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ABSTRACT

Cayley graphs of monoids defined through special confluent rewriting systems are
known to be hyperbolic metric spaces which admit a compact completion given by
irreducible finite and infinite words. In this paper, we prove that the fixed point
submonoids for endomorphisms of these monoids which are boundary injective (or
have bounded length decrease) are rational, with similar results holding for infinite
fixed points. Decidability of these properties is proved, and constructibility is proved
for the case of bounded length decrease. These results are applied to free products
of cyclic groups, providing a new generalization for the case of infinite fixed points.

1 Introduction

Gersten proved in the eighties that the fixed point subgroup of a free group automorphism
ϕ is finitely generated [11]. Using a different approach, Cooper gave an alternative proof,
proving also that the fixed points of the continuous extension of ϕ to the boundary of the
free group is in some sense finitely generated [9]. Bestvina and Handel achieved in 1992
a major breakthrough through their innovative train track techniques, bounding the rank
of the fixed point subgroup and the generating set for the infinite fixed points [4]. Their
approach was pursued by Maslakova in 2003 to prove that the fixed point subgroup can be
effectively computed [17].

Gersten’s result was generalized to further classes of groups and endomorphisms in sub-
sequent years. Goldstein and Turner extended it to monomorphisms of free groups [12], and
later to arbitrary endomorphisms [13]. Collins and Turner extended it to automorphisms of
free products of freely indecomposable groups [8], and recently Sykiotis to monomorphisms
[21]. The interested reader can find more information in Ventura’s excellent survey [22].

Infinite fixed points of automorphisms of free groups were also discussed by Bestvina
and Handel in [4]. Gaboriau, Jaeger, Levitt and Lustig remarked in [10] that some of the
results on infinite fixed points would hold for virtually free groups with some adaptations.
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Cassaigne and the author developped in [6] an approach to the study of monoids defined
by special confluent rewriting systems that preserves some of the features of the free group
case and contains free products of cyclic groups as a particular case, as well as the partially
reversible monoids introduced in [20]. In fact, the undirected Cayley graph of these monoids
is hyperbolic and has a compact completion for the prefix metric. Uniformly continuous
endomorphisms, algorithmically characterized in [6], admit a continuous extension to the
boundary. In [7], the same authors used this approach to study the dynamics of infinite
periodic points for two classes of endomorphisms of the monoids in question.

The present paper intends to pursue this same approach to prove finite generation prop-
erties for both finite and infinite fixed points. This is achieved through a combination of
automata theoretical, combinatorial and topological techniques. Two classes of endomor-
phisms are studied: boundary-injective endomorphisms and endomorphisms with bounded
length decrease. The first class provides new proofs for the already known results for
monomorphisms of free groups and more generally free products of cyclic groups. The
second class provides constructibility results that are reminiscent of those of Maslakova.
Moreover, both classes are recursive and algorithms to test the corresponding properties
are provided.

The paper is organized as follows. Section 2 is devoted to preliminaries and Section 3
presents the basic results that lie behind the full approach through the introduction of a
certain automata-theoretic property for endomorphisms: the finite-splitting property. This
theoretical property, which we ignore to be recursive or not, is explored in Sections 4 and 5
through two important subclasses: boundary-injective endomorphisms and endomorphisms
with bounded length decrease. In Section 6 we apply our results to the case of groups to
recover the known result on finite fixed points and obtain what we believe to be a new one
on the infinite fixed points. We end the paper by presenting some open problems in Section
7.

2 Preliminaries

Given a monoid M , we denote by RatM the set of all rational subsets of M , i.e., the
smallest family of subsets of M containing the finite sets and closed under union, product
and the star operator (X∗ denotes the submonoid of M generated by X ⊆ M). For details
on rational languages, the reader is referred to [2, 19].

In the particular case of a free monoid M = A∗, a combinatorial description is terms of
finite automata is usually preferred. We define a (finite) A-automaton to be a quadruple
A = (Q, q0, T, δ) where Q is a (finite) set, q0 ∈ Q is the initial vertex, T ⊆ Q are the
terminal vertices and E ⊆ Q×A×Q. The language recognized by A is

L(A) = {w ∈ A∗ | there exists a path q0
w−→t ∈ T in A}.

Such a path is called successful. Note that the empty word labels a (trivial) path q0
1−→q0.

The classical Kleene’s Theorem states that L ⊆ A∗ is rational if and only if L = L(A)
for some finite A-automaton A.

Let A = (Q, q0, T, E) be an A-automaton. We say that A is
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• deterministic if the implication

(p, a, q), (p, a, r) ∈ E ⇒ q = r

holds;

• trim if every vertex q ∈ Q lies in some successful path.

If L(A) 6= ∅, the trim subautomaton of A is defined by

tr(A) = (Q ∩ S, q0, T ∩ S, E ∩ (S ×A× S)),

where S consists of all vertices of A that lie in some successful path. Trivially, L(tr(A)) =
L(A).

Another case that will be relevant for us is the case of M being a group, when we have
the following result of Anisimov and Seifert:
Proposition 2.1 [19, Prop. II.6.2] Let H be a subgroup of a group G. Then H ∈ RatG if
and only if H is finitely generated.

A finite rewriting system is a formal expression 〈A | R〉, where A is a finite alphabet
and R a finite subset of A∗ × A∗. The elements of R are called rules. Given u, v ∈ A∗, we
write u−→Rv if

u = xry, v = xsy

for some x, y ∈ A∗ and (r, s) ∈ R. We denote by ∗−→ the reflexive and transitive closure of
the relation −→. The subscript R will be usually omitted. The congruence on A∗ generated
by R will be denoted by R]. Note that R] = ∗−→R∪R−1 . The quotient M = A∗/R] is said
to be the monoid defined by the rewriting system R.

A rewriting system 〈A | R〉 is said to be

• special if R ⊆ A+ × {1};

• confluent if, whenever u
∗−→v and u

∗−→w, there exists z ∈ A∗ such that v
∗−→z and

w
∗−→z:

u ∗ //

∗
��

v

∗
���
�
�

w ∗ //___ z

It is known (see [5, Section 2.2]) that every monoid defined by a finite special confluent
rewriting system can be defined by a finite normalized length-reducing confluent rewriting
system, i.e., satisfying the two conditions:

• for every (r, s) ∈ R, |r| > 1;

• if (r, s), (arb, s′) ∈ R, then ab = 1 and s′ = s.

Therefore, we are entitled to assume whenever convenient that our special confluent rewrit-
ing systems are normalized.

Let 〈A | R〉 be a special confluent rewriting system. We say that w ∈ A∗ is irreducible
(with respect to R) if w /∈ ∪(r,s)∈RA∗rA∗. For every u ∈ A∗, there is exactly one irreducible
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v ∈ A∗ such that u
∗−→v: existence follows from R being length-reducing, and uniqueness

from confluence. We denote this unique irreducible word by u. It is well known (see [5])
that the equivalence

uR]v ⇔ u = v

holds for all u, v ∈ A∗, hence A∗ = {u | u ∈ A∗} constitutes a set of normal forms for the
monoid M = A∗/R]. Moreover,

M ∼= (A∗, ·),

where · denotes the binary operation on A∗ defined by u · v = uv. We denote the monoid
(A∗, ·) by A∗

R. We shall often abuse notation and identify A∗
R with A∗. We write also

A+
R = A∗ \ {1}.

We denote by Aω the set of all infinite words of the form a1a2a3 . . ., with an ∈ A for
every n ∈ IN = {1, 2, 3, . . .}. For details on infinite words, see [18]. Write

A∞ = A∗ ∪Aω.

Given α ∈ A∞ and n ∈ IN, we denote by α(n) the n-th letter of α (if α ∈ A∗ and n > |α|,
we set α(n) = 1). We write also

α[n] = α(1)α(2) . . . α(n), α[k,n] = α(k)α(k+1) . . . α(n).

An infinite word α ∈ Aω is said to be irreducible (with respect to R) if α[n] is irreducible
for every n ∈ IN. We denote the set of all irreducible infinite words (with respect to R) by
Aω

R and we write
A∞

R = A∗
R ∪Aω

R.

For all α, β ∈ A∞, we define

r(α, β) =
{

min{n ∈ IN | α(n) 6= β(n)} if α 6= β
∞ if α = β

and we write
d(α, β) = 2−r(α,β),

using the convention 2−∞ = 0. It follows easily from the definition that d is an ultrametric
on A∞, satisfying in particular the axiom

d(α, β) ≤ max{d(α, γ), d(γ, β)}.

We shall identify A∞ with the metric space (A∞, d). It is well known that the metric space
A∞ is compact (and therefore complete) [18, Chapter III]. Note that limn→∞ αn = α if and
only if

∀k ∈ IN ∃m ∈ IN ∀n ∈ IN (n ≥ m ⇒ α[k]
n = α[k]).

The following result is straightforward:
Proposition 2.2 [6, Prop. 2.2 and Cor. 2.3] If 〈A | R〉 is a special confluent rewriting
system, then A∞

R is a closed subspace of (A∞, d), being therefore compact and complete.
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We remark that, since α = limn→∞ α[n] for every α ∈ A∞, (A∞, d) (respectively (A∞
R , d))

is the completion of (A∗, d) (respectively (A∗
R, d)).

Note also that d induces the discrete topology on A∗ since B2−(n+1)(u) = {u} for every
u ∈ An. In particular, the product of finite words is continuous when we consider the
product topology on A∗

R ×A∗
R.

It is important to remark that rational languages are preserved by reduction:
Theorem 2.3 [1] Let 〈A | R〉 be a finite special confluent rewriting system and let L ⊆ A∗

be rational. Then L is rational and effectively constructible from L.
It is easy to see that the amount of reduction a word can cause on another depends on

its length. We denote by tR the maximum length of a relator r for (r, 1) ∈ R.
Lemma 2.4 [6, Lemma 4.2] For all u, v ∈ A∗

R,

(i) There exist u′, u′′, v′, v′′ ∈ A∗
R such that:

u = u′u′′, v = v′v′′, uv = u′v′′,

|u′′v′| ≤ min{|u|, |v|} · tR, |u′′| ≤ (tR − 1)|v|.

(ii) |uv| ≥ max{|v| − (tR − 1)|u|, |u| − (tR − 1)|v|}.

This allows us to define the mixed product

A∗
R ×Aω

R →Aω
R

(u, α) 7→ uα

that turns out to be continuous when we consider the product topology on A∗
R × Aω

R (see
[6, Theorem 4.4]).

The next result determines which endomorphisms of A∗
R admit a continuous extension

to the completion A∞
R . Such an extension is said to be proper if (Aω

R)Φ ⊆ Aω
R. We note

that the equivalence between (i) and (ii) follows immediately from topological arguments.
Theorem 2.5 [6, Theor. 8.4] Let 〈A | R〉 be a finite special confluent rewriting system and
let ϕ be a nontrivial endomorphism of A∗

R. Then the following conditions are equivalent:

(i) ϕ can be extended to a continuous mapping Φ : A∞
R → A∞

R ;

(ii) ϕ is uniformly continuous;

(iii) wϕ−1 is finite for every w ∈ A∗
R.

Moreover, if these conditions hold the continuous mapping Φ is unique, proper and given by
αΦ = limn→∞ α[n]ϕ.

The following is a straightforward consequence:
Corollary 2.6 [6, Cor. 8.5] If A∗

R is a group with no finite nontrivial normal subgroups
and ϕ is an endomorphism of A∗

R, the following conditions are equivalent:

(i) ϕ is uniformly continuous;

(ii) ϕ is either trivial or injective.
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The decidability issue is less straightforward. However, the answer is positive:
Theorem 2.7 [6, Theor. 8.7] Given a finite special confluent rewriting system 〈A | R〉 and
an endomorphism ϕ of A∗

R, it is decidable whether or not ϕ is uniformly continuous.
Finally, let

Fixϕ = {u ∈ A∗
R | uϕ = u}.

Clearly, Fixϕ is always a submonoid of A∗
R (a subgroup if A∗

R is a group).

3 Finite-splitting endomorphisms

We start this section by proving the Bounded Reduction Property for special confluent
rewriting systems. This is a classical result for free group automorphisms [9].

Given an endomorphism ϕ of A∗
R, we define

hϕ = max{|aϕ|; a ∈ A}.

Proposition 3.1 Let 〈A | R〉 be a finite special confluent rewriting system and let ϕ be a
uniformly continuous endomorphism of A∗

R. Then there exists a constant Mϕ ∈ IN such
that, whenever

uv ∈ RA, uϕ = xy, vϕ = zt, yz = 1, (uv)ϕ = xt,

then |y|, |z| ≤ Mϕ.

Proof. Write u = a1 . . . an and v = b1 . . . bm with ai, bj ∈ A. We have xy = uϕ =
(a1ϕ) . . . (anϕ). If x 6= 1, then the last letter of x originated from some aiϕ. We define
then u′ = a1 . . . ai and u′′ = ai+1 . . . an. If x = 1, we take u′ = 1 and u′′ = u. Similarly,
zt = vϕ = (b1ϕ) . . . (bmϕ). If t 6= 1, then the first letter of t originated from some bjϕ. We
define then v′ = b1 . . . bj−1 and v′′ = bj . . . bm. If t = 1, we take v′ = v and v′′ = 1. Write
u′ϕ = xx′ and v′′ϕ = t′t. Then y = x′(u′′ϕ), z = (v′ϕ)t′ and so

x′(u′′v′)ϕ t′ = x′(u′′ϕ)(v′ϕ)t′ = yz = 1.

By Lemma 2.4, we get

0 = |x′(u′′v′)ϕ t′| ≥ |x′(u′′v′)ϕ| − (tR − 1)|t′| ≥ |(u′′v′)ϕ| − (tR − 1)|x′t′|,

hence
|(u′′v′)ϕ| ≤ (tR − 1)|x′t′| < 2(tR − 1)hϕ.

Since ϕ is uniformly continuous, it follows from Theorem 2.5 that there exist only finitely
words w ∈ A∗

R such that |wϕ| < 2(tR−1)hϕ. Thus |u′′v′| can be bounded by some M ∈ IN.
Since y = x′(u′′ϕ), we get |y| ≤ (M + 1)hϕ. Similarly, |z| ≤ (M + 1)hϕ and so the claim
holds for Mϕ = (M + 1)hϕ. �
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Given u, v ∈ A∗
R, we write u ≤ v if u is a prefix of v and denote by u ∧ v the longest

common prefix of u and v. We also write u ≤s v if u is a suffix of v.
Next we introduce notation used in [14] in the study of free group automorphisms. Given

u ∈ A∗
R, let σ(u) = u ∧ (uϕ) and write

u = σ(u) τ(u), uϕ = σ(u) ρ(u).

Define also
σ′(u) = ∧{σ(v); v ∈ A∗

R, u ≤ v}

and write σ(u) = σ′(u)σ′′(u).
Lemma 3.2 If ϕ ∈ A∗

R is uniformly continuous, then |σ′′(u)| ≤ Mϕ for every u ∈ A∗
R.

Proof. Suppose that |σ′′(u)| > Mϕ for some u ∈ A∗
R. Since the set of prefixes of u is well

ordered by ≤, there exists some v ∈ A∗
R such that u ≤ v and σ′(u) = σ(u)∧σ(v): otherwise,

if a would be the first letter of σ′′(u), then σ′(u)a would be a prefix of σ(v) for every v, a
contradiction. Write v = uw. Then vϕ = (uϕ)(wϕ) and by Proposition 3.1 we get

|(vϕ) ∧ (uϕ)| ≥ |uϕ| −Mϕ. (1)

Now let a be the first letter of σ′′(u). We have uϕ = σ′(u)σ′′(u)ρ(u) and |σ′′(u)| > Mϕ,
hence σ′(u)a ≤ vϕ by (1). On the other hand, σ′(u)a ≤ u ≤ v and so σ′(u)a ≤ σ(v).
Together with σ′(u)a ≤ σ(u), this contradicts σ′(u) = σ(u) ∧ σ(v). �

For every u ∈ A∗
R, σ′′(u)τ(u) is a suffix of u. We define a suffix λ(u) of σ′(u) as follows:

λ(u)σ′′(u)τ(u) is the shortest suffix of u (having σ′′(u)τ(u) as a suffix) satisfying

|λ(u)σ′′(u)τ(u)| ≥ tR − 1 or λ(u)σ′′(u)τ(u) = u.

We define also
C(u) = (λ(u), σ′′(u), τ(u), ρ(u)).

Lemma 3.3 Let u, v ∈ A∗
R be such that C(u) = C(v) and ua ∈ A∗

R. Then va ∈ A∗
R and

C(ua) = C(va).

Proof. If |λ(u)σ′′(u)τ(u)| < tR − 1, then v = λ(v)σ′′(v)τ(v) = λ(u)σ′′(u)τ(u) = u and the
lemma holds trivially. Hence we may assume that |λ(u)σ′′(u)τ(u)| ≥ tR − 1. Now u and v
share a common suffix of length tR − 1 and so ua ∈ A∗

R yields va ∈ A∗
R.

Moreover, if uw ∈ A∗
R, we have σ′(u) ≤ σ′(uw) and

uw = σ′(u)σ′′(u)τ(u)w, (uw)ϕ = σ′(u)σ′′(u)ρ(u)(wϕ).

Hence the configuration (σ′′(ua), τ(ua), ρ(ua)) will depend only on (σ′′(u), τ(u), ρ(u)). Thus
C(u) = C(v) yields (σ′′(ua), τ(ua), ρ(ua)) = (σ′′(va), τ(va), ρ(va)).

Finally, |λ(u)σ′′(u)τ(u)| ≥ tR − 1 implies |ua| ≥ tR and so λ(ua)σ′′(ua)τ(ua) is the
shortest suffix of ua such that |λ(ua)σ′′(ua)τ(ua)| ≥ tR − 1. Now σ′(u) ≤ σ′(ua) yields

σ′′(ua)τ(ua) ≤s σ′′(u)τ(u)a

and so
λ(ua)σ′′(ua)τ(ua) ≤s λ(u)σ′′(u)τ(u)a.
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Therefore λ(ua)σ′′(ua)τ(ua) is the shortest suffix of λ(u)σ′′(u)τ(u)a such that
|λ(ua)σ′′(ua)τ(ua)| ≥ tR − 1.

Since C(u) = C(v), we conclude that λ(ua)σ′′(ua)τ(ua) = λ(va)σ′′(va)τ(va). Since we
had already proved that σ′′(ua)τ(ua) = σ′′(va)τ(va), we get λ(ua) = λ(va) and therefore
C(ua) = C(va) as required. �

We build now a deterministic A-automaton A′
ϕ = (Q′, q0, T

′, E′) by taking

• Q′ = {C(u) | u ≤ α for some α ∈ FixΦ};

• q0 = C(1);

• T ′ = {C(u) ∈ Q′ | τ(u) = ρ(u) = 1};

• E′ = {(C(u), a, C(v)) ∈ Q′ ×A×Q′ | v = ua}.

In view of Lemma 3.3, E′ and therefore A′
ϕ are well defined.

Let S denote the set of all vertices q ∈ Q′ such that there exist at least two edges in A′
ϕ

leaving q. Let Q denote the set of all vertices q ∈ Q′ such that there exists some path

q0−→q−→p ∈ S ∪ T ′.

We define Aϕ = (Q, q0, T, E) by taking

T = T ′ ∩Q, E = E′ ∩ (Q×A×Q).

Lemma 3.4 Let p be a uniformly continuous endomorphism of A∗
R. Then Fixϕ = L(Aϕ).

Proof. Let u = a1 . . . an ∈ A∗
R with a1, . . . , an ∈ A. Assume first that u ∈ Fixϕ. Then

there exists a path

q0 = C(1) a1−→C(u[1]) a2−→C(u[2]) a3−→ . . .
an−→C(u) ∈ T ′ (2)

in A′
ϕ. Indeed, u ∈ Fixϕ yields τ(u) = ρ(u) = 1 and so C(u) ∈ T ′. The latter implies that

(2) is a path in Aϕ. Thus u ∈ L(Aϕ).
Conversely, assume that u ∈ L(Aϕ). Then we have a path of the form (2) in L(Aϕ) and

so in particular τ(u) = ρ(u) = 1. Therefore u ∈ Fixϕ. �

We say that ϕ is finite-splitting if S is finite.
Theorem 3.5 Let p be a finite-splitting uniformly continuous endomorphism of A∗

R. Then
Fixϕ ∈ RatA∗.

Proof. In view of Lemma 3.4, it suffices to prove that Q is finite. Call a path

p0
a1−→p1

a2−→ . . .
an−→pn

in Aϕ a bridge if p1, . . . , pn−1 /∈ S ∪ T . Clearly, if we fix p ∈ Q and p′ ∈ S ∪ T , there are
only finitely many bridges p−→p′: we might have a choice for the first edge (if p ∈ S), but
the rest of the path would be fully determined (if there exists a path at all).
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We claim now that every q ∈ Q must occur in a bridge p−→p′ for p ∈ {q0} ∪ S ∪ T and
p′ ∈ S ∪ T . Indeed, any path q0

u−→t ∈ T may be factored as

q0
u1−→q1

u2−→ . . .
un−→qn = t,

where q1, . . . , qn−1 denote the unique intermediate ocurrences of vertices in S ∪ T . Thus, if
q occurs in the path q0

u−→t ∈ T , it must occur in some bridge qi−1
ui−→qi, which happens to

be of the required form. Since there are only finitely many such bridges by the first part of
the proof, Q is finite and so Fixϕ ∈ RatA∗. �

We note that Fixϕ being a rational submonoid of A∗ does not imply that Fixϕ is a
finitely generated submonoid of A∗, as the next example shows:
Example 3.6 Let A = {a, b, b−1, c}, R = {(bb−1, 1)} and ϕ : A∗

R → A∗
R be the endomor-

phism defined by
a 7→ ab, b 7→ b, c 7→ b−1c.

Then Fixϕ ∈ RatA∗ but it is not finitely generated.

Proof. Let u ∈ A∗
R. Then we may write

u = b−i0bj0x1b
−i1bj1 . . . xnb−inbjn

for some unique n ≥ 0, ir, jr ∈ IN and xr ∈ {a, c}. Hence

uϕ = b−i0bj0(x1ϕ)b−i1bj1 . . . (xnϕ)b−inbjn .

Clearly, for k, l ∈ {0, 1} and i, j ∈ IN, we have bkb−ibjb−l = b−ibj if and only if k = l = 0 or

k = l = 1, ij = 0.

It follows easily that uϕ = u if and only if u ∈ ({b, b−1} ∪ ab∗c ∪ a(b−1)∗c)∗. Hence
Fixϕ ∈ RatA∗ but it is not finitely generated since no element in ab∗c ∪ a(b−1)∗c)∗ can be
nontrivially decomposed as a product of other fixed points. �

We start now the discussion of infinite fixed points, beginning with a few useful lemmas.
Lemma 3.7 Let p be a uniformly continuous endomorphism of A∗

R and let Φ be its continu-
ous extension to A∞

R . For every α ∈ Aω
R, we have α ∈ FixΦ if and only if limn→+∞ |σ(α[n])| =

+∞.

Proof. Assume that α ∈ FixΦ and let k ∈ IN. Since α = αΦ = limn→+∞ α[n]ϕ by
continuity, there exists some m ∈ IN such that

n ≥ m ⇒ r(α[n]ϕ, α) > k.

We can assume that m ≥ k, yielding r(α[n]ϕ, α[n]) > k and thus |σ(α[n])| ≥ k for every
n ≥ m. Therefore limn→+∞ |σ(α[n])| = +∞.

Conversely, assume that limn→+∞ |σ(α[n])| = +∞. Suppose that αΦ 6= α. Then
r(αΦ, α) = k for some k ∈ IN. Since limn→+∞ |σ(α[n])| = +∞, there exists some m ∈ IN
such that

n ≥ m ⇒ |σ(α[n])| > k
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and so
n ≥ m ⇒ r(α[n]ϕ, α) > k.

By continuity of Φ, we get r(αΦ, α) > k, a contradiction. Therefore αΦ = α as required.
�

Lemma 3.8 Let u, v ∈ A∗
R be such that C(u) = C(v) and let α ∈ A∞

R . Then uα ∈ FixΦ if
and only if vα ∈ FixΦ.

Proof. The case α ∈ A∗
R follows from Lemma 3.3, hence we may assume that α ∈ Aω

R.
Assume that uα ∈ FixΦ. By Lemma 3.7, we get limn→+∞ |σ(uα[n])| = +∞. Since C(u) =
C(v), it follows easily that limn→+∞ |σ(vα[n])| = +∞ as well, and so vα ∈ FixΦ as required.
�

Lemma 3.9 Let p be a uniformly continuous endomorphism of A∗
R. Then there exist con-

stants K1,K2 > 0 such that

|σ(u)| ≥ |u|
K1

−K2

for every C(u) ∈ Q′.

Proof. Since ϕ is uniformly continuous, it follows from Theorem 2.5 that there exists some
K1 > 0 such that

|u| ≥ K1 ⇒ |uϕ| > 2Mϕ

holds for every u ∈ A∗
R. Let C(u) ∈ Q′. We may write u = u1 . . . us+1 with |u1| = . . . |us| =

K1 and |us+1| < K1. Now |uiϕ| ≥ 2Mϕ + 1 for i = 1, . . . , s and Proposition 3.1 yields

|uϕ| = |(u1ϕ) . . . (us+1ϕ)| ≥ (2Mϕ + 1)s− 2Mϕs = s ≥ |u|
K1

− 1. (3)

We claim that
|σ(u)| ≥ |u|

K1
−Mϕ − 1. (4)

Suppose not. Then (3) yields |ρ(u)| > Mϕ. On the other hand, |u| > |u|
K1

−Mϕ − 1 yields
τ(u) 6= 1. This contradicts C(u) ∈ Q′ and so (4) holds. �

Given a finite automaton A = (Q, q0, T, E), we denote by Lω(A) the set of words α ∈ Aω
R

such that there is an infinite path q0
α−→ . . . in A. We write L∞(A) = L(A) ∪ Lω(A).

Theorem 3.10 Let p be a finite-splitting uniformly continuous endomorphism of A∗
R and

let Φ be its continuous extension to A∞
R . Then there exist L1, . . . , Ls ∈ RatA∗ and α1, . . . , αs ∈

Aω
R such that

FixΦ = L∞(Aϕ) ∪ L1α1 ∪ . . . ∪ Lsαs. (5)

Proof. By Lemma 3.4, we have L(Aϕ) ⊆ FixΦ. Next let α ∈ Lω(Aϕ). Since the vertex set
Q is finite, we can bound |τ(u)| and |ρ(u)| for C(u) ∈ Q by some N ∈ IN. In particular,
we have |τ(α[n])|, |ρ(α[n])| ≤ N for every n ∈ IN and so |σ(α[n])| ≥ n−N for every n ∈ IN.
Hence, for every k ∈ IN,

n ≥ k + N ⇒ |σ(α[n])| ≥ k
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and so limn→+∞ |σ(α[n])| = +∞. Thus α ∈ FixΦ by Lemma 3.7 and so Lω(Aϕ) ⊆ FixΦ.
Now we remark that in Q′ \ Q there are only finitely many vertices C(v) such that

(C(u), a, C(v)) ∈ E′ for some a ∈ A and some C(u) ∈ Q. Let P be the subset of all such
vertices C(v). Write P = {p1, . . . , ps}. For j = 1, . . . , s, let Lj denote the set of all reduced
words ua such that there exists a path q0

u−→q in Aϕ and (q, a, pj) ∈ E′. Clearly, Lj is a
rational language. We claim that there exists an infinite path pj

αj−→ . . . in A′
ϕ. Indeed, we

have pj = C(v) for some v ≤ α ∈ FixΦ. If α ∈ A∗
R, then vw ∈ Fixϕ = L(Aϕ) for some

w ∈ A∗
R and so pj = C(v) ∈ Q, a contradiction. Hence α ∈ Aω

R and so we can fix an infinite
path pj

αj−→ . . . in A′
ϕ for αj = α[|v|+1]α[|v|+2] . . .. We show that zαj ∈ FixΦ for every z ∈ Lj .

Indeed, by Lemma 3.7 we only need to show that limn→+∞ |σ(zα
[n]
j )| = +∞. Let k ∈ IN.

Taking the constants K1,K2 > 0 from Lemma 3.9, choose m ≥ k such that |z|+m
K1

−K2 ≥ k.
We show that

n ≥ m ⇒ |σ(zα
[n]
j )| ≥ k. (6)

In fact, n ≥ m yields

|σ(zα
[n]
j )| ≥

|zα
[n]
j |

K1
−K2 ≥

|z|+ m

K1
−K2 ≥ k

by Lemma 3.9. Hence (6) holds and so limn→+∞ |σ(zα
[n]
j )| = +∞ as required.

Therefore
L∞(Aϕ) ∪ L1α1 ∪ . . . ∪ Lsαs ⊆ FixΦ.

It remains to prove the opposite inclusion. Let β ∈ FixΦ. By Lemma 3.4, we may assume
that β ∈ Aω

R.
Clearly, there exists an infinite path C(1)

β−→ . . . in A′
ϕ. If all vertices in this path lie

in Q, then β ∈ Lω(Aϕ). Hence we may assume that C(β[m]) is the first vertex in Q′ \ Q.
Now C(β[m−1]) ∈ Q by minimality of m and so C(β[m]) ∈ P , say C(β[m]) = pj . It follows
that β[m] ∈ Lj . Since C(β[m]) /∈ Q, no vertex in the infinite path pj

αj−→ . . . may belong to
S. Hence pj

αj−→ . . . is the unique infinite path leaving pj . Thus αj = β(m+1)β(m+2) . . . and
so β = β[m]αj ∈ Ljαj . Therefore (5) holds. �

4 Boundary-injective endomorphisms

Given a uniformly continuous endomorphism ϕ of A∗
R, let Φ : A∞

R → A∞
R denote its (unique)

continuous extension. We say that ϕ is boundary-injective if Φ is injective. Note that if
ϕ is injective, then Φ is proper by Theorem 2.5. Hence Φ is injective if both ϕ and the
restriction Φ|Aω

R
are injective.

The next example shows that an injective endomorphism is not always boundary-
injective:
Example 4.1 Let A = {a, b, c, d} and ϕ : A∗ → A∗ be the endomorphism defined by

a 7→ ab, b 7→ a, c 7→ cb, d 7→ bc.

Then ϕ is injective but not boundary-injective.
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Proof. Since {ab, a, cb, bc} is a suffix code (no word is a suffix of another), then {ab, a, cb, bc}∗
is free on {ab, a, cb, bc} [3] and so ϕ is injective. However, the continuous extension Φ fails
to be injective since

(acω)Φ = a(bc)ω = (bdω)Φ.

�

Given w ∈ A∗ and n ∈ IN, we denote by Suffn(w) the suffix of length n of w if |w| > n,
or w otherwise.

We produce next an alternative characterization of boundary-injectivity avoiding infinite
words:
Lemma 4.2 Let ϕ be a uniformly continuous endomorphism of A∗

R. Then the following
conditions are equivalent:

(i) ϕ is boundary-injective;

(ii) there exists some pϕ ∈ IN such that, whenever uv, uw ∈ A∗
R,

r((uv)ϕ, (uw)ϕ) > pϕ + |uϕ| ⇒ r(v, w) > 1.

Proof. Clearly, condition (ii) fails if and only if

∀p ∈ IN ∃upvp, upwp ∈ A∗
R (r((upvp)ϕ, (upwp)ϕ) > p + |upϕ| ∧ r(vp, wp) = 1). (7)

We show that we can bound |up|. Indeed, let z = SuffMϕ(upϕ) and let u′p be the shortest
suffix of up such that z ≤s u′pϕ. We claim that we can replace up by u′p in (7). Indeed, we
may assume that |upϕ| ≥ Mϕ, otherwise |up| can be bounded by uniform continuity of ϕ.
If uϕ = xz and u′pϕ = yz, it follows from Proposition 3.1 that x and y remain untouched
in the reduction of both (upϕ)(vpϕ) and (u′pϕ)(vpϕ). Hence

r((upvp)ϕ, (upwp)ϕ) > p + |upϕ| ⇔ r(z(vpϕ), z(wpϕ)) > p + Mϕ

⇔ r((u′pvp)ϕ, (u′pwp)ϕ) > p + |u′pϕ|

and we may indeed replace up by u′p in (7). Proceeding letter by letter in up from right to
left, it is easy to see that |u′pϕ| < Mϕ +hϕ. Since ϕ is uniformly continuous, it follows from
Theorem 2.5 that |up| can be bounded. Since we can refine the sequence (up, vp, wp) at our
convenience, a simple application of the pigeonhole principle allows us to assume that up is
constant. Therefore (7) is equivalent to

∃u ∈ A∗
R ∀p ∈ IN ∃uvp, uwp ∈ A∗

R (r((uvp)ϕ, (uwp)ϕ) > p + |uϕ| ∧ r(vp, wp) = 1)

and therefore to

∃u ∈ A∗
R ∀p ∈ IN ∃uvp, uwp ∈ A∗

R (r((uvp)ϕ, (uwp)ϕ) > p ∧ r(vp, wp) = 1). (8)

We complete our proof by showing that (8) holds if and only if Φ is not injective.
Assume that (8) holds. Since A∞

R is compact, we can refine the sequence to make (vp)p

converge to some α ∈ A∞
R , and further refinement can make (wp)p converge to some β ∈ A∞

R .
Clearly, r(α, β) = 1 and so uα 6= uβ.
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Since the mixed product is continuous and so is Φ, we have

(uα)Φ = lim
p→+∞

(uvp)ϕ, (uβ)Φ = lim
p→+∞

(uwp)ϕ.

Now r((uvp)ϕ, (uwp)ϕ) > p implies that the sequences (uvp)ϕ and (uwp)ϕ share the same
limit, hence (uα)Φ = (uβ)Φ. Thus Φ is not injective.

Conversely, assume that Φ is not injective. Then there exist u ∈ A∗
R and distinct

α, β ∈ A∞
R such that uα, uβ are reduced, r(α, β) = 1 and (uα)Φ = (uβ)Φ. Let γ = (uα)Φ.

For each p ∈ IN, since γ = (u limn→+∞ α[n])Φ = limn→+∞(uα[n])ϕ by continuity, we can
choose vp to be a prefix of α such that γ[p] ≤ (uvp)ϕ, with vp = α if α ∈ A∗

R. Similarly, let
wp be a prefix of β such that γ[p] ≤ (uwp)ϕ, with wp = β if β ∈ A∗

R. Clearly, uvp and uwp

are reduced.
Since Φ is proper by Theorem 2.5, α ∈ A∗

R if and only if γ ∈ A∗
R if and only if β ∈ A∗

R.
In that case, we get (uvp)ϕ = (uwp)ϕ. So in any case we get r((uvp)ϕ, (uwp)ϕ) > p. On
the other hand, r(α, β) = 1 yields r(vp, wp) = 1. Therefore (8) holds as required. �

The following lemmas will be helpful:
Lemma 4.3 Let p be a uniformly continuous endomorphism of A∗

R.

(i) If uv ∈ RA, τ(u) 6= 1 and |ρ(u)| > Mϕ, then σ(uv) = σ(u).

(ii) If C(u) ∈ Q′, then τ(u) = 1 or |ρ(u)| ≤ Mϕ.

Proof. (i) Let a and b denote the first letter of τ(u) and ρ(u), respectively. By definition
of σ(u), we have a 6= b. Now Proposition 3.1 yields

uv = σ(u)τ(u)v ∈ σ(u)aA∗
R, (uv)ϕ = σ(u)ρ(u)(vϕ) = σ(u)ρ(u)(vϕ) ∈ σ(u)bA∗

R

and so σ(uv) = σ(u).
(ii) Suppose that τ(u) 6= 1 and |ρ(u)| > Mϕ. Since C(u) ∈ Q′, Lemma 3.8 implies

u ≤ α for some α ∈ FixΦ. Suppose first that α = uv ∈ A∗
R. Then there is a path

C(u) v−→C(α) ∈ T ′ in A′
ϕ. It follows from part (i) that σ(uv) = σ(u) < uv, contradicting

C(α) ∈ T .
Hence we may assume that α ∈ Aω

R. By part (i), we get limn→+∞ σ(α[n]) = σ(u),
contradicting Lemma 3.7. Therefore the lemma is proved. �

Lemma 4.4 Let p be a uniformly continuous endomorphism of A∗
R. If C(u) ∈ Q′, τ(u) = 1

and |ρ(u)| > 2Mϕ, then there is at most one edge out of C(u) in A′
ϕ. If a is its label, then

τ(ua) = 1.

Proof. Write ρ(u) = axy with a ∈ A and |x| = Mϕ. Suppose that there is an edge
leaving C(u) in A′

ϕ with label b 6= a. Then C(ub) ∈ Q and (ub)ϕ = σ(u)ρ(u)(bϕ) =
uρ(u)(bϕ). Since |ρ(u)| > 2Mϕ, it follows from Proposition 3.1 that uax ≤ (ub)ϕ. Thus
σ(ub) = u, τ(ub) = b and ax ≤ ρ(ub) yields |ρ(ub)| > Mϕ, contradicting C(u) ∈ Q. Hence
C(u) a−→C(ua) is the only edge that can possibly leave C(u). Since uax ≤ (ua)ϕ, we get
τ(ua) = 1 as well. �
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We can now prove:
Theorem 4.5 Let p be a boundary-injective endomorphism of A∗

R. Then ϕ is uniformly
continuous and finite-splitting.

Proof. Since ϕ is injective, it is uniformly continuous by Theorem 2.5. We prove next that

(U) If C(u) ∈ Q′ and |τ(u)| > pϕ +Mϕ, then there is at most one edge out of C(u) in A′
ϕ.

Suppose there is more than one edge leaving C(u). Then there exist distinct a, b ∈ A
labelling edges out of C(u). By Lemma 3.8, we have uaα, ubβ ∈ FixΦ for some α, β ∈ A∞

R .
Since r(aα, bβ) = 1, it follows easily through continuity from the definition of pϕ that
r((uaα)Φ, (ubβ)Φ) ≤ pϕ + |uϕ|. Thus r((uaα)Φ, u) ≤ pϕ + |uϕ| or r((ubβ)Φ, u) ≤ pϕ + |uϕ|.
Without loss of generality, we may assume that r((uaα)Φ, u) ≤ pϕ + |uϕ|.

Since C(u) ∈ Q′ and |τ(u)| 6= 1, it follows from Lemma 4.3(ii) that |ρ(u)| ≤ Mϕ.
Thus |τ(u)| > pϕ + Mϕ yields |τ(u)| > pϕ + |ρ(u)| and thus |u| > pϕ + |uϕ|. Together
with r((uaα)Φ, u) ≤ pϕ + |uϕ|, this implies r((uaα)Φ, uaα) ≤ pϕ + |uϕ|, contradicting
uaα ∈ FixΦ. Therefore there is exactly one edge out of C(u). Therefore (U) holds.

Let C(u) ∈ S. By Lemma 4.3(ii), we have τ(u) = 1 or |ρ(u)| ≤ 2Mϕ. By (U), we get
|τ(u)| ≤ pϕ + Mϕ. Finally, by Lemma 4.4, it follows that τ(u) = 1 implies |ρ(u)| ≤ 2Mϕ.
Therefore we must have

|τ(u)| ≤ pϕ + Mϕ, |ρ(u)| ≤ 2Mϕ

in any case. By Lemma 3.2, |σ′′(u)| is bounded and it follows from the definition that |λ(u)|
is bounded as well. Hence S is finite and so ϕ is finite-splitting. �

Now we get from Theorems 3.5, 3.10 and 4.5:
Corollary 4.6 Let p be a boundary-injective endomorphism of A∗

R. Then Fixϕ ∈ RatA∗.
Corollary 4.7 Let p be a boundary-injective endomorphism of A∗

R and let Φ be its con-
tinuous extension to A∞

R . Then there exist L1, . . . , Ls ∈ RatA∗ and α1, . . . , αs ∈ Aω
R such

that
FixΦ = L∞(Aϕ) ∪ L1α1 ∪ . . . ∪ Lsαs.

Properties such as injectivity or boundary-injectivity turn out to be decidable for uni-
formly continuous endomorphisms as we prove next.
Theorem 4.8 Let ϕ be a uniformly continuous endomorphism of A∗

R. Then it is decidable
whether or not

(i) ϕ is injective;

(ii) ϕ is boundary-injective.

Proof. (i) Since ϕ is uniformly continuous, it follows from Theorem 2.5 that there exists
r ∈ IN such that

∀w ∈ A∗
R (|w| ≥ r ⇒ |wϕ| > 2Mϕ). (9)

Moreover, it follows from the proof of [6, Theor. 8.4] that r can be effectively computed.
Suppose that ϕ is not injective. Among all distinct u, v ∈ A∗

R such that uϕ = vϕ, let |u| be
minimal, and let |v| be minimal for such u. We show that |u| and |v| can be bounded.
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We prove first that
r(u, v) ≤ r. (10)

Indeed, suppose that r(u, v) > r. Then we may write u = awu′, v = awv′ with a ∈ A and
|w| ≥ r. Since u 6= v, we have wu′ 6= wv′. Write wϕ = z1z2z3 with |z1| = |z3| = Mϕ. It
follows from Proposition 3.1 that

uϕ = (aϕ)z1z2z3(u′ϕ) = (aϕ)z1z2z3(u′ϕ).

Similarly, vϕ = (aϕ)z1z2z3(v′ϕ). Hence uϕ = vϕ yields

(wu′)ϕ = z1z2z3(u′ϕ) = z1z2z3(v′ϕ) = (wv′)ϕ,

contradicting the minimality of |u|. Thus (10) holds.
Assume that |u| = m and |v| = n. For all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, let

u′i = SufftR−1(u[i]), v′j = SufftR−1(v[j]).

Let
P = {(i, j) ∈ {r, . . . , m} × {r, . . . , n} : 0 ≤ |u[i]ϕ| − |v[j]ϕ| ≤ hϕ}.

For every (i, j) ∈ P , we define µ(i, j) ∈ A∗
R ×A∗

R as follows: if d = |u[i]ϕ| − |v[j]ϕ|, let

µ(i, j) = (SuffMϕ+d(u[i]ϕ),SuffMϕ(v[j]ϕ)).

We show that, for all (i, j), (k, l) ∈ P ,

(u′i, v
′
j , µ(i, j)) = (u′k, v

′
l, µ(k, l)) ⇒ (i, j) = (k, l). (11)

Assume that (u′i, v
′
j , µ(i, j)) = (u′k, v

′
l, µ(k, l)). By symmetry, it suffices to show that the

following two cases are impossible:

• Case I: i = k and j < l;

• Case II: i < k.

Case I: Let w = v[j]v[l+1,n]. Since v′lv
[l+1,n] is irreducible and v′j = v′l, we have w ∈ A∗

R. It
follows from (10) that r(u, v) ≤ r and so j ≥ r yields r(u, w) = r(u, v) ≤ r. Thus u 6= w.
We show that wϕ = uϕ. Indeed, µ(i, j) = µ(i, l) implies |u[i]ϕ|−|v[l]ϕ| = |u[i]ϕ|−|v[j]ϕ| = d
and so |v[j]ϕ| = |v[l]ϕ|. By Proposition 3.1, v[j] < v[l] implies that v[j]ϕ and v[l]ϕ can only
differ in its suffix of length Mϕ. Hence SuffMϕ(v[j]ϕ) = SuffMϕ(v[l]ϕ) yields v[j]ϕ = v[l]ϕ,
contradicting the minimality of |u|.
Case II: Let w = u[i]u[k+1,m] and z = v[j]v[l+1,n]. Similarly to Case I, we have w, z ∈ A∗

R. It
follows from (10) that r(u, v) ≤ r and so i, j ≥ r yields r(w, z) = r(u, v) ≤ r. Thus w 6= z.
We show that wϕ = zϕ. Indeed, µ(i, j) = µ(k, l) implies |u[k]ϕ|−|v[l]ϕ| = |u[i]ϕ|−|v[j]ϕ| = d.
Moreover, we may write

u[i]ϕ = xix, u[k]ϕ = xkx, v[j]ϕ = yjy, v[l]ϕ = yly

with |x| = Mϕ + d and |y| = Mϕ (since j, l ≥ r and in view of (9)). Now Proposition 3.1
yields

uϕ = (u[k]ϕ)(u[k+1,m]ϕ) = xkx(u[k+1,m]ϕ) = xkx(u[k+1,m]ϕ),
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vϕ = (v[l]ϕ)(v[l+1,n]ϕ) = yly(v[l+1,n]ϕ) = yly(v[l+1,n]ϕ).

Since |xkx| = |yly|+ d, we get |xk| = |yl|, hence xk = yl and

x(u[k+1,m]ϕ) = y(v[l+1,n]ϕ).

Similarly, we have xi = yj and so

wϕ = (u[i]ϕ)(u[k+1,m]ϕ) = xix(u[k+1,m]ϕ) = xix(u[k+1,m]ϕ)
= yjy(v[l+1,n]ϕ) = yjy(v[l+1,n]ϕ) = (v[j]ϕ)(v[l+1,n]ϕ) = zϕ,

contradicting the minimality of |u|. Therefore (10) holds.
Clearly, we can bound the number of possibilities for (u′i, v

′
j , µ(i, j)), hence we can bound

|P | by (11). Next we show that

|uϕ| < (|P |+ r + 1)hϕ. (12)

Indeed, assume that q is the integer quotient of the division of |uϕ| by hϕ. For s = 1, . . . , q,
let is be the least integer i ∈ {1, . . . ,m} such that |u[i]ϕ| ≥ shϕ; let js be the least integer
j ∈ {1, . . . , n} such that 0 ≤ |u[i]ϕ| − |v[j]ϕ| ≤ hϕ. It is easy to see that is and js are well
defined and

is, js ≥ r ⇒ (is, js) ∈ P.

Moreover, i1 < . . . < iq. Now ishϕ ≥ |u[is]ϕ| ≥ shϕ and so s ≥ r implies is ≥ r. Similarly,
jshϕ ≥ |v[js]ϕ| ≥ (s − 1)hϕ and so s ≥ r + 1 implies js ≥ r. Hence (is, js) ∈ P whenever
s ≥ r + 1 and so

|P | ≥ q − r >
|uϕ|
hϕ

− 1− r

and so (12) holds.
Thus we can bound |uϕ|, and since ϕ is uniformly continuous, we can bound |u| and

|v| as well. Therefore we can effectively compute some N ∈ IN such that ϕ is not injective
if and only if uϕ = vϕ holds for some distinct u, v ∈ A∗

R of length ≤ N . This is certainly
decidable.

(ii) We may assume that ϕ is injective. Since Φ is proper by Theorem 2.5, we must
decide whether or not αΦ = βΦ for some distinct α, β ∈ Aω

R.
Clearly, we can determine an upper bound K for the number of distinct values that

(u′i, v
′
j , µ(i, j)) can take for arbitrary words u and v. Since ϕ is uniformly continuous, there

exists some r′ ∈ IN and N ′ > r such that

|w| > r′ ⇒ |wϕ| > 3Mϕ (13)

|w| ≥ N ′ ⇒ |wϕ| ≥ (Kr(r′ + r + 2) + r + 1)hϕ + Mϕ (14)

hold for every w ∈ A∗
R. Moreover, it follows from the proof of [6, Theor. 8.4] that r′ and

N ′ can be effectively computed. We show that ϕ is not boundary-injective if and only if
there exist u, v ∈ A∗

R satisfying

r(u, v) ≤ r, |u|, |v| = N ′, r(uϕ, vϕ) ≥ |vϕ| −Mϕ. (15)
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Assume first that ϕ is not boundary-injective. Since ϕ is injective, then αΦ = βΦ for
some distinct α, β ∈ Aω

R. Similarly to the proof of (10), we may assume that r(α, β) ≤ r.
Let u = α[N ′] and v = β[N ′]. Since r(α, β) ≤ r and N ′ > r, we have r(u, v) = r(α, β) ≤ r.
Since αΦ = βΦ, it follows from Proposition 3.1 and continuity that

r(uϕ, αΦ) ≥ |uϕ| −Mϕ, r(vϕ, βΦ) ≥ |vϕ| −Mϕ.

Thus
r(uϕ, vϕ) ≥ min{|uϕ|, |vϕ|} −Mϕ.

Exchanging the roles of u and v if necessary, we obtain r(uϕ, vϕ) ≥ |vϕ| −Mϕ. Therefore
(15) holds.

Conversely, assume that there exist u, v ∈ A∗
R satisfying (15). We consider P as in the

proof of part (i). The proof of (12) can be easily adapted to show that

r(uϕ, vϕ) < (|P |+ 1 + r)hϕ,

hence (14) and (15) yield

(|P |+ r + 1)hϕ + Mϕ > |vϕ| ≥ (Kr(r′ + r + 2) + r + 1)hϕ + Mϕ

and so |P | ≥ Kr(r′ + r + 2). Thus there exist r(r′ + r + 2) distinct elements (i, j) ∈ P such
that (u′i, v

′
j , µ(i, j)) remains constant.

Assume that (i, j) 6= (k, l) and (u′i, v
′
j , µ(i, j)) = (u′k, v

′
l, µ(k, l)). We claim that

i 6= k and j 6= l. (16)

It suffices to exclude the case i = k and j < l, the others being analogous. Suppose that i = k
and j < l. Since µ(i, j) = µ(i, l), we have |v[j]ϕ| = |v[l]ϕ|. Write v[j]ϕ = xjyj and v[l]ϕ = xlyl

with |yj | = |yl| = Mϕ. Then |xj | = |xl| and v[j] < v[l] implies xj = xl by Proposition 3.1.
On the other hand, µ(i, j) = µ(i, l) also yields yj = yl and so v[j]ϕ = xjyj = xlyl = v[l]ϕ.
Since ϕ is injective, we get v[j] = v[l] and so j = l, a contradiction.

Hence (16) holds and we may assume that i < k. We show that

j ≤ l + r′. (17)

Indeed, suppose that j > l + r′. Since µ(i, j) = µ(k, l), we have

|v[l]ϕ| − |v[j]ϕ| = |u[k]ϕ| − |u[i]ϕ|.

By Proposition 3.1, we have
|u[k]ϕ| ≥ |u[i]ϕ| −Mϕ,

|v[j]ϕ| ≥ |v[l]ϕ|+ |v[l+1,j]ϕ| − 2Mϕ.

Hence
|v[l+1,j]ϕ| ≤ |v[j]ϕ| − |v[l]ϕ|+ 2Mϕ = |u[i]ϕ| − |u[k]ϕ|+ 2Mϕ ≤ 3Mϕ

and so |v[l+1,j]| ≤ r′ by (13). Thus j − l ≤ r′ and (17) holds.

17



Let t = r(r′ + r + 2) and let (i1, j1), . . . , (it, jt) ∈ P be distinct and satisfy

(u′i1 , v
′
j1 , µ(i1, j1)) = . . . = (u′it , v

′
jt

, µ(it, jt)).

By (16), we may assume i1 < . . . < it. Since jr, j2r, . . . , jr(r′+r+2) are all distinct by (16),
there exist 1 ≤ q1 < . . . < qr′+2 ≤ r′ + r + 2 such that jqe ≤ |v| − r for e = 1, . . . , r′ + 2.
Suppose that

jrq1 > jrq2 > . . . > jrqr′+2
.

Then jrq1 > jrqr′+2
+ r′, contradicting (17). Hence jrqe < jrqf

for some 1 ≤ e < f ≤ r′ + 2.
Hence there exist some (i, j), (k, l) ∈ P such that

(u′i, v
′
j , µ(i, j)) = (u′k, v

′
l, µ(k, l)), i + r ≤ k, j < l ≤ |v| − r.

Let
α = u[i](u[i+1,k])ω, β = v[j](v[j+1,l])ω.

Since i, j ≥ r, we have r(α, β) = r(u, v) ≤ r and so α 6= β. Moreover, since u′iu
[i+1,k] is

irreducible and u′i = u′k, we have u[i](u[i+1,k])2 ∈ A∗
R. A straightforward induction shows

that the tR−2 letters preceding each u[k] in u[i](u[i+1,k−1]u[k])ω are the same, hence α ∈ Aω
R.

Similarly, β ∈ Aω
R.

Since k − i ≥ r, we have |u[i+1,k]ϕ| > 2Mϕ by (9) and so |u[k]ϕ| > |u[i]ϕ| by
Proposition 3.1. Write v[j]ϕ = xy with |y| = Mϕ. Then x remains untouched in the
reduction (v[j]ϕ)(v[j+1,l]ϕ). Since µ(i, j) = µ(k, l) and |u[i]ϕ| < |u[k]ϕ|, it follows that
v[l]ϕ = xzy for some z ∈ A∗

R. Write u[i]ϕ = x′w with |x′| = |x|. Since µ(i, j) = µ(k, l),
we may write u[k]ϕ = x′′w with |x′′| = |xz|. Now xz ≤ vϕ and x′, x′′ ≤ uϕ by Proposition
3.1. We claim that |v[l]ϕ| < |vϕ|. Indeed, we have v = v[l]w with |w| ≥ r. By (9), we get
|wϕ| > 2Mϕ and so Proposition 3.1 yields

|vϕ| ≥ |v[l]ϕ|+ |wϕ| − 2Mϕ > |v[l]ϕ|.

Since r(uϕ, vϕ) ≥ |vϕ| − Mϕ > |v[l]ϕ| − Mϕ, it follows that xz ≤ uϕ and so x′ = x,
x′′ = xz. Thus

u[i]ϕ = xw, u[k]ϕ = xzw, v[j]ϕ = xy, v[l]ϕ = xzy.

Let g = u[i+1,k]ϕ and h = v[j+1,l]ϕ. It follows easily that wg = zw and yh = zy since x
remains untouched in the reduction of both xwg and xyh. Hence

α′Φ = lim
n→+∞

xwgn = lim
n→+∞

xznw.

Since Φ is proper by Theorem 2.5, z has not finite order and so

α′Φ = lim
n→+∞

xzn.

Similarly, β′Φ = limn→+∞ xzn and so Φ is not injective.
Therefore (15) holds and decidability follows. �
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5 Bounded length decrease

It should be clear that boundary-injectivity is not a necessary condition for a uniformly
continuous endomorphism to produce a rational fixed point set: it suffices to take some
non-injective nonerasing endomorphism of a free monoid. We introduce now a class of
endomorphisms that covers in particular such cases.

We say that an endomorphism ϕ of A∗
R has bounded length decrease if

∃dϕ ∈ IN ∀u ∈ A∗
R |u| − |uϕ| ≤ dϕ.

We note that dϕ can be arbitrarily large, as the next example shows.
Example 5.1 Let n ≥ 2, A = {a, b}, R = {(an, 1)} and ϕ : A∗

R → A∗
R be the endomorphism

defined by
a 7→ an−1, b 7→ bn.

Then ϕ has bounded length decrease and dϕ = n− 2.

Proof. It is immediate that ϕ has bounded length decrease. Since an−1ϕ = a, it follows
easily that dϕ = n− 2. �

We have:
Theorem 5.2 Let p be an endomorphism of A∗

R with bounded length decrease. Then ϕ is
uniformly continuous and finite-splitting.

Proof. It follows from Theorem 2.5 that ϕ is uniformly continuous. We adapt the proof of
Theorem 4.5 and prove that S is finite also in this case. We replace (U) by

∀u ∈ A∗
R (|ρ(u)| ≤ Mϕ ⇒ |τ(u)| ≤ dϕ + Mϕ). (18)

This follows immediately from |u| − |uϕ| = |τ(u)| − |ρ(u)|.
Let C(u) ∈ S. By Lemma 4.3(ii), we have τ(u) = 1 or |ρ(u)| ≤ 2Mϕ. By (18), we get

|τ(u)| ≤ dϕ + Mϕ. Finally, by Lemma 4.4, it follows that τ(u) = 1 implies |ρ(u)| ≤ 2Mϕ.
Therefore we must have

|τ(u)| ≤ dϕ + Mϕ, |ρ(u)| ≤ 2Mϕ

in any case and so ϕ is finite-splitting as in the proof of Theorem 4.5. �

Now we get from Theorems 3.5, 3.10 and 5.2:
Corollary 5.3 Let p be an endomorphism of A∗

R having bounded length decrease. Then
Fixϕ ∈ RatA∗.
Corollary 5.4 Let p be an endomorphism of A∗

R having bounded length decrease and let Φ
be its continuous extension to A∞

R . Then there exist L1, . . . , Ls ∈ RatA∗ and α1, . . . , αs ∈ Aω
R

such that
FixΦ = L∞(Aϕ) ∪ L1α1 ∪ . . . ∪ Lsαs. (19)

We can prove that both Fixϕ and the decomposition in Corollary 5.4 can be made
effectively constructible. Given α ∈ Aω

R, we say that α is effectively constructible if α(n)

can be computed for every n ≥ 1.
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Theorem 5.5 Let p be an endomorphism of A∗
R having bounded length decrease. Then we

can effectively construct finite A-automata A,A1,As and α1, . . . , αs ∈ Aω
R such that

FixΦ = L∞(A) ∪ L(A1)α1 ∪ . . . ∪ L(As)αs.

In particular, Fixϕ = L(A).

Proof. Let A′′ = (Q′′, q0, T
′′, E′′) be the deterministic A-automaton defined by

• Q′′ = {C(u) | u ∈ A∗
R, τ(u) = 1} ∪ {C(u) | u ∈ A∗

R, |ρ(u)| ≤ Mϕ};

• q0 = C(1);

• T ′′ = {C(u) ∈ Q′′ | τ(u) = ρ(u) = 1};

• E′′ = {(C(u), a, C(v)) ∈ Q′′ ×A×Q′′ | v = ua}.

In view of Lemma 3.3, E′′ and therefore A′′ are well defined. By Lemma 4.3(ii), Q′ ⊆ Q′′

and so A′
ϕ is a subautomaton of A′′. In fact, it follows from Lemma 3.4 that A′

ϕ is a
subautomaton of acc(A′′), the accessible part of A′′ (consisting of all those vertices and
edges that are accessible from the initial vertex). It is straightforward to check that we can
replace A′

ϕ by A′′ in the constructions and proofs of Section 3 and the present one, with one
simple adaptation: in the proof of Theorem 3.10, we cannot assume anymore the existence
of an infinite path out of every vertex of P , so we only keep in P those vertices having that
property. We remark that we did not define A′

ϕ this way because this adaptation does not
hold for boundary-injective endomorphisms. While (18) remains valid and able to fulfill its
role, (U) does not hold anymore.

Now, to simplify notation, we keep the notation Aϕ, P , and so on, but assumed to be
built upon A′′. We show that Aϕ is effectively constructible.

Since the proof of Lemma 4.4 still holds when we replace Q′ by Q′′, we have

∀C(u) ∈ S |ρ(u)| ≤ 2Mϕ. (20)

We can also prove that

|ρ(u)| > dϕ + 4Mϕ ⇒ |ρ(uv)| > 2Mϕ (21)

holds for every C(uv) ∈ Q′′.
Indeed, we have τ(u) = 1 and so (uv)ϕ = uρ(u)(vϕ) = uρ(u)(vϕ). Now Proposition 3.1

yields
|ρ(u)(vϕ)| ≥ |ρ(u)|+ |vϕ| − 2Mϕ > dϕ + 2Mϕ + |v| − dϕ = |v|+ 2Mϕ

and so |(uv)ϕ| − |uv| > 2Mϕ. Thus (21) holds.
In view of (18), (20) and (21), it follows that to compute S we only have to care about

finitely many C(u): those satisfying

|τ(u)| ≤ dϕ + Mϕ, |ρ(u)| ≤ dϕ + 4Mϕ.

Hence S can be effectively determined. Once again, it follows from (18), (20) and (21) that
Q and therefore Aϕ can be effectively constructed.

20



Clearly, we can determine all C(v) ∈ Q′′ \ Q which admit an edge C(u) a−→C(v) for
some C(u) ∈ Q and a ∈ A. If we can determine whether such a C(v) belongs to P , i.e.,
whether it admits an infinite path C(v) α−→ . . . in A′′, then we can construct both finite
automata recognizing the languages Lj and the infinite words αj (we can compute prefixes
of arbitrary length since there is a unique (infinite) path leaving each vertex of P ).

Consider then such a C(v), a potential member of P . Since C(v) /∈ Q, there is a unique
path leaving C(v): we cannot reach any vertex in S. In view of Lemma 4.3(ii) and (18), any
vertex C(w) accessible from C(v) in A′′ must satisfy |τ(u)| ≤ dϕ + Mϕ. Thus, if we extend
our path sufficiently, we will end up either coming to a dead end (and then C(v) /∈ P ), or
entering a loop (in which case C(v) ∈ P and the corresponding infinite word α is eventually
periodic) or reaching a vertex C(w) with |ρ(w)| > dϕ + 4Mϕ. Note that in that case
τ(w) = 1 by Lemma 4.3(ii) and the combination of (21) and Lemma 4.4 make sure that the
path can always be extended. Thus C(v) ∈ P in that case and the proof is completed. �

We consider now the problem of deciding bounded length decrease. We say that u ∈ A∗
R

is cyclically reduced if uω ∈ Aω
R.

Lemma 5.6 Let ϕ be a uniformly continuous endomorphism of A∗
R. The following condi-

tions are equivalent:

(i) ϕ has bounded length decrease;

(ii) ∀u ∈ A∗
R (uω ∈ Aω

R ⇒ |uϕ| ≥ |u|).

Proof. (i) ⇒ (ii). Suppose that u is cyclically reduced and |u| − |uϕ| = k > 0. Then
|un| − |unϕ| ≥ nk for every n > 0 and so ϕ has not bounded length decrease.

(ii) ⇒ (i). Suppose that ϕ has not bounded length decrease. Let

K = |{u ∈ A∗
R : |u| ≤ tR − 1}|, N = (K + 1)|A|+ 4KMϕ. (22)

Then |u| − |uϕ| > N for some u ∈ A∗
R, which we may assume to have minimum length n.

For i = 0, . . . , n, let
si = SufftR(u[i]), S = {si | i = 0, . . . , n}.

We define a sequence of integers

1 ≤ i1 < j1 < i2 < j2 < . . . < ik < jk ≤ n

satisfying
sil = sjl

, (23)

∀m > jl sm 6= sjl
(24)

for every l ∈ {1, . . . , k} as follows. Let r ≥ 1 and assume that il, jl satisfying (23) and (24)
are defined for l = 1, . . . , r − 1. Taking j0 = 0 for our convenience, let

X = {i > jr−1 | ∃j > i : si = sj}.

If X = ∅, then k = r − 1 and the sequence is completed. Otherwise, let ir = minX and

jr = max{j > i | si = sj}.
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It is immediate that (23) and (24) hold for l = r, hence the sequence is well defined.
Moreover, it follows from (24) that k ≤ |S| and so the sequence is finite. Taking ik+1 = n,
we define

vl = u[jl+1,il+1], wm = u[im+1,jm]

for l = 0, . . . , k and m = 1, . . . , k. Clearly, u = v0w1v1 . . . wkvk. By minimality of the il, we
have |vl| ≤ |A| for every l. By Proposition 3.1, we get

|uϕ| ≥ |v0ϕ|+ . . . + |vkϕ|+ |w1ϕ|+ . . . + |wkϕ| − 4KMϕ

and so

N < |u| − |uϕ| ≤ (K + 1)|A|+ |w1|+ . . . + |wk| − |w1ϕ| − . . .− |wkϕ|+ 4KMϕ

≤ (|S|+ 1)|A|+ 4KMϕ + (|w1| − |w1ϕ|) + . . . (|wk| − |wkϕ|).

Hence |wm| > |wmϕ| for some m ∈ {1, . . . , k}. We claim that wm is cyclically reduced.
Let s = sjm . Since sjm = sim , we have |s| = tR. Moreover, swm = zs for some z ∈ A∗

R

and so by [15, Proposition 1.3.4] there exist x, y ∈ A∗
R and d, e, f ∈ IN such that

s = (xy)dx, wm = (yx)e, z = (xy)f .

Hence (xy)d+ex = swm ∈ A∗
R. Since wω

m = (yx)ω, this yields wω
m ∈ Aω

R: indeed, |s| = tR
implies that any factor of (yx)ω of length ≤ tR must be a factor of (xy)d+ex.

Therefore (ii) fails as required. �

Theorem 5.7 Let ϕ be a uniformly continuous endomorphism of A∗
R. Then it is decidable

whether or not ϕ has bounded length decrease.

Proof. By Lemma 5.6, we only need to decide whether or not

∃u ∈ A∗
R (uω ∈ Aω

R ∧ |uϕ| < |u|). (25)

holds. We do so by bounding the minimum length required for such a word u.
Assume then that u ∈ A∗

R satisfies (25) and has minimum length n. For i = 0, . . . , n,
write

θi = (SufftR−1(u[i]),SuffMϕ(u[i]ϕ)).

Let K be an upper bound for the number of possible values of the θi. We prove that

θi = θj ⇒ |u[j]ϕ| − |u[i]ϕ| < j − i (26)

holds for 0 ≤ i < j ≤ n.
Indeed, suppose that θi = θj and |u[j]ϕ| − |u[i]ϕ| ≥ j − i for some 0 ≤ i < j ≤ n. Let

v = u[i]u[j+1,n]. Since SufftR−1(u[i]) = SufftR−1(u[j]), we have i ≥ tR − 1 and v ∈ A∗
R. We

claim that v is cyclically reduced. Since |v| ≥ tR − 1, it is enough to show that vu[i] ∈ A∗
R,

which follows from uω ∈ Aω
R and SufftR−1(u[i]) = SufftR−1(u[j]). Thus v is cyclically reduced.

Hence |vϕ| ≥ |v| by minimality of |u|. Let s = SuffMϕ(u[i]ϕ). Then we may write

u[i]ϕ = xs, u[j]ϕ = ys, u[j+1,n]ϕ = z
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for some x, y, z ∈ A∗
R. If |s| = Mϕ, it follows from Proposition 3.1 that

uϕ = ysz, vϕ = xsz.

If |s| < Mϕ, then x = y = 1 and the same equalities hold. Thus

|u| − |uϕ| ≤ |u| − |uϕ| − (j − i)− |u[i]ϕ|+ |u[j]ϕ|
= |u| − (j − i)− |x|+ |y| − |uϕ|
= |v| − |vϕ| ≤ 0,

a contradiction. Therefore (26) holds.
Let N be as in (22), and let v be an arbitrary prefix of u. Write u = vw and suppose

that |w| − |wϕ| > N . Taking z ∈ A∗
R minimal for the property |z| − |zϕ| > N , it follows

from the proof of Lemma 5.6 that there exists some cyclically reduced word x such that
|xϕ| < |x| < |z|. Since |z| ≤ |w| ≤ |u|, this contradicts the minimality of |u|. Hence
|w| − |wϕ| ≤ N . Since |uϕ| ≥ |vϕ|+ |wϕ| − 2Mϕ by Proposition 3.1, we get

|vϕ| − |v| ≤ |uϕ| − |wϕ|+ 2Mϕ − |u|+ |w| < N + 2Mϕ. (27)

Suppose now that |u| > (2N + 2Mϕ + 1)K. Let r = 2N + 2Mϕ + 1. Then there exist
0 ≤ i1 < i2 < . . . < ir < n such that θi1 = . . . = θir . By (27), we have |u[i1]ϕ| − i1 <
N + 2Mϕ. By (26), we get

|u[ir]ϕ| − ir < . . . < |u[i2]ϕ| − i2 < |u[i1]ϕ| − i1.

Hence |u[ir]ϕ|− ir < N +2Mϕ− (r−1) = −N and so |u[ir]|− |u[ir]ϕ| > N . Once again, this
implies the existence of some cyclically reduced word x such that |xϕ| < |x| < ir < n = |u|,
contradicting the minimality of |u|. Thus |u| ≤ (2N+2Mϕ+1)K and (25) becomes decidable
as required. �

6 The group case

We start by identifying those groups which can be defined through our type of rewriting
system:
Proposition 6.1 A group G can be defined by a finite special confluent rewriting system if
and only if G is a free product of finitely many cyclic groups.

Proof. If G is isomorphic to the free product of a free group FGA and cyclic groups
Cn1 , . . . , Cnk

, then it follows from basic facts on presentations of free products [16, Section
IV.1] that G can be defined through the rewriting system

〈A ∪A−1, b1, . . . , bk | aa−1 → 1, a−1a → 1, bni
i → 1 (a ∈ A, i = 1, . . . , k)〉.

It is immediate that this rewriting system has the required properties.
Conversely, assume that G is a group defined by a finite special confluent rewriting

system 〈A | R〉. We assume R to be normalized.
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Let r → 1 be a rule in R, and write r = as with a ∈ A. Since G is a group, a must be
left invertible and so we must have some rule ta → 1 in R. Hence tas reduces to both t and
s. Since R is normalized, both s and t are irreducible and so s = t by confluency. Iterating
this procedure, we conclude that

(uv → 1) ∈ R ⇒ (vu → 1) ∈ R (28)

holds for all u, v ∈ A∗
R. We say that vu → 1 is a cyclic conjugate of uv → 1.

Next we prove that
(au → 1), (av → 1) ∈ R ⇒ u = v (29)

holds for all a ∈ A and u, v ∈ A∗
R. Indeed, we have (ua → 1) ∈ R by (28) and so uav

reduces to both u and v. Since R is normalized, both u and v are irreducible and so u = v
by confluency. Thus (29) holds.

It follows that each a ∈ A appears in at most one rule and all its cyclic conjugates.
Moreover, a rule aua . . . → 1 must be of the form (au)n → 1. On the other hand, since G is
a group, each a ∈ A must appear in at least in one rule. Partitioning A with repect to the
content of the rules, it follows that G must be a free product of groups H defined through
rewriting systems of the form

〈a1, . . . , ak | (a1 . . . ak)n → 1, (a2 . . . aka1)n → 1, (aka1 . . . ak−1)n → 1〉.

It is routine to check that H can be defined through the group presentation

Gp〈a1, . . . , ak | (a1 . . . ak)n = 1〉.

Replacing a1, . . . , ak by the alternative generating set a1, . . . , ak−1, b = a1 . . . ak, it follows
that H can be presented by

Gp〈a1, . . . , ak−1, b | bn = 1〉

and so H is a free product of a free group by the cyclic group Cn. �

We can apply Theorem 3.5 to the particular case of groups. For the particular case of
free groups, this was first proved by Goldstein and Turner [12]. The present case is covered
by the work of Sykiotis:
Theorem 6.2 [21] Let G be a free product of finitely many cyclic groups and let ϕ be a
monomorphism of G. Then Fixϕ is finitely generated.

Proof. We may assume that G is infinite. By Proposition 6.1, G can be defined by a finite
special confluent rewriting system 〈A | R〉. By Corollary 2.6, ϕ is uniformly continuous.
Moreover, ϕ is boundary-injective:

Indeed, suppose that ϕ is not boundary-injective. Then there exist α, β ∈ Aω
R such that

αΦ = βΦ and r(α, β) = r < ∞. Let

P = {(i, j) ∈ IN× IN : 0 ≤ |α[i]ϕ| − |β[j]ϕ| < hϕ}

and define µ(i, j) for every (i, j) ∈ P as in the proof of Theorem 4.8. Since αΦ is an infinite
word, P is infinite and we can take (i, j) ∈ P with

|{(k, l) ∈ P | µ(k, l) = µ(i, j)}| = ∞.
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Moreover, we may assume that |α[i]ϕ|, |β[j]ϕ| ≥ Mϕ. Let g, h ∈ A∗
R be such that α[i]g =

β[j]h = 1. Now take (k, l) ∈ P such that

µ(k, l) = µ(i, j), k ≥ r + (tR − 1)|g|, l ≥ r + (tR − 1)|h|. (30)

In view of Proposition 3.1, we may write

α[i]ϕ = xw, α[k]ϕ = xzw, β[j]ϕ = xy, β[l]ϕ = xzy

for some x, y, z, w ∈ A∗
R with |y| = Mϕ. Let u = α[k]g and v = β[l]h. By (30) and Lemma

2.4, we have r(u, v) = r(α, β) = r and u 6= v. Let x′ ∈ A∗
R be such that x′x = 1. Then

uϕ = (α[k]ϕ)(gϕ) = xzx′xw(gϕ) = xzx′(α[i]g)ϕ = xzx′

= xzx′(β[j]h)ϕ = xzx′xy(hϕ) = (β[l]ϕ)(hϕ) = vϕ

and ϕ would not be injective, a contradiction. Thus ϕ is boundary-injective and so Fixϕ is
a rational subset of the group G by Theorem 3.5. Since a subgroup of a group is rational if
and only if it finitely generated by Proposition 2.1, Fixϕ is finitely generated. �

We consider now infinite fixed points in the group case. We denote by (Fixϕ)c the
topological closure of Fixϕ in the completion. As far as we know, this result is new in its
full generality, the automorphism case following from results and remarks in [10].
Theorem 6.3 Let G be a free product of finitely many cyclic groups and let ϕ be a monomor-
phism of G. Let Φ be its continuous extension to the completion of G. Then there exist
infinite fixed points β1, . . . , βs such that

FixΦ = (Fixϕ)c ∪ (Fixϕ)β1 ∪ . . . ∪ (Fixϕ)βs.

Proof. We may assume that G is infinite. By Proposition 6.1, G can be defined by a finite
special confluent rewriting system 〈A | R〉. As observed in the proof of Theorem 6.2, ϕ is
uniformly continuous and boundary-injective. By Theorem 3.10, there exist L1, . . . , Ls ∈
RatA∗ and α1, . . . , αs ∈ Aω

R such that

FixΦ = L∞(Cϕ) ∪ L1α1 ∪ . . . ∪ Lsαs.

Take βi ∈ Liαi for i = 1, . . . , s. Clearly, (Fixϕ)βi ⊆ FixΦ for every i. By continuity, we
have (Fixϕ)c ⊆ FixΦ as well. Thus

(Fixϕ)c ∪ (Fixϕ)β1 ∪ . . . ∪ (Fixϕ)βs ⊆ FixΦ.

Conversely, let α ∈ FixΦ. We may assume that α ∈ Aω
R. Suppose first that α ∈ Lω(Cϕ).

Then some vertex q of Cϕ is visited infinitely often in the path q0
α−→ . . . and we may factor

this path as
q0

u1−→q
u2−→q

u3−→ . . .

Let v = u1 and w ∈ A∗
R be such that vw = 1. We show that

vuiw ∈ Fixϕ for every i > 1 (31)
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and
α = lim

n→+∞
vu2wvu3w . . . vunw. (32)

Indeed, it follows from the definition of Cϕ that τ(vui) = τ(v) and ρ(vui) = ρ(v). Let
z ∈ A∗

R be such that zσ(v) = 1. Then we have

(vuiw)ϕ = σ(vui)ρ(vui)(wϕ) = σ(vui)zσ(v)ρ(v)(wϕ) = σ(vui)z(vw)ϕ = σ(vui)z
= σ(vui)zvw = σ(vui)zσ(v)τ(v)w = σ(vui)τ(v)w = σ(vui)τ(vui)w
= vuiw.

Thus (31) holds.
Now, since G is a group, vw = 1 implies wv = 1 and so

vu2wvu3w . . . vunw = u1u2 . . . unw.

Since u1 . . . un < α is reduced and limn→+∞ |u1u2 . . . un| = +∞, we get

lim
n→+∞

vu2wvu3w . . . vunw = lim
n→+∞

u1u2 . . . unw = lim
n→+∞

u1u2 . . . un = α

and so (32) holds. Now α ∈ (Fixϕ)c by (31) and (32).
Thus we may assume that α ∈ Liαi for some i ∈ {1, . . . , s}. By the proof of Theorem

3.10, we may assume that Li = L(Q1, q0, pi, E1) for some pi ∈ P1.
Write α = uαi and βi = vαi with u, v ∈ Li. Let w ∈ A∗

R be such that vw = 1. Then
wv = 1 and so

α = uwvαi = uwβi.

Thus it suffices to prove that uw ∈ Fixϕ. Indeed, it follows from the definition of Bϕ that
τ(u) = τ(v) and ρ(u) = ρ(v). Let z ∈ A∗

R be such that zσ(v) = 1. Then we have

(uw)ϕ = σ(u)ρ(u)(wϕ) = σ(u)zσ(v)ρ(v)(wϕ) = σ(u)z(vw)ϕ = σ(u)z
= σ(u)zvw = σ(u)zσ(v)τ(v)w = σ(u)τ(v)w = σ(u)τ(u)w
= uw.

This completes the proof of the theorem. �

7 Conclusion

We hope to have provided some further evidence for the potential of automata-theoretic
techniques in the study of dynamical problems, for monoids and for groups as well. We list
now some open problems that arise naturally from this work:

We have no examples of uniformly continuous endomorphisms which are not finite-
splitting, neither do we know whether or not this property is decidable.

We would love to have a proof that Fixϕ is effectively constructible when ϕ is boundary-
injective, providing in particular an alternative (combinatorial?) proof for Maslakova’s
Theorem, but it has eluded us so far.
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