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1 Introduction

It is well known that the classical Fourier transform is an integral transform
where the kernel is a solution of the second order differential equation Loy =
y" + Ny = 0. In this paper, we deal with integral transforms where the
kernel is a solution of the nth differential equation

Loy = y™ + X"y =0,

n being an arbitrary positive integer. Most of the well known properties
of the classical Fourier transform will be generalized in a natural way. Our
approach is based on the decomposition with respect to the cyclic group of
order n of some complex functions. In Section 2, we recall some preliminary
results which we need for our analysis.

2 Definitions and basic properties

2.1 Decomposition with respect to the cyclic group of
order n

Let n be an arbitrary fixed positive integer and w,, = exp(2F). Aset U C C
is called (n—1)-symmetic iff w,U = U. Let H(U) = H be the vector space of
complex functions defined on a (n — 1)-symmetric set U. Define an operator

o : H—H by
of(z) = flwnz) for feH and zeU.

Let Hpn ), k € IN,, = {0,1,...,n—1}, be the vectorial subspace in H defined
by the following symmetry property:

(2.1) J € Hpy =of = wﬁf

For n = 2, the subspaces Hz g and H[2 ;) amount, respectively, to subspaces
of even functions and odd functions.
The following decomposition in direct sum holds (cf. [13] ):

n—1
(2.2) H o= @ My,
=0
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It follows that for any function f belonging to H there exists a unique se-
quence (f[n,k])kean’ Jink] € Hnx, such that

n—1
(2.3) =" fum
k=0

and
1 n—1
(24> f[n,k](z> = H[n,k}(f)(z) = g Zw;“f(wﬁz), ke H\In7
=0
n—1
where I, ) is the projection operator on H, ;) along H[fl W= @ Hpg-
’ =0

O£k
The identity (2.3) is called the decomposition of the function f with respect

to the cyclic group {w¥; k € IN,} and the functions fj,; defined by (2.4)
will be referred to as the components with respect to the cyclic group of order
n of the function f.

2.2 Trigonometric functions of order n

Put p, = exp (%) The decomposition with respect to the cyclic group of
order n of the function z—exp (11,,2) is given by [8] :

(2.5) exp (in?) Zungnk
with
quk n—1
gni(z) = —— Zw e:rp( WnHnZ )
=0

We refer to g, as the trigonometric function of order n and k-th kind. As
particular cases expressed by elementary functions, we mention:

g1.0(2) = exp(—2), g20(z) =cosz, ¢21(2)=sinz,

z z 1 z z z z
gao(z) = cosh—, g11(2) = —= (sm cosh —=4cos — sinh — ),

V) V2 V2L V2 V2 V2 V2
z z 1 z z z z
ga2(2) = \/§ sinh — 7 ga3(z) = E (sm 7 cosh — \/5 \/5 sinh \/§>
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Put gank(2) = gnk(A2), A € C. For further purposes, we need the
following properties of the function g, [8]:

Z) = wsmgm,k(z),

(/\Z)nm+k

(nm + k)!

Gnx(z) = D (=)"

m=0

drg)hn’k( ) )\Tg)\,n,k—r<z), if T S k,
A =
dz N Gnnik—r(2), ifr>k.

The functions gy, x satisfy the differential system

L+ Amy(2) = 0,
YY) = N6y

dz"

We have the product formulas [13]:

n—1
1 T
D o(T) Gano(y) = Oygano(z) = - oz +wrny),
r=0
1 n—1
Do k() Dno(y) = Oygrni(r) = - Donk(T +wWhy).

ﬁ
Il
=)

2.3 Decomposition of the dual

Denote by H' the dual of H and by (S, f) the effect of S € H on f € H.
The elements of ‘H' are called linear functionals . We have also the following
decomposition (cf.[1]):

n—1

(2.6) H = k@

D Hinp

with an,k] the dual of Hj,z); that is the set of linear functionals S in ‘H’
satisfying: (S, f) = 0 for all f € H[fl o= "y M It follows from
’ J#k

[n.d]°
(2.6) that for every linear functional S € H’, there exists a unique sequence
(S[n,k})ke{071,_..,n_1}, Stk € Hfmk], such that S = ZZ;& Stn,k), With Sy =
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I1}, ;4 (S), where II{, ,, is the projection operator of H" onto Hj, ,; along H’[,f K-
For every linear functional S € H’ and for every function f € H, we have [2]:

i
L

(S, f) = (Sinls finng), and (M, 1S, f) = (S, U f)-

0

£
I

2.4 Integration on (n-1)-symmetric stars

Some linear functionals are defined by integration with respect to an arbitrary
function p over a (n — 1)-symmetric curve C in the complex plane. That are
linear functionals of type

w¢>=h4ﬂamau4 e,

where fu is Lebesgue-integrable on C.
Next, we consider the particular case of C consisting of the (n —1)-symmetric
star with n rays abutting on the origin O:

2ikm

En(R) = :L;; Enk(R), where &,,(R) = {z eClz=ren

The stars £ (R) and E(R) are, respectively, the intervals (0, R) and (—R, R).
&, denotes the star &,(+00).
To any function p defined on the star &,(R), we associate a linear functional

S(p, En(R)) as follows (cf. [3]):

wmmmw—lwmwmw—iifwﬂwmw

We assume that the considered integrals are convergent. This definition may
be rewritten, using the projection operators (2.4), as

R
27) (Stn &R ) = 0 [ Moy (720 (1)

It is easy to verify the identity: 0 (H[n,k](f) . ,u) = II}, 0 (f My n—i) (/L)),
which, combining with (2.7) and (2.4) provides the components of the linear
functional S(u,&,(R)). That are

(2.8) /[n,k:] (S(, En(R))) = S (H[n,nfk} (,u),Sn(R)) ; ke N,.

, 0§T§R§+oo}.
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3 Fourier Transform

3.1 Definition

Let’s consider the nth order differential equation:

d" N
%y(z) =-A"y(z), AeC.

The solutions of this equation are combinaisons of the functions
e(n, k, \;z) = exp (2F'A\2) , k € IN,,.

Next, we deal with the linear functional S ((e(n,k,A;.),&,). Let f be a
function defined on &,. If (S ((e(n,k,A;.),&,), f) exists, a new function of
the new variable A is obtained. This function (when it exists) is called the
The generalized Fourier transform of f. That is the function defined by the
sum of integrals:

—

n—

For(F)A) = (S ((e(n,k,\; ), &), f) = /Ooo f(rwh) exp (2 ar) dr.

0

B
Il

over that range of values of A for which the integrals exist.
For n = 1, we have the Laplace transform

Fali0) = [ f()exp (-Aa)da
0
For n = 2, we have the classical Fourier transform
Foo(f)(N) = /OO f(z)exp (iAz)dx and Fou(f)(N) = /00 f(z)exp (—iAx) dx.

It’s easy to verify that oo F,, = Fppy1 and F 00 = Fp 1. So, in the
sequel, we limit ourselves to the study of F,, o = F,.
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3.2 Existence of generalized Fourier transforms

It’s easy to prove the existence theorem:

Theorem 3.2: Let f be a complex function and continuous on the (n — 1)-
symmetric star €,. Assume that there exist two positive constants M and «
such that

|f(rwn)| < Mexp(—ar) for r—+o0 and forall k€ {0,1,...,n—1}.
Then Fo(f)(\) exists for all X inside the set P,(a) given by
Po(a) = {X € CRe (pwiX) —a <0, ke{0,1,...,n—1}}.

Note that the transform may also exist in other cases. The set P,(«) is
expressed as follows:

(i) P1(«) is the half plane A > —a.

(ii) P2(«) is the horizontal band —a < S\ < «a.

(iii) Pn(a), n > 3, is the smallest polygon with n vertices on the star &, and
containing the disc D(0, «).
The « given by this theorem is not unique. Indeed, every a; < « is also
suitable. Let a be the sup of the set of positive a such that exp(ar) | f(rwk)|
is bounded for large values of r and for every k € IN,,. «p is called the
convergence region of the function f. It may be equal to the infinity as for
the function f(z) = exp(—2"), n > 1.

3.3 Properties of F,

Among the properties of the generalized Fourier transform are the following:
P1. If lim, . oo f (rwk) exp (Arp2stt) = 0 for all k € IN,,, then

_Mn)\]:n(f)()\)’ if n > 17

Fo(fHYN) = {—f(()) + AF(H)(N), ifn=1.

More generally,

P2. Let m be a positive integer.

If lim, £ (rwﬁ) exp ()\Tuffﬂ) = 0 for all k¥ € IN,, and for all s €
{0,1,...,m} then

(_Un)‘>m ]:n(f)O‘)a if n>1,

(3.1)  Fu(f")(\) = {)\mfl<f)()\> — AT FO(0), i =1
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P3. Let m be a non negative integer, we have
dm
dxm

where the operator X is given by X f(z) = zf(z).
Put (Df)(z) = f'(z). From (3.1) and (3.2), we deduce, for m = n,

(3-2) (Fn(f) (N) = ! Fo (XF) (N)

FooD" = (=1)""'X" o F,, and D"oF,=—F,o0X"

Put Hy, = —D? + X?P. For p = 1, Hy is the harmonic oscillator operator.
One easily verifies that Fy, commutate with Hy,. It follows then, if f is a
eigenfunction of the operator Hs, associated with the eigenvalue 3, the same
is true for Fy,(f). The differential equation H,(f) = 0 was considered in [5]
and [9].

P4. Let a be a positive real. Define the scaling operator S, by

SN =—=f(5)  and ST = Vaf(a)

We have F, 05, = S, 1o F,.

3.4 Decomposition of F,

By virtue of (2.8), The operator F, may be written as F,, = Sr—, (F, )k
where

_ <S (H[”’”—k]e(n7 07 >\7 ))7 gn) ) f> ) if f < H[n,k:]7
(Foy () = | ¢
07 if f € H[n,k’]
Using the identities (2.1), (2.3), and (2.5), we deduce, for f € ‘H and for a
suitable A € C, that

f gnO )\7’ f[n()]( ) lfk:()a
(Fo)nag (DA = {nu: kfo In—k(AT) frag (r)dr i ke {1,...,n—1}.

It follows then if a function f belongs to Hj, ), its transform (]:n)[n,k] (f)
belongs to Hj, n—k. In the next section, we deal with the operator G, =
% (Fn)[n,o] on the subspace Hj, g, the component of H which generalizes, in
a natural manner, the component of even functions when n = 2.
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4 The integral transform G,

The integral transform G, may also be considered as the generalized Fourier
associated with the differential system

=y(2) + A'y(z) =0,
y(0) =1,
L y0)=0, je{l,...,n—1}.

4.1 Generalized translation operator

Definition: We call generalized translation operators associated with D7 the
operators 6, u € C, defined in Hj, g by

—_

0.f(z) = f(z+wiu), forall feHpyyg.

0

3|
o~
[l

For n =1, we have 7, , u € C, the classical translation operator associated
with the differential operator D, and defined by

f(z) = f(z4u) forall feH

The operators 0, and 7, are linked by the relations:

i
L

0, =

S|

Toky, and  0,f(2) = <Tzf>[n0}(u), for all f € Hp, .-

b
Il

0

One can easily verify the following proposition :
Proposition 4.1. Let f be a function in Hy, . The operators 0, u € C,
satisfy the following properties:

0T €M )00 = T (i) 0.50) = WS ()€
(i) 0.0. = 0.6, (v) 6,07 = D,

(vi) We have the product formula : 6y gno(A2) = Gn.o(AU) gno(A2).
(vii) G (0.f) (A) = gno (=A2) Gu () (A).

(viii) If h(z) = f(2)gn0(A2), then G, (h) (y) = \Gn (f) ().
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(iz) The function v(z,u) = 0, f(2), f € Hna), is a solution of the differ-

ential system :
D}y,
Div = u(z0) = f(2),
Div(z,0) = 0, je€{1,2,...,n—1},

where the involved integrals exist.

4.2 Generalized convolution

Let f and g be two functions in Hj, . The convolution product of f and g
is the function

400
fxgla) = / 0.1 (y)9(y)dy.

We have the following properties:
() fxg € Hypo, (i) frgla) =g* f(=z), (i) G.(fxg)(A) =

5 Generalized Fourier cosine and sine trans-
forms

5.1 Definition and examples

A natural generalization of the Fourier cosine and sine transforms consists
to consider the integral transform
+oo

(5.1) Iniu(f)A) = S () gnx(At)dt,

0
where f is a complex-valued function of a real positive variable ¢ and A
is a complex number such that the function t— f(¢)g,x(At) is Lebesgue-
integrable over [0, +oo[. Next, we give the generalized Fourier transforms
of some exponential functions and truncated functions. Most of them were
established in a separate paper.
The Laplace transform of the generalized trigonometric functions is given
by (cf. [8] VolL.III p.216 Eq. (32)):
+0o0
/ e g r(\)dt =
0

Snfkfl

ST A

Res > |\|.
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This also provides the generalized Fourier transform of the exponential func-
tion. The eigenfunctions of the Fourier cosine transform are given by the
integral representation (cf.[7] Vol.I p.15 Eq.(11)):

(5.2) / e cos(at)dt = \/T%G_f,
0

This identity was generalized by (cf. [4])

< T x?
/ et Gono(xt) dt = \/T_Qn,o(z)-
0

More generally, let m and n be two integers such that 0 <m <k <2n—1
and k —m = 0(2). We have

00 2
| et ma@ gstatyar = Lamg, i (x—)
; : 2 A\ e

where H,, designate Hermite polynomials. Another generalization of (5.2) is
given by

e guo(at)dt = —25 (F,_ ( R (—) ),
\/0' 70( ) nun» 0 2 2 § e n_l u n

where n > 2, u > 0. This is a special case of the identity:

o P (k1) ok - z \"
—ut . t dt - _\xn /7 Fn_ ’ _ 1 ) > Oa
/0 e g ,k(x ) nk!u% 0 2 (A(n, k); (mw) ) !

where A(n, k) = {&2 B3 kin A\ f03 - Among the well known integral

n ' n Y 0

representations of the Bessel functions, recall the Mehler one (see, e.g. [7]

Vol.IT p.190 Eq.(34)):

MOF1< = x2>,

(5.3) /0 (1— tg)”_% cos(tx) dt,= ONOESY adl

v+ 1; 4
where Rev > —2. A first generalization of (5.3) is given by

L(3)C(v+3)

o0 [ e - R
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OFZn_l(lg.”n_lul'“ VJrn'_(%) ), R,el/>—§.

More generally,

2

b el (—1)FT(AT (v + 1) faoy2h
/0(1—t) 2 Gom ok (xt) dt = R+ k71 ()

)

. X 2n ]_
Fn— ’ —\5- ) a5
02 1<A*(n,k+1),A(n,V—|—1); <2n) ) Rev>—3

where, for convenience, A(n, «) (resp. A*(n,k + 1)) stands for the set of n
a a+1 at+n—1

(resp. n— 1) parameters T " (resp. A(n, k+1)\{%}).
We also state another generalization of (5.3):
! . IN(INE:
0 nl'(p+ %)
OFM(l l+_,l Ll—(%)) 1<j<n—1, Reu>0.

Notice that (5.4) is a particular case of an interesting integral representation
given by Dimovski and Kiryakova (cf.[10] p.32 Eq.(15) or [6] p.34 Eq.(8)):

1
n—1,m— n Vis.ooyVn-1
/O t 1Gn7%271 <t 1 N _ (n-1) ) gn,g(l’t) dt ,
(QW)HT_I - AN
I R 0Fn-1 - (—) :
n2 ngl P(Vg + 1) UlyeonyUp_1; n

ap,y...,0qp
bi,....b,
[11] p.143, [12], [14] for the definition).

pq

where G (z

) designates the Meijer’s G-function (see, e.g.,

5.2 An inversion formula for the generalized Fourier
transform of a real positive argument

Let us consider the transformation (5.1) with A > 0, n € N, k € N,, (see
Section 2). Our goal is to find an inversion formula for the transform (5.1)
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in some classes of Lebesgue-integrable functions. Indeed, taking a series
representation of the kernel g, (see subsection 2.2), which is a particular
case of the Mittag-Leffler type function [12], [14]

o nm+k

(5.5) G i ( Z m = 2By (2" 14 k),

m=0

we substitute it into (5.1) and invert the order of integration and summation
provided with the estimate for each A > 0

> A [Tt < [Tt
(nm + k)! 0

m=0

1 00
</ |f(t)|eMt5dt+/ |f(t)|eMdt < o0, § >0,
0 1

i.e. under condition f € L, ((O, 1);t*5dt) N Ly ((1, 00); e”dt) , A0>0. Asa
result we obtain the series representation of the transformation (5.1), namely

(5.6) Gt ( = > (-1

m=0

+k
)\mn Cnm+k

(nm + k)’

where we denoted by ¢; the i-th moment of the function f

:/ f)tdt, i =0,1,....
0

Generally, denoting by f*(s) the Mellin transform of the function f [12]

(5.7) f*(s) = /OOO ftdt, seC

we easily find that this function is analytic in the half- plane Res > 1—9, ¢ >
0. Indeed, since f € Ly ((0,1);t7°dt) N Ly ((1, 00); eMdt) we deduce
(5.8)

e’} 1 e’}
< [l [ irotas o [ ol < .
0 0 1
where C = sup,.; (e7Mt"*7'), A >0, Res > 1 — §. Therefore, integral

(5.7) converges absolutely and uniformly in the half-plane Re s > 1 — § and
represents there an analytic function.

13
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Let us establish from (5.6) the following integral representation of the
transform G, 1 (f)(N\)

oo < .
59 G = o [ k- LS

—100

where I'(2) is Euler’s gamma-function [12] and the integration is over a verti-
cal line (y—i00, y+i00) in the complex plane s with 0 < v < min (kT*‘s, 1) , ke
N,,n € N, § > 0 and f* satisfies some integrability conditions, which will
be examined below.

First we observe that via estimate (5.8) the function f*(1 + k — ns) is
analytic in the left half-plane Re s < 7. We will also require the absolute
integrability of the integrand in (5.9). Appealing to the Stirling asymptotic
formula for gamma-functions [12] we find

‘F(S)F(l—S)

-0 (% —1)Ims| I ny—k—1/2 I .
L] 0 )

Therefore the integrand in (5.9) belongs to Ly (v — ico,y + i00) iff

—100

y+ioco
(5.10) / £ (1 + k — ns)| ™G DIl g =k=1/2 45| < o0,
8!
Now we take any simple closed contour L_py containing a segment of the
vertical line Re s =7, 0 < v < min (kT’L‘S, 1), which surrounds only a certain
finite number N of the poles s = —m, m =0,1..., N of the gamma-function
['(s). Then by the residue theorem integral over L_y is equal to (see (5.6))

(5.11)

1 F(s)T(1—s) 4 AR Gk
— T4+k—ns)=———\""ds = )"
omi ), ! R Ty § mzo( L P

We let N — oo in (5.11), assuming that the contour L_y being extended
with the addition of poles s = —m into the left loop L_., is nowhere closer
to these poles than some small distance € > 0. Then in the limit we obtain
1 F(s)I'(1—s) 4
— M+ k—ns)——N""d
2mi Jp_ S nS)F(l + k —ns) °

mn—+k
A

Cnm+k
Tt = G (). A0

(5.12) =) (1)

m=0
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Our goal now is to prove that the left-hand loop can be expanded to a
vertical line (7 —i00, v+1i00). This can be done by reasoning similar to that
in Jordan’s lemma. Indeed, we suppose that for all A > 0

T (s)T (1 —s)

f*(1+k_nS)F(1+k—ns)

(5.13) maXsecy, AT =0, R— oo,

where Cf, is the left-hand semicircle O = {s = Re?, 0 < 6 < 7}, then

T (s)T(1 - s)

ANm5ds =0, A >0
I'(1+k—ns) =

lim ff(1+k —ns)
R—o0 CR

and we prove the representation (5.9). Making a simple change of variable
and using the reflection formula for gamma-functions [12], [14], it yields

(5.14) Gnk(F)A) = ﬁ V, N T(s) 511{(29()1A+k —3)) ds’

where v = 1+ k—nvy € (max(1 —d,1 +k —n),1 + k). Hence from the prop-
erties of the Mellin transform [14] it follows that A"*=*G,, ,(f)()) is bounded
continuous function on R, and tends to zero when A\ — 0+, A — +4o00.

In order to invert transformation (5.14) we are going to appeal to the
Mellin transform theory (cf. [12], [14]). But first, assuming the condition

2 sign(n — 2) + sign <n7 —k— g) > 0,1 (5.15)

it is not difficult to verify due to the Stirling asymptotic formula for gamma-
functions that the following integral converges absolutely for each x > 0 and
we get its value, namely

1 v+ico Ti(14k) prtico o \—sd
— ['(s)sin (E(l +k— 3)) 2=8ds = & / ['(s) (e?tr:) 2—5
n ” i

211 211

V—100 —100

—%i(l—&-k) v+i00 ) s ( 1

6 m 8

. I < - ) _ k+1_—pnz _  —(k+1) ,—x/pn
s [T () T = L [k e

—100

1+k
(5.16) =Im[pbte "] = e~ meos(m/m) gin (q: sin — + M) , x> 0.
n n
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The latter kernel can be evidently estimated by e *("/™* When n = 2,

then via (5.15) and the definition of v we take v € <k+23/2,min (B2, 1))

This gives the value £ = 0 and the corresponding kernel (5.16) is equal to
COS .

Let n=3,4,..., ke N, orn=2 k=0. Then by the reciprocal Mellin
transform (5.7) we get from (5.16) the equality

> 1+k
['(s)sin (E(l +k— s)) = / e~ weos(m/n) gin (x sin% + T4k ))
0

n n

(5.17) xx*'dr, Re s = v,

where the latter integral converges absolutely and uniformly by s for v > 0.
Furthermore by Fubini’s theorem with the use of (5.17) and simple change
of variables we obtain from (5.14)

/ e~ cos(m/n) gin <x/\ sin il + M) G e (f)(A)dA
0

n n
_ 1 vihies f*(S) /OO —x A cos(m/n)
= e

200 Jy_joo T(s)sin(Z(1+k—3)) Jo
1+ k
X sin (x)\ sin = + M) NN ds
n n
1 V+100 . i T
=5 - f(s)z™%ds = Ef(m), x> 0.

The latter equality is via the inversion theorem for the Mellin transform [12]
since f*(s) € Li(v —ioo, v +i00) (see (5.10)).

Consequently, the following inversion formula of the generalized Fourier
transform (5.1) is proved

o 1+k
(5.18) f(z) =" / p—Xeos(n/m) i (m gn ™4 TLHE)
0

™ n n

) G (F) (V).

where z > 0, k € N,,, n =3,4,... orn =2, k=0 and integral (5.18) is
absolutely convergent for any x > 0. In the latter case we have a familiar
inversion formula for the cosine- Fourier transform.

The result is summarized by
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Theorem 5.2. Let f(z) € Ly ((0,1);27%dz) N Ly ((1,00);eXdz), A, § >
0, and k € N,,n =3,4,..., orn =2,k = 0. Let the Mellin transform
f*(s) (5.7) satisfy integrability condition (5.10) and the limit relation (5.13).
Then inversion formula (5.18) for the generalized Fourier transform (5.1)
Gnk(f)(X) holds true for each x > 0 and the corresponding integral converges
absolutely.

We are going to consider now special cases of the transformation (5.1)
whenn =1orn =2k € N,. Let n = 1. Returning to the representation
(5.9) and using the reduction formula for gamma-functions we deduce

1o I'(s) | res
(5.19) Gi(F)N) = 5 / B
where (1 — s)y = (1 — s)(2 —s)...(k — s) is the Pochhammer symbol. In
this case we can take 0 < v < k46, 6 > 0 and the condition (5.10) is
satisfied since f*(1 4+ k — s) is bounded when Re s < k + 0. Moreover, we
can differentiate k& times with respect to A under the integral sign in (5.19)
via the absolute and uniform convergence, and we arrive at the equality

1 Y+i0o
(520  Gu(HPN) = — / £+ k — $)T (s) A\=*ds.
270 )y —ioo
But f(z) € L1(Ry; 2" 7dz). Therefore, substituting in (5.20) the value of the
Mellin transform f*(1 4 k — s) and appealing to the Mellin-Parseval equality

[14], the latter representation yields
(5.21) Gir( ) (N) :/ e MEF(t)dt, A >0, k e Ny,
0

which is, in turn, the modified Laplace transform. Its inversion can be done
in a similar manner as in [14], Section 3.1 arriving at the Post-Widder type
formula. In fact, since (5.10) with n = 1 does not guarantee the integrability
of f*(1 4+ k — s) we assume this condition to be valid. By using the limit
relation for the gamma-function [14]

m—1
1 s
5.22 = lim sm™* | | 1+ —,)
(5.22) I'(s)  m—oo ( j

Jj=1

we return to (5.20) to write the equality

() TL (1 28) gt o

j=1

17
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(5.23) = i./jmo T (1+J> F L+ E = s)D (s) (mA\)*ds.

2w ). ,
100 j=

Passing to the limit when m — oo under the integral sign in (5.23) by the
dominated convergence theorem and taking into account that f*(14+k—s) €
Lyi(y—ioco, y+ico), we appeal to (5.22) and deduce the inversion Post- Widder
type formula for the modified Laplace transformation (5.21). Precisely, we
get

i () "ﬁ (1-22) Gt 1

1 Y+i00

S FFA+Ek—s)Ads=\"1Ff G) :

270 oo

Finally, let us consider the case n = 2, k € N,,. Returning to (5.6) we
write it in the form

e )\2m+k

m Com+k
(5.24) Go(f Z o J:l)
=0

Assuming that f(t) € Li(R,;eMdt), for any A > 0 we can differentiate k
times with respect to A in (5.24) to obtain

[e.e]

(5.25) Gox(f Z C2m+k / f(t) kcos (At)dt

=0

where the latter equality is due to the dominated convergence theorem. So we
came again to the cosine Fourier transform, which can be inverted accordingly

2

(5.26) 1) =

/ h cos(At) GS(F)(N)dA, t > 0.
0

For instance, when k£ = 1 it can be reduced to the case of the sine Fourier
transform, permitting integration with respect to A in (5.25) and integration
by parts in (5.26).
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6 Generalized Fourier transform of linear func-
tionals

The generalized Fourier transform associated with the differential operator
D? of a linear functional S € an K is the function in Hy, 4 defined by:

Far(S)A) = (S, gnr(X2)) , XeC

By means of the translation operators 6., we define
1. The translated of a linear functional in an,o} as

<9zS> f) = <Sa 9—zf> for all fEH[n,O]-

2. The generalized convolution of two linear functionals T and S in an,o] as
the linear functional S x T in an,o}) given by

<S x T, f> = <S£7 <6*€T7 f>>7 = <S§7 <T27 ezf(f)»? fEH[n,O]

We state the following
Proposition 6.1: Let S and T be two linear functionals in HI[n,O]' We have:

]:n,() (028) (/\) - gn,o(_/\z) fn,O (S) ()‘)
Fuo(S x T) = FnolS) - FrolT)

Proof:

Fno(025)(A) = {(025)u s gno(hu))
= (Sus 0-: gno(Au))
= (Sus Gn.o(At) gno(—A2))
= no(=A2) Fuo (5) (N)

For every A € C, we have

Fuo(S x TYA) = ((T' x S)z, Gno(A2))

(T, (Su; Ougno(A2)))

= (T%, (Su, Gno(At) gno(A2)))
(T. , gno(A2) (Su; Gno(Aw)))
(T 5 gno(A2)) - (Sus gno(Au))

= Fuo(T)(N) - Fro(S)(N)
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