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Abstract

The translational hull of a locally inverse semigroup has a largest
locally inverse subsemigroup containing the inner part. A construction
is given for ideal extensions within the class of all locally inverse se-
migroups.
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1 Introduction

We refer the reader to [3, 10] for the basic results and all notions which are
left undefined in this paper. A regular semigroup S is said to be a locally
inverse semigroup if eSe is an inverse semigroup for every idempotent
e of S. The class LI of all locally inverse semigroups has been studied
widely for more than two decades and includes remarkable semigroups such
as inverse semigroups, completely 0-simple semigroups and normal bands of
groups. The locally inverse semigroups are precisely the regular semigroups
for which the natural partial order < is compatible with the multiplication
[4]. Equivalently, a regular semigroup S is locally inverse if and only if for all
idempotents e, f in the set E(S) of idempotents of S there exists a unique
inverse f Ae € FE(S) of ef in S which belongs to fSe [5]. The binary
algebra (E(S),A) is called the pseudosemilattice (of idempotents) of S.
Such pseudosemilattices have been characterized abstractly [5].

*The second author was partially supported by FCT through Centro de Matematica
da Universidade do Porto



Let S be a locally inverse semigroup. An injective homomorphism ¢ :
S — T is said to be an ideal extension [within LI] if S¢ is an ideal
of the [locally inverse] semigroup 7'. If this is the case then K = T/Sy is
a [locally inverse] semigroup with zero and we say that 7 is an ideal ex-
tension of S by K. It is our aim to construct, for given locally inverse
semigroups S and K, where K has a zero, every locally inverse semigroup
T which is an extension of S by K. As explained in [9, 10], the concept
of a dense ideal extension plays a crucial role in this construction. Recall
that ideal extensions ¢; : S — 17 and ¢ : S — T, are equivalent if
there exists an isomorphism ¢ : 7} — Ty which extends ¢ ;. The ideal
extension ¢ : S — T is dense if whenever ¢ : T" — U is a homomorphism
such that ¢y : S — U is an ideal extension, then ¢ is injective. A dense
ideal extension ¢ : S — T [within LI] is called a maximal dense ideal
extension [within LI] if whenever ¢ : T — U is a homomorphism such
that oy : S — U is a dense ideal extension [within LI], then ¢ is an
isomorphism. For the given locally inverse semigroup S such maximal dense
ideal extensions exist and this facilitates finding all dense ideal extensions
[within LI] of S.

For a locally inverse semigroup S the (nonempty) order ideals of (5, <)
form an ideal O(S) of the power semigroup of S (Proposition 2.1 of [6]). For
a € S, let (a] be the principal order ideal of (S, <) generated by a. Then the
mapping 75 : S — O(S), a — (a] is an injective homomorphism and the
regular part of the idealizer of S7g in O(S) is a locally inverse semigroup 7'(S)
(Proposition 2.4 and Theorem 3.9 of [6]). Then 75 : S — T(S) is a maxi-
mal dense ideal extension of S within LI; if V' € LI and Stg C V C T'(S)
then 7¢ : § — V is a dense ideal extension within LI and every dense
ideal extension of S within LI is equivalent to an ideal extension obtained in
this way (Theorems 4.6 and 4.7 of [6]). This paradigm was used before for
constructing dense ideal extensions of some special locally inverse semigroups
[12, 14].

2 The translational hull

Let S be a locally inverse semigroup. Let A and p be, respectively, a left
and right translation of S. Then A and p are said to be linked if (ap)b = a(\b)
for all a,b € S. The translational hull (S) of S consists of all such linked
pairs (A, p) and is a subsemigroup of A(S) x P(S), where A(S) [P(S)] is the



semigroup of all left [right] translations of S. For w = (A, p) € Q(S) and
a € S we write aw = ap and wa = Aa. For a € S, A\, [p,] is the inner
left [right] translation associated with a. Then 7, = (A4, pa) € Q(S) and
I1(S) = {m, | a € S} is called the inner part of 2(S). It follows from [2]
(see also [9, 10]) that 75 : S — Q(S), a — 7, is a maximal dense ideal
extension (within the class of all semigroups) of the locally inverse semigroup

S.

Lemma 2.1. Let S be a locally inverse semigroup. For H € T(S) define Ay
and pg by: if s €S, then

Ags = 81 if  H(s] = (s1],

SpH = S2 if  (s]H = (s9)-

Then wy = (Au, pr) € Q(S) and
Y :T(S)— QS), H— wgy

is the unique homomorphism of T|(S) into Q(S) which extends
76 'ms 1 STy — ST, (a] — T,

Moreover, 1 s injective.

Proof. That wy € Q(S) for every H € T'(S), and that the above defined v
is the unique homomorphism extending Tglﬂg follows from Theorem II1.1.12
of [10] since STy is an ideal of T'(S) and both 7g and 7¢ are injective homo-
morphisms. Since 75 : S — T'(S) is a dense ideal extension it follows from
Corollary II1.5.6 of [10] that « is injective. O

With the notation of Lemma 2.1 we denote the canonically constructed
locally inverse subsemigroup 7'(.S)1) of Q(S) by Qr1(S). Since 9 is an isomor-
phism of T'(S) onto Qri1(S) which extends 75 '7g, so mg : S — Qri(S) and
T : S — T'(S) are equivalent ideal extensions. Thus, since 7 : S — T'(5)
is a maximal dense ideal extension within LI, we have

Theorem 2.2. If S € LI, then g : S — Qui(S) is a mazimal dense ideal
extension of S within LI.

We shall use the following lemma in the proof of Theorem 2.11.



Lemma 2.3. Let S € LI, K an order ideal of S and H € T(S). Then
Kwyg =KH and wgK = HK.

Proof. By duality we shall only prove Kwy = KH. By definition Kwyg =
{s | (k]H = (s] for some k € K}, and clearly Kwy C KH. Let now k € K,
h € H. Then k(hh' A K'k) € K for some inverses h’' and k' of h and k
respectively. Since k(hh/ A k‘lk)h, = kh and Rk(hh’/\k’k)h1 S Rk(hh’/\k’k) = Rkh
for any hy € H we conclude that (k(hh' A k'k)]H = (kh]. We have shown
Kwyg =KH. O

We set out to locate Qpp(S) within Q(S) and find the inverse ¢! :
Qri(S) — T(S) of the isomorphism v : T'(S) — Qr1(S).

Lemma 2.4. Let S be a locally inverse semigroup and U a locally inverse

subsemigroup of Q(S) such that II(S) C U. Then for w € U,
E(S) wNwE(S)={teS|m <winU} (1)
is an element of T'(S).

Proof. Since g : S — U is an ideal extension of S within LI it follows from
Corollary 4.5 of [6] that for every w € U, ((w] NII(S))mg" is an element of
T(S). Obviously ((w] NTI(S))mg" is the right hand side of (1).

Let w € U and t € S such that 7, < w in U. Let ¢ be any inverse of ¢
in S. Then m; is an idempotent of TI(.S) which is in the R-class of m;, and
since m; < w it follows that my = mpw = My, whence t = tt'w € E(S)w. By
duality, t € E(S)w NwE(S).

Conversely, if t € E(S)wNwE(S) fort € Sandw € U, thent =ew = wf
for some e, f € E(S). Hence m = me, = mew and m, = m, s = wmy where 7,
and 7y are idempotents of U, so m; < w in U. We proved that the equality
(1) holds true. O

Lemma 2.5. Let S and U be as in Lemma 2.4 and for w € U, let H, denote
the set (1). Let ¢ be as in Lemma 2.1. Then w = H,1).

Proof. Let w € U. From Lemma 2.4 we know that H,, € T(S). Using duality
and the definition of ¢ we need only show that for any s € S, (ws] = H,(s].

We choose an inverse w’ of w in U, an inverse s’ of s in S and we let
£ = Tye Aw'w in the pseudosemilattice of idempotents of U. Then em,y < ey
and emge € I1(S) since TI(S) is an ideal of U. Also emsy R e Lwe. It follows



that we € II(S), that is, we = m; for some t € S. One verifies that we < w in
U, thus my <w in U and t € H,. Using wngy = wemgy we then obtain

WS = WsS's = Wge§ = WeTgeS = wes = ms = ts € Hys C Hy(s],

and so (ws] C H,(s] since H,(s] is an order ideal of (S, <).

To prove the converse we take any element in H,(s]. Since by Proposition
2.4 of [6] H,(s] = H,s, such an element is of the form ¢s with ¢ € H,, that
is, 7, < w in U. We let ¢' be an inverse of ¢ in S and let ' = 7,9 A 7y, in
the pseudosemilattice of idempotents of U. Since 7, € Uw it follows from
elementary results concerning pseudosemilattices [5] that &’ < e in U, and
thus also that m,e’ < we, since < is compatible with the multiplication in
U. Since mys = m,ms = me'my < wenmg = wmy = 7, in U we also have
that 7,5 < m,, in the ideal II(S) of U, and so ¢s < ws in S since 7g is an
isomorphism of S onto I1(S). We proved that ¢s € (ws]. We conclude that
(ws] = H,(s], as required. O

Theorem 2.6. If S is a locally inverse semigroup, then Quy(S) is the largest
locally inverse subsemigroup of Q(S) containing I1(S). Qri(S) = Q(S) if and
only if S is an inverse semigroup.

Proof. The first statement follows immediately from Lemmas 2.4 and 2.5.
Assume that Qpr(S) = Q(S). Since ©(S) has an identity element, Qri(S) is
a locally inverse semigroup which has an identity element, hence Qp1(S) is
an inverse semigroup. Then II(S) is an ideal of the inverse semigroup (S5),
whence TI(S) and thus S itself are inverse semigroups.

If S is an inverse semigroup, then €(S) is an inverse semigroup by a
result of Ponizovskii [13] (see also [14] or Theorem V.4.6 of [10]), hence
Q(S) = Qri(S) by the first statement. O

With the notation introduced before we have

Theorem 2.7. Let S be a locally inverse semigroup. Then the mappings
Y :T(S) — Qi(S), H— wy

and
X Qui(S) — T(S), w— H,

are pairwise inverse isomorphisms.



Proof. By Corollary 4.5 of [6] the mapping Qpi(S) — T(5), w — ((w]N
I1(S))mg" is the unique homomorphism which extends 7 '7s : I1(S) — S7s.
Here obviously ((w]NII(S))rg' = H,, asin (1) and so the mentioned mapping
is precisely the mapping x of the statement of the theorem. That v is an
isomorphism of T'(S) onto Qrr(S) we know from Lemma 2.1. From Lemma
2.5 it follows that x is the identity transformation on Qr;(S). We conclude
that y = ¢!, O

The following gives more information about the idempotents and the local
submonoids of Qrr(S) and T(S).

Theorem 2.8. Let S be a locally inverse semigroup. An idempotent € of
Q(S) belongs to Qui(S) if and only if E = E(S)eNeE(S) is a subsemilattice
of S. If this is the case, then E is the idempotent of T(S) with ¢ = E1.

Proof. If e € F(S) such that 7, < ¢ = ¢? in F(Q(9)), then 7, = T = T,
whence e = e, and dually also e = ce. Therefore, if e € E(S) such that
e < € then e € E(S)e NeE(95).

Assume that F = E(S)e NeE(S) is a subsemilattice of S. Clearly U =
I1(S) U {e} is a regular subsemigroup of {2(.S) which contains the locally in-
verse semigroup I1(S) as an ideal. Therefore eUe is a regular subsemigroup
of U. If m, and 7y are any idempotents of eUs NII(S), then by the above e
and f belong to the subsemilattice F of S, hence m, commutes with ;. Tt
follows that cUe is an inverse semigroup and we may conclude that U is a
locally inverse subsemigroup of ©(S). By Theorem 2.6, U C Qr1(S) and so
e € Qui(S). By Theorem 2.7, E = eyp~ 1.

Assume conversely that ¢ is an idempotent of Qr;(S). Then by Theorem
2.7 H. = E(S)enNeE(S) = E is an idempotent of T'(S). From Lemma 3.2 of
[6] it follows that E is a subsemilattice of S. O

It will be useful to recall the following result of [6].

Result 2.9. (Lemma 3.6 and Theorem 3.9 of [6].) Let S be a locally inverse
semigroup. Then E is an idempotent of T'(S) if and only if E is a subsemi-
lattice and an order ideal of S, and for any f € E(S) there exist k,l € E(S)
such that

{enflec E}=(k], {fAe|lee E}={]



The N-operation of the pseudosemilattice of T(S) is given by: if E and F
are idempotents of T(S), then

ENF={eNfleckE, feF}.

Since for a semilattice the operation A coincides with the multiplication
it follows from Result 2.9 that for an inverse semigroup V' the semilatti-
ce E(T(V)) coincides with T'(E(V)), which is the N-semilattice of retract
ideals of the semilattice E(V) (see Exercise V.4.7.2 and Lemma V.6.1 of
[10], or Lemmas 2.6 and 2.8 of [14]).

Proposition 2.10. Let S be a locally inverse semigroup.

(i) If H € O(S) then H € T(S) if and only if there exists an inverse H'
of H in O(S) such that HH' and H'H are idempotents of T(S).

(i1) Qu1(S) consist of the w € Q(S) which are D-related in Q(S) to some
idempotent of Qr1(S).

Proof. (i). The direct part is obvious since T'(S) was defined to be the regular
part, of the idealizer of Stg in O(S). To prove the converse, let H and H' be
pairwise inverse elements of O(S) such that HH' and H'H are idempotents
of T'(S). By duality it suffices to show that for any a € S, H(a] € S7s.

Since H'H € T(S) there exists b € S such that H'H(a] = (b]. Since
H'H(a) = H'Ha by Proposition 2.4 of [6], there exists f € H'H such that
b = fa. From Result 2.9 we know that H'H is a subsemilattice and an order
ideal of S and so in particular f is an idempotent. Let e be the unique
idempotent in R, such that e < f. Then ea = fa = b and e € H'H. By
Lemma 3.11 of [6] there exist unique t € H and ¢’ € H' such that ¢’ is an
inverse of t and e = t't. Hence tb = ta and so (tb] C H(a] since H(a] € O(S5).
We shall show that the reverse inclusion holds true.

Since H(a] = Ha by Proposition 2.4 of [6], every element of H (a] is of
the form sa for some s € H. Using Lemma 3.11 of [6] we may take the
unique inverse s’ of s in H' and then s's belongs to the semilattice H'H.
Then s'sa € H'H(a] = (b], and thus s'sa < bin S. Since b = eaRe = t't
we have that s'sa = t'ts'sa. Since t't and s's belong to the semilattice H'H,
so st't Ls'st't = t'ts's Lts's, where st't,ts's € HH'H = H. By Lemma
3.11 of [6], H cannot contain distinct L-related elements, hence st't = ts's.
Therefore sa = ss'sa = st'ts'sa = ts'sa < tb. We conclude that H (a] = (tb],
as required.



(17). Let ¢ be any idempotent of Q(S) and € an idempotent of Qpz(S5)
such that  De in (S). There exist pairwise inverse elements w and w' of
Q(S) such that ¢ = ww' and § = W'w. Then £Q(S)e — 6Q(9)d, waw' —
wwaw'w and 0Q(S)d — eQ(9S)e, waw — ww'aww’ are pairwise inverse
isomorphisms which induce isomorphisms between 0I1(S)d and II(S)e. Here
elI(S)e is an inverse semigroup since it is an ideal of the inverse semigroup
eQri(S)e. Therefore II(S) U {6} is a locally inverse subsemigroup of €2(S)
and 0 € Qri(S) by Theorem 2.6.

Let Q denote the union of the regular D-classes of 2(.S) which contain an
idempotent of Qpz(S). We must show that Q = Qz(S). Clearly Qp1(S) C Q.
For wy, we € Q) we may find idempotents ¢ € L,, and § € R,, and by the
foregoing we have £,0 € Qpi(S). We take 0 A £ in the pseudosemilattice of
idempotents of Qrz(S) and we know that 6 A e and € are pairwise inverse
elements. Since then Ae D ed L w16 R wiws in Q(S) and dAe is an idempotent
of Qr1(.5), so wiws € Q. Therefore Q is a regular subsemigroup of ©(S), and
obviously TI(S) C Q. If  is an idempotent of 2, then £Qe is a regular semi-
group in which the set of idempotents coincides with the set of idempotents
of eQry(S)e. Since the latter constitutes a semilattice it follows that €2 is
locally inverse. By Theorem 2.6 we may now conclude that Q = Qp3(S). O

In the following we calculate the local submonoids of Qg1(S) for any given
locally inverse semigroup S.

Theorem 2.11. Let S be a locally inverse semigroup, £ an idempotent of
Qri(S) and E the idempotent E(S)e NeE(S) of T(S). Then

eQ(S)e =eQu(S)e Z ET(S)E=T(V) = Q(V)

where V' is the largest inverse subsemigroup of S having E as its semilattice
of idempotents.

Proof. Recall from Theorem 2.8 that E is the idempotent of T'(S) with
e = Et. Since v is an isomorphism of T'(S) onto Qgz(5), it follows that
eQ1(S)e &2 ET(S)E. For any inverse semigroup V., T(V) 2 Qp1(V) = Q(V)
by Theorem 2.6 and xy : Q(V) — T'(V), w — E(V)wNwE(V) is an iso-
morphism by Theorem 2.7. It suffices to prove the equalities now.

Since E is an idempotent of T(S), it is an order ideal and a subsemi-
lattice of S which satisfies the additional conditions as stipulated in Result
2.9. Since E is a subsemilattice and an order ideal of S, ESFE is the largest



inverse subsemigroup of S having F as its pseudosemilattice of idempotents,
and thus V' = ESFE = ¢Se by Lemma 2.3. By Theorem 1 of [11] the mapping

p:eQ(S)e — QV), w-—w|y

is an isomorphism, and so by Theorem 2.6 £Q(S)e is a locally inverse semi-
group. Thus eQ(S)e UTII(S) is a regular subsemigroup of ©(S) since II(S)
is an ideal of Q(S). Since {w} UTI(S) is a locally inverse semigroup for any
idempotent w of €Q2(S)e, we have that w € Qpy(S) again by Theorem 2.6.
Therefore €Q(S)e UII(S) is a locally inverse semigroup, and consequently
eQ(S)e C Qri(S). We can now conclude that eQ(S)e = £Qui(S)e, and thus

voxv : ET(S)E — T(V), FEHE — FE (cwge)|y N (cwge)|lv E
is an isomorphism. By Lemma 2.3 we have
FE (€wH€)|V == EWEHE == EHE,

and by symmetry (cwge)|y E = EHE. Hence 1pxy is the identity mapping
and ET(S)E = T(V). O

From the above theorem it follows that for a locally inverse semigroup S,
every local submonoid £Qp1(S)e of the locally inverse semigroup Qpz(S) is
isomorphic to the translational hull Q(V') of a suitable inverse subsemigroup
V of S, where V is also an order ideal of S. One cannot expect however that
for any inverse subsemigroup V' of S which is also an order ideal of S one
can find a copy of (V') in Qr1(S): we return to this issue in Section 4.

3 Ideal extensions within LI

The following theorem describes how to construct, for given locally in-
verse semigroups S and K, where K has a zero, a locally inverse semigroup
T which is an ideal extension of S by K. Our theorem follows the general
pattern of the existing theory concerning ideal extensions (see in particular
Section II1.2 of [10]), the special features now being our use of T'(S) (or
equivalently Qp;(S)), and our insistence on constructing an ideal extension
where the resulting semigroup is again locally inverse.

Theorem 3.1. Let S ba a locally inverse semigroup and K a locally inverse
semigroup with zero 0. Let U be a locally inverse subsemigroup of T'(S) which
contains Stg and 5 : K\ {0} — U a mapping such that
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(1) (kik2)B = (k1) (k2B) if kiks # 0 in K,
(i1) (k1 B)(kaB) € Sts if kiks = 0 in K,
(iti) U = (K \ {0})3U S7s.
Put
T = {(kB, k), (s575,0) |0 £k € K, s € S}.

Then T is a locally inverse semigroup which is a subdirect product of U and
K, and ¢ : S — T, s — (s7s,0) is an ideal extension which is equivalent
to an ideal extension of S by K.

Conversely, every ideal extension of S by K within LI is equivalent to an
tdeal extension constructed in this way.

Proof. 1t is routine to verify the direct part and we shall proceed to prove
the converse. Therefore we let ¢ : S — V be an ideal extension of S by K
within LI. By Corollary 4.5 of [6],

B:V —T(S), v— ((v]NSp)p"

is the unique homomorphism of V' into T'(S) which extends ¢ '7s. Then
U = Vp is a locally inverse semigroup since the class of all locally inverse
semigroups is closed for the taking of homomorphic images, and S7g C U.
The mapping

vV —UxK, v— (vB,v/Syp)
is a homomorphism onto a locally inverse subsemigroup 7" of U x K. If
v1 # vy in V and vy, ve € S, v1/Sp # vy/Sp. If v1 # vy and vy, vy € S,
then v ! # vyt in S and thus also vy8 # v,3. If v; € S and vo € S,

then vy /Sy # ve/Sp. It follows that ¢ is an isomorphism from V" onto 7.
The subdirect product T of U and K consists precisely of the pairs

(u, k), welU 0#keK, kf=u
and
(s75,0), se€S.

The ideal extension ¢y : S — T, s — (s7g,0) is obtained as in the direct
part of the statement of the theorem, and the ideal extensions ¢ : S — V
and ¢y : S — T are equivalent via the isomorphism ¢ : V. — T O
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If o: S — V is an ideal extension within LI then we say that this ideal
extension is strict if the homomorphism 3 : V. — T(S), v — ((v]NSp)p~!
considered in the converse part of the proof (see also Corollary 4.5 of [6])
maps V into Stg. Note that in this case V3 = S7g since 8 extends ¢ '7g.
It follows that

Corollary 3.2. Let S be a locally inverse semigroup and K be a locally in-
verse semigroup with zero 0. Let 5 : K\ {0} — S7s be a mapping such that
(k1k2) B = (k18)(k2f8) whenever kiky # 0 in K. Put

T = {(kB, k), (s575,0) |0 £k € K, s € S}.

Then T is a locally inverse semigroup which is a subdirect product of Stg and
K and S — T, s — (s74,0) is a strict ideal extension of S by K within
LI. Every strict ideal extension of S by K within LI is equivalent to an ideal
extension thus obtained.

Strict ideal extensions within LI are interesting, not only because our
construction in Theorem 3.1 greatly simplifies (the conditions (i7) and (7i7)
are trivially satisfied) but also because ¢ : S — V is a strict ideal extension
within LI if and only if S¢ is a retract ideal of the locally inverse semigroup
V', that is, Sy is an ideal of V' which is the image of V' under an idempotent
endomorphism of V' (see Proposition III.4.4 of [10]). This leads us to the
question: find the locally inverse semigroups S such that every ideal exten-
sion ¢ : S — V within LI is strict. The following follows from general
principles [10].

Theorem 3.3. For S € LI the following are equivalent:
(i

(ii

every ideal extension ¢ : S — V within LI is strict,
s: S —=T(S) [rg : S — Qui(5)] is a strict ideal extension,

T(S) = Stg [Qui(S) = I1(9)],

(idi

)
)
)
) if € is an idempotent of Qu1(S) then E = E(S)eNeE(S) is a subsemi-
lattice of S which has an identity element.

(iv

It follows that the following is a sufficient condition for a locally inverse
semigroup to satisfy the equivalent conditions of Theorem 3.3. We give an
example in Section 4 to show that the condition is not a necessary condition.
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Corollary 3.4. A locally inverse semigroup S satisfies the equivalent con-
ditions of Theorem 3.3 if every [mazimal] subsemilattice of S is dually well-
ordered.

Proof. 1f S is a locally inverse semigroup which satisfies the stated property,
then according to Theorem 2.8, every idempotent of T'(S) belongs to Sts,
and thus according to Theorem 3.3, every ideal extension of S within LI is
strict. O

Corollary 3.5. Fvery ideal extension within LI of a completely simple semi-
group 18 strict.

Proof. This follows from Corollary 3.4 since the maximal subsemilattices of
a completely simple semigroup are trivial semilattices. O

This result is of course the starting point for showing that a completely
regular semigroup is in LI if and only if it is a strong semilattice of completely
simple semigroups (Section IV.4 of [10], and [12]).

If S is a right zero semigroup and 7 (S) the full transformation semigroup
on the set S, then there exists a canonical ideal extension ¢ : S — T(95)
which associates with every s € S the constant transformation with value
s. By Corollary V.3.12 of [10], ¢ : S — T(S) and 7 : S — Q(S) are
equivalent ideal extensions. By Theorem 3.3 and Corollary 3.4, II(S) =
Qri(S). It follows that the largest locally inverse subsemigroup of 7(S)
which contains the semigroup of all constant transformations on S is the
semigroup of constant transformations on S. This fact may of course be
verified directly: if v is a nonconstant idempotent transformation of S then
there exist distinct constant transformations «;, 5 such that o < v and g < v,
where obviously aR .

For a more nontrivial example we may consider the four-spiral semigroup
Spy of [1]. In Spy the maximal subsemilattices are dually well-ordered chains
of order type w*. By Corollary 3.4 every ideal extension of Sp, within LI is
strict, and Qp1(Sps) = Sps.

4 Completely 0-simple semigroups
In what follows S will be a completely 0-simple semigroup with zero 0.

If a,b € S then a < b if and only if @ = b or a = 0. Therefore O(S) consists
of all subsets of S containing 0.

12



[t is easy enough to characterize the E € O(S) such that E is a subse-
milattice of S: F is a subsemilattice and an order ideal of S if and only if £
consists of idempotents only, 0 € E and for any distinct e, f € E, R, N Ly
does not contain an idempotent. If E is a subsemilattice and an order ideal
of S and f € E(S), then

{enflee E}={0, g€ L;NE(S) | gRe for some e € E}
and

{fAnelee E}={0, ge RyNE(S)|gLe for some e € E}.
Therefore by Result 2.9 we have

Proposition 4.1. Let S be a completely 0-simple semigroup. Then E is an
idempotent of T(S) if and only if E is a subsemilattice and an order ideal
of S, and for any nonzero idempotent f of S, the sets Ly N (UeepR,) and
Ry N (UeerL,) each contain at most one idempotent.

Proposition 4.1 guarantees that for any idempotents F and F' of T'(S) the
set of idempotents in (UeepR.) N (UrerpLy) is a subsemilattice and an order
ideal of S. In fact by Result 2.9 the A-operation in the pseudosemilattice of
T(S) is given by:

Proposition 4.2. Let S be a completely 0-simple semigroup. The N-opera-
tion in the pseudosemilattice of idempotents of T'(S) is given by: for idem-
potents E and F of T(S), E A F is the subsemilattice and order ideal of S
consisting of the idempotents in (UecpRe) N (UperLy).

Using Lemma 3.11 of [6] and Proposition 2.10 we can now construct every
element of T'(5).

Proposition 4.3. Let S be a completely 0-simple semigroup, E and F' idem-
potents of T(S) and 7 : E — F a bijection such that Or = 0. For every
e € E choose a, € R, N L., and let a,, be the inverse of a. in Lo N Rer. Then
H ={a.| e € E} and H = {a, | e € E} are pairwise inverse elements
of T(S) such that HH' = E and HH = F. FEvery H € T(S) can be so
constructed.

We shall now use Theorem 2.11 to determine the local submonoids of
T(S) for a given completely 0-simple semigroup S.
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Proposition 4.4. Let S be a completely 0-simple semigroup and E an idem-
potent of T'(S). Then

V=FESE={a€S|L.NE+#0+#R,NE}
is a Brandt semigroup, and ET(S)E = Q(V).

The translational hull of a Brandt semigroup is well-known and we refer
to [7], or Section V.5 of [10], or 1.32 and 2.27 of [14] for the details. With
the notation of Proposition 4.4, if £ # {0} and I = E \ {0}, then Q(V)
can be represented as a wreath product of the symmetric inverse semigroup
Z; on the set I and a group G, where GG is isomorphic to every nonzero
maximal subgroup of S. It follows in particular that every maximal group
of T'(S) [= Qui(S)] is isomorphic to a wreath product of the symmetric
group on I and the group G. If in particular G is trivial, that is, if H is
the equality in S, then the local submonoids of T'(S) [ Qp1(S)] are each
isomorphic to a symmetric inverse semigroup and the maximal subgroups of
T(S) [ Qui(S)] are each isomorphic to a symmetric group. Note that in this
case S is fundamental, and therefore also T'(S) and Qpy(S) are fundamental
since the ideal extensions 75 : S — T'(S) and 75 : S — Qp1(S) are dense.

Let S be a completely regular locally inverse semigroup. Then # is a con-
gruence on S and we shall denote the canonical homomorphism from S onto
S/H by p. By Corollary 4.4 of [6], the mapping T'(S) — T(S/H), H —
H i is the unique homomorphism which extends 7 * pts/- The reader may
consult Propositions 4.1 and 4.3 to prove that this homomorphism is surjec-
tive and from what precedes it follows that this homomorphism induces the
greatest idempotent separating congruence on 7'(S).

Proposition 4.5. Let S be a completely 0-simple semigroup. The following
are equivalent:

(i) T(S) [= Qu1(S)] is completely semisimple,
(i7) the local submonoids of T(S/H) [= Qui(S/H)] are finite,
(i13) if E is an idempotent of T(S), then E is a finite subsemilattice of S.

Proof. In the following we shall apply the remarks made before the statement
of the proposition.

There exists an idempotent separating homomorphism of 7'(S) onto
T(S/H) and therefore T'(S) is completely semisimple if and only if T(S/H)
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is completely semisimple. Every local submonoid of T'(S/#) is isomorphic
to a symmetric inverse semigroup Z;, with I = E '\ {0} for some idempotent
E of T(S). Here Z; is completely semisimple if and only if I is finite, that
is, if and only if Z; is finite, or equivalently, if and only if E is finite. O

For a completely 0-simple semigroup S we may encounter two possible
extreme situations, namely 1. every subsemilattice of S which contains 0 is
an idempotent of T'(S), or 2. the only idempotents of T'(S) are the trivial
semilattice {0} and the two-element subsemilattices of S. The latter is the
case if and only if T'(S) = S7g, that is, every ideal extension of S within LI
is strict. The following give a characterization for these extremes.

Proposition 4.6. Let S be a completely 0-simple semigroup. Then every
nontrivial subsemilattice of S is an idempotent of T(S) if and only if for
any two commuting idempotents e and f of S, R, U Ry does not contain
distinct L-related idempotents and L,UL; does not contain distinct R-related
idempotents.

Proposition 4.7. Let S be a completely 0-simple semigroup. Then every
ideal extension of S within LI s strict iof and only if for any two distinct
commuting nonzero idempotents e and f of S, R, U Ry contains distinct
L-related idempotents or L, U Ly contains distinct R-related idempotents.

It may be instructive to illustrate the situation of Proposition 4.7 by a
concrete and natural example. Let X be a set with | X| > 2. A binary relation
on X is said to be rectangular if it is of the form A x B for some subsets A
and B of X. The semigroup Ry of all rectangular binary relations on X is
the least nontrivial ideal of the semigroup By of all binary relations on X and
Rx constitutes a completely 0-simple semigroup, the zero being the empty
relation on X. The rectangular binary relation A x B is an idempotent if and
only if ANB # (). If Ax B and C'x D are distinct nonempty idempotents, then
they commute if and only if BNC' = () = AND. If this is the case then A # C
and B # D, whence A x X and C' x X are distinct L-related idempotents in
RavpURcyp, and X X B and X x D are distinct R-related idempotents in
LayxpULcyp. Therefore, according to Proposition 4.7, every ideal extension
of RX within LI is strict. Hence QLI(R)() = H(Rx) and T(Rx) = RXTRX-
The ideal extensions g, : Rx — Q(Rx) and ¢ : Rx — Bx are equivalent
(see [15] or Theorem 6 of [8]). Hence Qrr(Rx) = II(Rx) is equivalent to the
fact that the largest locally inverse subsemigroup of By which contains Rx
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is Ry itself. Or equivalently, if € is any idempotent binary relation on X and
e € Rx, then there exist distinct idempotents «, 5 € Rx such that o < ¢,
f<eand aRpor aLllf.

The paper [7] (see also Section V.3 of [10]) gives a structural description of

the translational hull of a completely 0-simple semigroup S = M%(I, G, A; P)
which is given as a Rees matrix semigroup. The isomorphic copy of Q(S)
given there is somewhat complicated and it would be interesting to see how
our description of T'(S) translates into a convenient description of Qrz(S) in
terms of the structural data used in [7].
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