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ABSTRACT

Let T be an inverse subsemigroup of an inverse semigroup S, and suppose
that the complement of T in S is finite. We show that T is finitely presented
if and only if S is finitely presented (both in the sense of inverse semigroup
presentations). In the case where T is an ideal we obtain a particularly
simple, effectively computable presentation for it.

1 Introduction

Let S be a semigroup, and let T be a subsemigroup of S. The index of T in S is
defined to be the size |S \ T | of its complement in S.

This definition seems strange at a first glance: it certainly does not generalise
the familiar notion of index for groups. Nevertheless, it turns out to share various
properties with its group-theoretic counterpart. For example, Jura [7] proved the
following result:
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Theorem 1.1 Let S be a semigroup, and let T be a subsemigroup of finite index in
S. Then T is finitely generated if and only if S is finitely generated.

Building on this, Ruškuc [11] (see also [2, 3]) proved:

Theorem 1.2 Let S be a semigroup, and let T be a subsemigroup of finite index in
S. Then T is finitely presented if and only if S is finitely presented.

These two results may be considered as analogues of the classical results of Rei-
demeister and Schreier from combinatorial group theory; see [8].

Of course the question arises of an overarching notion of index, which would in-
clude both of the above as special cases. An initial study in this direction is attempted
in [12], but many interesting open questions remain.

In this paper we will be concerned with inverse semigroups and their subsemi-
groups of finite index. Recall that a semigroup S is said to be inverse if every
s ∈ S has a unique (semigroup-theoretic) inverse s−1 (satisfying ss−1s = s and
s−1ss−1 = s−1); or, equivalently, if S is regular and its idempotents commute. In-
verse semigroups, considered as algebraic structures with one binary operation ·
and one unary operation −1, form a variety (with defining identities (x−1)−1 = x,
xx−1x = x, xx−1yy−1 = yy−1xx−1). Therefore, free inverse semigroups exist, and one
can use them to define arbitrary inverse semigroups by means of presentations (gen-
erators and defining relations). It turns out that inverse semigroup presentations (or
i-presentations for short) are somewhat different in nature from both semigroup and
group presentations. This is perhaps best illustrated by the fact that the free inverse
semigroup on one generator is not finitely presented as an (ordinary) semigroup; see
[13].

The purpose of this paper is to prove the analogue of Theorem 1.2 for inverse
semigroups:

Main Theorem Let S be an inverse semigroup, and let T be an inverse subsemigroup
of finite index in S. Then T is finitely i-presented if and only if S is finitely i-
presented.

Of course, the analogue of Theorem 1.1 (finite generation) also holds. In fact,
unlike the Main Theorem, it follows directly from Theorem 1.1, because an inverse
semigroup S is finitely generated as an inverse semigroup if and only if it is finitely
generated as an (ordinary) semigroup. Indeed, if A is a (finite) inverse semigroup
generating set for S, then the set A ∪ A−1 generates S as a semigroup.

The paper is organised as follows. Sections 2 and 3 introduce basic definitions
and notation: the former on inverse semigroups and their presentations; the latter on
automata and Stephen’s procedure for inverse semigroup presentations. In Section
4 we prove two useful lemmas involving Green’s relations. Section 5 contains the
proof of the Main Theorem. Finally, in Section 6 we give another proof of the Main
Theorem in the case where T is an ideal; this prof establishes a natural, constructive
presentation for T .
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2 Preliminaries: inverse semigroups and presenta-

tions

For notation and basic results on semigroups see [6]. For an introduction to inverse
semigroups see [10].

The natural partial order on an inverse semigroup S is defined by

a 6 b⇐⇒ ∃e ∈ E(S) : a = eb,

where E(S) denotes the set of idempotents of S. Green’s equivalence relations also
play an important role in the study of inverse semigroups. We recall their definition
on an inverse semigroup S. Thus, for a, b ∈ S, we have

aLb⇐⇒ Sa = Sb;

aRb⇐⇒ aS = bS;

aJ b⇐⇒ SaS = SbS;

aDb⇐⇒∃c ∈ S : aRc and cLb;

aHb⇐⇒ aLb and aRb.

We denote by La,Ra,Ja,Da and Ha the L,R,J ,D and H-class of a ∈ S, respectively.
Let X be a set. The set X̃ is the set X ∪ X−1, where X−1 is a set in one-one

correspondence with X, disjoint from X. The formal inverse u−1 is defined for every
u ∈ X̃+ according to

(x−1)−1 = x (x ∈ X),

(x1 . . . xn)−1 = x−1
n . . . x−1

1 (xi ∈ X̃).

An i-presentation is a formal expression of the form Inv〈X | R〉, where X is a set and

R is a binary relation on X̃+. The i-presentation is said to be finite if both X and
R are finite. The inverse semigroup defined by the i-presentation Inv〈X | R〉 is the
quotient

X̃+/(ρ ∪ R)],

where ρ is the relation on X̃+ given by

{(uu−1u, u) | u ∈ X̃+} ∪ {(uu−1vv−1, vv−1uu−1) | u, v ∈ X̃+}.

We usually write τ = (ρ ∪ R)]. An element (r, s) ∈ R ∪ ρ is often written as r = s.

Furthermore, if uτ = vτ we say that u = v holds in X̃+/τ or that u = v is a
consequence of relations in ρ∪R. This is equivalent to the existence of a sequence of
words

u = x0, x1, . . . , xn = v,

where xi is obtained from xi−1 by application of one relation from R ∪ ρ ∪ (R ∪ ρ)−1,
where we use the notation R−1 = {(u, v) | (v, u) ∈ R}. It is easy to see that any
inverse semigroup may be defined by an i-presentation.
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We say that S is finitely i-presented if it can be defined by a finite i-presentation.
It is well known (see, for example, [10]) that ρ is not a finitely generated congruence

on X̃+. Thus, the concepts of finite presentability and finite i-presentability do not
coincide in general. That is, there exist finitely i-presented inverse semigroups which
are not finitely presented as semigroups. On the other hand it is clear that the
concepts of finite generation as an inverse semigroup and as a semigroup coincide.

3 Preliminaries: automata

Let X be a set. An X̃-automaton is a triple A = (I,Γ, F ) such that Γ is a graph with

vertex set V (A) and edge set E(A) ⊆ V (A) × X̃ × V (A) and I, F ⊆ V (A). The set
I is called the set of initial vertices and the set F is called the set of final vertices of
A. For an introduction on automata see [4] or [5].

An X̃-automaton is dual if its graph is connected and

(p, x, q) ∈ E(A) ⇐⇒ (q, x−1, p) ∈ E(A)

for all p, q ∈ A and x ∈ X̃. Edges (p, x, q) and (q, x−1, p) are said to be dual. When
dealing with dual automata we usually represent only one edge for each pair of dual
edges. An X̃-automaton is deterministic if there is only one initial vertex and

(p, x, q), (p, x, q′) ∈ E(A) =⇒ q = q′

for all p, q, q′ ∈ V (A) and x ∈ X̃. An X̃-automaton is said to be inverse if it is dual
and deterministic.

A path on A is a sequence

q0
x1−→ q1

x2−→ · · ·
xn−→ qn

where n > 0 and (qj−1, xj, qj) ∈ E(A) for all j ∈ {1, . . . , n}. The word x1 · · ·xn is the

label of the path. A word u ∈ X̃∗ is said to be accepted by A if there is a path on A
whose label is u, whose initial vertex is in I and whose final vertex is in F . The set
of all words accepted by A is L(A) ⊆ X̃∗.

Let A and A′ be X̃-automata. An X̃-automaton morphism φ : A → A′ is a map
φ : V (A) → V (A′) such that

(p, a, q) ∈ E(A) =⇒ (pφ, a, qφ) ∈ E(A′)

and the initial and final vertices are preserved. If φ is injective we say that A embeds
in A′. If φ is bijective and φ−1 is also a morphism we say that A and A′ are isomorphic
and we write A ∼= A′.

From now on we will consider X̃-automata with only one initial vertex. We present
a process to transform a finite dual X̃-automaton into a finite inverse X̃-automaton.
Thus we consider a finite dual X̃-automaton A and we build a new X̃-automaton by
identifying certain vertices of A. Indeed, if in A we have two edges (p, x, q), (p, x, q ′)

we obtain a finite dual X̃-automaton A′ by identifying respectively:
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• the vertices q and q′;

• all pairs of edges of the form (q, y, r), (q′, y, r), with y ∈ X̃, r ∈ V (A);

• all pairs of edges of the form (r, y, q), (r, y, q′), with y ∈ X̃, r ∈ V (A).

We say that A′ is obtained from A by an elementary reduction. It should be clear
that an X̃-automaton is deterministic if and only if it does not admit any reductions.
If a deterministic X̃-automaton A′ is obtained from an X̃-automaton A by a finite
number of elementary reductions we call the process a complete reduction. If an
X̃-automaton A′ is obtained from an X̃-automaton A by a sequence of elementary
reductions we say that A′ is a quotient of A.

For the remainder of the section we let S be an inverse semigroup and Inv〈X | R〉
be a presentation for S.

The linear automaton Lin(u) of u = x1x2 · · ·xn ∈ X̃+ is given by

→ q0
x1−→ q1

x2−→ · · ·
xn−→ qn → .

The inverse X̃-automaton obtained by complete reduction of Lin(u) is called the
Munn tree of u and it is denoted by MT(u). These automata were introduced by
Munn in [9] to solve the word problem for the free inverse monoid. Indeed, uρ = vρ
if and only if MT(u) ∼= MT(v).

For u ∈ X̃+ the Schützenberger automaton of u relative to Inv〈X | R〉 is the

X̃-automaton
AR(u) = ((uu−1)τ,Γ(u), uτ),

where Γ(u) is the graph whose set of vertices is Ruτ and whose set of edges is

{(vτ, x, wτ) ∈ Ruτ × X̃ ×Ruτ | wτ = (vx)τ}.

Given u, v ∈ X̃+, we have

v ∈ L(AR(u)) ⇔ vτ ≥ uτ (1)

(see [14]). In particular,

vτ = uτ ⇔ (v ∈ L(AR(u)) ∧ u ∈ L(AR(v))). (2)

Let A be a finite dual X̃-automaton and suppose that there are (r, s) ∈ R ∪ R−1

and p, q ∈ V (A) such that

(i) there is a path p
r

−→ q in A; and

(ii) there is no path p
s

−→ q in A.
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We define a finite dual X̃-automaton A′ by adding to A new vertices and edges to
obtain a path

→ p = t0
x1−→ t1

x2−→ · · ·
xn−→ tn = q →,

where s = x1x2 · · ·xn. We say that A′ is obtained from A by a simple R-expansion.
Consider now simultaneously all (r, s) ∈ R ∪ R−1, and p, q ∈ V (A) such that (i) and
(ii) are satisfied. If we add to A, for each such case, a path according to the single

expansion rules, we obtain a finite dual X̃-automaton B which is said to be obtained
from A by a complete R-expansion.

The Schützenberger automaton of u ∈ X̃+ can be obtained as the limit of a
sequence of finite inverse X̃-automata (Ak(u))k>1 which we will now define. We

will simultaneously define a sequence (Bk(u))k>1 of finite dual X̃-automata. Both
sequences are defined as follows:

1. A1(u) = MT(u);

2. Bk is obtained from Ak by a complete R-expansion;

3. Ak+1 is obtained from Bk by a complete reduction.

The sequence (Ak(u))k>1 is usually referred to as the Stephen’s sequence of u relative
to Inv〈X | R〉 (see [14]).

4 Green’s classes of inverse semigroups

We present in this section some lemmas on Green’s classes of inverse semigroups that
will prove useful in forthcoming sections.

Lemma 4.1 Let D be a finite D-class of an inverse semigroup S. Then D is a
J -class.

Proof Let a ∈ D and consider bJ a. Then there exist x, y ∈ S such that b = xay.
Let b′ = x−1by−1. It follows easily that

b′b′
−1

= x−1bb−1x and b−1xx−1b = b−1b.

Hence b′Rx−1bLb and bDb′. Moreover

b′ = x−1by−1 = x−1xayy−1
6 a.

Since b′DbJ a we have b′J a and so a = ub′v for some u, v ∈ S. Let Inv〈S | R〉 be the
i-presentation of S induced by its multiplication table. By (1), AR(a) admits paths

q1 p1

q0 p0

b′

a

u v

.
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Clearly, AR(b′) maps (homomorphically) into AR(a) at vertex q1. Since b′ 6 a, we
have a ∈ L(AR(b′)) and so we also have q1

a
−→ p1. Thus, in AR(a), we have

q2 p2

q1 p1

b′

b′, a

u v

and we can continue indefinitely. Since AR(a) is finite, we eventually obtain a repe-
tition on the qi sequence. Thus

q0
u

−→ . . .
u

−→ qi
u

−→ . . .
u

−→ qn = qi

and AR(a) deterministic implies that i = 0, otherwise qn−1 = qi−1. Thus we have a
path

q0 = qn
b′

−→ pn

and a path q0 = qn
a

−→ pn. Since AR(a) is deterministic, we have pn = p0, yielding

q0
b′

−→ p0. Thus b′ > a by (1) and so b′ = a. Therefore bDb′ = a and the J -class of a
is exactly D. 2

The above result no longer holds if either of the conditions that D be finite or
that S be inverse is omitted, as the following two examples show. In the first one
we present a (non-inverse) semigroup with a finite D-class contained in an infinite
J -class.

Example 4.2 Let X = {a, b, c, d, e, f} and let S be the semigroup defined by the
semigroup presentation 〈X | R〉, with

R = {a2 = a, b = cad, a = ebf, adc = dca, bfe = feb}.

Let σ = R]. Then Dbσ= {bσ} but Jbσ is infinite.

For every n ∈ N, we have

aσ = anσ = (ebf)nσ = (e(bfe)n−1bf)σ = (ebn(fe)n−1f)σ

and bnσ = (bn−1cad)σ, hence bnσ J aσ for every n ∈ N.
For all u ∈ X+ and x ∈ X, we denote by |u|x the number of occurrences of x in

u. Next we remark that

u σ v ⇒ |u|b + |u|c − |u|e = |v|b + |v|c − |v|e. (3)

Indeed, we may assume without loss of generality that (u, v) ∈ R and the claim
follows from direct verification.

We can conclude from (3) that bnσ 6= bmσ whenever n 6= m, thus bσ, b2σ, b3σ, . . .
represent infinitely many distinct elements of Jbσ.

7



To prove that Dbσ= {bσ}, we define a homomorphism ϕ : X∗ → Z by wϕ =
|w|c + |w|e − |w|d − |w|f . We show that, for every prefix v of u ∈ bσ,

vϕ ≥ 0 and (vϕ = 0 ⇐⇒ v ∈ {1, u}). (4)

The claim holds trivially for u = b. Assume now that the claim holds for prq ∈ bσ
and (r, s) ∈ R ∪ R−1. We must show that the claim holds for psq as well. This
can be done systematically in two steps: proving that rϕ = sϕ (we omit the direct
verification) and (ps′)ϕ > 0 for every nonempty proper prefix s′ of s, all other cases
following from the hypothesis on prq. It is therefore enough to consider all the different
cases for |s| > 1:

Case I: (r, s) = (a, a2).

Since aσ = a2σ and bσ 6= b2σ, we must have pq 6= 1. Since p = 1 would imply
aϕ = 0 for the proper prefix a of prq, contradicting our assumption on prq, we may
assume that p 6= 1 and so pϕ > 0. Since (pa)ϕ = pϕ, the claim now follows from the
hypothesis on prq.

Case II: (r, s) = (b, cad).

We only need to observe that (pc)ϕ, (pca)ϕ > pϕ ≥ 0.

Case III: (r, s) = (adc, dca).

Since pad is a proper prefix of prq, we have (pad)ϕ > 0 and so pϕ ≥ 2. Thus
(pd)ϕ, (pdc)ϕ > 0 and the claim follows.

Case IV: (r, s) = (dca, adc).

Since pd is a proper prefix of prq, we have (pd)ϕ > 0 and so pϕ ≥ 2. Thus
(pa)ϕ, (pad)ϕ > 0 and the claim follows.

The cases (r, s) = (a, ebf), (r, s) = (bfe, feb) and (r, s) = (feb, bfe) are analogous
to cases II, III and IV, respectively.

Therefore (4) holds. Suppose now that bσ R wσ. Then bσ = (wy)σ and wσ =
(bz)σ for some y, z ∈ X∗. It follows that bσ = (bzy)σ and so b is a nonempty prefix
of bzy ∈ bσ satisfying bϕ = 0. By (4), we must have bzy = b, hence z = y = 1 and
w = b. Thus Rbσ= {bσ}.

Suppose now that bσ Lwσ. Then bσ = (yw)σ and wσ = (zb)σ for some y, z ∈ X∗.
It follows that bσ = (yzb)σ and so yz is a proper prefix of yzb ∈ bσ satisfying
(yz)ϕ = (yzb)ϕ = bϕ = 0. By (4), we must have z = y = 1 and so w = b. Thus
Lbσ = {bσ} and so Dbσ= {bσ} as claimed.

The next example exhibits an inverse monoid with a J -class containing infinitely
many D-classes. We remark that in a monoid i-presentation Invm〈X | R〉 the binary

relation R is taken on X̃∗ and the inverse monoid is defined by the quotient X̃∗/(ρ∪
R)].

Example 4.3 Let X = {a, b} and let M be the inverse monoid defined by the i-
presentation Invm〈X | R〉, with

R = {aa−1 = 1, b2 = b, ba = bab}.
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Let σ = R]. Then Jbσ is the union of infinitely many D-classes.

It is a simple exercise to construct the Schützenberger graph for the word anb,
obtaining the following:

◦ an

// ◦

b

�� a
// ◦

b

�� a
// ◦

b

�� a
// · · ·

Clearly, these graphs are non-isomorphic for different values of n, and so Dbσ,
D(ab)σ , D(a2b)σ, . . . are all distinct D-classes (D-equivalent elements have the same
Schützenberger graphs [14]). However, since they clearly embed in each other, their
representatives must all belong to the same J -class: indeed, if AR(u) embeds in

AR(v), then wuw′ ∈ L(AR(v)) for some w,w′ ∈ X̃∗ and so (wuw′)τ ≥ vτ by (1),
yielding vτ ∈M(uτ)M . Therefore Jbσ is the union of infinitely many D-classes.

Lemma 4.4 Let T be a finite index inverse subsemigroup of an inverse semigroup S
and let D be a D-class of S such that D ∩ (S\T ) 6= ∅. Then

(i) D is finite;

(ii) S\T intersects every R-class and every L-class of D; and

(iii) for each x ∈ D ∩ T there exist s ∈ S\T and d ∈ D such that xs ∈ S\T , sd ∈ T
and xsd = x.

Proof (i) We start by proving that any H-class of D is finite. It is of course enough
to prove that, for some s ∈ D ∩ (S\T ), the H-class of s is finite. Suppose first that
there exists s ∈ D∩ (S\T ) such that Hs is a group H-class. We have that Hs∩ (S\T )
is certainly finite and for all r ∈ T ∩Hs we have

sr ∈ Hs ∩ (S\T )

for otherwise s = srr−1 ∈ T . So Hs ∩ (S\T ) is a union of cosets of T ∩ Hs and
therefore T ∩ Hs must be finite. Therefore we conclude that a group H-class which
contains elements of S\T is finite.

Suppose now that no group H-class of D contains elements of S\T . Let s ∈
D ∩ (S\T ) and let Hs be its H-class. If T ∩ Hs 6= ∅, and r ∈ T ∩ Hs, then from
sr−1Hss−1 we obtain that sr−1 ∈ T and thus

s = ss−1s = sr−1r ∈ T

which is a contradiction. Hence Hs ⊆ S\T and therefore it is finite.
We now prove that D has only finitely many R-classes and L-classes. Suppose

there are infinitely many R-classes in D. Let s ∈ D∩(S\T ). Then there exists r ∈ D
such that rRs, Lr ⊆ T and Rr−1r ⊆ T . Hence s = ru, for some u ∈ S, and thus

s = ru = rr−1ru = rr−1s ∈ T
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since r−1sRr−1r. We therefore conclude that D has a finite number of R and L-
classes.
(ii) Suppose that there exists a ∈ D such that Ra ⊆ T . Let b ∈ D and take
c ∈ Ra ∩ Lb. Then

b = bb−1b = bc−1c.

Since c ∈ Ra we have that c ∈ T . On the other hand

(cb−1)(cb−1)−1 = cb−1bc−1 = cc−1cc−1 = cc−1 = aa−1

so that cb−1 ∈ Ra ⊆ T and so bc−1 = (cb−1)−1 ∈ T . Thus b = (bc−1)c ∈ T and D ⊆ T
which is a contradiction. If, on the other hand, La ⊆ T then Ra−1 = (La)

−1 ⊆ T .
(iii) Let x ∈ D ∩ T . By (ii), S\T intersects Rx and hence there exist s, y ∈ S\T ,
u ∈ S such that xs = y ∈ S\T and yu = x. Since x = xsu we may assume that
s = x−1xs, hence suJ x and so su ∈ Jx = D by Lemma 4.1. Since x = x(su)n for
every n, and D is finite by (i), we have x = x(su)n for some n such that (su)n is
idempotent. Thus we may assume that su is an idempotent, replacing s by (su)n−1s
if necessary. Since x = xsu we have that su >L x. Since suDx and D is finite, we
obtain suLx (see, for example, [1, Ex. 5.1.3]) and so x−1x = (su)−1(su) = su (since
su is idempotent). Thus su ∈ T .

Write d = ux−1x. Clearly, x = xsu yields x = xsd and x, su ∈ T together imply
sd ∈ T . Since d = ux−1x and x = xsd imply d ∈ Lx ⊆ D, the lemma holds. 2

5 Inverse subsemigroups of finite index

In this section we prove our main theorem:

Theorem 5.1 Let T be a finite index inverse subsemigroup of an inverse semigroup
S. Then T is finitely i-presented if and only if S is finitely i-presented.

Proof Assume first that Inv〈A | R〉 is a finite i-presentation for S, and let π : Ã+ →
S be the associated canonical morphism. Without loss of generality we may assume
that S\T ⊆ D, where D is a finite D-class (hence also a J -class by Lemma 4.1) of S:
indeed, every D-class of S intersecting S \ T is a finite J -class by Lemmas 4.4 and
4.1. If D is ≥J -maximal among those classes, then T ∪ (S \D) is a proper inverse
subsemigroup of S. Iteration of this argument produces a finite chain

T = T0 < T1 < . . . < Tk = S

where Ti \ Ti−1 is contained in a finite D-class of Ti.
We may assume that there is a generator in A for each d ∈ D and we denote that

unique generator by d. If u ∈ Ã+ is such that u represents an element of D then
we also write u to represent uπ. We also write ε = ε for the empty word ε. The
generators in A corresponding to elements of S\T ⊆ D form the set Y . Using [11,
Theorem 1.1], we take as generating set for T the set Xπ, where

X = {yay′ | y, y′ ∈ Y 1; a ∈ Ã; ya, yay′ ∈ Tπ−1},
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where Y 1 = Y ∪ {ε}. Now we introduce an alphabet

B = {[y, a, y′] | yay′ ∈ X}

in one-one correspondence with the set X, and a homomorphism ψ : B̃+ → Ã+

defined by
[y, a, y′]mψ = (yay′)m,

for [y, a, y′] ∈ B and m ∈ {1,−1}. Thus ψ “interprets” each word in B̃+ as a word

from Tπ−1 ⊆ Ã+ representing the same element of T . On the other hand, it is clear
that any element of T may be represented by a word in B̃+. Thus, we define a
mapping φ : Tπ−1 → B̃+ as follows: given w ∈ Tπ−1 write w = αaβ, where αa is the
shortest prefix of w in Tπ−1 (α, β ∈ Ã∗, a ∈ Ã). Then

wφ =

{
[α, a, ε](βφ) if β ∈ Tπ−1

[α, a, β] otherwise
.

Note that wφψπ = wπ for every w ∈ Tπ−1. It follows from [2, Theorem 2.1] that a
presentation for T is given by

Inv〈B | R1 ∪R2〉

where

R1 = {[y, a, y′]ψφ = [y, a, y′] | y, y′ ∈ Y 1, a ∈ Ã, ya, yay′ ∈ Tπ−1}

∪{(w1 w2)φ = (w1φ) (w2φ) | w1, w2 ∈ Tπ−1} (5)

∪{(w3 uw4)φ = (w3 v w4)φ | (u, v) ∈ R, w3, w4 ∈ Ã∗, w3 uw4 ∈ Tπ−1}

and

R2 = {(w3 uw4)φ = (w3 v w4)φ | (u, v) ∈ ρ, w3, w4 ∈ Ã∗, w3 uw4 ∈ Tπ−1}

Moreover, straightforward checking allows us to conclude, from the proof of [11,

Theorem 6.1], that there exists a finite set of relations R′
1 on B̃+ such that

R′
1
]
= R]

1

and
(αβ γ)φR′

1
]
(αβ γ)φ (6)

whenever α β γ ∈ Tπ−1 and β /∈ Tπ−1. In particular if y ∈ Y is such that y−1 = y′,
with y′ ∈ Y , then

(α y−1 γ)φR′
1
]
(α y′ γ)φ, (7)

for α y−1 γ ∈ Tπ−1.
It remains to show that there is a finite subset R′

2 of R2 such that the relations of
R2 are consequences of R1 (and hence of R′

1 as well), R′
2 and ρB, where ρB is the set

of inverse semigroup relations of Inv〈B | R1 ∪ R2〉.
We start by proving the following

11



Claim The relations
βφ = βφ,

where β ∈ Tπ−1 ∩ Dπ−1 is such that at least one letter from Ỹ occurs in β, are a
consequence of finitely many relations from R1 ∪ R2 ∪ ρB.

Proof[of Claim] Let β ∈ Tπ−1 ∩ Dπ−1 be such that at least one letter from Ỹ

occurs in β. By Lemma 4.4 (iii), there exist a ∈ Y and c ∈ Ã such that βa /∈ Tπ−1,
ac ∈ Tπ−1 and βπ = (βac)π. Now, using (5) and (6), we have that (βac)φ = βφ (ac)φ
and (βac)φ = (βac)φ are consequences of R′

1. Thus

(βac)φ = βφ (ac)φ

is also a consequence of R′
1. Therefore it is enough to prove that the relations

(βac)φ = βφ and βφ (ac)φ = βφ

are consequences of finitely many relations from R1 ∪ R2 ∪ ρB. Since there are just
finitely many choices for a and c, we may assume them fixed.

The first part is easy: since (βac)π = βπ ∈ T , we have

(βac)φψπ = (βac)π = βπ = βφψπ

and so ((βac)φ, βφ) ∈ (R1 ∪ R2 ∪ ρB)]. Thus each relation (βac)φ = βφ may be
derived from finitely many relations in R1 ∪ R2 ∪ ρB. Since there are finitely many
relations of the form (βac)φ = βφ to consider, we are done.

For the second type write

β = δ1a1δ2a2 · · · δkakδk+1,

where ai ∈ Ã, δi ∈ Ã∗ are such that:

• δiai is the shortest prefix of δiaiδi+1 · · · δkakδk+1 in Tπ−1;

• no nonempty prefix of δk+1 belongs to Tπ−1.

Then
βφ = [δ1, a1, ε] · · · [δk−1, ak−1, ε] [δk, ak, δk+1]

and
βφ (ac)φ = [δ1, a1, ε] · · · [δk−1, ak−1, ε] [δk, ak, δk+1] [a, c, ε].

If δkakδk+1 ∈ Dπ−1 then, since (δkakδk+1)π >L βπ and D is finite, we have as before
(δkakδk+1)πLβπ. Since (ac)π is a right identity for βπ, it follows that (δkakδk+1ac)π =
(δkakδk+1)π. Thus, in this case, βφ = βφ (ac)φ is a consequence of relations of the
form

[y, b, y′] = [y, b, y′][a, c, ε]

12



where [y, b, y′] ∈ B. Notice that these relations hold in S and that there are finitely
many of them. Hence βφ = (βac)φ is a consequence of finitely many relations from
R1 ∪R2 ∪ ρB.

If on the other hand (δkakδk+1)π /∈ D then βπ ∈ D implies (δkakδk+1)π >J D and

so δk, δk+1 = ε and ak /∈ Ỹ . Hence βφ ends by

[δi, ai, ε][ε, ai+1, ε] · · · [ε, ak, ε]

where i is the smallest subscript such that δi 6= ε. Note that such subscript exists
because of our assumption that at least one letter of Ỹ occurs in β. Now, (δiaiai+1)π ∈
D for otherwise (δiaiai+1)π is strictly J -above D and therefore it could not have

letters from Ỹ . Thus, by Lemma 4.4 (ii), there exists z ∈ Y such that

(δiaiai+1)πLzπ,

that is, there is u ∈ Ã+ such that (δiaiai+1)π = (uz)π. We then have

(uz)φ = w[δ, d, δ′]

where w ∈ B̃∗ and δdδ′ ∈ Ã∗Y Ã∗. Hence, we may consider the set of relations of the
form

[y, a, y1][ε, b, ε] = w[y2, d, y3],

where [y, a, y1], [ε, b, ε] ∈ B and w, [y2, d, y3] are fixed as in the previous paragraph,

with yay1, y2dy3 ∈ Ã∗Y Ã∗. Note that these relations hold in S. Moreover, this is a
finite set. Using these relations we are able to rewrite βφ obtaining a word of the
form z[y, d, y′] (with z ∈ B̃+ and ydy′ ∈ Ã∗Y Ã∗). Now, (ydy′)π ∈ D and therefore,
using the first case, we may conclude that relations βφ = βφ (ac)φ are a consequence
of finitely many relations from R1 ∪R2 ∪ ρB. 2

Let R′
2 be the subset of R2 which is the union of the relations of R2 used in the

claim with the set

{(ww−1w)φ = wφ | w ∈ Tπ−1, |w| 6 3}∪

∪{(yy′zz′)φ = (zz′yy′)φ | y, z ∈ Y, y′ = y−1, z′ = z−1, yy′zz′ ∈ Tπ−1}.

Let Λ = R′
1 ∪R

′
2 ∪ ρB and notice that R′

1 ∪ R
′
2 is finite.

We show that the relations in R2 are consequences of relations in Λ. We start
with the relations wφ = (ww−1w)φ, for w ∈ Tπ−1. We use induction on |w|. For
|w| 6 3 the relations of the form wφ = (ww−1 w)φ are all in R′

2. Now let |w| > 4. We

may assume that the only factors of w in (S\T )π−1 are letters from Ỹ , for otherwise

we may write w = αβ γ, with α, γ ∈ Ã∗, β ∈ (S\T )π−1, |β| > 2, and

(ww−1 w)φ = (αβγγ−1β−1α−1αβγ)φ

Λ] (αβγγ−1β−1α−1αβγ)φ (by (6))

Λ] (αβγγ−1β
−1
α−1αβγ)φ (by (7))

Λ] (αβγ)φ (by induction hypothesis)
Λ] (αβγ)φ (by (6))
= wφ.

13



Since |w| > 4, we can split w = uv with |u|, |v| > 2. Thus u, v ∈ Tπ−1. Moreover

(vv−1)φ (vv−1)φΛ] (vv−1v)φ (v−1φ) (using (5))
Λ] (vφ) (v−1φ) (by induction hypothesis)
Λ] (vv−1)φ (using (5))

and thus (vv−1)φ is an idempotent modulo Λ]. Similarly, so is (u−1u)φ. Thus

(ww−1w)φ = (uvv−1u−1uv)φ (since w = uv)
Λ] uφ (vv−1)φ (u−1u)φ vφ (using (5))
Λ] uφ (u−1u)φ (vv−1)φ vφ (commuting idempotents)
Λ] (uu−1u)φ (vv−1v)φ (using (5))
Λ] uφ vφ (by induction hypothesis)
Λ] (uv)φ = wφ.

We now consider the relations (uu−1vv−1)φ = (vv−1uu−1)φ with uu−1vv−1 ∈
Tπ−1. Notice that for each w ∈ Tπ−1, (ww−1)φ is an idempotent modulo Λ], since
(ww−1w)φΛ]wφ. We consider the following cases:

(I) u, v ∈ Tπ−1;

(II) u, v /∈ Tπ−1,

(III) u ∈ Tπ−1 and v /∈ Tπ−1.

Case (I): u, v ∈ Tπ−1. In this case we have

(uu−1vv−1)φΛ] (uu−1)φ (vv−1)φ (using (5))
Λ] (vv−1)φ (uu−1)φ (commuting idempotents)
Λ] (vv−1uu−1)φ (using (5)).

Case II: u, v /∈ Tπ−1. In this case we have, applying (6),

(uu−1vv−1)φΛ]
(
uu−1 v v−1

)
φ and (vv−1uu−1)φΛ]

(
v v−1 uu−1

)
φ.

Since in R′
2 we have relations of the form (yy′zz′)φ = (zz′yy′)φ, for y, z ∈ Y , we

conclude that also in this case (uu−1vv−1)φΛ] (vv−1uu−1)φ.
Case III: u ∈ T and v /∈ T . We may assume (by using relations (6) to replace
v by v and v−1 by v−1) that v = y ∈ Y . If uu−1yy−1 ∈ Dπ−1 then of course
yy−1uu−1 ∈ Dπ−1 and uu−1yy−1 = yy−1uu−1. Hence

(uu−1yy−1)φΛ]
(
uu−1yy−1

)
φ (by the Claim)

Λ]
(
yy−1uu−1

)
φ (since uu−1yy−1 = yy−1uu−1)

Λ] (yy−1uu−1)φ (by the Claim).
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So let us suppose that uu−1yy−1 <J y. From (uu−1u)φΛ] uφ we have that (uu−1)φ is
an idempotent modulo Λ]. Furthermore (uu−1yy−1)φ is also an idempotent modulo
Λ]. Indeed, since for every w ∈ Tπ−1 we have (ww−1w)φΛ]wφ and u−1yy−1 ∈ Tπ−1

(because u−1yy−1 <J y) we obtain

(uu−1yy−1)φΛ] (uu−1yy−1 (uu−1yy−1)−1 uu−1yy−1)φ
Λ] (uu−1yy−1 yy−1uu−1 uu−1yy−1)φ
Λ] (uu−1yy−1uu−1uu−1yy−1)φ (see (+) below)
Λ] (uu−1yy−1)φ (uu−1u)φ (u−1yy−1)φ (using (5))
Λ] (uu−1yy−1)φuφ (u−1yy−1)φ (since (uu−1u)φ = uφ)
Λ] (uu−1yy−1)φ (uu−1yy−1)φ (using (5))

( (+) since yy−1yy−1 = yy−1 if yy−1 /∈ T or using (6) if yy−1 ∈ T ). Therefore

(uu−1yy−1)φΛ] uφ (u−1yy−1)φ (using (5))
Λ] (uu−1u)φ (u−1yy−1)φ (since (uu−1u)φ = uφ)
Λ] (uu−1)φ (uu−1yy−1)φ (using (5))
Λ] (uu−1yy−1)φ (uu−1)φ (commuting idempotents)
Λ] (uu−1yy−1uu−1)φ (using (5))
Λ] (uu−1)φ (yy−1uu−1)φ (using (5))

and so (yy−1uu−1)φ > (uu−1yy−1)φ in B̃+/Λ] (with respect to the natural partial
order on an inverse semigroup). Similarly we obtain (yy−1uu−1)φ 6 (uu−1yy−1)φ
and so (yy−1uu−1)φΛ](uu−1yy−1)φ holds.

To conclude the proof that T is finitely i-presented, we only have to show that

(w3uw4)φΛ] (w3uu
−1uw4)φ

whenever w3uw4 ∈ Tπ−1 and

(w3uu
−1vv−1w4)φΛ] (w3vv

−1uu−1w4)φ

whenever w3uu
−1vv−1w4 ∈ Tπ−1. In order to do this we will prove that if w3, w4, u, v

are such that uπ = vπ, w3uw4 ∈ Tπ−1 and either uφΛ] vφ or u /∈ Tπ−1 then
(w3uw4)φΛ] (w3vw4)φ.

First suppose that w3uw4 ∈ Dπ−1. If there are occurrences of letters of Ỹ in both
w3uw4 and w3vw4 (in particular, if u /∈ Tπ−1) then

(w3uw4)φ Λ] (w3uw4)φ (by Claim)
= (w3vw4)φ (since uπ = vπ also (w3uw4)π = (w3vw4)π)
Λ] (w3vw4)φ (by Claim).

On the other hand, if no letter of Ỹ appears in w3uw4 then w3, u, w4 ∈ Tπ−1 and
hence also v ∈ Tπ−1. Using (5), we obtain

(w3uw4)φΛ] (w3φ) (uφ) (w4φ) Λ] (w3φ) (vφ) (w4φ) Λ] (w3vw4)φ.
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Assume now that w3uw4 /∈ Dπ−1 (hence also w3vw4 /∈ Dπ−1). We may assume
that (w3uw4)π is J -below D, otherwise we are done by (5). If u /∈ Tπ−1 then (6)
yields

(w3uw4)φΛ] (w3uw4)φ = (w3vw4)φΛ] (w3vw4)φ.

On the other hand, if u ∈ Tπ−1, then we may write

(w3uw4)φΛ] (w3uw4w
−1
4 u−1w−1

3 w3uw4w
−1
4 u−1w−1

3 w3uw4)φ.

Since all w3uw4w
−1
4 u−1w−1

3 w3, u, w4w
−1
4 u−1w−1

3 w3uw4 ∈ Tπ−1, we have

(w3uw4)φ Λ] (w3uw4w
−1
4 u−1w−1

3 w3)φuφ (w4w
−1
4 u−1w−1

3 w3uw4)φ (using (5))
Λ] (w3uw4w

−1
4 u−1w−1

3 w3)φ vφ (w4w
−1
4 u−1w−1

3 w3uw4)φ (since uφΛ] vφ)
Λ] (w3uw4w

−1
4 u−1w−1

3 w3vw4w
−1
4 u−1w−1

3 w3uw4)φ (using (5))
Λ] (w3uw4w

−1
4 u−1w−1

3 )φ (w3vw4)φ (w−1
4 u−1w−1

3 w3uw4)φ (using (5)).

Since (w3uw4w
−1
4 u−1w−1

3 )φ and (w−1
4 u−1w−1

3 w3uw4)φ are idempotents we have that

(w3vw4)φ > (w3uw4)φ in B̃+/Λ]. By symmetry we obtain (w3vw4)φ 6 (w3uw4)φ.
Therefore (w3uw4)φΛ] (w3vw4)φ and T is finitely i-presented.

Conversely, we assume now that T is finitely i-presented. Given a finite presenta-
tion

Inv〈X | R〉

for T , we add a generator y for every element in S\T , and the following relations
(where Y denotes the set of all y):

R′ = {(yx, uy,x) | y ∈ Y, x ∈ X̃} ∪ {(xy, vx,y) | y ∈ Y, x ∈ X̃}∪

∪{(yy′, zy,y′) | y, y′ ∈ Y } ∪ {(y−1, py) | y ∈ Y },

where uy,x, vx,y ∈ X̃+ ∪ Y , zy,y′ ∈ X̃+ ∪ Y and py ∈ Y are chosen so that all the
relations of R′ hold in S.

We show that
〈X ∪ Y | R ∪R′〉

is a (finite) presentation for S. If we map the elements of X to the corresponding
elements of T , and each y to the element it represents in S\T , it is immediate that the
relations R ∪R′ are satisfied by the corresponding images in S (indeed, uy,x, vx,y and
zy,y′ were chosen to make sure this happens). Thus we have an onto homomorphism

φ : (X̃ ∪ Y )+/(R ∪R′)] → S.

It follows from the definition of R′ that every word in (X̃ ∪ Y )+ is (R′)]-equivalent

to either a word in X̃+ or some element of Y . Since the restrictions

X̃+/(R ∪ R′)] → T

Y → S\T

are clearly one-one, we conclude that φ is one-one and thus 〈X ∪ Y | R ∪ R′〉 is a
finite presentation for S. 2
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6 Ideals of finite index

In this section we consider Main Theorem for ideals of inverse semigroups. Though
this is undoubtedly a particular case, its proof is of independent interest, since the
relations are efficiently computed.

Theorem 6.1 Let S be an inverse semigroup and let T be a finite index ideal of S.
Then T is finitely i-presented if and only if S is finitely i-presented.

We start by proving the converse part of the theorem. Thus suppose that S is
finitely i-presented. Since, by [11, Theorem 1.1], T is a finitely generated subsemi-
group of S and S\T is finite, S is defined by a finite presentation Inv〈X ∪ Y | R〉
where X generates T , the elements of Y represent the elements of S\T , and Y is in
one-one correspondence with S\T .

Given x ∈ X̃ and y, y′ ∈ Y we fix words uy,x, vx,y, wx,y,y′ ∈ X̃+ and zy,y′ ∈ X̃+ ∪Y
such that

yxR]uy,x, xyR
]vx,y, (8)

yy′R]zy,y′ (9)

and

wx,y,y′ =

{
xzy,y′ if zy,y′ ∈ X̃+

vx,y′′ if zy,y′ = y′′ ∈ Y
. (10)

Indeed, notice that there exist words uy,x, vx,y ∈ X̃+ satisfying (8) since T is an ideal
of S and X generates T . It is also clear that there exists zy,y′ satisfying (9). Finally
notice that it is clear, from (10), that

wx,y,y′R]xzy,y′ .

We start by proving the following

Lemma 6.2 The semigroup S can be defined by a finite presentation of the form

Inv〈X ∪ Y | RX ∪N ∪Q〉

where

(i) X generates T ;

(ii) the elements of Y represent the elements of S\T and Y is in one-one corre-
spondence with S\T ;

(iii) RX ⊆ X̃+ × X̃+;

(iv) N = {yx = uy,x, xy = vx,y, yy
′ = zy,y′ | y, y′ ∈ Y, x ∈ X̃+};

(v) Q = {(vx,yuy′,x′, wx,y,y′x′) | y, y′ ∈ Y, x, x′ ∈ X̃}.
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Proof The presentation 〈X ∪Y | R〉 for S satisfies (i) and (ii). We shall now modify
it in order to satisfy the remaining conditions as well.

From the definition of uy,x, vx,y and zy,y′ it is clear that Inv〈X ∪Y | R∪N〉, where

N = {yx = uy,x, xy = vx,y, yy
′ = zy,y′ | y, y′ ∈ Y, x ∈ X̃}, is still a finite presentation

for S.
Notice that, for every y ∈ Y , we have

y−1R]y′,

for some y′ ∈ Y . Moreover, the relation y−1 = y′ can be derived from relations in N
since

y−1R]y′ ⇐⇒

{
yy′y N ] y
y′yy′N ] y′

and

yy′y N ] y ⇐⇒

{
yy′N y′′

y′′y N y
,

for some y′′ ∈ Y .
We now replace each relation in R involving letters from Y by some relation on X̃+

as follows: given (a, b) ∈ R, we replace every occurrence of some letter y−1 (y ∈ Y )
by y′ such that y−1R] y′. Notice that in order to do this we only need relations from
N . Hence (a, b) is equivalent, modulo N , to some relation on (X̃ ∪ Y )+. Also, by

using relations from N , we can reduce any word in (X̃ ∪ Y )+ to either a word on X̃+

or some letter in Y . Thus (a, b) must reduce to some relation of the form

u = v, y = u or y = y′ (u, v ∈ X̃+, y, y′ ∈ Y ).

The second case is impossible since y does not represent an element of T . The third
case is either trivial (if y and y′ are the same generator) or impossible. Thus, any

relation in R is equivalent, modulo N , to some relation on X̃+.
Therefore, S is defined by the presentation

Inv〈X ∪ Y | RX ∪N〉

which satisfies (i), (ii), (iii) and (iv).
Our next step is to extend RX ∪ N by adding the finitely many relations Q ⊆

X̃+ × X̃+. These relations will substitute the relations of the form (yy ′, zyy′) in the

computation of the Schützenberger automata for words in X̃+.
In order to prove thatQ is contained in (RX∪N)] we prove that the right hand side

of each relation is recognized by the Schützenberger automaton (relative to RX ∪N)
of the left hand side and vice versa. It follows easily from the diagrams that, starting
from any side of the relation, we need at most three expansions in the Stephen’s
sequence to recognize the other word:
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vx,y uy′,x′

x y y′
x′

zy,y′

wx,y,y′

�� �

wx,y,y′ x′

x
zy,y′

y

y′ uy′,x′

vx,y

�� �

Therefore 〈X ∪ Y | RX ∪N ∪Q〉 is a presentation for S which satisfies the stated
conditions. 2

Let Inv〈X ∪Y | RX ∪N ∪Q〉 be the presentation for S given in the above lemma.
Let R′ = RX ∪N ∪Q and let R′′ = R′\{(yy′, zy,y′) | y, y′ ∈ Y }. We then have:

Lemma 6.3 For R′ and R′′ as above,

AR′(u) = AR′′(u)

for all u ∈ X̃+.

Proof Since AR′(u) and AR′′(u) are inverse and therefore minimal automata, to
prove that AR′(u) = AR′′(u) is the same as showing that

L(AR′(u)) = L(AR′′(u)).

Since R′′ ⊆ R′, we have L(AR′′(u)) ⊆ L(AR′(u)) trivially. It remains to show that
L(AR′(u)) ⊆ L(AR′′(u)). Let (An(u))n∈N denote the Stephen’s sequence of u relative
to R′. We show, by induction on n, that L(An(u)) ⊆ L(A′′

R(u)) for all n. Since
L(AR′(u)) =

⋃
n>1 L(An(u)), this implies that L(AR′(u)) ⊆ L(AR′′(u)). Since R′

is finite, we may assume that each iteration of the sequence is obtained by a single
expansion followed by complete reduction.

The case n = 1 is trivial since A1(u) is the Munn tree of u, hence L(A1(u)) ⊆
L(AR′′(u)). Assume now that L(An(u)) ⊆ L(AR′′(u)) and that An+1(u) is obtained
from An(u) by applying the expansion

� �p q

r1

r2

(where (r1, r2) ∈ R′ ∪ (R′)−1) to An(u) followed by complete reduction. Since An(u),
AR′′(u) are inverse, L(An(u)) ⊆ L(AR′′(u)) is equivalent to saying that there is an
automaton morphism φ : An(u) → AR′′(u) (see [14]). Thus we have a path

� 	pφ qφ

r1

in AR′′(u). It suffices to show that there is a path


 �pφ qφ
r2

(11)
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in AR′′(u): in fact, this will imply at once that L(Bn(u)) ⊆ L(AR′′(u)), where Bn(u)
denotes the dual automaton obtained after performing the expansion on An(u). Now,
every v ∈ L(An+1(u)) is such that v > v′, in the free inverse semigroup on X, for
some v′ ∈ L(Bn(u)): indeed, due to the nature of reduction, every path in An+1(u)
can be lifted to a path in Bn(u) by successively inserting words of the form aa−1.
Since AR′′(u) is inverse, idempotents of the free inverse semigroup must always label
closed paths and so

(v′ ∈ L(AR′′(u)) ∧ vρ] ≥ v′ρ]) ⇒ v ∈ L(AR′′(u)).

We will then conclude that L(An+1(u)) ⊆ L(AR′′(u)) as required.
Let us now show the existence of the path (11). Since R′′ contains all the relations

of R′ except those of the form (yy′, zy,y′), for y, y′ ∈ Y , we only have to consider the
following two cases:

(a) r1 = yy′, r2 = zy,y′ ;

(b) r1 = zy,y′ , r2 = yy′.

We claim that all vertices in AR′′(u) can be connected through X̃-edges proving
that the claim holds for all the iterations of the Stephen’s sequence. This is certainly
true for the first iteration (the Munn tree of u) since u ∈ X̃+. For the induction step,
we note that in any relation from R′′ there is at most one occurrence of a letter y
not in X̃. Using such a relation for an expansion in the Stephen’s iterative procedure
preserves our property, as the unique occurrence of y (if there is one) can be “bridged”
by using the rest of the relation. Reductions clearly preserve our property, and hence
the claim holds. In particular, every vertex is adjacent to some X̃-edge.

So, suppose we are in case (a). Using the preceding remark, we have in AR′′(u) a
situation of the form

y y′pφ qφx x′

vx,y uy′,x′

for some x, x′ ∈ X̃. Because of the relation (vx,yuy′,x′, wx,y,y′x′) ∈ R′′, we have a path

y y′pφ qφx

wx,y,y′

and since (xzy,y′ , wx,y,y′) ∈ R′′ (if zy,y′ ∈ Y ) or xzy,y′ = wx,y,y′ (if zy,y′ ∈ X̃+), we
obtain

y y′pφ qφ

zy,y′

as required.
Suppose now that we are in case (b). Once again, we may write
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zy,y′
x x′

wx,y,y′

pφ qφ

with x, x′ ∈ X̃. So

zy,y′
x x′

vx,y uy′,x′

pφ qφ

finally obtaining

zy,y′
x x′

vx,y uy′,x′

y y′
pφ qφ

Therefore L(An+1(u)) ⊆ L(AR′′(u)) which concludes the proof. 2

Consider the presentation
〈X ∪ Y | R′′〉.

This finite presentation is no longer a presentation for S. For our purposes, however,
it is enough to have the property proved in Lemma 6.3. We may write R′′

X = R′′ ∩

(X̃+ × X̃+) and thus

R′′ = R′′
X ∪ {(yx, uy,x) | y ∈ Y, x ∈ X̃}

∪ {(xy, vx,y) | y ∈ Y, x ∈ X̃}.

We now give a finite presentation for T .

Lemma 6.4 With the above notation, T is defined by the finite i-presentation

Inv〈X | R′′′〉

where

R′′′ = R′′
X ∪ {(u−1

y,xuy,x, x
−1xu−1

y,xuy,x) | y ∈ Y, x ∈ X̃}

∪ {(vx,yv
−1
x,y, xx

−1vx,yv
−1
x,y) | y ∈ Y, x ∈ X̃}

∪ {(x′uy,x, vx′,yx) | y ∈ Y, x, x′ ∈ X̃}

∪ {(uy,x′x′
−1
xx−1, uy,xx

−1x′x′
−1

) | y ∈ Y, x, x′ ∈ X̃}

∪ {(x−1xx′
−1
vx′,y, x

′−1
x′x−1vx,y) | y ∈ Y, x, x′ ∈ X̃}

∪ {(uy,x′u−1
y,x′uy,xx

−1, uy,xu
−1
y,xuy,x′x′

−1
) | y ∈ Y, x, x′ ∈ X̃}

∪ {(v−1
x′,yvx′,yv

−1
x,yx, v

−1
x,yvx,yv

−1
x′,yx

′) | y ∈ Y, x, x′ ∈ X̃}.

Proof Clearly R′′′ is a finite relation on X̃+. We show that R′′′ ⊆ (R′)] by proving
that the right hand side of each relation in R′′′ is recognized by the Schützenberger
automaton (relative to R′) of the left hand side and vice versa.
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uy,x

x y
•

uy,x x
•

vx,y

x y
•

vy,x x
•

x′

vx′,y

x

y uy,x

◦

•

vx′,y

x′

uy,x

y x

◦

•

uy,x′

uy,x

x

y x′

◦

•

uy,x

uy,x′

x′

y x

◦

•

x

x′

vx′,y

y vx,y

◦

•

x′

x

vx,y

y vx′,y

◦

•

uy,x′

uy,x

x

y x′

◦

•

uy,x

uy,x′

x′

y x

◦

•

vx′,y

vx,y

x

y x′

◦

•

vx,y

vx′,y

x′

y x

◦

•

Thus R′′′ ⊆ (R′)].
Since X generates T in the presentation 〈X ∪ Y | R′〉 of S, and R′′′ ⊆ (R′)], the

canonical homomorphism
θ : X̃+/(R′′′)] → T

u(R′′′)] 7→ u(R′)]

is well defined and onto. It remains to show that it is injective. Let u, v ∈ X̃+

and suppose that u(R′)]v. Then AR′(u) ∼= AR′(v). Since, by Lemma 6.3, AR′(w) =

AR′′(w), whenever w ∈ X̃+, we conclude that AR′′(u) ∼= AR′′(v). Thus L(AR′′(u)) =
L(AR′′(v)).

Let (An(w))n denote the Stephen’s sequence of w ∈ X̃+ relative to R′′. We prove
the following

Claim For all n, there exists an X̃-automaton morphism φ : An(w) → AR′′′(w).

Proof[of Claim] Notice that we can view An(w) as an X̃-automaton by ignoring

the Y -edges. In fact, An(w), viewed as an X̃-automaton, is inverse: it is obviously
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dual and connectedness follows from the fact that any expansion performed in an X̃-
connected inverse (X̃∪Y )-automaton using a relation in R′′ produces an X̃-connected
automaton.

We prove the claim by induction on n. The case n = 1 being trivial (A1(w) is the
Munn tree of w), we assume that

φ : An(w) → AR′′′(w)

is an X̃-automaton morphism. Since R′′ is finite, we may assume that An+1(w)
is obtained from An(w) by performing a single expansion (leading to intermediate
automaton Bn(w)) followed by complete reduction. Assume that our expansion is

� �p q

r1

r2

(where (r1, r2) ∈ R′′ ∪ (R′′)−1).
We extend φ to Bn(w) considering different cases:

Case r1, r2 ∈ X̃+. In this case (r1, r2) ∈ R′′′∪(R′′′)−1. Since we have by hypothesis

a path pφ
r1−→ qφ in AR′′′(w), then we have also a path pφ

r2−→ qφ and so we have an
extension φ : Bn(w) → AR′′′(w) as required.

Case r1 = uy,x, r2 = yx (y ∈ Y , x ∈ Ỹ ). We have a path pφ
uy,x

−→ qφ in AR′′′(w).

Since (u−1
y,xuy,x, x

−1xu−1
y,xuy,x) ∈ R′′′, we have an edge r′

x
−→ qφ in AR′′′(w). Now,

Bn(w), as an X̃-automaton, is obtained from An(w) by adding an edge

� �p
x

q

uy,x

r

Defining rφ = r′, we have the required extension φ : Bn(w) → AR′′′(w).

Case r1 = vx,y, r2 = xy (y ∈ Y , x ∈ X̃). This case is similar to the previous case,

using the relation (vx,yv
−1
x,y, xx

−1vx,yv
−1
x,y) ∈ R′′′.

Case r1 = yx, r2 = uy,x (y ∈ Y , x ∈ Ỹ ). We have a path

y xp q
g

in An(w). Notice that the existence of the edge p
y

−→ g in An(w) follows from the
performance (at some previous moment in the sequence) of some expansion relative
to some relation in R′′. This relation is not the relation (yx, uy,x), otherwise there

would be a path p
uy,x

−→ q in An(w).
Therefore we must have in An(w) one of the following situations:

p1
x′ p y g x q

vx′,y or

p y g x q

q1
uy,x′ x′
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Therefore we have in AR′′′(w)

p1φ
x′ pφ gφ

x
qφ

vx′,y or

pφ gφ
x

qφ

q1φ
uy,x′ x′

Applying the relations (x′uy,x, vx′,yx) or (uy,x′x′−1xx−1, uy,xx
−1x′x′−1) in R′′′, respec-

tively, we conclude that we have a path pφ
uy,x

−→ qφ in A′′′
R(w). Thus we may map

the path p
uy,x

−→ q in Bn(w) onto the path pφ
uy,x

−→ qφ in AR′′′(w) and extend φ to a
morphism φ : Bn(w) → AR′′′(w).

Case r1 = xy, r2 = vx,y (y ∈ Y , x ∈ Ỹ ). Similarly to the previous case, we have

in An(w) either

p x g y q x′ q1

uy,x′ or

p x g y q

q1
x′ vx′,y

Therefore we have in AR′′′(w)

pφ
x

gφ qφ x′ q1φ

uy,x′ or

pφ
x

gφ qφ

q1φ
x′ vx′,y

Applying the relations (xuy,x′, vx,yx
′) or (x−1xx′−1vx′,y, x

′−1x′x−1vx,y) in R′′′, respec-

tively, we conclude that there is a path pφ
vx,y

−→ qφ in An(w). Thus we may map

the path p
vx,y

−→ q in Bn(w) onto the path pφ
vx,y

−→ qφ in AR′′′(w) and extend φ to a
morphism φ : Bn(w) → AR′′′(w).

We will now extend φ : Bn(w) → AR′′′(w) to An+1(w). Let B be a quotient of

Bn(w). It suffices to show that if φ : B → AR′′′(w) is an X̃-automaton morphism then

we can define an X̃-automaton morphism φ : B′ → AR′′′(w), where B′ is obtained
from B by an elementary reduction. Indeed, since An+1(w) is obtained from Bn(w)
by performing finitely many elementary reductions, the claim will follow.

Suppose first that B′ is obtained from B by performing the elementary reduction
induced by

p
q

r

x

x
(x ∈ X̃).

Since we have

pφ
qφ

rφ

x

x

in AR′′′(w), and AR′′′(w) is deterministic, we have qφ = rφ and so φ induces naturally
a quotient morphism φ : B′ → AR′′′(w).

Suppose now that B′ is obtained from B by performing the elementary reduction
induced by

24



p
q

r

y

y
(y ∈ Y ).

Since B is a quotient of Bn(w), each edge labeled y appeared as the result of an
expansion of some relation in R′′. Thus we must have in B one of the following four
situations:

p
q

r

q1

q2

y
x

y
x′

uy,x

uy,x′

(I)

p
q

r

q1

p1

y
x

x′ y

uy,x

vx′,y

(II)

p

r

q

q1

p1

y
x′

x y

uy,x′

vx,y
(III)

p

r

q

p2

p1

x′ y

x y

vx′,y

vx,y
(IV)

This implies that we have in AR′′′(w) one of the following situations:

pφ
qφ

rφ

q1φ

q2φ

x

x′

uy,x

uy,x′

(I)

pφ
qφ

rφ

q1φ

p1φ

x

x′

uy,x

vx′,y

(II)

pφ
rφ

qφ

q1φ

p1φ

x′

x

uy,x′

vx,y
(III)

pφ
rφ

qφ

p2φ

p1φ

x′
x

vx′,y

vx,y
(IV)

Considering the following relations of R′′′:

(uy,x′u−1
y,x′uy,xx

−1, uy,xu
−1
y,xuy,x′x′

−1
), (x′uy,x, vx′,yx), (xuy,x′, vx,yx

′),

(x−1xx′
−1
vx′,y, x

′−1
x′x−1vx,y),
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respectively, we end up in every case by concluding that qφ = rφ and so φ : B →
AR′′′(w) factors to a quotient morphism φ : B′ → AR′′′(w).

Finally, we suppose that B′ is obtained from B by performing the elementary
reduction induced by

p

q
r

y

y
(y ∈ Y ).

Once again, we may consider the different possibilities for the origin of these edges
and we obtain four different cases in the inverse automaton AR′′′(w):

p1φ
pφ

rφ
qφ

q1φ
x′

x

vx′,y

vx,y

(I)

p1φ
pφ

rφ
qφ r1φ

x

x′

vx,y

uy,x′

(II)

pφ
rφ

r1φ

qφ
q1φ

x′
x

vx′,y

uy,x

(III)

pφ
rφ

r1φ

qφ r2φ
x′
x

uy,x′

uy,x

(IV)

Considering the following relations of R′′′

(v−1
x′,yvx′,yv

−1
x,yx, v

−1
x,yvx,yv

−1
x′,yx

′), (xuy,x′, vx,yx
′), (x′uy,x, vx′,yx),

(uy,x′x′
−1
xx−1, uy,xx

−1x′x′
−1

),

respectively, we conclude in every case that pφ = qφ. Hence φ : B → AR′′′(w) factors
to a quotient morphism φ : B′ → AR′′′(w) also in this last case, which completes the
proof of the claim. 2

Since An(w) is inverse as an X̃-automaton, we have

L(An(w)) ∩ X̃∗ ⊆ L(AR′′′(w))

by the claim. Thus
L(AR′′(w)) ∩ X̃∗ ⊆ L(AR′′′(w)).

Since L(AR′′(u)) = L(AR′′(v)), we have that u ∈ L(AR′′(v)) and v ∈ L(AR′′(u)).

Since u, v ∈ X̃+, it follows that u ∈ L(AR′′′(v)) and v ∈ L(AR′′′(u)). Thus u(R′′′)]v
by (2) and so θ is injective. This shows that 〈X | R′′′〉 is a finite presentation for T .

The direct part of the Theorem follows of course from Theorem 5.1. 2
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