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Based on an algorithm to solve systems of equations modulo proper pseudovarieties

of abelian groups given in this paper, we prove that decidable pseudovarieties of

abelian groups are (completely) hyperdecidable. However these pseudovarieties are
shown not to be reducible for the canonical signature.

1. Introduction

Recall that a pseudovariety of monoids is a class of finite monoids closed
under formation of finite direct products, submonoids and homomorphic
images. Generalizing the notions of pointlike sets [11] and Type I and
Type II semigroups [14, 15] Almeida [1] introduced the notion of hyperde-
cidability for pseudovarieties. One of the nice properties of a hyperdecidable
pseudovariety W is that under relatively mild hypothesis on a pseudovari-
ety V (decidable with finite vertex rank) one can decide membership in
the semidirect product pseudovariety V ∗ W. Most proofs of hyperdecid-
ability [4, 7, 16, 18] actually establish a somewhat stronger property called
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tameness, introduced by Almeida and the third author [5, 6].
Let us recall the definitions. A directed graph is a finite set Γ = V ] E

endowed with two adjacency functions α, ω : E → V . The disjoint sets E
and V are the edge set and the vertex set of Γ respectively. The maps α, ω
select respectively the initial and terminal vertices. A labelling of Γ by a
monoid M is a function ` : Γ →M . The labelling is said to be consistent if

`(α(e)) · `(e) = `(ω(e))

for every e ∈ E.
Let M and N be finite monoids. A relational morphism τ : M−→◦ N is

a map from M into the power set of N such that: τ(m) 6= ∅, all m ∈M ;
1 ∈ τ(1); and τ(m1)τ(m2) ⊆ τ(m1m2), all m1,m2 ∈ M . Suppose that
τ : M−→◦ N is a relational morphism of monoids and let ` : Γ → M ,
δ : Γ → N be labellings of Γ. We say that δ is τ -related to ` if δ(z) ∈ τ(`(z))
for every z ∈ Γ. Let V be a pseudovariety of monoids. The labelling
` : Γ → M is said to be V-inevitable if, for every relational morphism
τ : M−→◦ N ∈ V, there is a consistent labelling δ : Γ → N that is τ -related
to `. A pseudovariety V of semigroups is said to be hyperdecidable if there
exists an algorithm to test whether a finite graph labelled by a finite monoid
is V-inevitable.

This notion was generalized by Rhodes and the third author [13], see
also Almeida [2]. Let E be a finite system of equations over an alphabet X.
That is, E consists of equations ui = vi with ui, vi ∈ X∗. (We remark that
in q-theory [13] equations over free profinite monoids are also considered.)
Let M be a finite monoid. If N is another monoid and τ : M−→◦ N is a
relational morphism, then the substitutions σ : X →M and σ′ : X → N are
said to be τ -related if σ′(x) ∈ τ(σ(x)), for all x ∈ X. If V is a pseudovariety,
then the substitution σ is said to be (V, E)-inevitable if, for all relational
morphisms τ : M−→◦ N ∈ V, there is a substitution σ′ : X → N that is
τ -related to σ and such that σ′ |= E (meaning the induced map σ′ : X∗ →
N satisfies σ′(u) = σ′(v) for all u = v ∈ E).

For instance, if Γ = V ] E is a graph, then a labelling ` over M is a
substitution. We take as a system of equations the set EΓ of all equations
of the form α(e)e = ω(e); the system of equations obtained in this way is
called the consistency equations of Γ. Then ` is V-inevitable if and only if
it is (V, EΓ)-inevitable.

We shall call V completely hyperdecidable if (V, E)-inevitability is de-
cidable for all finite systems of equations E. Completely hyperdecidable
pseudovarieties are certainly hyperdecidable and hence decidable; they also
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have decidable pointlikes and decidable idempotent-pointlikes [13]. How-
ever, not every decidable pseudovariety is hyperdecidable [12, 8].

Both Rhodes and Steinberg [13] and Almeida [2] consider a generalized
notion of tameness in this context, but we shall not deal with it here. The
motivation for these more general notions of inevitability comes from deal-
ing with other operators than the semidirect product. In Rhodes and Stein-
berg [13] pseudovarieties of relational morphisms are defined and shown to
give rise to operators. The operator associated to a pseudovariety of rela-
tional morphisms R is denoted by Rq. Such pseudovarieties can be defined
by pseudoidentities of the appropriate sort. Complete hyperdecidability of
V means that if R is a decidable pseudovariety of relational morphisms with
a certain finiteness condition, then RqV is decidable.

Our main result is the following:

Theorem 1.1. Let H be a pseudovariety of abelian groups. Then H is de-
cidable if and only if it is completely hyperdecidable. In particular, decidable
pseudovarieties of abelian groups are hyperdecidable.

This result is in some sense sharp because Auinger and the third au-
thor [8] constructed an example of a decidable pseudovariety of metabelian
groups that is not hyperdecidable.

The third author [18] showed that any pseudovariety V of J-trivial
monoids with decidable word problem for free pro-V monoids with finite
generating sets has a hyperdecidable join with any hyperdecidable pseu-
dovariety of groups. The same proof works without change for joins with
completely hyperdecidable pseudovarieties of groups (for instance equations
of the form u1 = · · · = un = u2

1 were also considered there).

Corollary 1.1. Let V ⊆ J be a pseudovariety of monoids with decidable
word problem for each finitely generated free pro-V monoid. Let H be any
decidable pseudovariety of abelian groups. Then V ∨H is completely hyper-
decidable. In particular J ∨ H is completely hyperdecidable.

Recall that any aperiodic pseudovariety V of commutative monoids has
decidable word problem for its free pro-V monoids on finite sets and that
every decidable pseudovariety of commutative monoids is a join of an aperi-
odic pseudovariety of commutative monoids and a decidable pseudovariety
of abelian groups. Thus we obtain the following corollary.

Corollary 1.2. A pseudovariety of commutative monoids is completely hy-
perdecidable if and only if it is decidable.
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However, it turns out that every proper, non-locally finite pseudovariety
of abelian groups is not tame with respect to the canonical signature [5,
6]; in fact no such pseudovariety is weakly κ-reducible (see Almeida and
Steinberg [5, 6] for undefined terminology). Steinberg [19] proved that the
pseudovariety of p-groups, p a prime, is hyperdecidable by showing that it is
weakly κ-reducible. Almeida [3] then showed that p-group pseudovarieties
are tame with respect to an infinite (but recursive) implicit signature. The
case of proper, non-locally finite pseudovarieties of abelian groups is the first
example, as far as we know, of pseudovarieties of groups that are known
to be hyperdecidable but are provably not weakly κ-reducible. Also, to the
best of our knowledge there are currently no examples of hyperdecidable
pseudovarieties that are not known in addition to be tame (for some implicit
signature). Let us now formulate out second main result.

Theorem 1.2. Let H be a proper pseudovariety of abelian groups that is
not locally finite. Then H is not weakly κ-reducible.

2. Solving systems modulo pseudovarieties of abelian
groups

In this section we prove the previously announced theorems.
We begin with a lemma concerning solutions of systems of equations in

a free abelian group modulo a sequence of integers. This lemma may be
of interest in its own right. It builds on the same reparameterization trick
used by Almeida and Delgado [4].

Recall [10] that a subset of Zk is called linear if it can be expressed
in the form a + b1N + · · · + bpN with a, b1, . . . , bp ∈ Zk. The number p is
called the size of this expression. A semilinear set [10] is a finite union of
linear sets. If one is interested in a finite number of semilinear sets, then
by taking, if necessary, some of the bi’s equal to 0 ∈ Zk we may suppose
that all expressions of linear sets involved in these finitely many semilinear
sets have the same size. If R is a ring, we use Mr,s(R) to denote the set of
r × s matrices with entries in R.

Lemma 2.1. Let F be an infinite, recursive set of natural num-
bers closed under taking divisors and least common multiples. Let
N = {m1,m2, . . .} ⊆ F be such that mk is a divisor of mk+1, each k, and
such that every element of F divides some mk.

Then given as input B ∈Mr,st(Z), c ∈ Zr and, for each i ∈ {1, . . . , s},
a semilinear subset Li ⊆ Zt it is decidable whether, for each k, there exists



5

X =

x1

...
xs

 ∈ (Zt)s such that xi ∈ Li and BX ≡ c (mod mk).

Proof. As observed, we may assume without loss of generality that the
constraints Li have the form Li = ∪ri

j=1L
(i)
j where

L
(i)
j = a

(i)
j + b

(i)
1,jN + · · ·+ b

(i)
p,jN, and a(i)

j , b
(i)
k,j ∈ Zt.

We claim that it suffices to assume that Li = L
(i)
j for some j. Indeed,

consider all possible instances of our algorithmic problem obtained by re-
placing each Li by one of the L(i)

j . Clearly if any of these finitely many
new instances has a solution modulo mk for all k (that is the algorithm
outputs “yes” for such an instance), then the original problem has a solu-
tion modulo each mk and hence a positive output. We show the converse
by a standard compactness argument. Suppose our system with the origi-
nal constraints has a solution modulo mk for all k. Then for each k there
is a vector Xk ∈ (Zt)s with the ith component in some L(i)

jk
. Since there

are infinitely many k but only finitely many indices i, and for each i there
are only finitely many sets of the form L

(i)
j , there must be infinitely many

k such that for each i the corresponding set L(i)
jk

is the same for these k.
That is we can find, for each i, a ji such that for infinitely many k there is

a solution X =

x1

...
xs

 to BX ≡ c (mod mk) with xi ∈ L(i)
ji

, all i. Since a

solution modulo mk is also a solution modulo m` for all ` ≤ k, as m` | mk,
we see that, for the instance of our problem where Li is replaced by L

(i)
ji

,
we always have a solution modulo mk, each k. Thus an algorithm for our
original problem is simply to check all of the finitely many instances that
we have created. Hence we may assume that each Li = L

(i)
j for some j, as

claimed.
Say Li = a(i)+b(i)1 N+ · · ·+b(i)p N. We write Li = a(i)+BiNp where Bi =

(b(i)1 |b(i)2 | · · · |b(i)p ) ∈Mt,p(Z). With this reparameterization, our system with
constraints is equivalent to solving modulo each mk the system

B

a(1) +B1Y1

...
a(s) +BsYs

 = c,
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where each Yi ∈ Np. But this is equivalent to solving modulo each mk a
system of the form DY = e where D ∈Mr,ps(Z), e ∈ Zr and Y ∈ Nps.

Equivalently we want to determine whether modulo each mk it is pos-
sible to express e as a non-negative linear combination of the columns of
D; that is whether modulo each mk, e is in the submonoid generated by
the columns of D. As every submonoid of a finite group is a subgroup, our
problem is equivalent to determining whether modulo each mk, e is in the
subgroup generated by the columns of D. But [17] if H is the pseudovariety
of abelian groups with exponent in F , then by the definition of N , this
question is equivalent to asking whether e belongs to the pro-H closure in
Zr of the subgroup generated by the columns of D. Moreover, since F is
recursive, the pseudovariety H is decidable [17]. Now, the results of the
third author [17] show that it is decidable whether e belongs to the pro-H
closure of the subgroup generated by the columns of D.

Let us remark that the solvability of the system considered above de-
pends only on F and not on the choice of N . We now proceed to reduce
the complete hyperdecidability of H to the previous lemma. Let M be a
(perhaps infinite) monoid. A system of equations over M with variables
in X is a set E of formal equalities u = v between elements of M ? X∗

where ? denotes the free product. The system is said to be solvable modulo
a pseudovariety V with constraints Lx ⊆M , x ∈ X, if: for each homomor-
phism ψ : M → N ∈ V, we can choose a substitution σ : X → M such
that σ(x) ∈ Lx, all x, and the map ψ : M ? X∗ → N induced from ψ and
ψ ◦ σ satisfies ψ(u) = ψ(v) for all u = v ∈ E. Solving systems of equa-
tions over A∗ with rational constraints is very closely related to complete
hyperdecidability. This motivates the next theorem.

Theorem 2.1. Let H be a decidable pseudovariety of abelian groups. Then
there is an algorithm which, given a finite alphabet A, a finite system of
equations E over A∗ with variables in X and given, for each variable x ∈ X,
a rational subset Lx ⊆ A∗, determines whether E is solvable modulo H with
constraints Lx, x ∈ X.

Proof. If H is locally finite (that is, contains only finitely many
A-generated groups for each finite set A), then the problem is trivial,
so we suppose that this is not the case. Suppose A = {a1, . . . , at} and
X = {x1, . . . , xs}. Let η : A∗ → Nt be given by η(w) = (|w|a1 , . . . , |w|at

).
Denote by η(E) the system {η(u) = η(v) : u = v ∈ E}. Then our problem
is clearly equivalent to trying to solve η(E) modulo H with the constraints
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η(Lx), x ∈ X. But since each homomorphism of Nt to an abelian group
extends uniquely to Zt, our problem is equivalent to trying to solve η(E) in
Zt modulo H with the constraints η(Lx), x ∈ X (viewed as subsets of Zt).
We can hence use subtraction to rewrite our system η(E) as a linear system
of the form BX = c with B ∈ Mr,st(Z) subject to the constraints η(Lx),
x ∈ X. A theorem of Eilenberg and Schützenberger [10] says that η(Lx)
is a semilinear set that can be algorithmically be determined from Lx. A
more efficient algorithm can be found in the work of the first author [9].

The next step is to obtain a set of positive integers as in Lemma 2.1.
Let FH = {n | Zn ∈ H}; this is a recursive set closed under taking divisors
and least common multiples [17]. Let us enumerate FH as a sequence in
increasing order: n1 < n2 < . . .. Since we are assuming that H is not locally
finite, this sequence is infinite. We define another sequence of positive
integers (mi)i∈N by setting m1 = n1 and mi = lcm(mi−1, ni) for all i > 1.
By construction mi | mi+1. Since FH is closed under taking least common
multiples, {mk}k∈N ⊆ FH. By construction each element of FH divides
some mk.

Suppose that ψ : Zt → G ∈ H. Then if n denotes the exponent of G,
we must have n ∈ FH. Therefore n | mk for all sufficiently large mk. Hence
our system η(E) has a solution modulo H if and only if BX = c can be
solved modulo each mk subject to our constraints. But this can be decided
according to Lemma 2.1.

2.1. Proof of Theorem 1.1

Let H be a decidable pseudovariety of abelian groups. Let M be a finite
monoid, E a finite system of equations in variables X. Let σ : X →M be
a substitution. We must decide whether σ is (H, E)-inevitable. Choose a
generating set A for M and consider the canonical projection ϕ : A∗ →M .
A standard argument [13] shows that σ is (H, E)-inevitable if and only if,
for all ψ : A∗ → G ∈ H, there exists a substitution σ′ : X → G such that
σ′ |= E and σ′ is ψϕ−1-related to σ. Let Lx = ϕ−1(σ(x)), for x ∈ X; by
Kleene’s theorem each Lx is a rational subset of A∗.

A substitution σ′ : X → G is τ -related to σ if and only if we can choose
for each x ∈ X, an element wx ∈ Lx such that ψ(wx) = σ′(x). With this
in mind it is straightforward to see that σ is (H, E)-inevitable if and only
if E is solvable modulo H with the constraints Lx, x ∈ X. But this can be
algorithmically determined by Theorem 2.1. This establishes Theorem 1.1.



8

2.2. Proof of Theorem 1.2

In this proof we assume familiarity with the work of the third author [17]
since our example is essentially from there. We will take the following
definition of weak κ-reducibility for our non-locally finite pseudovariety
H of abelian groups; its equivalence with the usual definition [5, 6] is a
standard argument that we leave to the reader. If A is a finite alphabet,
we use ηA : A∗ → N|A| for the canonical projection.

Definition 2.1. A pseudovariety of groups H is weakly κ-reducible if given
a finite alphabet A, a finite graph Γ = V ]E and a rational subset Lx ⊆ A∗

for each x ∈ Γ, the following holds: the consistency equations EΓ for Γ are
solvable modulo H subject to the constraints Lx, x ∈ Γ, if and only if there
exists for each x ∈ X an element wx ∈ ηA(Lx) such that {wx}x∈Γ is a
solution to EΓ in Z|A|. Here Lx is the closure of Lx in the pro-H topology
on Z|A|, which is the weakest topology making all homomorphisms from
Z|A| to groups in H continuous.

Let p be a prime such that Zp /∈ H. Let A = {a, b}. Set η = η{a,b}.
Consider the graph Γ given by

v0
e−→ v1

f−→ v2

and consider the labelling

1 a∗−→ a∗
(abp)∗−→ b.

The consistency equations are: v0e = v1, v1f = v2. After abelianization the
equations can be written as v0+e = v1 and v1+f = v2 and so they have the
consequence v0 +e+f = v2. The algorithm [17] shows that η(a∗) = (1, 0)Z
and η((abp)∗) = (1, p)Z. Since η(b) = (0, 1) is not in 〈(1, 0), (1, p)〉 it follows
that v0 + e+ f = v2 cannot be solved in Z|A| subject to the constrains Lx,
x ∈ Γ.

But if we follow the procedure of the proof of Lemma 2.1 we see that we
just need that (0, 1) is in the pro-H closure of 〈(1, 0), (1, p)〉 for the system to
be solvable modulo H with our constraints. But the algorithm [17] shows
that the closure of this subgroup is all of Z2. So the system is solvable
modulo H. Thus H is not weakly κ-reducible.
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