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Abstract

It is proved that the periodic point submonoid of a free inverse monoid
endomorphism is always finitely generated. Using Chomsky’s hierarchy
of languages, we prove that the fixed point submonoid of an endomor-
phism of a free inverse monoid can be represented by a context-sensitive
language but, in general, it cannot be represented by a context-free
language.

1 Introduction

The dynamical study of the automorphisms of a free group and their space
of ends is a well established subject in discrete Dynamical Systems. Hence
it is a natural issue to explore these problems in the more general setting
of semigroups. In [3], Cassaigne and the second author studied finiteness
conditions for the infinite fixed points of (uniformly continuous) endomor-
phisms of monoids defined by special confluent rewriting systems, extending
results known for free monoids [11]. This line of research was pursued by the
second author in subsequent papers [17, 18, 19]. Recently, in a joint paper
with Sykiotis [13], we considered the case of graph groups, studying the pe-
riodic and fixed points of endomorphisms. Inspired by this work, we studied
in [14] the case of endomorphisms of trace monoids and their extensions to
real traces.

In this paper we consider the case of endomorphisms of free inverse
monoids. Inverse monoids are a natural generalization of groups. Indeed,
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while groups are represented by bijective functions, inverse semigroups are
represented by partial injective functions. Although these structures seem
to be close, the behavior of their respective free objects can be radically dif-
ferent. In this paper we provide further evidence to this viewpoint. In fact,
we show that the inverse submonoid of the points fixed by an endomorphism
of a free inverse monoid is not in general finitely generated as in the group
case. However, we can still frame the fixed point submonoid in Chomsky’s
hierarchy, at the context-sensitive level. A better outcome is achieved for
the periodic point submonoid (finitely generated, hence rational) and for
some related submonoids called radicals (context-free).

The paper is organized as follows. Section 2 is devoted to preliminar-
ies. In Section 3 we show that the inverse submonoid of periodic points
is finitely generated, while the inverse submonoid of fixed points is not in
general context-free. This is achieved by proving a gap theorem for endomor-
phisms whose induced endomorphisms in the free group has no nontrivial
fixed points in the boundary. In Section 4, we introduce a family of partic-
ular inverse submonoids called radicals, useful in describing the fixed points
submonoid. We show that the radical behaves better than the fixed points
submonoids by proving that the Nth radical is context-free for suitable N .
Using this result we finally frame the fixed point submonoid in the context-
sensitive class. Finally, we raise some open problems in the last section.

2 Preliminaries

The reader is assumed to have some familiarity with the basics of formal
language theory. For references, see [1, 6].

2.1 Free groups

Let A be a finite alphabet and let Ã = A ∪ A−1 be the involutive alphabet
where A−1 is the set of formal inverses of A. The operator −1 : A→ A−1 :
a 7→ a−1 is extended to an involution on the free monoid Ã∗ through

1−1 = 1, (a−1)−1 = a, (uv)−1 = v−1u−1 (a ∈ A; u, v ∈ Ã∗).

Let ∼ be the congruence on Ã∗ generated by the relation {(aa−1, 1) | a ∈ Ã}.
The quotient FA = Ã∗/ ∼ is the free group on A, and σ : Ã∗ → FA denotes
the canonical homomorphism.

We denote by RA the set of all reduced words on Ã∗, i.e.

RA = Ã∗ \
⋃
a∈Ã

Ã∗aa−1Ã∗
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For each u ∈ Ã∗, u ∈ RA is the (unique) reduced word ∼-equivalent to u.
We write also uσ = u. As usual, we often identify the elements of FA with
their reduced representatives. For B ⊆ Ã∗, B denotes the set of reduced
words of B.

We describe now the boundary of FA. Given u, v ∈ FA, written in reduced
form, we denote by u ∧ v the longest common prefix of u and v. Let

r(u, v) =
{
|u ∧ v| if u 6= v
+∞ otherwise

and define d(u, v) = 2−r(u,v) (using the convention 2−∞ = 0). Then d is
know as the prefix metric on FA. In fact, d is an ultrametric since

d(u,w) ≤ max{d(u, v), d(v, w)}

holds for all u, v, w ∈ FA.
The metric space (FA, d) is not complete, but its completion admits

a simple description: we add to FA all the (right) infinite reduced words
a1a2a3 . . . on Ã. These new elements are called the boundary of FA and the
completion (which is indeed compact) is denoted by F̂A. The metric on F̂A

admits the same description as d and is also denoted by d.
By standard topology results (see [4, Section XIV.6]), any uniformly

continuous endomorphism θ of FA admits a (unique) continuous extension
θ̂ : F̂A → F̂A. Thus, if (un)n is a sequence on FA converging in F̂A, then

( lim
n→∞

un)θ̂ = lim
n→∞

unθ

by continuity. The uniformly continuous endomorphisms of FA turn out
to be the monomorphisms. For details on the boundary and endomorphism
extensions on a general context (containing free groups as a particular case),
the reader is referred to [2].

2.2 Free inverse monoids

A monoid M is said to be inverse if

∀u ∈M ∃!u−1 ∈M : (uu−1u = u ∧ u−1uu−1 = u−1).

For details on inverse monoids, see [12].
Let E(M) denote the subset of idempotents of M . Then M is inverse if

and only if
∀u ∈M ∃v ∈M : uvu = u
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and ef = fe for all e, f ∈ E(M). Furthermore, by the well-known Vagner-
Preston representation theorem, inverse monoids are represented by partially
injective transformations as groups are represented by permutations.

We recall also that there is a multiplicative partial order (the natural
partial order) defined on M by

s ≤ t if s = et for some e ∈ E(M).

Let ρ be the congruence on Ã∗ generated by the relation

{(uu−1u, u) | u ∈ Ã∗} ∪ {(uu−1vv−1, vv−1uu−1) | u, v ∈ Ã∗},

known as the Vagner congruence on Ã∗. The quotient MA = Ã∗/ρ is the
free inverse monoid on A, and π : Ã∗ → MA denotes the canonical homo-
morphism. Note that π is matched, since u−1π = (uπ)−1 for every u ∈ Ã∗.
Moreover, there exists a canonical homomorphism σ′ : MA → FA such that
σ = πσ′. In fact, (uρ)σ′ = u for every u ∈ Ã∗.

Two normal forms for MA were introduced independently by Scheiblich
[16] and Munn [10], following respectively an algebraic and a geometric
approach. We can make them converge with the help of the Cayley graph
CA of FA. Indeed, let CA have vertex set FA and edges g a−→ga for all g ∈ FA

and a ∈ Ã. Note that CA is an inverse graph: (p, a, q) is an edge of CA, so
is (q, a−1, p). Such edges are said to be the inverse of each other. It is well
known that, if A 6= ∅, the Cayley graph CA is an infinite tree (if we view
pairs of inverse edges as a single undirected edge).

We can identify MA with the set M ′A of all ordered pairs (Γ, g), where Γ
is a finite connected inverse subgraph of CA having both 1 and g as vertices.
If we view Γ as a finite birooted tree (for roots 1 and g), we have the Munn
representation. If we focus on its set of vertices (a finite prefix closed subset
of FA), we have the Scheiblich representation. Now FA acts on the left of
CA in the obvious way and the multiplication on M ′A can be given through

(Γ, g) · (Γ′, g′) = (Γ ∪ gΓ′, gg′),

and inversion through

(Γ, g)−1 = (g−1Γ, g−1).

Finally, the homomorphism π translates into π′ : Ã∗ → M ′A given by
uπ = (MT(u), uσ), where MT(u) (the Munn tree of u) is the finite inverse
subgraph of CA defined by reading the path 1 u−→g in CA. We shall usually
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identify uσ with u and MT(u) with the prefix-closed set T (u) of RA having
as elements the reduced forms of the vertices of MT(u).

Note that
T (uu−1) = T (u)

holds for every u ∈ Ã∗. Moreover, for all u, v ∈ Ã∗, we have

uρ ≤ vρ ⇔ T (u) ⊇ T (v) ∧ u = v.

Also, if we view MT(u) as an automaton Au with initial vertex 1 and ter-
minal vertex u, then

L(Au) = {v ∈ Ã∗ | v ≥ u in MA}.

Such basic properties of MA will be used throughout the paper without
further reference.

Finally, we define the norm ||u|| = max{|v| : v ∈ T (u)} for every u ∈MA.

2.3 Chomsky’s hierarchy in MA

Following [1], we can define rational subsets of MA with the help of the
homomorphism π: we say that X ⊆ MA is rational if X = Lπ for some
rational L ⊆ Ã∗. This idea can be extended to higher classes of languages
in the Chomsky’s hierarchy, for instance we say that X ⊆ MA is context-
free (respectively context-sensitive) whenever X = Lπ for some context-free
(respectively context-sensitive) L ⊆ Ã∗.

Actually, in the case of rational subsets, the concept is independent
from the homomorphism considered, and this property holds for arbitrary
monoids.

Anisimov and Seifert’s Theorem (see [1]) states that a subgroup of a
group G is rational if and only if it is finitely generated. We note that there
is an analogous of this theorem for inverse semigroups [9, Lemma 3.6] stating
that a closed inverse subsemigroup of an inverse semigroup is rational if and
only if it is finitely generated (here closed meaning upper set for the natural
partial order).

3 Fixed points and periodic points

Given a monoid M , we denote by End(M) the monoid of endomorphisms
of M . Given ϕ ∈ End(M),

Fix(ϕ) = {x ∈M : xϕ = x}
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is the submonoid of fixed points of ϕ, and

Per(ϕ) = ∪n≥1 Fix(ϕn)

is the submonoid of periodic points of ϕ (note that Fix(ϕm) ⊆ Fix(ϕn)
whenever m|n, hence (Fix(ϕk))(Fix(ϕ`)) ⊆ Fix(ϕk`) and so Per(ϕ) is indeed
a submonoid). Moreover, if M is an inverse monoid (a group), then both
Fix(ϕ) and Per(ϕ) are inverse submonoids (subgroups).

Let θ ∈ End(FA). By [5], Fix(θ) is finitely generated. Now, by Nielsen’s
Theorem (see [8]), every subgroup of a free group is free. Recall that the
rank of a free group F is the cardinality of a basis of F . By [7], every
subgroup Fix(θn) has actually rank ≤ |A|. According to Takahasi’s Theorem
[20], every ascending chain of subgroups of bounded rank of FA must be
stationary, and so must be

Fix(θ1!) ⊆ Fix(θ2!) ⊆ Fix(θ3!) ⊆ . . .

Since Per(θ) = ∪n≥1 Fix(θn!), this provides a proof for the following well-
known result:

Proposition 3.1. Let θ ∈ End(FA). Then Per(θ) = Fix(θN ) for some
N ≥ 1.

The minimum integer N such that Per(θ) = Fix(θN ) is called the curl
of θ and is denoted by Curl(θ).

Lemma 3.2. Let ϕ ∈ End(MA) and let N = Curl(ϕ). Let k ≥ 1. Then
Curl(ϕNk) = 1.

Proof. We have

Fix(ϕNk) ⊆ Per(ϕNk) ⊆ Per(ϕ) = Fix(ϕN ) ⊆ Fix(ϕNk),

hence Fix(ϕNk) = Per(ϕNk) and so Curl(ϕNk) = 1.

Assume now that ϕ ∈ End(MA). Then ϕ induces an endomorphism
ϕ ∈ End(FA) defined by ϕ = (σ′)−1ϕσ′. It is straightforward to check that
ϕ is a well defined homomorphism using the fact that ϕ sends idempotents
into idempotents.

Lemma 3.3. Let ϕ ∈ End(MA) and let u ∈ MA. Then the following
conditions are equivalent:

(i) u ∈ Fix(ϕ);
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(ii) uu−1 ∈ Fix(ϕ) and u ∈ Fix(ϕ).

Moreover, in this case we have (T (u))ϕ ⊆ T (u).

Proof. (i) ⇒ (ii). The first part follows from Fix(ϕ) being an inverse sub-
monoid of MA. On the other hand, we have

uϕ = u(σ′)−1ϕσ′ = uϕσ′ = uσ′ = u.

(ii) ⇒ (i). We have uu−1 ≥ uu−1, hence (uu−1)ϕ ≥ (uu−1)ϕ = uu−1.
It follows that uϕ = eu for some idempotent e ≥ uu−1 and so

uϕ = (uu−1u)ϕ = uu−1eu = uu−1u = u.

Finally, let v ∈ T (u). Then vv−1 ≥ uu−1 and uu−1 ∈ Fix(ϕ) yields
(vv−1)ϕ ≥ (uu−1)ϕ = uu−1. Hence T (vϕ) = T ((vv−1)ϕ) ⊆ T (uu−1) =
T (u). Thus

vϕ = v(σ′)−1ϕσ′ = vϕσ′ ∈ T (vϕ) ⊆ T (u)

as required.

Let ϕ ∈ End(MA). An idempotent e ∈ E(MA) is said to be ϕ-stable (or
simply stable when the endomorphism ϕ is clear from the context) when-
ever the orbit {eϕn | n ≥ 0} is finite. It follows that {eϕn | n ≥ 0} =
{e, eϕ, . . . , eϕp−1} for some p ≥ 1. We call the smallest such p the period of e
with respect to ϕ. By minimality of p, the idempotents e, eϕ, eϕ2, . . . , eϕp−1

are all distinct. Finally, we define

Kϕ(e) =
p−1∏
i=0

eϕi,

Stϕ = {a ∈ Ã | aa−1 is ϕ-stable}.
We show that Stϕ 6= ∅ if there exist nontrivial fixed points, but first we
prove a simple lemma. Given u, v ∈ Ã∗ and a vertex p of MT(u), we say
that MT(v) embeds in MT(u) at p if pT (v) ⊆ T (u).

Lemma 3.4. Let ϕ ∈ End(MA) and u ∈ MA. Let p v−→q be a path in
MT(u). Then MT(vϕ) embeds in MT(uϕ) at pϕ.

Proof. Considering p in reduced form, there exists a path 1
p−→p v−→q w−→u

in MT(u) and so pvw ≥ u in MA. Hence (pvw)ϕ ≥ uϕ and so T ((pvw)ϕ) ⊆
T (uϕ). It follows that

(pϕ)T (vϕ) = (pϕ)T (vϕ) ⊆ T ((pϕ)(vϕ)(wϕ)) = T ((pvw)ϕ) ⊆ T (uϕ)

as claimed.
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Proposition 3.5. Let ϕ ∈ End(MA) and let u ∈ Fix(MA). If a ∈ Ã labels
some edge in MT(u), then a ∈ Stϕ.

Proof. Let p a−→q be an edge of MT(u). By Lemma 3.4, MT((aa−1)ϕn)
embeds in MT(uϕn) = MT(u) at pϕn for every n ≥ 0. This bounds the size
of MT((aa−1)ϕn), hence the orbit of aa−1 is finite and so a ∈ Stϕ.

We prove yet another simple lemma:

Lemma 3.6. Let ϕ ∈ End(MA) and let n ≥ 1. Then Stϕn = Stϕ.

Proof. Let a ∈ Stϕn . Then (aa−1)ϕnk = (aa−1)ϕn(k+p) for some k ≥ 0 and
p ≥ 1. Hence the ϕ-orbit of aa−1 is finite and so a ∈ Stϕ. Since the ϕ-orbit
of aa−1 contains the ϕn-orbit, the converse implication follows.

The set of ϕ-tiles is defined by

Tϕ = {Kϕ(aa−1)a | a ∈ Stϕ}.

Theorem 3.7. Let ϕ ∈ End(MA) be such that Curl(ϕ) = 1. Then Fix(ϕ) =
T ∗ϕ .

Proof. Let a ∈ Stϕ and t = Kϕ(aa−1)a. Let p denote the period of aa−1.
Since aa−1 ≥ Kϕ(aa−1), we have tt−1 = Kϕ(aa−1). By Lemma 3.4 applied
to ϕn we know that MT(aϕn) embeds in MT((aa−1)ϕn) and therefore in
MT(t). Thus aϕn labels a path in MT(t) for every n. Since MT(t) is a finite
tree, it admits only finitely many paths of reduced label, hence the orbit
{aϕn | n ≥ 0} must be finite. Since ϕn = ϕn, it follows that a ∈ Per(ϕ) and
so a ∈ Fix(ϕ) since Curl(ϕ) = 1. Hence aa−1 ≥ (aa−1)ϕ and so

(tt−1)ϕ = (
p−1∏
i=0

(aa−1)ϕi)ϕ =
p∏

i=1

(aa−1)ϕi =
p−1∏
i=0

(aa−1)ϕi = tt−1.

Since t = a ∈ Fix(ϕ), it follows from Lemma 3.3 that t ∈ Fix(ϕ). Hence
Tϕ ⊆ Fix(ϕ) and so T ∗ϕ ⊆ Fix(ϕ).

Conversely, let u ∈ Fix(ϕ). Write u = a1 . . . am with ai ∈ Ã. For
i = 1, . . . ,m, let ti = Kϕ(aia

−1
i )ai. By Proposition 3.5, we have ai ∈ Stϕ

and so ti ∈ Tϕ for every i.
We show that u = t1 . . . tm inMA. Indeed, by Lemma 3.4, MT((aia

−1
i )ϕn)

embeds in MT(uϕn) = MT(u) at (a1 . . . ai−1)ϕn for every n ≥ 0. Hence
the orbit {(a1 . . . ai−1)ϕn | n ≥ 0} must be finite and since Curl(ϕ) = 1
we get a1 . . . ai−1 ∈ Per(ϕ) = Fix(ϕ). Thus (a1 . . . ai−1)ϕn = a1 . . . ai−1
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and it follows easily that MT(ti) embeds in MT(u) at t1 . . . ti−1 and so
T (t1 . . . tm) ⊆ T (u).

Now, since ai = ti, it is not difficult to check that t1...tm ≤ u, from which
the converse inclusion follows as well. Together with t1 . . . tm = a1 . . . am =
u, this implies u = t1 . . . tm in MA. Therefore Fix(ϕ) = T ∗ϕ .

We can now solve completely the case of periodic points:

Theorem 3.8. Let ϕ ∈ End(MA). Then Per(ϕ) is finitely generated.

Proof. Let N = Curl(ϕ). We show that

Per(ϕ) = (
⋃
k≥1

TϕNk)∗. (1)

Indeed, let u ∈ Per(ϕ). Then u = uϕk for some k ≥ 1 and so u = uϕNk.
By Lemma 3.2, we have Curl(ϕNk) = 1, hence u ∈ Fix(ϕNk) = T ∗

ϕNk by
Theorem 3.7.

Conversely, we have TϕNk ⊆ Fix(ϕNk) ⊆ Per(ϕ) for every k by Theorem
3.7. Since Per(ϕ) is a submonoid, (1) holds.

Now it suffices to show that B =
⋃

k≥1 TϕNk is finite. Indeed, if t ∈ TϕNk ,
then t = KϕNk(aa−1)a for some a ∈ StϕNk . Since there are only finitely many
choices for a ∈ Ã and the ϕ-orbit of aa−1 is finite for every such a, it follows
that B is finite and so Per(ϕ) is finitely generated.

Corollary 3.9. Let ϕ ∈ End(MA). The following conditions are equivalent:

(i) Fix(ϕ) is infinite;

(ii) Per(ϕ) is infinite;

(iii) Per(ϕ) 6⊆ E(MA).

Proof. (i) ⇒ (ii). Trivial.
(ii) ⇒ (i). We build an infinite sequence (en)n of (distinct) elements

of Fix(ϕ) as follows. Let n ≥ 1 and assume that e1, . . . , en−1 are already
defined. Since Per(ϕ) is infinite, there exists some u ∈ Per(ϕ) such that
||u|| > ||ei|| for i = 1, . . . , n − 1. We have uu−1 ∈ Per(ϕ), say (uu−1)ϕm =
uu−1. Clearly, we can take en = Kϕ(uu−1) =

∏m−1
i=0 (uu−1)ϕi ∈ Fix(ϕ).

Since ||en|| ≥ ||u|| > ||ei||, then en 6= ei for i = 1, . . . , n − 1. Thus we build
an infinite sequence (en)n and so Fix(ϕ) is infinite.

(ii) ⇒ (iii). By Theorem 3.8, Per(ϕ) is finitely generated, and every
finitely generated submonoid of E(MA) is finite.
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(iii) ⇒ (ii). If u ∈ Per(ϕ) \ E(MA), then u∗ is an infinite submonoid of
Per(ϕ).

Given ϕ ∈ End(MA) with ϕ injective, we may write ϕ̂ = ϕ̂. Recall that
we need injectivity to extend ϕ to the boundary of FA. If there are no
nontrivial fixed points in ϕ̂, a good deal of the hierarchy collapses:

Theorem 3.10. Let ϕ ∈ End(MA) be such that ϕ is injective and Fix(ϕ̂) =
1. Then the following conditions are equivalent:

(i) Fix(ϕ) is context-free;

(ii) Fix(ϕ) is rational;

(iii) Fix(ϕ) is finitely generated;

(iv) Fix(ϕ) is finite;

(v) Per(ϕ) is finite;

(vi) Per(ϕ) ⊆ E(MA).

Proof. (i) ⇒ (iv). Assume that Fix(ϕ) = Kπ for some K ⊆ Ã∗ context-
free. By the Pumping Lemma for context-free languages, there exists a
constant p ≥ 1 such that every w ∈ K of length > p admits a factorization
w = w1w2w3w4w5 such that:

• |w2w3w4| ≤ p;

• w2w4 6= 1;

• w1w
n
2w3w

n
4w5 ∈ K for every n ≥ 0.

For every m ≥ 0, let

Λm = { (u, v) ∈ Fix(ϕ)× Fix(ϕ) | u 6= v and ∃q ∈ T (u)
∃w ∈MA : T (v) = T (u) ∪ qT (w), |q| ≥ m, ||w|| ≤ p}.

We show that
only finitely many Λm are nonempty. (2)

Indeed, suppose that (2) fails. This amounts to say that Λm 6= ∅ for every
m ≥ 0. Fix (um, vm) ∈ Λm and let qm, wm be as in the definition of Λm. Let

M = max{||aϕ|| : a ∈ Ã}.
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We claim that
d(qm, qmϕ) < 2pM−m. (3)

Indeed, we have T (vm) = T (um) ∪ qmT (wm). Hence

vmv
−1
m = umu

−1
m qmwmw

−1
m q−1

m

and so
vmv

−1
m = (vmv

−1
m )ϕ = (umu

−1
m qmwmw

−1
m q−1

m )ϕ
= umu

−1
m (qmwmw

−1
m q−1

m )ϕ.
(4)

Since qmq−1
m ≥ umu

−1
m , we have (qmq−1

m )ϕ ≥ (umu
−1
m )ϕ = umu

−1
m and so

T (qmϕ) ⊆ T (um). Hence (4) yields

T (vm) = T (um) ∪ (qmϕ)T (wmϕ) = T (um) ∪ (qmϕ)T (wmϕ).

Now it is easy to see that ||wm|| ≤ p yields ||wmϕ|| ≤ pM . Let a ∈ Ã be such
that qma ∈ T (vm) \T (um). Then qma = (qmϕ)z for some reduced word z of
length ≤ pM and so qmϕ = qmaz−1. Since |qm| ≥ m and z−1 can cancel at
most pM letters from the reduced word qma, we get r(qm, qmϕ) > m− pM .
Therefore (3) holds.

Now, since the completion F̂A is compact, the sequence (qm)m must
admit a convergent subsequence (qim)m. Let α = limm→∞ qim . We claim
that α ∈ Fix(ϕ̂). Indeed, by continuity we have αϕ̂ = limm→∞ qimϕ. Let
ε > 0. Since α = limm→∞ qim , there exists some t ≥ 1 such that

m ≥ t ⇒ d(qim , α) < ε.

Moreover, we may assume that 2pM−t < ε. Thus, if m ≥ t, and since d is
an ultrametric, we get

d(qimϕ, α) ≤ max{d(qimϕ, qim), d(qim , α)} < max{2pM−m, ε}
≤ max{2pM−t, ε} < ε.

Hence αϕ̂ = α and so α ∈ Fix(ϕ̂). Since |qm| ≥ m for every m, we have
α 6= 1, a contradiction. Therefore (2) holds.

Suppose now that Fix(ϕ) is infinite. Since Fix(ϕ) = 1, it follows from
Lemma 3.3 that Fix(ϕ) ⊆ E(MA). Let m > p. Since Fix(ϕ) is infinite, there
exists some w ∈ K with ||w|| ≥ m. We may assume that w has minimal
length among all such words.

Since |w| ≥ ||w|| ≥ m > p, there exists a factorization w = w1w2w3w4w5

such that:

• |w2w3w4| ≤ p;
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• w2w4 6= 1;

• w1w
n
2w3w

n
4w5 ∈ K for every n ≥ 0.

Let u = w1w3w5 ∈ K. By minimality of w, we have ||u|| < m, hence u 6= uw
in MA. We claim that

(u, uw) ∈ Λm−p.

First of all, we note that u = 1 = w yields w2w3w4 = w3. There exists a
path

1 w1−→w1
w3−→w1w3

w5−→1

in MT(u). We have

T (u) = T (w1) ∪ w1T (w3) ∪ w1w3T (w5),

T (uw) = T (u) ∪ T (w1) ∪ w1T (w2w3w4) ∪ w1w2w3w4T (w5).

Since w2w3w4 = w3, we get

T (uw) = T (u) ∪ w1T (w2w3w4). (5)

Note that ||w2w3w4|| ≤ |w2w3w4| ≤ p. Suppose that |w1| < m−p. Then the
maximal length of a word in w1T (w2w3w4) is < m, and in view of ||u|| < m
and (5) we get ||w|| < m, a contradiction. Hence |w1| ≥ m − p. Together
with (5), this yields (u, uw) ∈ Λm−p as claimed. Since m is arbitrary large,
this contradicts (2). Therefore Fix(ϕ) is not context-free.

(iv) ⇒ (iii) ⇒ (ii) ⇒ (i). Trivial.
(iv) ⇔ (v) ⇔ (vi). By Corollary 3.9.

Corollary 3.11. Let ϕ ∈ End(MA) be such that ϕ| eA is a permutation with-
out fixed points. Then Fix(ϕ) is not context-free.

Proof. Clearly, ϕ is an automorphism and Fix(ϕ̂) = 1. Moreover, Per(ϕ) =
MA. By Theorem 3.10, Fix(ϕ) is not context-free.

The above corollary provides an infinite class of examples, for arbitrary
curl > 1, where Fix(ϕ) is not context-free.
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4 Radicals

We introduce now the concept of radical, inspired by analogous definitions
in other contexts. Radicals occupy an intermediate position between the
submonoids of fixed points and periodic points.

Given ϕ ∈ End(MA) and n ≥ 1, we define

Radn(ϕ) = {u ∈ Fix(ϕn) | u ∈ Fix(ϕ)}.

The following result summarizes some of the basic properties of radicals:

Lemma 4.1. Let ϕ ∈ End(MA) and m,n ≥ 1. Then:

(i) Radn(ϕ) is an inverse submonoid of MA;

(ii) Fix(ϕ) = Rad1(ϕ) ≤ Radn(ϕ) ≤ Per(ϕ);

(iii) if m|n, then Radm(ϕ) ≤ Radn(ϕ);

(iv) Fix(ϕ) = {Kϕ(uu−1)u | u ∈ Radn(ϕ)}.

Proof. (i) – (iii) Immediate.
(iv) Let u ∈ Radn(ϕ) and v = Kϕ(uu−1)u. Then (uu−1)ϕn = uu−1 and

it follows easily that Kϕ(uu−1) ∈ Fix(ϕ). Hence vv−1 = Kϕ(uu−1) ∈ Fix(ϕ).
On the other hand, v = u ∈ Fix(ϕ), and Lemma 3.3 yields u ∈ Fix(ϕ).

Conversely, let u ∈ Fix(ϕ) ⊆ Radn(ϕ). Then u = Kϕ(uu−1)u and we are
done.

Radicals may behave better than submonoids of fixed points:

Theorem 4.2. Let ϕ ∈ End(MA) and N = Curl(ϕ). Then RadN (ϕ) is
context-free.

Proof. By Lemma 3.2, we have Curl(ϕN ) = 1, hence Fix(ϕN ) is finitely
generated by Theorem 3.7. Hence there exists a rational language L ⊆ Ã∗

such that Lπ = Fix(ϕN ).
On the other hand, since H = Fix(ϕ) is finitely generated by [5], its

pre-image Hσ−1 is context-free by [15] (see also [1, Ex. III.2.5]). We claim
that

RadN (ϕ) = (L ∩Hσ−1)π.

Indeed, if u ∈ RadN (ϕ), then u = vπ for some v ∈ L. Since vσ = vπσ′ =
uσ′ = u ∈ H, we get v ∈ L ∩Hσ−1 and so u ∈ (L ∩Hσ−1)π. The opposite
inclusion is similar.

Since L ∩ Hσ−1 is the intersection of a context-free language with a
rational language, it is context-free and so RadN (ϕ) is context-free.
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Theorem 4.3. Let ϕ ∈ End(MA) be such that Fix(ϕ) = 1. Let n ≥ 1.
Then the following conditions are equivalent:

(i) Radn(ϕ) is rational;

(ii) Radn(ϕ) is finite.

Proof. (i) ⇒ (ii). Assume that Radn(ϕ) = Lπ for some L ⊆ Ã∗ ratio-
nal. Then L = L(A) for some finite deterministic trim automaton A =
(Q, q0, T, E). Since Fix(ϕ) = 1, we have Radn(ϕ) = 1 and so L = 1. Since
A is trim, it follows that z = 1 whenever z labels a cycle in A.

Suppose now that Radn(ϕ) is infinite and write m = |Q|. There exists
some e ∈ Radn(ϕ) with ||e|| ≥ m. Take u ∈ L ∩ eπ−1. Then u must have
some prefix v such that |v| = ||e||, hence there exists some path in A of the
form

q0
v−→q w−→t ∈ T.

If we successively remove all nontrivial cycles from the path q0
v−→q, we get

a path q0
v′
−→q of length < m. However, since z = 1 whenever z labels a

cycle in A, we have v′ = v and so m ≤ ||e|| = |v| = |v′| ≤ |v′| < m, a
contradiction. Therefore Radn(ϕ) is finite.

(ii) ⇒ (i). Trivial.

The next corollary provides an infinite class of examples, for arbitrary
curl > 1, where RadN (ϕ) is not rational:

Corollary 4.4. Let ϕ ∈ End(MA) be such that ϕ| eA is a permutation with-
out fixed points. Let N = Curl(ϕ). Then RadN (ϕ) is context-free but not
rational.

Proof. By Theorem 4.2, RadN (ϕ) is context-free. Since ϕ| eA is also a per-
mutation without fixed points, we have Per(ϕ) = FA, hence Fix(ϕN ) = FA

and so ϕN = 1FA
. It follows that ϕN = 1MA

. Since Fix(ϕ) = 1, we get
RadN (ϕ) = E(MA) and so RadN (ϕ) is infinite. Since Fix(ϕ) = 1, we may
apply Theorem 4.3, thus RadN (ϕ) is not rational.

Finally, we use Lemma 4.1(iv) to show that Fix(ϕ) is always context-
sensitive:

Theorem 4.5. Let ϕ ∈ End(MA). Then Fix(ϕ) is context-sensitive.

Proof. Context-sensitive languages can be characterized as languages ac-
cepted by linear-bounded Turing machines, i.e. Turing machines T for which
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there exists some constant K ≥ 1 such that any word u ∈ L(T ) can be ac-
cepted by some computation using only the first K|u| cells of the tape.

By Theorem 3.8, we have Per(ϕ) = Fix(ϕm) for some m ≥ 1. Let
A1, . . . , Am−1 be disjoint copies of A, inducing bijections αi : Ã → Ãi for
i = 1, . . . ,m− 1. Let

Bi = {a ∈ A | aϕi 6= 1}

for i = 1, . . . ,m− 1. We define a matched homomorphism βi : Ã∗ → B̃iαi
∗

by

aβi =
{
aαi if a ∈ Bi

1 if a ∈ A \Bi

Let N = Curl(ϕ). By Theorem 4.2, RadN (ϕ) is context-free. Hence we have
RadN (ϕ) = Cπ for some context-free language C ⊆ Ã∗. We define

L = {uu−1(uβ1)(u−1β1)(uβ2)(u−1β2) . . . (uβm−1)(u−1βm−1)u | u ∈ C}.

It is easy to see that L is accepted by a linear-bounded Turing machine
T . Indeed, since C is context-free, C is itself accepted by a linear-bounded
Turing machine T ′. We can make T consider all the possible factorizations
of the input potentially leading to some word of the form

uu−1(uβ1)(u−1β1) . . . (uβm−1)(u−1βm−1)u

(using multiple tracks to help), then using T ′ as a subroutine and checking
each one of the presumed factors using the definitions of the Bi and βi.
Therefore L is context-sensitive.

For i = 1, . . . ,m − 1, fix a matched endomorphism ψi of Ã∗ satisfying
ψiπ = πϕi (it suffices to have aψiπ = aπϕi for every a ∈ A, so it really
exists). Let X = A ∪ B1α1 ∪ . . . ∪ Bm−1αm−1 and define a matched homo-
morphism γ : X̃∗ → Ã∗ as follows. Given a ∈ A, let aγ = a. Given a ∈ Bi,
let aαiγ = aψi. Note that aαiγ 6= 1 since aϕi 6= 1 by definition of Bi.

Since context-sensitive languages are closed under ε-free homomorphisms,
it follows that Lγ is context-sensitive. Note that aαiγπ = aψiπ = aπϕi

whenever a ∈ Bi, so aβiγπ = aπϕi for every a ∈ A (if a /∈ Bi, then
aβi = 1 = aπϕi). Thus we get

Lγπ = {uu−1(uβ1)(u−1β1) . . . (uβm−1)(u−1βm−1)u | u ∈ C}γπ
= {vv−1(vϕ)(v−1ϕ) . . . (vϕm−1)(v−1ϕm−1)v | v ∈ Cπ}.

Recall that Cπ = RadN (ϕ). Moreover, we claim that

vv−1(vϕ)(v−1ϕ) . . . (vϕm−1)(v−1ϕm−1) = Kϕ(vv−1). (6)
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Indeed, if p is the period of vv−1, thenKϕ(vv−1) = vv−1(vv−1)ϕ . . . (vv−1)ϕp−1.
Since vv−1 ∈ Per(ϕ) = Fix(ϕm), we have p ≤ m and so (6) holds. Therefore,
by Lemma 4.1(iv), we get

Fix(ϕ) = {Kϕ(vv−1)v | v ∈ RadN (ϕ)} = Lγπ.

Since Lγ is context-sensitive, so is Fix(ϕ).

5 Open Problems

We give a list of natural open problems originated by the previous results.

Problem 5.1. To find examples of ϕ ∈ End(MA) such that:

(i) Fix(ϕ) is context-free but not rational;

(ii) Fix(ϕ) is rational but not finitely generated.

Problem 5.2. To show that a basis of Per(θ) can be computed for every
θ ∈ End(FA).

Problem 5.3. To show that Curl(θ) can be computed for every θ ∈ End(FA).

If Problem 5.2 is solved, then Problem 5.3 is solved as well: we just com-
pute basis of Per(θ), Per(θ2!), Per(θ3!) until we reach Per(θn!) = Per(θ(n+1)!)
for some n (and we know we eventually will) by Proposition 3.1.

Problem 5.4. To compute Stϕ for an arbitrary ϕ ∈ End(MA).

If we compute the ϕ-stable letters, we can compute the ϕ-tiles in Tϕ.
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