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ABSTRACT

Several decidability problems for finite idempotent presentations of inverse monoids
are solved, giving also insight into their structure. Besides providing a new elemen-
tary solution for the problem, solutions are obtained for the following problems:
computing the maximal subgroups, being combinatorial, being semisimple, being
fundamental, having infinite D-classes. The word problem for the least fundamental
quotient is also solved.

1 Introduction

Inverse monoids arise naturally as monoids of injective transformations closed under in-
version. Indeed, up to isomorphism, these are all the inverse monoids, as stated in the
classical Vagner-Preston representation theorem. This makes inverse monoids ubiquituous
in geometry, topology and other fields.

An abstract approach turns inverse monoids into a variety in the (2,1,0) signature,
and so there exist free inverse monoids on an arbitrary set, a well-established fact in the
fifties, the decade that boosted the systematic study of inverse monoids. However, the word
problem remained unsolved until the early seventies, when Scheiblich [12] and Munn [9]
independently provided solutions.

The beautiful solution by Munn, where the elements of the free inverse monoid are
identified with finite tree inverse automata (known today as Munn trees), inspired Stephen
to develop a general combinatorial theory of inverse monoid presentations [17]. The two
cornerstones of Stephen’s approach are the following facts:

• the full structure of the inverse monoid is determined by the strongly connected com-
ponents of its Cayley graph (the Schützenberger graphs) with respect to the presen-
tation considered;

• if the presentation is finite, each Schützenberger graph is the direct limit of a se-
quence of finite automata effectively constructible from an appropriate Munn tree,
analogously to the Todd-Coxeter procedure.
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This approximation of Schützenberger graphs is effective if the Schützenberger graphs are
finite, but it cannot of course be effective in general. In the infinite case, success has been
achieved mostly in two opposite directions:

• the group case (we note that a finitely presented group is also finitely presented as an
inverse monoid);

• the idempotent-presented case.

An inverse monoid presentation is an idempotent presentation if all the relators involve
idempotents. Let τ denote the congruence on the free inverse monoid FIMA defined by the
inverse monoid presentation 〈A | R〉 and let σ denote the least group congruence on FIMA.
Then

• FIMA/τ is a group if and only if σ ⊆ τ ;

• 〈A | R〉 is an idempotent presentation if and only if τ ⊆ σ.

Therefore the idempotent-presented case can be viewed as some sort of anti-group case
(even though there exists one group which admits an idempotent presentation of the form
〈A | R〉: the free group on A).

Schützenberger graphs of idempotent presentations are trees, and this allows a favourable
adaptation of Stephen’s construction. These presentations were studied by Margolis and
Meakin in a fruitful series of papers (see e.g. [2, 5, 6, 7, 8]). In [7], they obtained the
first solution for the word problem. Linear solutions were recently obtained by Lohrey and
Ondrusch [4], and subsequently by Diekert, Lohrey and Ondrusch [3].

The present paper aims at solving a few other algorithmic questions that arise naturally
in the study of (inverse) monoids. Its structure is organized as follows.

In Section 2 we sum up the required preliminaries on free inverse monoid, and on Section
3 we start to consider (finite) idempotent presentations, including a new elementary solution
for the word problem. Section 4 is devoted to maximal subgroups and combinatoriality,
Section 5 to the existence of infinite D-classes, Section 6 to semisimplicity and Section 7 to
fundamentality. Finally, the word problem for the least fundamental quotient is solved in
Section 8.

2 Free inverse monoids

For generalities on inverse monoids, see [10]. Throughout the paper, A denotes a finite
alphabet. Let A−1 denote a set of formal inverses of A and write Ã = A ∪A−1. Let

RA = Ã∗ \ (
⋃
a∈ eA

Ã∗aa−1Ã∗)

denote the set of all reduced words in the free monoid Ã∗. Given w ∈ Ã∗, we denote by
w the reduced word obtained by successively erasing in w all the factors of the form aa−1.
Note that, whenever we write uv for u, v ∈ Ã∗, we are considering uv as a word in the free
monoid Ã∗, not in the free group. We denote by CA the set of all cyclically reduced words
on Ã.
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We extend −1 : A→ A−1 : a 7→ a−1 to an involution on Ã∗ through

(a−1)−1 = a, (uv)−1 = v−1u−1 (a ∈ A; u, v ∈ Ã∗) .

The free inverse monoid on A is the quotient FIMA = Ã∗/ρ, where

ρ = ({(ww−1w,w) | w ∈ Ã∗} ∪ {(uu−1vv−1, vv−1uu−1) | u, v ∈ Ã∗})]

denotes the Vagner congruence on Ã∗.
An inverse automaton over the alphabet Ã is a structure of the form A = (Q, i, t, E),

where

• Q is the set of vertices,

• i, t ∈ Q are the initial and terminal vertices, respectively,

• E ⊆ Q× Ã×Q is the set of edges,

satisfying the following properties:

• deterministic: (p, a, q), (p, a, q′) ∈ E ⇒ q = q′;

• involutive: (p, a, q) ∈ E ⇔ (q, a−1, p) ∈ E;

• trim: every vertex lies in some successful path.

We say that the inverse automaton A is a tree inverse automaton if no loop is labelled by
a nonempty reduced word. An important example is given by the Cayley graph ΓA(FGA)
on the standard generators of the free group on A, when we fix the identity 1 as the initial
vertex and g as the terminal vertex. This tree inverse automaton recognizes the set of all
words on Ã∗ equivalent to g in FGA. Moreover, the underlying graph of a tree inverse
automaton on Ã must be a connected subgraph of ΓA(FGA).

Given w ∈ Ã, let Pref(w) denote the set of all prefixes of w and write T0(w) = Pref(w).
The Munn tree of w is the finite tree inverse automaton

MT(w) = (T0(w), 1, w,E0(w)),

where
E0(w) = {(p, a, q) ∈ T0(w)× Ã× T0(w) | q = pa}.

The prefix-closed language T0(w) is the set of labels of geodesics connecting 1 to each vertex
in MT(w).

W. D. Munn gave the following elegant solution for the word problem of FIMA (see
also [12] by Scheiblich):
Theorem 2.1 [9] For all u, v ∈ Ã∗, the following conditions are equivalent:

(i) uρ = vρ;

(ii) MT(u) ∼= MT(v);

(iii) T0(u) = T0(v) and u = v.
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We can now characterize the idempotents of FIMA: given w ∈ Ã∗, we have

wρ ∈ E(FIMA)⇔ w = 1.

Recall that w is said to be a Dyck word if w = 1. We denote the set of all Dyck words on
the alphabet Ã by DWA.

We note also that, for all u, v ∈ Ã∗, we have

T0(uv) = T0(u) ∪ uT0(v), T0(u−1) = u−1T0(u).

Moreover, for all eρ, fρ ∈ E(FIMA), we have

eρ ≤ fρ⇔ T0(e) ⊇ T0(f).

Recall that eρ ≺ fρ if eρ < fρ and there exists no gρ ∈ E(FIMA) such that eρ < gρ < fρ.
It is easy to see that

eρ ≺ fρ ⇔ ( T0(e) ⊃ T0(f) ∧ |T0(e)| = |T0(f)|+ 1 ) .

3 Idempotent presentations

In this paper, a (finite) inverse monoid presentation is a formal expression of the form
P = 〈A | R〉, where A is a (finite) alphabet and R is a (finite) subset of Ã∗ × Ã∗. Write
τ = (ρ ∪ R)]. The quotient M = FIM(A)/τ is the inverse monoid defined by P. We say
that P is an idempotent presentation if, for every (u, v) ∈ R, we have u = v = 1.

Note that we may always assume in an idempotent presentation that fρ ≺ eρ for every
(e, f) ∈ R. Indeed, we may replace (e, f) by the pair (e, ef), (f, ef) in P to assume that
fρ < eρ. If fρ = g0ρ ≺ . . . ≺ gnρ = eρ, we may replace (e, f) by all the (gi−1, gi), hence
the claim holds. We call such presentations normalized. From now on, we fix P = 〈A | R〉
to be a normalized idempotent presentation, fixing τ and M as well.

Solving the word problem and other decidability problems for idempotent presentations
requires understanding their Schützenberger graphs, that is, the strongly connected com-
ponents of the Cayley graph (on the standard generators). The Schützenberger automaton
of w ∈ Ã∗ has as vertex set the R-class of wτ in M . It is a tree inverse automaton that can
be approximated using a favourable variation of Stephen’s construction:

Following [7], we build a sequence (Tn(w))n of finite prefix-closed subsets of RA induc-
tively. We have already defined T0(w) before, hence assume that Tn−1(w) is defined. Then
Tn(w) is obtained by adding to Tn−1(w), for all instances of (e, f) ∈ R and p ∈ Tn−1(w)
such that pT0(e) ⊆ Tn−1(w), the unique element of p(T0(f) \ T0(e)).

A sequence of finite tree inverse automata is now defined through

Tn(w) = (Tn(w), 1, w,En(w)),

where
En(w) = {(p, a, q) ∈ Tn(w)× Ã× Tn(w) | q = pa}.

Note that T0(w) = MT(w). We call (Tn(w))n the Stephen’s sequence of w with respect
to P. From a combinatorial viewpoint, we consider in this inductive construction, for all
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(e, f) ∈ R and p ∈ Tn−1(w), whether or not the Munn tree MT(e) embeds in Tn−1(w) at
vertex p. If it does, we expand Tn−1(w) by gluing MT(f) at vertex p.

Let T (w) = ∪n≥0Tn(w), E(w) = ∪n≥0En(w) and T (w) = (T (w), 1, w,E(w)). It turns
out that T (w) is the Schützenberger automaton of w with respect to P. Moreover, T (w) is
the direct limit of the sequence (Tn(w))n (see [7, 17]). Note that T (w) is a P-closed prefix-
closed subset of RA in the sense that it cannot suffer any proper expansion: if (e, f) ∈ R
and MT(e) embeds in T (w) at vertex p, so does MT(f).

The underlying graph of T (w) is the Schützenberger graph of w and is denoted by ΓS(w).
The language recognized by T (w) is easily described in terms of the natural partial order
of M :
Proposition 3.1 [7, 17] For every w ∈ Ã∗,

L(T (w)) = {u ∈ Ã∗ | uτ ≥ wτ}.

The role played by the Schützenberger automaton in the solution of the word problem
is evident in the following result:
Theorem 3.2 [7, 17] For all u, v ∈ Ã∗, the following conditions are equivalent:

(i) uτ = vτ ;

(ii) T (u) ∼= T (v);

(iii) T (u) = T (v) and u = v;

(iv) T0(u) ⊆ T (v), T0(v) ⊆ T (u) and u = v.

Therefore the word problem is solvable if the membership problem for the sets T (w) is
decidable. Indeed, it turns out that:
Theorem 3.3 [7] For every w ∈ Ã∗, T (w) is an effectively constructible rational language.

The original proof, due to Margolis and Meakin, relies on an adaptation to free groups
of Rabin’s Tree Theorem. An alternative language-theoretic solution was subsequently
proposed by the author [13]. Recently, a most efficient linear time solution was obtained by
Lohrey and Ondrusch using tree automaton techniques [4]. A second linear time solution, of
wider scope, was later obtained by Diekert, Lohrey and Ondrusch using rewriting systems
[3]. We shall provide soon a new short combinatorial proof, although less efficient. We
recall also the following result:
Theorem 3.4 [15] Given L ⊆ RA rational, it is decidable whether or not:

(i) L = T (w) for some idempotent presentation 〈A | R〉 and w ∈ Ã∗;

(ii) L = T (w) for some finite idempotent presentation 〈A | R〉 and w ∈ Ã∗.

Given T ⊆ RA prefix-closed and p ∈ T , let

cone(p, T ) = {w ∈ RA | pw ∈ T}.

For every m ≥ 0, let also

cone(p, T,m) = {w ∈ cone(p, T ) : |w| ≤ m},
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nbh(p, T,m) = {w ∈ p−1T : |w| ≤ m}.

Clearly, nbh(p, T,m) is the set of labels of geodesics leaving p in T (w), having length at most
m. If we consider only geodesics oriented outwards the initial vertex, we get cone(p, T,m).
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cone(b, T, 1) = {1, a, b}, nbh(b, T, 1) = {1, a, b, b−1}

We may also use the terms cone and neighbourhood to refer to the vertices determined by
the operators cone and nbh.

Finally, for every w ∈ Ã∗, let

||w|| = max{|p| : p ∈ T0(w)},

||R|| = max{||f || : (e, f) ∈ R},

where we assume R normalized.
Lemma 3.5 Let w ∈ Ã∗ and p, q ∈ T (w) be such that cone(p, T (w),m) = cone(q, T (w),m)
for m = max{||w||, 2||R||}. Then cone(p, T (w)) = cone(q, T (w)).

Proof. Since m ≥ ||w||, all vertices of T (w) corresponding to elements of cone(p, T (w)) \
cone(p, T (w),m) must have been obtained through expansions. Since m ≥ 2||R||, all those
vertices must have been successively obtained in Stephen’s sequence through expansions
which originated from (a subset of) cone(p, T (w),m). �

A new proof of Theorem 3.3. Fix w ∈ Ã∗. Write T = T (w) and Tn = Tn(w). If we
consider all the vertices to be terminal in T (w) and keep only the edges oriented outwards
the initial vertex, we get a trim deterministic automaton recognizing T . By the standard
minimization algorithm of rational languages (considering the Nerode equivalence) [1, Sec-
tion I.4], {cone(p, T ) | p ∈ T} can be taken as the vertex set of the minimal automaton of
T . By Lemma 3.5, this latter automaton is finite and so T is rational.

Given vertices p, q ∈ T , we say that p is older than q if it appeared in a previous iterate
of the Stephen’s sequence. Keeping m = max{||w||, 2||R||}, suppose that there exist some
n, k ∈ IN satisfying the following conditions:

(R1) For every p ∈ Tn of length k, there exists some shorter p′ ∈ Tn such that

• cone(p, Tn,m) = cone(p′, Tn,m);
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• every vertex from nbh(p, Tn,m) is younger than the corresponding vertex from
nbh(p′, Tn,m);

(R2) cone(1, Tn, k) = cone(1, Tn+1, k).

We claim that
cone(1, T, k +m) = cone(1, Tn, k +m). (1)

Suppose not. Let q ∈ cone(1, T, k +m) \ cone(1, Tn, k +m) correspond to the oldest extra
vertex. In view of condition (R2), we must have |q| > k, hence there exists some p ∈ Tn of
length k such that q = pu and u ∈ cone(p, T,m) \ cone(p, Tn,m). Clearly, this vertex is the
result of some sequence of expansions in the cone of p. Now, by condition (R1), a similar
sequence of expansions should have occurred earlier to produce p′u ∈ cone(1, T, k+m). Now
u /∈ cone(p, Tn,m) = cone(p′, Tn,m) together with |p′| < |p| = k yields p′u /∈ cone(1, Tn, k+
m). Hence p′u ∈ cone(1, T, k + m) \ cone(1, Tn, k + m), thus contradicting the seniority of
q. Thus (1) holds.

It follows that cone(p, T,m) = cone(p, Tn,m) for every p ∈ cone(1, Tn, k). We have
all the relevant edges and application of the standard minimization algorithm yields the
minimal automaton of T .

Clearly, we can check at any step of Stephen’s construction if conditions (R1)-(R2) hold,
colouring the vertices by their age to make the verification easier. Therefore it suffices to
show that conditions (R1)-(R2) must eventually occur in Stephen’s construction.

Indeed, for a fixed k, it is clear that cone(1, Tn, k) eventually stabilizes when n→ +∞,
and the claim follows from having only finitely many neighbourhood types of fixed size m.
�

We consider next Green’s relations on M . Note that T (w−1) = w−1T (w) for every
w ∈ Ã∗ [7].
Proposition 3.6 [7] Let u, v ∈ Ã∗. Then:

(i) (uτ)R (vτ) ⇔ T (u) = T (v);

(ii) (uτ)L (vτ) ⇔ u−1T (u) = v−1T (v);

(iii) (uτ)D (vτ) ⇔ T (v) = wT (u) for some w ∈ RA ⇔ ΓS(u) ∼= ΓS(v);

(iv) (uτ)H ((uu−1)τ) ⇔ T (u) = uT (u).

Let K,L ⊆ RA be rational. It was proved in [16, Theorem 5.1] that {u ∈ RA | Ku ⊆ L}
is an effectively constructible rational language. Since

uK = L ⇔ (L−1u ⊆ K−1 and K−1u−1 ⊆ L−1),

and rational languages are closed for inversion (being closed for reversion and automor-
phisms), it follows also that

{u ∈ RA | uK = L} is an effectively constructible rational language. (2)

Proposition 3.7 It is decidable, for K ∈ {R,L,H,D,J } and arbitrary u, v ∈ Ã∗, whether
or not (uτ)K (vτ).

7



Proof. The cases R,L,H follow immediately from Theorem 3.3 and Proposition 3.6. The
case D follows from the same results and (2). We consider now the case J . By Proposition
3.1, uτ ∈ M(vτ)M if and only if v labels some path in T (u), i.e., if and only if MT(v)
embeds in T (u). We show that this can be decided.

Indeed, if MT(v) embeds in T (u), such an embedding involves a unique vertex p of
minimum depth in T (u) (relative to the initial vertex 1). Changing the initial vertex
in MT(v) corresponds to moving inside the L-class, so we must decide if some v′τ ∈ Lvτ
satisfies T0(v′) ⊆ cone(p, T (u)) for some p ∈ T (u). Now T0(v′) must be of the form w−1T0(v)
for some w ∈ T0(v). If (Q, q0, Q,E) is the minimum automaton of T (u), then the sets
cone(p, T (u)) correspond to rational languages of the form L(Q, q,Q,E) for q ∈ Q. Hence
uτ ∈M(vτ)M if and only if

w−1T0(v) ⊆ L(Q, q,Q,E) for some w ∈ T0(v) and q ∈ Q

and is therefore decidable. �

We show next that D may be strictly contained in J :
Example 3.8 Let M be defined by 〈a, b | a−1a = bb−1, b−1b = aa−1〉. Then aτ and bτ are
J -related but not D-related, having

• a // • b // • a // • b // · · ·

• b // • a // • b // • a // · · ·

as Schützenberger graphs.
Other known decidabiity results for finite idempotent presentations involve a solution of

the generalized word problem by Lohrey and Ondrusch [4] and a solution of the conjugacy
problem in restricted cases by the author [14].

4 Maximal subgroups

It follows easily from Proposition 3.6(iv) that the maximal subgroups of M , that is, its
group H-classes, are isomorphic to the automorphism group of the Schützenberger graph
of the corresponding D-class [17]. Since the Schützenberger graphs are trees in our case,
it follows that the maximal subgroups of M are necessarily free groups. What about the
rank? Recall that a monoid is said to be combinatorial if it has no nontrivial subgroups.

The free group FGA acts on its Cayley graph ΓA(FGA) by left translations. Given
w ∈ Ã∗, an automorphism of the tree T (w) can be seen as the restriction of an automorphism
of ΓA(FGA) which fixes T (w). It is then determined by the image of the vertex 1, that is,
some word u ∈ RA. Hence Aut(T (w)) is isomorphic to

Stab(T (w)) = {u ∈ RA | uT (w) = T (w)},

viewed as a subgroup of FGA.
Lemma 4.1 For every w ∈ Ã∗, Stab(T (w)) is an effectively computable finitely generated
subgroup of FGA.
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Proof. It follows from (2) and Benois’ Theorem [1, Proposition III.2.8] that Stab(T (w)) is
an effectively constructible rational subgroup of FGA. By Anisimov and Seifert’s Theorem
[11, Prop. II.6.2], Stab(T (w)) is finitely generated as a subgroup of FGA. �

We need now a technical lemma:
Lemma 4.2 Suppose that g ∈ Stab(T (w)) is a cyclically reduced word ending in a ∈ Ã. If
T0(u) = cone(1, T (w), ||R||), then

T (w) \ a−1RA ⊆ T (u) \ a−1RA.

Proof. Write T = T (w) and T ′ = T \ a−1RA.
Replacing g by some positive power gn if necessary, we may assume that |g| > ||w||. We

show that, for every v ∈ RA,
v ∈ T ′ ⇔ gv ∈ T ′. (3)

Indeed, v ∈ T ′ implies that gv ∈ RA and so gT = T yields gv = gv ∈ T and therefore
gv ∈ T ′ since g is cyclically reduced.

Conversely, assume that gv ∈ T ′. Then g−1T = T yields v ∈ T . Since gv ∈ RA, we get
v ∈ T ′ and so (3) holds.

Let gx1, gx2, . . . be an enumeration of the vertices in g · cone(g, T ) as they appear when
we apply Stephen’s construction to MT(w) (performing one expansion at the time). In view
of (3), T ′ = cone(g, T ) = {x1, x2, . . .} We claim that x1, x2, . . . can be successively obtained
from MT(u) through Stephen’s construction, therefore proving the lemma.

Indeed, assume that this holds for all j < i and consider xi. If |xi| ≤ ||R||, then
xi ∈ T0(u) and there is nothing else to prove. Hence we may assume that |xi| > ||R||.

Now gxi must be the extra element provided by some expansion from MT(e) to MT(f) in
the Stephen’s construction of T (w), at some vertex gp, for some (e, f) ∈ R. Since |xi| > ||e||,
MT(e) is fully embedded in the subtree of Ti−1(w) induced by the vertices gx1, . . . , gxi−1

and possibly some older vertices from nbh(g, T, ||R||) = gT0(u) (since g ∈ Stab(T )). By the
induction hypothesis, MT(e) is fully embedded at p in the subtree of Ti−1(u) induced by
T0(u) and the vertices x1, . . . , xi−1. Hence xi can also be obtained through an expansion,
featuring as a vertex in Ti(u). This proves our claim and therefore the lemma. �

We can now prove the following result:
Theorem 4.3 The following conditions are equivalent:

(i) M is combinatorial;

(ii) Stab(T (w)) is trivial whenever ||w|| ≤ ||R||.

Proof. (i) ⇒ (ii): Immediate from the previous discussion.
(ii) ⇒ (i): Assume that there exists some w ∈ Ã∗ such that Stab(T (w)) is nontrivial.

Since T (w) = T (ww−1), we may assume that w = 1. Let g ∈ Stab(T (w)) be nonempty
and write g = xhx−1 with h cyclically reduced. Then there exists a path 1 x−→q in T (w)
for some q, and it is immediate that T (x−1wx) is obtained from T (w) by taking q as the
new initial/terminal vertex. Hence T (x−1wx) also has a nontrivial automorphism, and
hT (x−1wx) = T (x−1wx). Therefore we may assume that g is cyclically reduced.
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Write T = T (w). Since gT = T , we have gnT = T for every n ∈ Z. We now apply
Lemma 4.2 to both g and g−1, taking u ∈ Ã∗ such that T0(u) = cone(1, T, ||R||). Assume
that a is the first letter of g and b its last letter. By Lemma 4.2, we have

T \ b−1RA ⊆ T (u) \ b−1RA, T \ aRA ⊆ T (u) \ aRA.

Since g is cyclically reduced, we get

T = (T \ b−1RA) ∪ (T \ aRA) ⊆ T (u).

Since T0(u) ⊆ T and T is P-closed, the inclusion T (u) ⊆ T holds. Therefore T = T (u)
and so gT (u) = T (u). Since ||u|| ≤ ||R|| and g 6= 1, the theorem follows. �

Corollary 4.4 It is decidable whether or not M is combinatorial.

Proof. Indeed, there are only finitely many Munn trees MT(u) such that ||u|| ≤ ||R||. By
Theorem 3.3, we can build T (u) for each one of them and compute Stab(T (u)) by Lemma
4.1. �

Corollary 4.5 If D is a D-class of M with nontrivial subgroups, then D = Duτ for some
u ∈ Ã∗ such that ||u|| ≤ ||R||. Furthermore, the maximal subgroups of these D-classes can
be effectively computed.

Proof. If D = Dwτ is such a D-class, it follows from the proof of Theorem 4.3 that T (w) =
T (u) for some u ∈ Ã∗ such that ||u|| ≤ ||R||. Hence D = Duτ . The maximal subgroups of
these D-classes can be effectively computed by Lemma 4.1.�

5 Finite D-classes

For all w ∈ Ã∗ and u ∈ T (w), we fix δw(u) ∈ DWA satisfying

T0(δw(u)) = nbh(u, T (w), ||R||) = {v ∈ T (u−1ww−1u) : |v| ≤ ||R||}.

We can take δw(u) as the minimum such word for the lexicographic order. Since the right
hand side is a finite nonempty prefix-closed subset of RA, then δw(u) is well defined. The
next result shows that every tree T (w) can be decomposed as a union of finitely many tree
types.
Lemma 5.1 If w ∈ Ã∗, then T (w) = ∪u∈T0(w)uT (δw(u)).

Proof. (⊆): Given a word v ∈ T (w), we factor it as v = (vα)(vβ), where vα denotes the
longest prefix of v in T0(w). We prove that

uα−1 ⊆ uT (δw(u)) (4)

holds for every u ∈ T0(w). Since T (w) = ∪u∈T0(w)uα
−1, this proves the direct inclusion.

Fix u ∈ T0(w). Clearly. uα−1 ∩ T0(w) = {u}, so we only have to care about T (w) \
T0(w). We assume that expansions are performed one at the time, so the elements of
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T (w) \ T0(w) can be written as a sequence w1, w2, . . . in which each wn can be obtained
from its predecessors and T0(w) by performing a certain expansion. We can now delete
from this sequence the elements that are not in uα−1. We prove that wn ∈ uT (δw(u)) by
induction on n.

Assume that wi ∈ uT (δw(u)) for every i < n. If |wnβ| ≤ ||R||, then wnβ ∈ T0(δw(u))
and so wn = u(wnβ) ∈ uT (δw(u)), hence we may assume that |wnβ| > ||R||. Now wn
was obtained by performing some expansion from MT(e) to MT(f) at some vertex q. Since
||f || ≤ ||R||, it follows that q ∈ uα−1\{u}. Moreover, qT0(e) ⊆ uα−1∪uT0(δw(u)) and so all
its elements are in {w1, . . . , wn−1}∪uT0(δw(u)). Using the induction hypothesis, we obtain
qT0(e) ⊆ uT (δw(u)). Hence u−1qT0(e) ⊆ T (δw(u)) and so u−1qT0(f) ⊆ T (δw(u)) since
T (δw(u)) is P-closed. In particular, u−1wn ∈ T (δw(u)) and so wn ∈ uT (δw(u)), completing
the induction. Thus (4) holds as required.

(⊇): Let u ∈ T0(w). Since T0(δw(u)) = nbh(u, T (w), ||R||), we have uT0(δw(u)) ⊆ T (w)
and so uT (δw(u)) ⊆ T (w) since T (w) is P-closed. �

We fix e0 ∈ DWA such that T0(e0) = {u ∈ RA : |u| ≤ ||R||}, say the minimum for the
lexicographic order. We can now prove the main result of this section:
Theorem 5.2 It is decidable:

(i) whether or not all the Schützenberger graphs of M are finite;

(ii) whether or not all the D-classes of M are finite.

Proof. (i) It follows from Lemma 5.1 that M has an infinite Schützenberger graph if and
only if T (f) is infinite for some f ∈ DWA satisfying ||f || ≤ ||R||. Since T (f) ⊆ T (e0)
and T (e0) is an effectively constructible rational language by Theorem 3.3, the problem is
decidable.

(ii) This follows from (i) since the cardinal of a D-class is the square of the cardinal of
the vertex set of the respective Schützenberger graph [17]. �

6 Semisimplicity

We consider now semisimplicity. A monoid N is said to be semisimple if N has no bicyclic
subsemigroup. This is known to be equivalent to the condition

∀x, y ∈ N ∀e ∈ E(N) (xy = e ∧ xe = ex = x ∧ ye = ey = y) ⇒ yx = e.

It is immediate that in an inverse monoid, the left hand side conditions imply y = x−1,
hence our condition can be simplified to

∀x ∈ N x2x−1 = x ⇒ x−1x ≥ xx−1.

Back to our finite idempotent presentation P, defining the inverse monoid M , we can prove
the following result:
Lemma 6.1 M is semisimple if and only if every endomorphism of a Schützenberger graph
is necessarily an automorphism.
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Proof. We can consider only Schützenberger graphs of Dyck words. First we note that any
endomorphism of a tree must necessarily be a monomorphism. Moreover, if ΓS(e) is the
Schützenberger graph of e, then the endomorphisms of ΓS(e) are characterized by the image
of the vertex 1 and therefore correspond to the reduced words u satisfying uT (e) ⊆ T (e).
If this inclusion is actually an equality, that is, if T (e) ⊆ uT (e), we have an automorphism.

Assume that M is semisimple and let ϕ be a monomorphism of ΓS(e) for some e ∈ DWA.
Then ϕ is determined by u = 1ϕ. Now ((eu)2(eu)−1)τ = (eu)τ follows easily from the fact
that (eu)2 can be read off vertex 1 in ΓS(e) (due to ϕ being a monomorphism), hence
(u−1eu)τ ≥ (euu−1)τ = eτ by semisimplicity. Hence u−1T0(e) ⊆ T (e), that is, MT(e)
embeds in ΓS(e) at vertex u−1. Since T (e) is P-closed, we get u−1T (e) ⊆ T (e) and so
T (e) ⊆ uT (e). Thus ϕ is an automorphism.

Conversely, assume that every endomorphism of a Schützenberger graph is an auto-
morphism. Let w ∈ Ã∗ and suppose that (w2w−1)τ = wτ . Take e = ww−1. Then
wT0(e) ⊆ T (w) = T (e) and so wT (e) ⊆ T (e) since the latter is P-closed. Hence w defines
an endomorphism of ΓS(e). Since this endomorphism is actually an automorphism, we get
w−1T (e) = T (e) and so T0(w−1) = w−1T0(e) ⊆ T (e). Thus (w−1w)τ ≥ eτ = (ww−1)τ and
M is semisimple. �

Theorem 6.2 It is decidable whether or not M is semisimple.

Proof. We show that M is semisimple if and only if EndΓS(f) = AutΓS(f) for every
f ∈ DWA with ||f || ≤ ||R||. Then we can certainly decide EndΓS(f) 6= AutΓS(f) for
some given f , since this amounts to decide if there exists some u ∈ RA such that uT (f) ⊂
T (f). The set of solutions of such an equation can be proved to be rational and effectively
constructible using similar arguments to the proof of (2).

In view of Lemma 6.1, it suffices to show that EndΓS(e) 6= AutΓS(e) for some e ∈ DWA

implies EndΓS(f) 6= AutΓS(f) for some f ∈ DWA with ||f || ≤ ||R||.
Assume that ϕ is an endomorphism (and therefore a monomorphism) of ΓS(e) which

is not an automorphism. Then ϕ is determined by u = 1ϕ 6= 1 and so uT (e) ⊂ T (e).
Writing u = xcx−1 with c cyclically reduced, it follows that c determines a monomorphism
of ΓS(x−1ex) ∼= ΓS(e) (we just compute the geodesics at a different vertex) which is not an
automorphism either. Thus we may assume that u is cyclically reduced. Since uT (e) ⊂ T (e)
and u is cyclically reduced, we have un ∈ T (e) for every n ≥ 0. Let v = upu1 denote the
longest prefix of the infinite word uω in T0(e), where u1 is a proper prefix of u, and write
u = u1u2. Let q > 0 be such that |uq| > ||e||. We claim that

(u2u1)p+q+1T (δe(v)) ⊂ T (δe(v)). (5)

Indeed, uT (e) ⊂ T (e) yields up+q+1T0(e) ⊆ T (e). Since |uq| > ||e||, we get up+q+1T0(e) ⊆
up+1RA and so up+q+1T0(e) ⊆ vα−1.

By (4), it follows that up+q+1T0(e) ⊆ vT (δe(v)) and so

u2uqT0(e) ⊆ T (δe(v)). (6)

Since T (δe(v)) is P-closed, we get u2uqT (e) ⊆ T (δe(v)). It follows from Lemma 5.1 that
u2uqvT (δe(v)) ⊆ T (δe(v)), i.e.,

(u2u1)p+q+1T (δe(v)) ⊆ T (δe(v)).
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It suffices to prove that this inclusion is strict.
Suppose that (u2u1)p+q+1T (δe(v)) = T (δe(v)). By (6), we get

(u−1
1 u−1

2 )2p+2q+2u2uqT0(e) ⊆ T (δe(v))

and so u−1
1 u−2p−q−1T0(e) ⊆ T (δe(v)). Thus u−1

1 u−2p−q−1T (e) ⊆ T (δe(v)) by P-closedness
and so

u−p−q−1T (e) = vu−1
1 u−2p−q−1T (e) ⊆ vT (δe(v)) ⊆ T (e)

by Lemma 5.1. Now uT (e) ⊆ T (e) because u determines the endomorphism of T (e). It
follows easily that up+q+1T (e) = T (e). Hence

u−1T (e) = up+qT (e) ⊆ T (e)

and so uT (e) = T (e), a contradiction. Thus (u2u1)p+q+1T (δe(v)) ⊂ T (δe(v)) and so (5)
holds.

Therefore EndΓS(δe(v)) 6= AutΓS(δe(v)). Since ||δe(v)|| ≤ ||R||, the proof is now com-
plete. �

7 Fundamentality

We turn now our attention to fundamental inverse monoids. Recall that, given an inverse
monoid S, the maximum idempotent-separating congruence on S is the largest congruence
contained in H. Alternatively, it can be defined by

xµy if xex−1 = yey−1 for every e ∈ E(S).

If µ is the identity congruence, S is said to be fundamental.
Back to our finite idempotent presentation P, we prove:

Lemma 7.1 Let x ∈ Ã∗ and uvw ∈ T (x) satisfy

uh ∈ T0(x)⇒ |h| ≤ ||R|| (7)

for every h ∈ RA. Then vw ∈ T (δx(u)).

Proof. Let N = nbh(u, T (x), ||R||). We assume that when we apply Stephen’s construction
to MT(x), we consider expansions one by one, so the new vertices come out as a totally
ordered set x1, x2, . . .. We consider the subsequence uy1, uy2, . . . of all vertices having u
as a prefix. In view of (7), every word of T (x) having u as a prefix must appear in our
subsequence or in uN , in particular uvw. We show that yn ∈ T (δx(u)) by induction on
n. Let n ≥ 1 and assume that the claim holds for all i < n. We may assume that
yn /∈ T0(δx(u)) = nbh(u, T (x), ||R||). On the other hand, since uyn ∈ T (x), we have
yn ∈ cone(u, T (x)). Thus |yn| > ||R||.

By (7), uyn was obtained by applying some expansion from MT(e) to MT(f), and it
follows easily that the corresponding embedding of MT(e) must take place inside the subtree
of T (x) defined by {uy1, . . . , uyn−1} ∪ uN at some vertex p of T (x). Indeed, |yn| > ||R||
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implies that u is a prefix of p, and (7) implies that all the vertices involved are either in uN
or were obtained through previous expansions.

Hence yn can be obtained from the tree defined by T0(δx(u)) ∪ {y1, . . . , yn−1} through
an expansion and by the induction hypothesis this tree is a subtree of T (δx(u)). Thus
yn ∈ T (δx(u)) and our claim holds. Since we have already remarked that uvw must be
among the uyi, the lemma is proved. �

Recall e0 from Section 5.
Theorem 7.2 The following conditions are equivalent for M :

(i) M is fundamental;

(ii) T (e0) 6= RA;

(iii) E(M) has no zero;

(iv) M has no group as a minimal ideal.

Proof. (i) ⇒ (ii). Suppose that T (e0) = RA. Then uT (e0) = T (e0) for some u ∈ RA \ {1}
and so ((e0u)τ)H (e0τ). We claim that ((e0u)τ)µ (e0τ). Since e0u = u 6= 1 = e0, it will
follow that (e0u)τ 6= e0τ and so M is not fundamental. Let e ∈ DWA. We must show that
(e0ueu−1)τ = (e0e)τ . Since T (e0) = RA, it is immediate that T (e0ueu−1) = T (e0e) = RA.
Together with e0ueu−1 = 1 = e0e, this implies (e0ueu−1)τ = (e0e)τ and so M is not
fundamental.

(ii)⇒ (i). Assume that M is not fundamental. Then we claim that (e0τ)µ (uτ) for some
nonidempotent uτ . Indeed, we may assume that (xτ)µ (yτ) for some distinct xτ, yτ ∈ M .
Since µ ⊆ H ⊆ R, we have T (x) = T (y) and so Theorem 3.2 yields x 6= y. Hence
((xx−1)τ)µ ((yx−1)τ) with (yx−1)τ nonidempotent.

By Corollary 4.5, we have ((xx−1)τ)D (eτ) for some e ∈ DWA such that ||e|| ≤ ||R||.
Hence eτ = (zxx−1z−1)τ for some z ∈ Ã∗ and so

e0τ = (e0e)τ = ((e0zxx−1z−1)τ)µ ((e0zyx−1z−1)τ).

Now x 6= y yields e0zyx−1z−1 6= 1 and so our claim holds for u = e0zyx
−1z−1.

Thus (uτ)R (e0τ), and we may write uτ = (e0w)τ for some w ∈ RA nonempty. Note
that

(e0τ)µ ((e0p)τ)⇔ (e0τ)µ ((e0p−1)τ) (8)

holds for every p ∈ RA. Indeed, (e0τ)µ ((e0p)τ) yields ((e0p−1)τ)µ ((e0pp−1)τ) = e0τ since
µ is a congruence and (e0τ)R ((e0p)τ). The converse implication follows by symmetry.

Let v ∈ RA. Write w = dcd−1 with c cyclically reduced. In view of (8), we may replace
w by w−1 if necessary to assume that cv ∈ RA. Moreover, since (e0τ)µ ((e0dcnd−1)τ)
for every n > 0, we may assume that |c| > ||R||, |v|. Now (e0τ)µ ((e0dcd−1)τ) yields
((e0dv)τ)µ ((e0dcd−1dv)τ) and therefore ((e0dv)τ)R ((e0dcd−1dv)τ). It follows that dcv =
e0dcd−1dv ∈ T (e0dv). Note that dc /∈ T0(e0dv) since |c| > ||R||, |v|. Using the factorization
dc · 1 · v, it follows from Lemma 7.1 that v ∈ T (δe0dv(dc)). Since ||δe0dv(dc)|| ≤ ||R||, it
follows that T (δe0dv(dc)) ⊆ T (e0). Thus v ∈ T (e0) and so T (e0) = RA.
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(ii)⇒ (iii). Assume that fτ is the zero of E(M) for some f ∈ DWA. Then (fww−1)τ =
fτ for every w ∈ RA and so T (f) = RA. Let a ∈ Ã. Then aT (f) = a−1T (f) = T (f) and it
follows from Lemma 4.2 that T (f)\a−1RA ⊆ T (e0)\a−1RA and T (f)\aRA ⊆ T (e0)\aRA.
Thus

T (f) = (T (f) \ a−1RA) ∪ (T (f) \ aRA) ⊆ T (e0)

and so T (e0) = RA.
(iii) ⇒ (iv). Suppose that I is the minimal ideal of M and is a group. Let e be the

idempotent in I. For every f ∈ E(M), ef ∈ I ∩ E(M), hence ef = e and so e is the zero
of E(M).

(iv) ⇒ (ii). Assume that T (e0) = RA. Then M(e0τ)M = {uτ | T (u) = RA} is clearly
the minimal ideal of M , and a free group of rank |A|. �

Corollary 7.3 It is decidable whether or not M is fundamental.

Proof. It follows from Theorems 3.3 and 7.2. �

We remark that fundamental does not imply combinatorial for M :
Example 7.4 Let M be defined by the presentation 〈a, b | aa−1 = a−1a = 1〉. Clearly, M
is not combinatorial since it is the free product of a free group of rank 1 by a free monogenic
inverse monoid.

However, M is fundamental by Theorem 7.2: we have e0 = aa−2abb−2b and T (e0) =
a∗ ∪ (a−1)∗ ∪ {b, b−1}.

8 The least fundamental quotient

We consider next the word problem for M/µ, the least fundamental quotient of M . We
start with some technical lemmas.
Lemma 8.1 Let u, v, w ∈ Ã∗ be such that (vτ)R (uτ)H ((uu−1)τ) and v ∈ u∗ ∪ (u−1)∗.
Then T (vuw) = uT (vw).

Proof. Since the proof of the opposite inclusion is absolutely similar, we prove just the
direct inclusion. By P-closedness, it suffices to show that T0(vuw) ⊆ uT (vw). We can write

T0(vuw) = T0(v) ∪ vT0(u) ∪ vuT0(w).

Successive application of Proposition 3.6 yields T0(v) ⊆ T (v) = T (u) = uT (u) = uT (v) ⊆
uT (vw). Now uT (u) = T (u) yields vT (u) = T (u) = uT (v) and so vT0(u) ⊆ vT (u) =
uT (v) ⊆ uT (vw). Finally, vuT0(w) ⊆ vuT (w) = uvT (w) ⊆ uT (vw). �

For every u ∈ Ã∗, write
||u||1 = max{||u||, ||u−1||}.

We define
ĈA = {u ∈ Ã∗ | u ∈ CA \ {1}},

J = {u ∈ ĈA | (uvv−1u−1)τ = (uu−1vv−1)τ for every v ∈ RA with |v| ≤ ||u||1 + 2||R||}.
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For every u ∈ J , let

Ju = {(e, v) ∈ DWA ×RA : ||e|| ≤ ||R|| and |v| = ||u||1 + ||R||}.

For every (e, v) ∈ Ju, let K(u, e, v) consist of all w ∈ RA \ T (e) such that

vw ∈ RA, v /∈ T0(uvew), nbh(uv, T (uvew), ||R||) = T0(e). (9)

Lemma 8.2 Let u ∈ ĈA. Then the following conditions are equivalent:

(i) (uτ)µ ((uu−1)τ);

(ii) u ∈ J and K(u, e, v) = ∅ for every (e, v) ∈ Ju.

Proof. (i) ⇒ (ii): It is immediate that condition (i) implies u ∈ J . Take (e, v) ∈ Ju. Sup-
pose that w ∈ RA satisfies all the conditions in (9). By (i), we have (uveww−1v−1u−1)τ =
(uu−1veww−1v−1)τ . In particular,

vw = uu−1vew ∈ T (uu−1veww−1v−1) = T (uveww−1v−1u−1) = T (uvew).

Since v /∈ T0(uvew), we may apply Lemma 7.1 to the factorization v · 1 · w and get w ∈
T (δuvew(v)). Since (i) yields (uτ)µ ((u−1u)τ) and so ((v−1u−1uvew)τ)µ ((v−1uvew)τ), we
get ((v−1u−1uvew)τ)R ((v−1uvew)τ) and thus T (v−1u−1uvew) = T (v−1uvew). It follows
that

T0(δuvew(v)) = nbh(v, T (uvew), ||R||) = nbh(uv, T (uvew, ||R||) = T0(e),

and so w ∈ T (δuvew(v)) = T (e). Therefore K(u, e, v) = ∅ and so condition (ii) holds.
(ii)⇒ (i): Assume that (uτ, (uu−1)τ) /∈ µ and u ∈ J . We must prove that K(u, e, v) 6= ∅

for some (e, v) ∈ Ju.
Since (uτ, (uu−1)τ) /∈ µ, we have (ufu−1)τ 6= (uu−1f)τ for some f ∈ DWA and so

(uzz−1u−1)τ 6= (uu−1zz−1)τ for some z ∈ RA, or equivalently, T (uz) 6= T (uu−1z). Let
such a z have minimum length. Since u ∈ J , we have |z| > ||u||1 + 2||R||. Write z = vw
with |v| = ||u||1 + ||R||. We prove that

|v−1uv| > |v|. (10)

For a start, we claim that u is not a prefix of z. Indeed, u ∈ J implies (uτ)H ((uu−1)τ):
taking v = u, u−1, we get easily (uu−1)τ = (u−1u)τ . Thus, if z = uz′, we may apply Lemma
8.1 to get

T (uz) = T (uuz′) = uT (uz′), T (uu−1z) = T (uu−1uz′) = uT (uu−1z′),

hence T (uz) 6= T (uu−1z) yields T (uz′) 6= T (uu−1z′), contradicting the minimality of z.
A similar argument shows that u−1 is not a prefix of z either. Now note that |u| < |v|.

Since u ∈ ĈA, one of the products v−1u and uv must be reduced. On the other hand, since
neither u nor u−1 is a prefix of v, u cannot cancel completely v (nor v−1). Therefore (10)
holds.

Let e = δuvw(uv). Then (e, v) ∈ Ju. We prove that w ∈ K(u, e, v). Of course, vw = z ∈
RA. Moreover, MT(e) embeds in T (uvw) at vertex uv and so T (uvew) = T (uvw). Thus

nbh(uv, T (uvew), ||R||) = nbh(uv, T (uvw), ||R||) = T0(δuvw(uv)) = T0(e).
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We prove next that

v /∈ T0(uvew) = T0(u) ∪ uT0(v) ∪ uvT0(e) ∪ uveT0(w).

Since |v| > ||u||, then v /∈ T0(u). Suppose that v ∈ uT0(v). Then v = u−1vx for some
x ∈ RA and so |v−1uv| = |x| ≤ |v|, contradicting (10). Thus v /∈ uT0(v). A similar
argument shows that v /∈ uvT0(e). Finally, v−1u−1v and v−1 start by the same first letter
in view of (10) and |u| < |v|. Since vw ∈ RA, then also v−1uvw ∈ RA and so v /∈ uveT0(w).
Therefore v /∈ T0(uvew).

It remains to be proved that w /∈ T (e). Indeed, suppose that w ∈ T (e). Then eτ =
(eww−1)τ . Since u ∈ J and ||ve|| ≤ ||u||1 + 2||R||, we have (uvev−1u−1)τ = (uu−1vev−1)τ .
Hence T (uve) = T (uu−1ve) and so

T (uvew) = T (uveww−1) = T (uve) = T (uu−1ve) = T (uu−1veww−1) = T (uu−1vew).

By definition of e, we have (uvew)τ = (uvw)τ = (uz)τ and since u ∈ J implies (uu−1)τ =
(u−1u)τ , also

(uu−1vew)τ = (u−1uvew)τ = (u−1uvw)τ = (uu−1z)τ.

Hence T (uz) = T (uvew) = T (uu−1vew) = T (uu−1z), a contradiction.
Thus w /∈ T (e) and so w ∈ K(u, e, v). Therefore condition (ii) fails as required. �

Theorem 8.3 M/µ has decidable word problem.

Proof. As a first step, we reduce the word problem of M/µ to deciding whether or not
(uτ)µ ((uu−1)τ) for u ∈ ĈA. Indeed, as with any inverse monoid congruence, deciding
xµy van be reduced to deciding zµ(zz−1) and eµf for e, f ∈ E(M): this follows from the
equivalence

x = y ⇔ (xx−1 = yy−1 ∧ x−1x = y−1y ∧ xy−1 = xy−1yx−1).

Since µ is idempotent-separating, deciding eµf follows from the word problem, and so we
only need to decide (uτ)µ ((uu−1)τ). If u = vcv−1 with c ∈ CA, it is easy to check that
(uτ)µ is idempotent if and only if ((v−1uv)τ)µ is idempotent, hence we are reduced to the
case (uτ)µ ((uu−1)τ) for u ∈ ĈA, which we discuss now, in the light of Lemma 8.2.

Let A = (Q, q0, Q,E) denote the minimum automaton of T (e) (note that all states must
be terminal since T (e) is prefix-closed). Clearly, u ∈ J is decidable, so we may assume
that u ∈ J . Moreover, we only need to consider finitely many (e, v) ∈ Ju, hence if we can
bound the length of a possible element of some K(u, e, v), we are done: indeed, all the
conditions in (9) are decidable for a given w ∈ RA \ T (e). Therefore it suffices to prove
that, if (uτ, (uu−1)τ) /∈ µ, then

K(u, e, v) contains a word of length ≤ |Q|+ 2||R||+ 2 for some (e, v) ∈ Ju. (11)

Assume that (uτ, (uu−1)τ) /∈ µ. As in the proof of the converse implication of Lemma
8.2, we have T (uz) 6= T (uu−1z) for some z ∈ RA. Let such a z have minimum length. Since
u ∈ J , we have |z| > ||u||1 + 2||R||. Writing z = vz′ with |v| = ||u||1 + ||R||, it follows from
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the proof that (e, v) ∈ Ju and z′ ∈ K(u, e, v) for e = δuvz′(uv). Hence K(u, e, v) 6= ∅. Let
w ∈ K(u, e, v) have minimum length. We only need to prove that

|w| ≤ |Q|+ 2||R||+ 2. (12)

Suppose that |w| > |Q| + 2||R|| + 2. Write w = w1a with a ∈ Ã. We claim that
w1 ∈ T (e). Indeed, vw1 ∈ RA, v /∈ MT (uvew1) and nbh(uv, T (uvew1), ||R||) = T0(e) are
easily verified, and so w1 ∈ T (e) must hold by minimality of |w|. Write w1 = bw2w3w4 with
b ∈ Ã, |w2| = ||R|| and |w4| = ||R||+ 1. Then we have a path

q0
bw2−→q2

w3−→q3
w4−→q4

in A. Let q2
w′

3−→q3 be a path of minimal length and set w′ = bw2w
′
3w4a. We claim that

w′ ∈ K(u, e, v). Since |w′| ≤ 1 + ||R||+ |Q| − 1 + ||R||+ 1 + 1 = |Q|+ 2||R||+ 2 < |w|, we
reach the desired contradiction.

Since vw = vbw2w3w4a ∈ RA and bw2w
′
3w4 ∈ L(A) = T (e) ⊆ RA, we have also vw′ =

vbw2w
′
3w4a ∈ RA. On the other hand, since A is deterministic, w′ = bw2w

′
3w4a ∈ T (e)

would imply w = bw2w3w4a ∈ T (e), a contradiction, thus w′ /∈ T (e).
On the other hand, v /∈ T0(uvew) yields v /∈ T0(uve). By (10), and since |u| < |v|,

v−1u−1v and v−1 start by the same first letter. Since vw′ ∈ RA, it follows that v /∈ uveT0(w′)
and so v /∈ T0(uvew′).

It remains to prove the inclusion

nbh(uv, T (uvew′), ||R||) ⊆ T0(e), (13)

the opposite inclusion holding trivially.
Let C = cone(uvbw2w3, T (uvew)). It suffices to show that

T (v−1u−1uvew′) ⊆ T (v−1u−1uve) ∪ bw2w
′
3C. (14)

Indeed, since |w2| = ||R|| and T (v−1u−1uve) ∪ {bw2} ⊆ T (v−1u−1uvew), it follows that
nbh(uv, T (uvew′), ||R||) ⊆ nbh(uv, T (uvew), ||R||) ⊆ T0(e).

Let w′1 = bw2w
′
3w4 so that w′ = w′1a. Since w1 ∈ T (e), we have w′1 ∈ T (e) as well

since both label paths q0−→q4 in A. Hence T (uvew′1) = T (uve) ⊆ T (uvew) and the crucial
question is understanding the effects of adjoining the edge w′1

a−→w′ to T (v−1u−1uvew′1)
and performing the due expansions. We claim that the expansion process never takes us
outside the cone bw2w

′
3C. This follows from the following claim: no expansion can create an

edge lying closer to the vertex 1. And since the added edge w′1
a−→w′ lies at depth ||R||+ 1

in the cone C, the only way of expanding outside the cone would be to produce new edges
closer to the cone root.

We show next that

cone(bw2w
′
3, T (v−1u−1uve)) = cone(bw2w

′
3, T (e)). (15)

Indeed, let p ∈ cone(bw2w
′
3, T (v−1u−1uve)). Then we consider uv ·b·w2w

′
3p ∈ T (uve). Since

|v| > ||u||1 and ||e|| ≤ ||R||, then uvh ∈ T0(uve) implies h ∈ T0(e) and therefore |h| ≤ ||R||.
It follows from Lemma 7.1 that bw2w

′
3p ∈ T (δuve(uv)). Since e = δuvw(uv), it follows easily

that δuve(uv) = e and so bw2w
′
3p ∈ T (e). Thus p ∈ cone(bw2w

′
3, T (e)) and so (15) holds.
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Thus, before adding the extra edge, we have

cone(bw2w
′
3, T (v−1u−1uvew′1)) = cone(bw2w

′
3, T (v−1u−1uve))

= cone(bw2w
′
3, T (e)) = L(Q, q3, Q,E) = cone(bw2w3, T (e))

= cone(bw2w3, T (v−1u−1uve)) = cone(bw2w3, T (v−1u−1uvew1)).

Indeed, the first equality follows from w′1 ∈ T (e), the second from (15), the third is obvious
and the remaining similar.

Thus our claim is equivalent to prove that, after adjoining the edge w1
a−→w to the tree

T (v−1u−1uvew1) and performing the due expansions, the expansion proccess never takes
us outside the cone bw2w3C.

So suppose that the expansion process produces a new edge r c−→rc in the Stephen’s
sequence of v−1u−1uvew with |r| < |w1|. Assume that r c−→rc is the first such edge to
appear. We claim that rc would be a shorter alternative to w as an element of K(u, e, v).

Clearly, rc ∈ RA \ T (e) since it was not in T (v−1u−1uvew1). Moreover, since we are
taking the older new edge, we have r ∈ T (e) and vrc ∈ RA since bw2w

′
3 is a prefix of rc

due to |w4| = ||R|| + 1. On the other hand, v /∈ T0(uverc) = T0(uve) ∪ uvT0(rc) follows
from v /∈ T0(uvew) and v−1u−1v starting with a different letter from rc ∈ bRA as observed
before.

Finally, nbh(uv, T (uverc), ||R||) ⊆ nbh(uv, T (uvew), ||R||) = T0(e) since rc can be pro-
duced through expansions of MT(uvew). The opposite inclusion holds trivially, hence
nbh(uv, T (uverc), ||R||) = T0(e) and so rc ∈ K(u, e, v). This contradicts the minimality
of |w|, hence the expansion proccess never takes us outside the cone bw2w3C and so (14)
holds. Thus (13) holds and so w′ ∈ K(u, e, v), contradicting the minimality of |w|. Therefore
(12) holds and the proof is complete. �
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