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ABSTRACT

The fixed point submonoid of an endomorphism of a free product of a free monoid
and cyclic groups is proved to be rational using automata-theoretic techniques.
Maslakova’s result on the computability of the fixed point subgroup of a free group
automorphism is generalized to endomorphisms of free products of a free monoid
and a free group which are automorphisms of the maximal subgroup.

1 Introduction

Gersten proved in the eighties that the fixed point subgroup of a free group automorphism
ϕ is finitely generated [10]. Using a different approach, Cooper gave an alternative proof,
proving also that the fixed points of the continuous extension of ϕ to the boundary of the
free group is in some sense finitely generated [9]. Bestvina and Handel achieved in 1992
a major breakthrough through their innovative train track techniques, bounding the rank
of the fixed point subgroup and the generating set for the infinite fixed points [3]. Their
approach was pursued by Maslakova in 2003 to prove that the fixed point subgroup can be
effectively computed [14].

Gersten’s result was generalized to further classes of groups and endomorphisms in sub-
sequent years. Goldstein and Turner extended it to monomorphisms of free groups [11], and
later to arbitrary endomorphisms [12]. Collins and Turner extended it to automorphisms of
free products of freely indecomposable groups [8], and recently Sykiotis to monomorphisms
[19]. The interested reader can find more information in Ventura’s excellent survey [20].

Cassaigne and the author developed in [6] an approach to the study of monoids defined
by special confluent rewriting systems (SC monoids) that preserves some of the features of
the free group case and contains free products of cyclic groups as a particular case, as well
as the partially reversible monoids introduced in [17]. In fact, the undirected Cayley graph
of these monoids is hyperbolic and there exists a nice compact completion for the prefix
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metric. Uniformly continuous endomorphisms, algorithmically characterized in [6], admit a
continuous extension to the boundary. In [7], the same authors used this approach to study
the dynamics of infinite periodic points for two classes of endomorphisms of the monoids in
question.

In [18], the author proved that the fixed point submonoids of a large class of uniformly
continuous endomorphisms of SC monoids are rational (actually finitely generated in the
group case), obtaining also results of the same flavour for infinite fixed points. In the group
case, new results were obtained for infinite fixed points of monomorphisms of free products
of cyclic groups (c-free groups).

In the present paper, we go beyond the uniform continuity restriction of [18], which is
equivalent to injectivity in the group case. Section 3 is devoted to the problem of proving
that the fixed point submonoid is rational, generalizing Goldstein and Turner’s proof for
free group endomorphisms. This involves facing some technical dificulties brought by the
existence of finite order elements. We obtain thus a fully automata-theoretic proof of a
result that follows also from previous results by Sykiotis [19]. The advantage of this new
proof is that it may offer some insight into the algorithmic aspects of the problem.

In Section 4, we discuss computability of the fixed point submonoid, the reference being
of course Maslakova’s result on free group automorphisms [14]. We generalize this result to
endomorphisms of free products of a free monoid and a free group whose restriction to the
group is an automorphism.

2 Preliminaries

Given a monoid M , we denote by RatM the set of all rational subsets of M , i.e., the
smallest family of subsets of M containing the finite sets and closed under union, product
and the star operator (X∗ denotes the submonoid of M generated by X ⊆M). For details
on rational languages, the reader is referred to [2, 16].

In the particular case of a free monoid M = A∗, a combinatorial description in terms
of finite automata is usually preferred. We define a (finite) A-automaton to be a quadruple
A = (Q, q0, T, δ) where Q is a (finite) set, q0 ∈ Q is the initial vertex, T ⊆ Q are the
terminal vertices and E ⊆ Q×A×Q. The language recognized by A is

L(A) = {w ∈ A∗ | there exists a path q0
w−→t ∈ T in A}.

Such a path is called successful. Note that the empty word labels a (trivial) path q0
1−→q0.

The classical Kleene’s Theorem states that L ⊆ A∗ is rational if and only if L = L(A)
for some finite A-automaton A. If we replace letters by rational languages as labels of edges,
we remain within the realm of rational languages. Note that, if we fix a homomorphism
π : A∗ → M , then RatM = (RatA∗)π and so the rational subsets of M can be defined
through finite automata.

Let A = (Q, q0, T, E) be an A-automaton. We say that A is

• deterministic if (p, a, q), (p, a, r) ∈ E implies q = r;

• complete if there exist edges with arbitrary label starting at every vertex;

• accessible if there exist paths from q0 to any arbitrary vertex.
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Another case that will be relevant for us is the case of M being a group, when we have
the following result of Anisimov and Seifert:
Proposition 2.1 [16, Prop. II.6.2] Let H be a subgroup of a group G. Then H ∈ RatG if
and only if H is finitely generated.

A finite rewriting system is a formal expression 〈A | R〉, where A is a finite alphabet
and R a finite subset of A∗ × A∗. The elements of R are called rules. Given u, v ∈ A∗, we
write u−→Rv if

u = xry, v = xsy

for some x, y ∈ A∗ and (r, s) ∈ R. We denote by ∗−→R the reflexive and transitive closure
of the relation −→R. The subscript R will be usually omitted. The congruence on A∗

generated by R will be denoted by R]. Note that R] = ∗−→R∪R−1 . The quotient M = A∗/R]

is said to be the monoid defined by the rewriting system R. We denote by π the canonical
homomorphism A∗ →M .

A rewriting system 〈A | R〉 is said to be

• special if R ⊆ A+ × {1};

• confluent if, whenever u ∗−→v and u
∗−→w, there exists z ∈ A∗ such that v ∗−→z and

w
∗−→z:

u ∗ //

∗
��

v

∗
���
�
�

w ∗ //___ z

We shall refer to a monoid defined by a finite special confluent rewriting system as an
SC monoid. An important case is given by free groups. Indeed, FGA is defined by

〈A ∪A−1 | aa−1 → 1, a−1a→ 1 (a ∈ A)〉,

where A−1 denotes a set of formal inverses of A.
Let 〈A | R〉 be a special confluent rewriting system. We say that w ∈ A∗ is irreducible

(with respect to R) if w /∈ ∪(r,s)∈RA
∗rA∗. For every u ∈ A∗, there is exactly one irreducible

v ∈ A∗ such that u ∗−→v: existence follows from R being length-reducing, and uniqueness
from confluence. We denote this unique irreducible word by u. It is well known (see [5])
that the equivalence

uπ = vπ ⇔ u = v

holds for all u, v ∈ A∗, hence A∗ = {u | u ∈ A∗} constitutes a set of normal forms for the
monoid M = A∗/R].

A generalized version of the classical Benois’ Theorem states that rational languages are
preserved by reduction:
Theorem 2.2 [1] Let 〈A | R〉 be a finite special confluent rewriting system and let L ⊆ A∗
be rational. Then L is rational and effectively constructible from L.

If M and M ′ are defined respectively by the rewriting systems 〈A | R〉 and 〈A′ | R′〉,
then the free product M ∗M ′ is defined by 〈A ∪ A′ | R ∪ R′〉, taking A′ disjoint from A.
Since a free group is a free product of infinite cyclic groups, we call a free product of cyclic
groups c-free.
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We denote the submonoid of endomorphisms (respectively subgroup of automorphisms)
of M by EndM (respectively AutM). Given ϕ ∈ EndM , let

Fixϕ = {u ∈M | uϕ = u}

denote the submonoid of fixed points of ϕ. Note that Fixϕ is a group if M is a group.

3 Rationality

It is easy to determine which SC monoids can be embedded into some group. Following
[15], we say that a monoid M is directly finite if

∀x, y ∈M xy = 1⇒ yx = 1.

We recall that the bicyclic monoid is the SC monoid defined by the rewriting system 〈a, b |
ab→ 1〉.
Proposition 3.1 Let M be an SC monoid. Then the following conditions are equivalent:

(i) M is embeddable into some group;

(ii) M contains no bicyclic submonoid;

(iii) M is directly finite;

(iv) M is a free product of a free monoid and cyclic groups.

Proof. (i) ⇒ (ii). Since a bicyclic monoid contains infinitely many idempotents (bnan for
the standard rewriting system).

(ii) ⇒ (iii). By [13, Section VI.3].
(iii) ⇒ (iv). Assume that M is defined by the finite special confluent rewriting system

〈A | R〉. Let A1 be the set of generators which occur in some relator of R, and write
A0 = A\A1. Let a ∈ A1. Then R has some relator of the form uav → 1 for some u, v ∈ A∗.
Since M is directly finite, it follows that (vua)π = 1 = (avu)π, hence aπ is invertible in
M and so A∗1π is a subgroup of M . Since A∗1π is defined by the finite special confluent
rewriting system 〈A1 | R〉, we get a free product decomposition M = A∗0 ∗ A∗1π. By [18,
Proposition 6.1], every SC group is c-free and so (iv) holds.

(iv) ⇒ (i). Since A∗ embeds in FGA and this embeddding extends to an embedding of
A∗ ∗G into FGA ∗G. �

We adapt now Goldstein and Turner’s proof [11] to c-free groups. The theorem follows
also from the work of Sykiotis [19], which used different techniques.
Theorem 3.2 [19] Let ϕ be an endomorphism of a finitely generated c-free group. Then
Fixϕ is finitely generated.

Proof. Let ϕ be an endomorphism of the c-free group G defined by the finite special
confluent rewriting system 〈A | R〉, and let π : A∗ → G denote the canonical morphism.
We may assume that A = A0 ∪A1 ∪A−1

1 and there exist ma ≥ 2 for every a ∈ A0 such that

R = {(ama , 1) | a ∈ A0} ∪ {(aa−1, 1), (a−1a, 1) | a ∈ A1}.
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For every a ∈ A0, write a−1 = ama−1. Write also (a−1)−1 = a for every a ∈ A1. Define u−1

inductively for every u ∈ A∗ through

1−1 = 1, (va)−1 = a−1v−1 (v ∈ A+, a ∈ A).

Clearly, (u−1)π = (uπ)−1 for every u ∈ A∗.
For every g ∈ G, let Q(g) = g−1(gϕ). Note that g ∈ Fixϕ if and only if Q(g) = 1. We

define an A-automaton Aϕ = (Q, 1, 1, E) by

Q = {Q(g) | g ∈ G};

E = {(Q(g), a,Q(ga)) | g ∈ G, a ∈ A}.

Clearly, Aϕ is a complete accessible deterministic automaton and

L(Aϕ) = (Fixϕ)π−1.

We define a subautomaton A′ϕ = (Q, 1, 1, E′) through

E′ = {(p, a, q) ∈ E | aq is irreducible}.

Let dϕ = max{|aϕ|; a ∈ A} and mR = max({2}∪{ma | a ∈ A0}). Note that, for all u ∈ A∗
and a ∈ A, the suffix of u involved in the reduction of u(aϕ) has length at most (mR−1)dϕ

(since each letter of aϕ can erase at most mR − 1 letters of u).
We show that

∀p ∈ Q |p| > (mR − 1)dϕ ⇒ p has outdegree ≤ 1 in A′ϕ. (1)

Let p ∈ Q be such that |p| > (mR − 1)dϕ. Suppose that (p, a, q), (p, b, q′) ∈ E′ are
distinct edges. Since Aϕ is deterministic, we have a 6= b. It suffices to show that p ∈ aA∗.
By symmetry, also p ∈ bA∗ and we reach the required contradiction.

Suppose that p = cu with c ∈ A \ {a}. Then q = a−1cu(aϕ). Since c 6= a, a−1cu is
irreducible. Now |u| ≥ (mR− 1)dϕ implies that a−1c remains untouched in the reduction of
a−1cu(aϕ). Hence q = a−1cu(aϕ) and so aq is reducible, contradicting (p, a, q) ∈ E′. Thus
p ∈ aA∗ and so (1) holds.

Given q ∈ Q, let the depth of q, denoted by dep(q), be the length of the shortest path
1−→q in Aϕ. Since Aϕ is accessible, dep(q) is well defined.

Fix s0 > 1 + (mR − 1)dϕ such that s0 ≥ ma + (mR − 1)|aiϕ| for all a ∈ A0 and
i ∈ {1, . . . ,ma − 1}, and let

s = mR + max{dep(p) | p ∈ Q and |p| < s0}.

It follows that
dep(p) > s−mR ⇒ |p| ≥ s0 > 1 + (mR − 1)dϕ (2)

holds for every p ∈ Q.
Lemma 3.3 If (p, a, q) ∈ E \ E′ and dep(p), dep(q) > s − mR, then there exists a path
q

a−1

−→p in A′ϕ.
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Proof. Clearly, we have a path q a−1

−−→p in Aϕ. We must show that all the edges in it are in
E′. First, we note that aq must be reducible by definition of E′, and so q = a−1u for some
u ∈ A∗ \ aA∗.

Assume first that a ∈ A1 ∪ A−1
1 . Suppose that (q, a−1, p) /∈ E′. Then a−1p is reducible

and so p = abv for some b ∈ A \ {a−1} and v ∈ A∗. We have |p| > 1 + (mR − 1)dϕ by (2),
hence a−1u = q = a−1p(aϕ) = bv(aϕ), yielding b = a−1 and contradicting p = abv. Thus
(q, a−1, p) ∈ E′ in this case.

Assume now that a ∈ A0. For i = 1, . . . ,ma − 1, we have an edge

ama−iu(ai−1ϕ) a−→ama−i−1u(aiϕ)

in Aϕ. Since |q| ≥ s0 > 1+(mR−1)dϕ by (2), we get |u| > s0−ma ≥ (mR−1)|ai−1ϕ|, (mR−
1)|aiϕ|. It follows that ama−iu(ai−1ϕ) a−→ama−i−1u(aiϕ) is an edge of Aϕ, indeed of A′ϕ, for
i = 1, . . . ,ma − 1. Thus there is a path q

a−1

−−→u(ama−1ϕ) in A′ϕ. Since Aϕ is deterministic,
it follows that u(ama−1ϕ) = p and the lemma is proved. �

Let Bϕ be the (finite) full subautomaton of Aϕ induced by the subset of vertices of depth
≤ s (that is, Bϕ contains all the edges of Aϕ connecting vertices of depth ≤ s).

Given q ∈ Q of depth > s −mR, by (1) and (2) there exists in A′ϕ a unique maximal
path αq : q−→ . . . where every vertex has depth > s−mR. Let Q0 (respectively Q1) denote
the set of all q ∈ Q with s −mR < dep(q) ≤ s such that the set of vertices occurring in
αq is finite (respectively infinite). Given p, q ∈ Q1 distinct, let p ∧ q denote the first vertex
in αp to appear in αq (if such a vertex exists, otherwise p ∧ q remains undefined). Then
p ∧ q = q ∧ p, otherwise we would have a cycle

p ∧ q ,, q ∧ pll

contradicting p ∈ Q1.
We define Cϕ to be the automaton obtained by adding to Bϕ all vertices and edges in

the following paths of A′ϕ:

(C1) αq for q ∈ Q0;

(C2) initial segments q−→p of αq for q ∈ Q1 and dep(p) ≤ s;

(C3) p−→p ∧ q for all p, q ∈ Q1 such that p ∧ q is defined.

Clearly, Cϕ is finite. Finally, C′ϕ is obtained by adding to Cϕ, for every edge (p, a, q) of Cϕ, all
the edges in the path q a−1

−→p in Aϕ. Note that C′ϕ is a finite subautomaton of Aϕ. Moreover,
if (p, a, q) is an edge of C′ϕ, there exists a path q

a−1

−→p in C′ϕ.
We prove now that

Fixϕ ⊆ L(C′ϕ). (3)

Recall that (Fixϕ)π−1 = L(Aϕ). Since Bϕ is a subautomaton of C′ϕ, it suffices to show
that every path p u−→q in Aϕ such that u ∈ A∗, dep(p) = s, dep(q) ≤ s and all intermediate
vertices have depth > s, is also a path in C′ϕ.

Let p u−→q be such a path. We can factor this path as

p = p0
u0−→r1

v1−→p1
u1−→ . . .

vn−→pn
un−→rn+1 = q,
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where the ri
vi−→pi group the edges in E \E′, and ui, vj 6= 1 for 1 ≤ i ≤ n−1 and 1 ≤ j ≤ n.

Note that, when (r, a, t) ∈ E, then dep(t) > dep(r)−mR: this is clear if a ∈ A1 ∪A−1
1 since

(t, a−1, r) ∈ E; on the other hand, if a ∈ A0, then there is a path t a−1

−→r of length < mR and
our claim holds too. It follows that dep(q) > s−mR and so we can apply Lemma 3.3 and
get paths

p = p0
u0−→r1

v−1
1←−p1

u1−→ . . .
v−1

n←−pn
un−→rn+1 = q

in A′ϕ. Assume first that n = 0. Then p
u−→q is an initial segment of some path αq in (C1)

or (C2), hence is a path in Cϕ and therefore in C′ϕ. Thus we assume that n > 0. Take
i ∈ {1, . . . , n}. We show that ui is a proper prefix of v−1

i .
Indeed, we have paths

ri
v−1

i←−pi
ui−→ri+1

in A′ϕ and all our vertices are too deep to have outdegree > 1. Hence one of this two paths
must be an initial segment of the other. Write vi = xa with a ∈ A. If a ∈ A1 ∪ A−1

1 ,
then ui = 1, otherwise ui ∈ a−1A∗, and aa−1 would be a factor of viui, contradicting the
irreducibility of u. Hence we may assume that a ∈ A0 and so v−1

i = ama−1x−1. Similarly
to the preceding case, ui ∈ ama−1A∗ would contradict the irreducibility of u, hence ui must
be a proper prefix of ama−1 and therefore of v−1

i .
Write v−1

i = uiwi. We have paths

p
u0−→r1

w1←−r2
w2←− . . . wn←−rn+1 = q

in A′ϕ. Let w = wnwn−1 . . . w1. We claim that p u0−→r1
w←−q are paths in C′ϕ.

This is immediate if p ∈ Q0 (which is equivalent to q ∈ Q0), hence we assume that
p, q ∈ Q1.

Suppose that p = q. Then u0 = w and so wv1u1 is a factor of u, hence irreducible. De-
compose in letters v1 = a1 . . . ak. Since u1w1 = v−1

1 = a−1
k . . . a−1

1 and w1v1u1 is irreducible,
it follows that k = 1, otherwise a−1

k is a prefix of u1 or a−1
1 is a suffix of w1. If a1 /∈ A0,

then u1w1 = a−1
1 produces immediately a contradiction. On the other hand, if a1 ∈ A0,

then u1w1 = ama−1 and so w1v1u1 = ama is reducible, another contradiction. Hence p 6= q.
Write u0 = u′0h, w = w′h, where h denotes the longest common suffix of the two words.

Then we have paths p
u′0−→p∧ q w′←−q in Cϕ. So we are done if h = 1. Assume then that h 6= 1

and write h = h′b with b ∈ A. Note that, since u1 is a proper prefix of v−1
1 , then w1 is a

nontrivial suffix of w. If b /∈ A0, then w1 ∈ A∗b and so v1 ∈ b−1A∗. Hence bb−1 would be
a factor of u0v1, contradicting the irreducibility of u. Hence b ∈ A0. Write h = h′′bi with
h′′ /∈ A∗b. Then w1 ∈ A∗b and so v1 ∈ bA∗. Suppose first that v1 = bv′c with c ∈ A. Then
u1w1 = v−1

1 = c−1v′−1bmb−1. If c−1 is a prefix of u1, then v1u1 would not be irreducible,
hence bmb−1 is a suffix of w1. Now, since u0v1 is irreducible and v1 starts by b, we have
i ≤ ma − 2 and so h = bi. Moreover, since bmb−1 is a suffix of w, the last edge of q w′−→p ∧ q
belongs to the b-labelled cycle of Aϕ containing p ∧ q h−→r1, and so the edges in this path
must belong to C′ϕ.

Assume now that v1 = b. Then u1w1 = bmb−1. Since u0v1u1 = u′0h
′′bibu1 is irreducible,

we have |w1| > i and so once again the last edge of q w′−→p∧ q belongs to the b-labelled cycle
of Aϕ containing p ∧ q h−→r1. Therefore the edges in this path must belong to C′ϕ.

Now, since p u0−→r1
w←−q are paths in C′ϕ, also r1

w−1

−→q is a path in C′ϕ. Hence v−1
i = uiwi

yields vi = w−1
i u−1

i and so w−1
i = viui = viui since viui is irreducible. Since w−1 =
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w−1
1 . . . w−1

n , it follows that there exists a path in C′ϕ of the form r1
z−→q for z = v1u1 . . . vnun.

Therefore p u−→q is a path in C′ϕ and (3) holds.
Now Fixϕ ⊆ L(C′ϕ) ⊆ L(Aϕ) = (Fixϕ)π−1 yields Fixϕ ⊆ L(C′ϕ) ⊆ Fixϕ and so

Fixϕ = L(C′ϕ). By Theorem 2.2, Fixϕ is rational and so Fixϕ is a rational subset of G.
By Proposition 2.1, Fixϕ is then a finitely generated subgroup of G. �

Corollary 3.4 Let ϕ be an endomorphism of a finitely generated free product of a free
monoid and cyclic groups. Then Fixϕ is rational.

Proof. Let M = A∗0∗G1, where G1 is the c-free group defined by the finite special confluent
rewriting system 〈A1 | R1〉. Let G be the c-free group defined by the finite special confluent
rewriting system 〈A | R〉, where A = A0 ∪ A−1

0 ∪ A1 and R = R1 ∪ {(aa−1, 1), (a−1a, 1) |
a ∈ A0}. Let u (respectively û) denote the irreducible form of u in the rewriting system of
M (respectively G).

Now ϕ extends to an endomorphism Φ of G through a−1
0 Φ = (a0ϕ)−1 (a0 ∈ A0). By

Theorem 3.2, Fix Φ is a finitely generated and therefore rational subgroup of G. Denoting
the canonical homomorphism A∗ → G by π, it follows that Fix Φ = Lπ for some rational
L ⊆ A∗. In view of Theorem 2.2, F̂ix Φ = L̂ is a rational subset of A∗. Since Fixϕ =
F̂ix Φ∩ (A0 ∪A1)∗, it follows that Fixϕ is a rational subset of (A0 ∪A1)∗ and so Fixϕ is a
rational subset of M . �

4 Computability

We start this section by considering the simple case of free monoid endomorphisms, whose
discussion is essential to the follow-up.

Let A be a finite alphabet and let ϕ ∈ EndA∗. Write m = |A| and define

A2 = {a ∈ A | aϕn = 1 for some n ≥ 1},

A3 = A \A2,

A4 = {a ∈ A3 | aϕ ∈ A∗2aA∗2}.

Let Γ be the directed graph with vertex set A and edges a−→b whenever b occurs in aϕ.
Then a ∈ A2 if and only if there exists no infinite path a−→· · · in Γ. This is equivalent to
say there is no path a−→· · · in Γ of length m, hence

A2 = {a ∈ A | aϕm = 1} (4)

and is therefore effectively computable, and so are A3 and A4.
Given B ⊆ A, we denote by θA,B the homomorphism A∗ → B∗ defined by

aθ =
{
a if a ∈ B
1 otherwise

Lemma 4.1 Let ϕ ∈ EndA∗ and m = |A|. Then Fixϕ = (A4ϕ
m)∗.
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Proof. Let a ∈ A4. Then aϕ = uav for some u, v ∈ A∗2. It follows from (4) that

aϕm+1 = (uav)ϕm = (uϕm)(aϕm)(vϕm) = aϕm,

hence A4ϕ
m ⊆ Fixϕ and so (A4ϕ

m)∗ ⊆ Fixϕ.
To prove the opposite inclusion, let θ = θA,A3 . Take u ∈ Fixϕ. Then uϕθ = uθ. Since

A2ϕ ⊆ A∗2, we get uθϕθ = uϕθ = uθ and so uθ ∈ Fix (ϕθ). Since 1 /∈ A3ϕθ, it follows easily
that uθ ∈ A∗4. Hence u ∈ (A2 ∪A4)∗ and so u = uϕm ∈ (A2 ∪A4)∗ϕm = A∗4ϕ

m = (A4ϕ
m)∗

as required. �

Note that, given an endomorphism ϕ of A∗ ∗G, where G is a group, the restriction ϕ|G
is an endomorphism of G. Clearly, G is the (unique) maximal subgroup of A∗ ∗G.
Theorem 4.2 Let M = A∗0 ∗ G be finitely generated, where G is a c-free group. Let ϕ ∈
EndM be such that the equation

x = v(xϕ|G)w (x ∈ G)

has an effectively constructible rational solution set for all v, w ∈ G. Then Fixϕ is an
effectively constructible rational submonoid of M .

Proof. Let G be defined by the finite special confluent rewriting system 〈A1 | R〉. Write
A = A0 ∪ A1 and θ = θA,A0 . For every u ∈ A∗ \ A∗1, let uξ denote the longest factor
of u in A0A

∗ ∩ A∗A0. Let A2, A3 and A4 be defined as in the beginning of the section,
replacing A by A0 and ϕ by ψ = ϕ|A∗0θ. Write m = |A0|. Let u = a1 . . . an ∈ A4ψ

m with
a1, . . . , an ∈ A0.
Lemma 4.3 There exist effectively constructible rational subsets L1, . . . , Ln−1 of G such
that the solution set of the equation

a1x1a2 . . . xn−1an = (a1x1a2 . . . xn−1an)ϕξ (xi ∈ G) (5)

is precisely L1 × . . .× Ln−1.

Proof. Let 1 ≤ i1 < . . . < ik ≤ n denote all i ∈ {1, . . . , n} such that aiψ 6= 1. Then there
exist 1 = j1 < . . . < jk+1 = n+ 1 such that

airψ = ajr . . . ajr+1−1

for every r ∈ {1, . . . , k}. Moreover, there exist words ps, ws, qs ∈ A∗1 such that

airϕ = pjr−1ajrwjrajr+1 . . . wjr+1−2ajr+1−1qjr+1−1

for r ∈ {1, . . . , k}. We claim that the equation (5) is equivalent to the system of n − 1
equations 

xjr−1 = qjr−1(xir−1air−1+1xir−1+1 . . . air−1xir−1)ϕpjr−1

for r ∈ {2, . . . , k}
xi = wi

whenever jr ≤ i < jr+1 − 1 for some r ∈ {1, . . . , k}
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Indeed, since a1 . . . an ∈ Fixψ, all we need is to find out necessary and sufficient condi-
tions that the xi must satisfy in the equation (5). Let i ∈ {1, . . . , n − 1}, and consider xi

in the left hand side of (5). Clearly, if jr ≤ i < jr+1 − 1 for some r ∈ {1, . . . , k}, then xi is
fully determined by ajrϕ through xi = wi.

Otherwise, i = jr − 1 for some r ∈ {2, . . . , k}. In this case, we need to compute which
part of the right hand side of (5) eventually determines xjr−1: the longest suffix of air−1ϕ
in A∗1, the longest prefix of airϕ in A∗1, and the image of the factor between air−1 and air .
This proves the claim.

Next we show that our system is equivalent to a system of equations of the form (xi =
yi)i=1,...,n−1, where

yi ∈ A∗1 ∪ A∗1(xiϕ)A∗1

for i = 1, . . . , n − 1. For that purpose, we define a directed graph Λ with vertex set
{1, . . . , n− 1} and edges

(jr − 1)−→i whenever ir−1 ≤ i < ir (r = 2, . . . , k).

Clearly, if j has outdegree 0, then xj = wj is an equation in the original system. It follows
easily that, if there is no infinite path j−→· · · in Λ, then xj is uniquely determined in the
solution set of (5) (if it is nonempty). Thus we need to discuss the structure of infinite
paths in Λ. Since Λ is finite, such an infinite path must always contain a cycle. We show
next that all cycles in Λ have length 1.

Suppose that

(jr1 − 1)−→(jr2 − 1)−→· · ·−→(jrs − 1) = (jr1 − 1)

is a cycle of length s− 1 in Λ. We claim that there exists a loop (jr1 − 1)−→(jr1 − 1) in Λ,
which is equivalent to

ir1−1 ≤ jr1 − 1 < ir1 . (6)

Suppose first that ir1−1 > jr1 − 1. It suffices to show that

irt−1 > jrt − 1 implies (rt < rt+1 and irt+1−1 > jrt+1 − 1) for t = 1, . . . , s− 1

to derive a contradiction from rs = r1. Indeed, assume that irt−1 > jrt − 1. Since (jrt −
1)−→(jrt+1 − 1) is an edge of Λ, we have irt−1 ≤ jrt+1 − 1 < irt and so irt−1 < jrt+1 ≤ irt .
Hence jrt ≤ irt−1 < jrt+1 and so rt < rt+1. It follows that irt+1−1 ≥ irt > jrt+1 − 1 and so
our implication holds, yielding the desired contradiction.

Suppose now that jr1 − 1 ≥ ir1 . Similarly to the preceding case, it suffices to show that

jrt − 1 ≥ irt implies (rt > rt+1 and jrt+1 − 1 ≥ irt+1) for t = 1, . . . , s− 1

to derive a contradiction from rs = r1. Indeed, assume that jrt − 1 ≥ irt . Since irt−1 ≤
jrt+1 − 1 < irt , we get jrt − 1 ≥ irt > jrt+1 − 1 and so rt > rt+1. It follows that jrt+1 − 1 ≥
irt−1 ≥ irt+1 , yielding the desired contradiction.

Thus (6) holds and so there exists a loop (jr1 −1)−→(jr1 −1) in Γ. It is immediate that
no vertex of Λ can have indegree > 1, hence jrs−1 − 1 = jr1 − 1 and so rs−1 = r1, yielding
s = 2. Therefore all cycles in Λ have length 1.
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In view of the indegree property, it follows that the unique infinite path j−→· · · in Λ,
if such paths exist, consists of infinitely many tours of the loop j−→j: you cannot enter a
loop unless you have always been there.

Now take an equation of the form

xjr−1 = qjr−1(xir−1air−1+1xir−1+1 . . . air−1xir−1)ϕpjr−1

for r ∈ {2, . . . , k} in our original system. If there is no loop jr − 1−→jr − 1 in Λ, then the
equations xi = wi will eventually determine a unique possible value for xjr−1 and we can
replace the above equation by some other of the form xjr−1 = wjr−1 for some wjr−1 ∈ A∗1.

Finally, assume that there is a loop jr−1−→jr−1 in Λ. Then xjr−1 ∈ {xir−1 , . . . , xir−1}
and all the other variables are bound to be eventually determined by the equations xi = wi.
Since

qjr−1, air−1+1ϕ, . . . , air−1ϕ, pjr−1 ∈ A∗1
are constants, we can replace our equation by another of the form xjr−1 = vjr−1(xjr−1ϕ)zjr−1

for some vjr−1, zjr−1 ∈ A∗1. Note also that this construction of the new system is an effective
procedure since it consists of successively replacing some xi by wi in the other equations.
Therefore we can now concentrate on the new system (xi = yi)i=1,...,n−1. Since each variable
occurs just in one equation, and no equation contains more than one single variable, the
solution set will come out as a direct product L1 × . . .× Ln−1, where Li is the solution set
of the equation containing xi. If this equation is of the form xi = wi, then Li = {wi} is
(trivially) an effectively constructible rational subset of G. If the equation is of the form
xi = vi(xiϕ)zi, then the claim follows from the Lemma’s hypothesis on ϕ|G. �

We remark that there exist p, q ∈ G such that

(a1x1a2 . . . xn−1an)ϕ = p((a1x1a2 . . . xn−1an)ϕξ)q

for every solution (x1, . . . , xn−1) ∈ L1 × . . . × Ln−1. Indeed, the prefix erased by ξ is
(a1x1 . . . ai1−1xi1−1)ϕvi1 and is uniquely determined since x1, x2, . . . , xi1−1 are uniquely de-
termined as well. A symmetric argument applies to suffixes.

Back to the proof of Theorem 4.2, take u ∈ A∗. Note that u ∈ Fixϕ implies uθ ∈ Fixψ,
hence we may restrict our attention to this latter condition. In view of Lemma 4.1, we
may write uθ = u1 . . . ut for some u1, . . . , ut ∈ A4ψ

m. If t = 0, then ϕ|G ∈ EndG implies
that u ∈ Fixϕ if and only if u ∈ Fixϕ|G, and we can use the theorem’s hypothesis with
v = w = 1. Therefore we only need to concentrate on the case t > 0.

Write
ui = ai1ai2 . . . aini (aij ∈ A0)

for i = 1, . . . , t. Then we may consider

u = y0a11x11a12x12 . . . a1n1y1a21x21 . . . a2n2y2 . . . yt−1at1xt1 . . . atntyt

with yi, xij ∈ G.
Now u1, . . . , ut ∈ Fixψ. Moreover, for every i ∈ {1, . . . , t}, by the remark following the

proof of Lemma 4.3, there exist pi, qi ∈ G such that

(ai1xi1ai2xi2 . . . aini)ϕ = pi((ai1xi1ai2xi2 . . . aini)ϕξ)qi
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for every solution of the equation ai1xi1ai2xi2 . . . aini = (ai1xi1ai2xi2 . . . aini)ϕξ. We call
pi (respectively qi) the volatile prefix (respectively suffix) of the equation associated to
ai1 . . . aini .

Using the conventions q0 = pt+1 = 1, it is straightforward to check that u ∈ Fixϕ if and
only 

ai1xi1ai2xi2 . . . aini = (ai1xi1ai2xi2 . . . aini)ϕξ
for i = 1, . . . , t

yi = qi(yiϕG)pi+1

for i = 0, . . . , t

Note that, in such a system, the solution sets of the blocks of equations ai1xi1ai2xi2 . . . aini =
(ai1xi1ai2xi2 . . . aini)ϕξ (i = 1, . . . , t) have effectively constructible rational solution sets in
view of Lemma 4.3. On the other hand, each equation yi = qi(yiϕG)pi+1 has also an
effectively constructible rational solution set by the theorem’s hypothesis, and there are
only finitely many choices for the pi, qi.

Assume that A4ψ
m = {f1, . . . , fs}. For i = 1, . . . , s, let L1 × · · · × Ln−1 denote the

solution set of the equation (5), where fiθ = a1a2 . . . an. We define Yi = a1L1a2 . . . Ln−1an.
Note that Yi is an effectively constructible rational subset of M .

For i, j = 1, . . . , s, we define the following subsets of G, where pi (respectively qi) is the
volatile prefix (respectively suffix) of the equation associated to fi:

• Zij is the solution set of the equation y = qi(yϕG)pj ;

• Zi,s+1 is the solution set of the equation y = qi(yϕG);

• Z0j is the solution set of the equation y = (yϕG)pj ;

• Z0,s+1 = FixϕG.

By the theorem’s hypothesis, all the Zij are effectively constructible rational subsets of G.
We build an A-automaton with rational edges A = (Q, f0, fs+1, E) as follows:

• Q = {f0, f1, . . . , fs, fs+1}.

• For i = 1, . . . , s and j = 1, . . . , s+ 1, (fi, YiZij , fj) ∈ E.

• For j = 1, . . . , s+ 1, (f0, Z0j , fj) ∈ E.

It is straightforward to check that Fixϕ = (L(A))π, hence Fixϕ is an effectively con-
structible rational submonoid of M . �

Corollary 4.4 Let M = A∗0 ∗ G be finitely generated, where G is a free group. Let ϕ ∈
EndM be such that ϕ|G is an automorphism. Then Fixϕ is an effectively constructible
rational submonoid of M .

Proof. In view of Theorem 4.2, it suffices to prove that the equation

x = v(xψ)w (x ∈ G)

has an effectively constructible rational solution set L for all v, w ∈ G and ψ ∈ AutG.

12



Fix v, w, ψ. Then x = v(xψ)w is equivalent to x−1v(xψ) = w−1 and so we can decide
whether or not this equation has a solution x0 by [4], and compute it in the affirmative
case. Now

x = v(xψ)w⇔ x−1v(xψ) = w−1 ⇔ x−1v(xψ) = x−1
0 v(x0ψ)⇔ x0x

−1 = v(x0x
−1)ψv−1

⇔ x0x
−1 = (x0x

−1)ψλv−1 ⇔ xx−1
0 = (xx−1

0 )ψλv−1 ,

where λv−1 denotes the inner automorphism of G defined by gλv−1 = vgv−1. Since ψλv−1 ∈
AutG, it follows from [14] that Fix (ψλv−1) is an effectively constructible finitely generated
subgroup of G, and so L = (Fix (ψλv−1))x0 is an effectively constructible rational subset of
G as required. �

The next example shows that Fixϕ is not necessarily a finitely generated submonoid of
M . Note that Fixϕ is finitely generated if M is a free monoid (by Lemma 4.1) or a free
group (by [10]).
Example 4.5 Let M = {a, c}∗ × FG{b} and let ϕ ∈ EndM be defined by aϕ = ab, bϕ = b
and cϕ = b−1c. Then ϕ|FG{b} is an automorphism but Fixϕ is not finitely generated.

Let G = FG{b}. It is a simple exercise to show that Fixϕ = (G ∪ aGc)∗ and that this
monoid is not finitely generated.
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[16] J. Sakarovitch, Eléments de Théorie des Automates, Vuibert, Paris, 2003.

[17] P. V. Silva, Rational subsets of partially reversible monoids Theoret. Comp. Sci. 409
(2008), 537–548.

[18] P. V. Silva, Fixed points of endomorphisms over special confluent rewriting systems,
Monatsh. Math. (to appear).

[19] M. Sykiotis, Fixed subgroups of endomorphisms of free products,
arXiv:math/0606159v1, 2006.

[20] E. Ventura, Fixed subgroups of free groups: a survey, Contemporary Math. 296 (2002),
231–255.

14


