, ‖ψ−1

k ‖1 = 4(4k + 1)k + 4k + 7 = 16k2 + 8k + 7.
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Writing n = ‖ψk‖1 = 8k + 7, we have k = n−7
8 and then

‖ψ−1
k ‖1 = 16

(n− 7)2

64
+ n− 7 + 7 =

n2 − 10n+ 49
4

.

Thus, for n ≡ 7 mod 8, we have α2(n) > n2−10n+49
4 .

Finally, for every n > 7, let n′ be the unique integer congruent with 7 modulo 8 in the set
{n− 7, . . . , n− 1, n}. We have

α2(n) > α2(n′) >
n′2 − 10n′ + 49

4
>

(n− 7)2 − 10(n− 7) + 49
4

=
n2

4
− 6n+ 42,

where the last inequality uses n > 10 since the parabola f(x) = x2−10x+49
4 has its minimum at

x = 5.

The outer automorphism case turns out to be simpler:

Theorem 3.7. For every Φ ∈ OutF2, ‖Φ−1‖1 = ‖Φ‖1. Consequently, β2(n) = n.

Proof. Take ϕ ∈ Φ. By Lemma 3.4, ϕ = ψ1θψ2λg for some letter permuting automorphisms
ψ1, ψ2 ∈ AutF2, some θ ∈ Aut+ F2 and some element g ∈ F2. Then Lemmas 2.4(i) and 2.5
yield

‖Φ‖1 = ‖[ϕ]‖1 = ‖[ψ1θψ2λg]‖1 = ‖[ψ1θψ2]‖1 = ‖[θ]‖1 = ‖θ‖1.
Also by Lemma 2.4(i), we get

‖Φ−1‖1 = ‖[ϕ−1]‖1 = ‖[λg−1ψ−1
2 θ−1ψ−1

1 ]‖1 = ‖[ψ−1
2 θ−1ψ−1

1 ]‖1 = ‖[θ−1]‖1.

Since θ−1 is cyclically reduced by Lemma 3.1, we may use Lemma 2.5 to get ‖Φ−1‖1 = ‖[θ−1]‖1 =
‖θ−1‖1. Since ‖θ‖1 = ‖θ−1‖1 by Proposition 3.2, we get ‖Φ−1‖1 = ‖Φ‖1. Therefore β2(n) =
n.

4 Higher rank

In this section, we consider arbitrary rank r > 3, compute polynomial lower bounds for both
αr(n) and βr(n), and show that βr(n) admits a polynomial upper bound.

The polynomial lower bounds for αr(n) and βr(n) have degrees r and r − 1, respectively.
In particular, this separates the asymptotic behavior of the rank two case from all other ranks,
with respect to both complexity functions. That is, ξ2(n) grows more slowly than ξr(n) for all
r > 3 and ξ ∈ {α, β}, which agrees with the intuitive fact that AutFr is a much easier group
for r = 2 than for higher rank.

Finally, the polinomial upper bound for βr(n) is established with the help of the theory of
Outer space.

We assume the rank r fixed throughout the whole section.

4.1 Lower bounds

Our lower bound for βr(n) is obtained by abelianizing positive automorphisms. The extra unit
in the degree of the lower bounds from βr(n) to αr(n) will be achieved by additionally composing
the positive automorphisms with a suitable conjugation that increases in size when inverting.
We thank Warren Dicks for suggesting us to use the following automorphisms; this significantly
simplified our previous proof of the lower bounds for αr(n) and βr(n).

We start by defining, for every p ∈ Z, a matrix M (p) = (m(p)
i,j ) ∈ GLr(Z) = Aut Zr given by

m
(p)
i,j =


1, if i = j;
p, if j = i+ 1;
0, otherwise.
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Note that detM (p) = 1 and so M (p) is indeed invertible.

Lemma 4.1. For all r > 2 and p ∈ Z, let N (p) = (n(p)
i,j ) ∈ GLr(Z) be defined by

n
(p)
i,j =


1, if i = j;
(−p)j−i, if i < j;
0, otherwise.

Then N (p) = (M (p))−1.

Proof. It suffices to show that M (p)N (p) is the identity matrix. Indeed, the (i, j)-th entry of the
product matrix is

∑r
k=1m

(p)
i,kn

(p)
k,j =

∑min{i+1,j}
k=i m

(p)
i,kn

(p)
k,j which is 0 if j < i and 1 if j = i. If

j > i, we get m(p)
i,i n

(p)
i,j +m

(p)
i,i+1n

(p)
i+1,j = (−p)j−i + p(−p)j−i−1 = 0 and the lemma is proved.

We immediately obtain:

Lemma 4.2. For all r > 2 and p ∈ Z, we have ‖M (p)‖1 = r+(r−1)p and ‖(M (p))−1‖1 ≥ pr−1.
2

For every integer p > 2, define ϕp ∈ Aut+ Fr by

aiϕp =

{
aia

p
i+1, if 1 ≤ i < r;

ar, if i = r.

Note that ϕp is clearly onto and therefore an automorphism since free groups of finite rank are
hopfian [5].

Lemma 4.3. For all r > 2 and p > 2:

(i) ϕab
p = M (p),

(ii) arϕ
−1
p = ar and aiϕ−1

p = ai(ai+1ϕ
−1
p )−p for i = 1, . . . , r − 1,

(iii) aiϕ
−1
p ∈ aiA∗ra−1

i+1 for i = 1, . . . , r − 1,

(iv) ||ϕ−1
p ||1 < 2|a1ϕ

−1
p |.

Proof. (i) is clear.
To get (ii), it suffices to compute (ai(ai+1ϕ

−1
p )−p)ϕp = (aiϕp)a

−p
i+1 = ai for i < r. Then (iii)

follows from (ii) by reverse induction.
Finally, to see (iv) observe that by (iii) the product ai(ai+1ϕ

−1
p )−p is reduced and so

|aiϕ−1
p | > p|ai+1ϕ

−1
p | for every i < r. Hence |aiϕ−1

p | < 1
pi−1 |a1ϕ

−1
p | for i = 2, . . . , r and

so

||ϕ−1
p ||1 =

r∑
i=1

|aiϕ−1
p | < (1 +

1
p

+ · · ·+ 1
pr−1

)|a1ϕ
−1
p | < 2|a1ϕ

−1
p |.

Now we are ready to state and prove the lower bounds for our complexity functions.

Theorem 4.4. For every r > 2, there exists constants Kr,K
′
r > 0 such that, for every n > 1:

(i) Krn
r 6 αr(n),

(ii) K ′rn
r−1 6 βr(n).
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Proof. Let p > r. By Lemmas 2.6, 4.2 and 4.3(i), we have

‖ϕp‖1 = ‖[ϕp]‖1 = ‖ϕab
p ‖1 = ‖M (p)‖1 = r + (r − 1)p 6 rp. (1)

On the other hand, the same results yield

‖ϕ−1
p ‖1 > ‖[ϕ−1

p ]‖1 > ‖(ϕ−1
p )ab‖1 = ‖(ϕab

p )−1‖1 = ‖(M (p))−1‖1 > pr−1. (2)

Let n0 = max
{
r2, (r−1)2

1
r−1

2
1
r−1−1

}
and consider n > n0. Take the integer p = bnr c > r, which

satisfies n−(r−1)
r 6 p 6 n

r and so rp ∈ {n − (r − 1), . . . , n}. The outer automorphism [ϕp] ∈
Out(Fr) satisfies ‖[ϕp]‖1 6 rp 6 n; and, on the other hand, ‖[ϕ−1

p ]‖1 > pr−1 > (n−(r−1)
r )r−1 =

(n−(r−1))r−1

rr−1 . Now it is straightforward to check that

(n− a)s >
ns

2
⇐⇒ n >

a2
1
s

2
1
s − 1

holds for all positive integers s, a, n. Hence, we deduce that

‖[ϕ−1
p ]‖1 >

1
2rr−1

nr−1

(using that n > (r−1)2
1
r−1

2
1
r−1−1

). We conclude that βr(n) > 1
2rr−1n

r−1 for n > n0. Adjusting the

value of the constant 1
2rr−1 to cover the finitely many missing values of n, (ii) holds.

To prove (i) let us restrict ourselves to the case r > 3 (Theorem 3.6 already deals with the
case r = 2). Fix p > r and let ψp = ϕpλap1 . Then (1) yields

‖ψp‖1 =
r∑
i=1

|a−p1 (aiϕp)a
p
1| 6 2rp+ ‖ϕp‖1 6 3rp.

On the other hand,

‖ψ−1
p ‖1 = ‖λa−p1

ϕ−1
p ‖1 >

r∑
i=3

|(ap1aia
−p
1 )ϕ−1

p |.

Since the products (a1ϕ
−1
p )p(aiϕ−1

p )(a−1
1 ϕ−1

p )p are reduced by Lemma 4.3(iii), it follows that
‖ψ−1

p ‖1 > 2(r − 2)p|a1ϕ
−1
p | > (r − 2)p||ϕ−1

p ||1 > (r − 2)pr, by Lemma 4.3(iv) and (2).
This shows that, for n = 3rp and p > r, we have αr(n) > (r − 2)pr = r−2

(3r)r n
r i.e., (i) is

proven for all such values of n. Finally, the extension of this inequality to all values of n (after
adjusting properly the multiplicative constant) proceeds similarly to part (ii).

As a final remark for this section, it seems clear that this exhausts the potential of abelianiza-
tion techniques to provide lower bounds. If the growths of our complexity functions are strictly
bigger than what we have proven here, this will have to be obtained by more intricate counting
techniques working above the abelian level.

4.2 Upper bounds

We can present a polynomial upper bound for βr(n) using Outer space techniques. We thank
M. Bestvina for suggesting a simplification of our initial arguments, which leads to a very easy
and elegant proof of such a polynomial upper bound, now essentially a corollary of a recent
result about the asymmetry of the Lipschitz metric in Outer space.

Let us briefly recall what Outer space Xr is, r > 2, following the notation from [1] (see [6]
for more details).
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With the term graph we mean a finite graph Γ of rank r, all whose vertices have degree at
least three. A metric on Γ is a function ` : EΓ → [0, 1] defined on the set of edges of Γ such
that

∑
e∈EΓ `(e) = 1 and the set of length zero edges forms a forest. Let us denote by ΣΓ the

space of all such metrics ` on Γ, viewed as a “simplex with missing faces” (corresponding to
degenerate metrics that vanish on a subgraph which is not a forest). If Γ′ is obtained from Γ
by collapsing a forest, then we will naturally consider ΣΓ′ as a subset of ΣΓ along the inclusion
given by assigning length zero to the collapsed edges.

Fix the rose graph Rr with one vertex and r edges, and identify the free group Fr with the
fundamental group π1(Rr) in such a way that each generator ai corresponds to a single oriented
edge of Rr. Under this identification, each reduced word in Fr corresponds to a reduced edge-
path loop starting and ending at the basepoint of Rr.

A marked graph is a pair (Γ, f) where f is a marking, i.e. a homotopy equivalence from
the rose Rr to Γ. It is standard to consider the set of marked graphs modulo the following
equivalence relation: (Γ, f) ∼ (Γ′, f ′) if and only if there is a homeomorphism µ : Γ → Γ′ such
that fµ is homotopic to f ′. Denote it by MG/ ∼.

Noting that all representatives of a given class [(Γ, f)] ∈MG/ ∼ share a common underlying
graph, we can consider the space of metrics on Γ and denote it Σ[(Γ,f)]. Now, the Outer Space
Xr is obtained from the disjoint union ⊔

[(Γ,f)]∈MG/∼

Σ[(Γ,f)]

by identifying the faces of the simplices along the above natural inclusions. Thus, a point in Xr
is represented by a triple of the form (Γ, f, `).

There is a natural action of AutFr on Xr. Given ϕ ∈ AutFr, realize it on the rose, say
ϕ : Rr → Rr, and for every point x = (Γ, f, `) ∈ Xr define ϕ · x to be (Γ, ϕf, `). It is easy to
see that this is well defined and gives an action of AutFr on Xr. Notice that, by construction,
inner automorphisms act trivially; so, what we have is in fact an action of OutFr on Xr.

Recently, the Lipschitz metric for Xr has been introduced and initially studied in [3], followed
by other authors (see, for example, [1]). This metric can be defined as follows.

Let x, x′ ∈ Xr be two points in the Outer space; take representatives, say (Γ, f, `) and
(Γ′, f ′, `′), respectively. A difference of markings is a map µ : Γ → Γ′ which is linear on edges,
and such that fµ is homotopic to f ′. For such a difference of markings one can define σ(µ) to
be the largest slope of µ over all edges e ∈ EΓ. Then define the distance from x to x′ as

d(x, x′) = min
µ
{log σ(µ)},

where the minimum is taken over all possible differences of markings (and achieved by Arzela-
Ascoli’s Theorem).

The basic properties of this “distance” are the following: (1) d(x, y) > 0, with equality if and
only if x = y; (2) d(x, z) 6 d(x, y) +d(y, z) for all x, y, z ∈ Xr; (3) OutFr acts by isometries, i.e.
d([ϕ]·x, [ϕ]·y) = d(ϕ·x, ϕ·y) = d(x, y) for all x, y ∈ Xr and ϕ ∈ AutFr; but (4) d(x, y) 6= d(y, x)
in general. See [3] and [1] for details.

For ε > 0, define the ε-thick part of Xr as

Xr(ε) = {(Γ, f, `) ∈ Xr | `(p) > ε ∀p nontrivial closed path in Γ}.

The following is an interesting result from Y. Algom-Kfir and M. Bestvina (see [1, Theo-
rem 23]):

Theorem 4.5 (Algom-Kfir, Bestvina). Let r > 2. For any ε > 0 there is a constant M =
M(r, ε) > 0 such that, for all x, y ∈ Xr(ε),

d(x, y) 6M · d(y, x).
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As an easy corollary, we obtain our polynomial upper bound for βr(n):

Corollary 4.6. For every r > 2, there exist constants Kr,Mr > 0 such that βr(n) 6 Krn
Mr

for every n > 1.

Proof. Fix an automorphism ϕ ∈ AutFr.
Consider the point of the Outer space x ∈ Xr represented by (Rr, id, `0), i.e. by the identity

marking over the balanced rose (here, `0 assigns constant length 1/r to each petal). Now consider
the point [ϕ] · x = (Rr, ϕ, `0) ∈ Xr. It is straightforward to see from the definitions that, given
a difference of markings µ : Rr → Rr, then µ is homotopic to ϕ if and only if µ = ϕλw for some
w ∈ Fr. Moreover, σ(ϕλw) = ‖ϕλw‖∞. It follows that

d(x, [ϕ] · x) = min
w∈Fr

{log(σ(ϕλw))} = log( min
w∈Fr

‖ϕλw‖∞) = log ‖[ϕ]‖∞.

Similarly,
d([ϕ] · x, x) = d(x, [ϕ−1] · x) = log ‖[ϕ−1]‖∞.

But, since all the involved points belong to the (1/r)-thick part Xr( 1
r ), we can take the constant

Mr = M(r, 1
r ) from Theorem 4.5 to get log ‖[ϕ−1]‖∞ 6 Mr log ‖[ϕ]‖∞ and so ‖[ϕ−1]‖∞ 6

‖[ϕ]‖Mr
∞ . Bringing in the constant Cr = C∞,1,r from Proposition 2.1, we obtain

‖[ϕ−1]‖1 6 Cr‖[ϕ−1]‖∞ 6 Cr‖[ϕ]‖Mr
∞ 6 CMr+1

r ‖[ϕ]‖Mr
1 .

Hence βr(n) 6 Krn
Mr holds for Kr = CMr+1

r .

We remark that the polynomial upper bound for βr(n) established above is intuitively far
from sharp. The proof of the Algom-Kfir-Bestvina’s theorem is indirect and the actual constant
provided there is quite big. The provided lower and upper bounds for βr(n), namely nr−1 and
nMr , are the only known information about the following open question:

Question 4.7. What is the exact asymptotic behavior of the function βr, for r > 3?

We also remark that getting a polynomial upper bound for αr(n) seems to be a more tricky
problem. On the one hand, the geometric techniques coming from Outer space do not seem to
provide control on the length of possible conjugators showing up when computing the pre-image
of the generators ai by an (even cyclically reduced) given automorphism of Fr. Additionally,
and oppositely to the much easier case r = 2, these conjugators cannot be avoided in general
by just composing with an appropriate inner automorphism because they can affect differently
to the various generators.

Question 4.8. Is there a polynomial upper bound for αr(n)? What is the exact asymptotic
behavior of the function αr, for r > 3?
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