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Abstract. In this paper we describe how the symmetry of a function is trans-
formed by a projection or by a restriction — two operations that reduce the

dimension of its domain.

We work with functions defined in (n + 1)-dimensional domains and that
are periodic along a lattice L containing n + 1 noncolinear directions, i.e.,

functions invariant under the action of a crystallographic group Γ, a subgroup

of the Euclidean group E(n + 1).
After projection into Rn (or restriction) we obtain functions that are in-

variant under the action of a subgroup Σ of E(n), related to the original

crystallographic group Γ. Our main result describes a bijection relating Σ to
a subgroup of Γ, the symmetries before and after the reduction in dimension.

We use both algebraic and analytic tools: the Fourier expansion of the

Γ-invariant functions and the induced action of Γ in the space of Fourier coef-
ficients are both essential in dealing with the two perspectives. Intermediate

results relate the symmetry groups to the dual lattice L∗.

1. Introduction

Patterns observed in reaction-diffusion experiments on thin layers are often ex-
plained by two-dimensional models. However there are patterns observed experi-
mentally that are not expected in two-dimensions. Gomes [3] proposes that some
of these arise as the projection into the plane of a three-dimensional repetitive
solution.

We may ask in general how a projection transforms repetitive patterns — the
projection may be seen either as a physical phenomenon or as a mathematical tool.
The first perspective would be used whenever we observe solutions that are the
integration, along some variables, of a solution in a higher dimensional space. As a
mathematical tool, projection is a way of lowering the dimension in order to obtain
desirable properties. This happens in the theoretical construction of quasicrystals,
where the quasiperiodic three-dimensional structure may be obtained projecting
a periodic structure in R5, see Senechal [9, section 2.6] for a description of this
method.

1.1. aim. We study real functions with domain Rn+1, periodic along n + 1 non-
colinear directions. The elements of E(n + 1) that leave these functions invariant
form a group Γ with a subgroup of translations corresponding to periods. These are
called crystallographic groups since they are analogous, in the (n + 1)-dimensional
space, to the symmetry groups of crystals in R3.

We explore two ways of obtaining a new function on a n-dimensional subspace:
either we project into the subspace (figure 1) or we take the restriction (figure 2).
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In both cases some structure will remain due to the initial symmetry. Our aim is
to describe the symmetries of the functions defined in a lower dimension.������������������������0

0 x

x
0

y0

y

0
0

0

y0

x

x

y

Figure 1. The projection of periodic patterns in R2 restricted to
a strip of width y0 defines functions with domain R.
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Figure 2. The restriction of periodic patterns in R2 to the line
y = r are functions with domain R.

The symmetries of Γ-invariant functions are transformed by the projection. Some
elements of Γ will yeld symmetries of the projected functions. Others may give rise
to some other structure of the projected functions that is not a symmetry, i.e.,
a structure that cannot be described as the invariance of the projected functions
under the action of some element in E(n). An illustrative example of the second
case is the quasiperiodic structure obtained by the canonical projection of a periodic
one, see Senechal [9, section 2.6].

Our main result, Theorem 3.1, describes the elements of Γ that contribute to the
symmetry after projection and the way these relevant elements of Γ are transformed
by the projection. Formally, it states necessary and sufficient conditions upon Γ
ensuring that all the functions in a space XΓ are invariant, after projection, under
the action of some element in E(n).

An analogous result for the restriction is presented in Theorem 7.1.

1.2. how to. Although we state Theorem 3.1 for a space of functions, it establishes
a homomorphism between two symmetry groups. Thus it induces a projection in
the space of crystallographic groups.

This relation between algebra and analysis is always present along the article.
Our tools are either algebraic, like crystallographic groups and modules, or analyt-
ical, as Fourier expansion. The two perspectives are held together mostly by two
reasons. By the induced action of the symmetry group Γ in the space of the Fourier



SYMMETRIES OF PROJECTED SYMMETRIC PATTERNS January 31, 2007 3

coefficients of Γ-invariant functions, the symmetry is visible in the space of Fourier
coefficients as equations that can be traced also after projection. The formulation
of the results for sufficiently large spaces of Γ-invariant functions highlights their
common characteristic, the symmetry.

Along the proof of Theorem 3.1 several interesting results arise. Proposition 4.1
states necessary and sufficient conditions on a crystallographic group Γ and its
dual lattice, for the projected Γ-invariant functions to be symmetric. Proposi-
tion 4.1 is the generalization of the two-dimensional result presented in Labouriau
and Pinho [4]. After this Proposition the structure of the dual lattice and its
relation to the lattice associated to Γ are studied.

Theorem 7.1 presents, for the restriction, an analogue of Theorem 3.1. Its proof
uses the same arguments developed for the projection and is simpler, since it has
fewer conditions.

This paper extends and generalizes previous results obtained by the same au-
thors [5] for the particular case n = 1, where Γ is a plane crystallographic group
(wallpaper group). Some geometrical arguments cannot be easily extended to the
present case, so we use a different treatment.

Periodicity and the remaining symmetries (parity) are studied separately in the
first paper following an approach that is more intuitive. Here the aims are concision,
simplicity and generality. All symmetries are treated together allowing us to deal
with the higher complexity of the problem due to the dimension. The separate
treatment would also be cumbersome since we would have to deal with more cases
here.

2. Notation and Preliminaries

We work with real functions f : Rn+1 −→ R, where n ∈ N, and we use the
notation (x, y) ∈ Rn+1, with x ∈ Rn and y ∈ R. The reader is referred to Arm-
strong [1, chapters 24, 25 and 26], for results on Euclidean and plane crystallo-
graphic groups, and to Senechal [9, chapter 2] and Miller [7, chapter 2] for results
on lattices and crystallographic groups. A detailed description is also made in
Pinho [8, chapter 2].

2.1. the Euclidean group. Consider the (n + 1)-dimensional Euclidean group as
the semi-direct product E(n + 1) ∼= Rn+1 n O(n + 1) with elements γ = (v, δ),
where v ∈ Rn+1 and δ ∈ O(n + 1). The group operation is (v1, δ1) · (v2, δ2) =
(v1 + δ1v2, δ1δ2), for (v1, δ1), (v2, δ2) ∈ E(n + 1) and the action of (v, δ) ∈ E(n + 1)
on (x, y) ∈ Rn+1 is given by (v, δ) · (x, y) = v + δ(x, y).

2.2. crystallographic groups. Let Γ ≤ E(n+1) be a crystallographic group with
lattice L. Thus, by definition, the orbit, on Rn+1, of the origin under the action of
the subgroup of translations {v : (v, Idn+1) ∈ Γ}, is a Z-module generated by n + 1
noncolinear vectors l1, . . . , ln+1 ∈ Rn+1:

L = {l1, . . . , ln+1}Z =

{
n+1∑
i=1

mili : mi ∈ Z

}
.

We also use the symbol L for the subgroup of translations of Γ, since it is isomorphic
to the group (L,+).

The projection (v, δ) 7−→ δ, of Γ into O(n + 1), has kernel L and image J =
{δ : (v, δ) ∈ Γ for some v ∈ Rn+1}, which is isomorphic to the finite quotient Γ/L.
Group J is called the point group of L and is a subgroup of the holohedry of L: the
largest subgroup of O(n + 1) that leaves L invariant. Thus, JL = {δl : δ ∈ J, l ∈
L} = L.
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The set of all the elements in Γ with orthogonal component δ ∈ J is the coset
L · (v, δ) = {(l + v, δ) : l ∈ L} for any v ∈ Rn+1 such that (v, δ) ∈ Γ. We use the
symbol (vδ, δ) for any element of that coset, i.e., vδ is the non-orthogonal component
of (v, δ) ∈ Γ defined up to elements of L.

Group Γ is thus characterized by the n + 1 generators of L plus a finite number
of elements (vδ, δ), with δ ∈ J.

2.3. Γ acting on functions. The action of Γ in Rn+1 induces the scalar action:
(γ · f)(x, y) = f(γ−1 · (x, y)) for γ ∈ Γ and (x, y) ∈ Rn+1, see Melbourne [6, section
2.1]. A function f is Γ-invariant if (γ · f)(x, y) = f(x, y), for all γ ∈ Γ and all
(x, y) ∈ Rn+1.

We will work in XΓ, a space of Γ-invariant functions f , for the scalar action.
In particular, f is L-invariant or a L-periodic function, the generalization, for any
dimension, of functions on the plane whose level curves form a periodic tiling.

2.4. dual lattices. We study Γ-invariant functions that have formal Fourier ex-
pansion in terms of the waves ωk(x, y) = e2πi<k,(x,y)>, where k ∈ Rn+1 and < ·, · >
is the usual inner product in Rn+1. The set of all the elements k ∈ Rn+1 such that
ωk is a L-periodic function is the dual lattice of L:

L∗ = {k ∈ Rn+1 :< k, li >∈ Z, i = 1, . . . , n + 1}.

It may be written as L∗ = {l∗1, . . . , l∗n+1}Z, where l∗i ∈ Rn+1 and < l∗i , lj >= δij for
all i, j ∈ {1, . . . , n + 1}.

The lattices L and L∗ have the same holohedry and the matrices of their bases,
respectively

M =

 l1
...

ln+1

 and M∗ =

 l∗1
...

l∗n+1

 ,

are related by M∗ =
(
M−1

)T .

2.5. formal Fourier expansion. The formal Fourier expansion of a function f ∈
XΓ is

f(x, y) =
∑

k∈L∗
ωk(x, y)C(k)

where C : L∗ −→ C are the Fourier coefficients. We assume that in XΓ this
expansion is unique. For a real function f , the coefficients have the restriction
C(k) = C(−k).

2.6. Γ acting on the Fourier coefficients. From the action of Γ on XΓ we get:

(vδ, δ) · f(x, y) =
∑

k∈L∗ ωk(δ−1(x, y))ωk(−δ−1vδ)C(k)
=

∑
k∈L∗ ωδk(x, y)ωδk(−vδ)C(k), by orthogonality of δ,

=
∑

k∈L∗ ωk(x, y)ωk(−vδ)C(δ−1k), because δL∗ = L∗.

By the unicity of the Fourier expansion, this induces an action of Γ on the space
of Fourier coefficients (vδ, δ) · C(k) = ωk(−vδ)C(δ−1k). Analogously, the (vδ, δ)-
invariance of f implies C(k) = ωk(−vδ)C(δ−1k) for all its Fourier coefficients.

The induced action of Γ in the space of Fourier coefficients connects the algebraic
and analytical perspectives. It translates into analytic language those properties
of a function arising from symmetry. Moreover it allows the separate study of the
periodicity, whose information is carried by the waves, and the remaining relevant
elements (vδ, δ), which impose restrictions on the Fourier coefficients.
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2.7. the functions Ik. The simplest Γ-invariant functions are the real and imagi-
nary components of Ik, for k ∈ L∗, given by:

Ik(x, y) =
∑
δ∈J

ωδk(x, y)ωδk(−vδ)

and we will assume that they lie in XΓ. Each function Ik, for k ∈ L∗, is the sum of
all the elements in the orbit of ωk under the action of Γ.

2.8. the projection operator. For y0 > 0, consider the restriction of f to the
region between the hyperplanes y = 0 and y = y0. The projection operator Πy0

integrates this restriction of f along the width y0, yielding a new function with
domain Rn:

Πy0(f)(x) =
∫ y0

0

f(x, y)dy.

The region between y = 0 and y = y0 is called the projected band or the projection
band, and y0 is called the width of projection or the width of the projected band.

2.9. functions after projection. If f ∈ XΓ then the projected function satisfies
Πy0(f)(x) =

∫ y0

0

∑
k∈L∗ ωk(x, y)C(k)dy and, when the integral and the summation

commute,
Πy0(f)(x) =

∑
k∈L∗

∫ y0

0
ωk(x, y)C(k)dy

=
∑

k∈L∗ ωk1(x)C(k1, k2)
∫ y0

0
ωk2(y)dy,

where k = (k1, k2), with k1 ∈ Rn and k2 ∈ R. Grouping the terms with common
n first components in L∗, we obtain

Πy0(f)(x) =
∑

k1∈L∗1
ωk1(x)

∑
k2:(k1,k2)∈L∗ C(k1, k2)

∫ y0

0
ωk2(y)dy

=
∑

k1∈L∗1
ωk1(x)D(k1),

where L∗1 = {k1 : (k1, k2) ∈ L∗} and D(k1) =
∑

k2:(k1,k2)∈L∗ C(k1, k2)
∫ y0

0
ωk2(y)dy.

The coefficients D(k1) could be written as Dy0(k1) since they depend on y0. We
avoid that notation in order to simplify the formalism.

2.10. symmetry of projected functions. The functions Πy0(f) may be invariant
under the action of some elements of the group E(n) ∼= RnnO(n). Using a notation
similar to the (n + 1)-dimensional case, (vα, α) ∈ E(n) is a symmetry of Πy0(f) if

(vα, α) ·Πy0(f)(x) = Πy0(f)(x) ∀x ∈ Rn.

For f ∈ XΓ this is equivalent to∑
k1∈L∗1

ωk1(x)D(k1) =
∑

k1∈L∗1

ωk1(α
−1x)ωk1(−α−1vα)D(k1).

This equation imposes restrictions on the coefficients D(k1), see Lemma 5.1.

2.11. restriction. Let Φr be the operator that restricts the functions to the hy-
perplane y = r,

Φr(f)(x) = f(x, r).

If f ∈ XΓ then, for D(k1) =
∑

k2:(k1,k2)∈L∗ C(k1, k2)ωk2(r), the restriction of f is

Φr(f)(x) =
∑

k∈L∗
ωk(x, r)C(k) =

∑
k1∈L∗1

ωk1(x)D(k1).

The functions Φr(f) may be invariant under the action of some elements of the
group E(n) ∼= Rn n O(n), as described above for the projected functions.
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2.12. characterization of the space XΓ. We assume XΓ is a vector space of
functions such that:

(1) Γ is a (n+1)-dimensional crystallographic group with lattice L, dual lattice
L∗ and point group J,

(2) if f ∈ XΓ then:
(i) f : Rn+1 −→ R,
(ii) f is a Γ-invariant function,
(iii) f has a unique formal Fourier expansion in waves ωk(x, y), k ∈ L∗,
(iv) the integral and the summation commute in the projection of f ,

(3) Re(Ik), Im(Ik) ∈ XΓ for all k ∈ L∗, and Ik(x, y) =
∑

δ∈J ωδk(x, y)ωδk(−vδ).

3. Symmetry of Πy0(XΓ) related to Γ and L

Now we state our main result, Theorem 3.1, relating the symmetry of the func-
tions f in the space XΓ to the symmetry of the projected functions Πy0(f) in the
space Πy0(XΓ).

For α ∈ O(n), we define the elements of O(n + 1):

σ =
(

Idn 0
0 −1

)
, α+ =

(
α 0
0 1

)
and α− = σα+ =

(
α 0
0 −1

)
.

For simplicity of notation we write (v+, α+) for (vα+ , α+) and (v−, α−) for (vα− , α−).

Theorem 3.1. All functions in Πy0(XΓ) are invariant under the action of (vα, α) ∈
Rn n O(n) if and only if one of the following conditions holds:

(I) ((vα, 0), α+) ∈ Γ,
(II) ((vα, y0), α−) ∈ Γ,

(III) (0, y0) ∈ L and either ((vα, y1), α+) ∈ Γ or ((vα, y1), α−) ∈ Γ, for some
y1 ∈ R .

3.1. interpretation of Theorem 3.1. Let (x, y) ∈ Rn+1 with x ∈ Rn and y ∈
R. Theorem 3.1 concerns those elements of Γ whose orthogonal component acts
separately on the direction of projection (x = 0), and on the domain (y = 0) of
the projected functions: both α+ and α− leave these subspaces invariant. Thus,
Theorem 3.1 states that the symmetry of Πy0(XΓ) depends strongly on the way
elements of Γ are related to the direction of projection.

After projection, and under some extra conditions, both α+ and α− ensure a
symmetry with orthogonal component α ∈ O(n). The translations associated to
either α+ or α− are related by the conditions of Theorem 3.1 to the projection
width. For each one of the three cases we give a brief intuitive description of how
the symmetries that remain after projection correspond to the n first components
of the original symmetries.

We present in figures 3, 4 and 5 some examples illustrating the conditions in
Theorem 3.1, in the form of patterns. These may be interpreted as the level sets
of functions f : R2 −→ R, taking only the values 0 and 1, with f(x, y) = 0 on the
white regions. After projection we obtain a function whose value for each x ∈ R is
the width of the black region above it.

(I) Elements of Γ whose orthogonal component fixes the one-dimensional sub-
space x = 0, i.e., those elements with orthogonal part α+ and translation (vα, 0),
act effectively on the subspace y = 0 (see figure 3). This symmetry remains after
the projection, independently of the projection width.

(II) Elements with orthogonal part α− will contribute to the symmetry of Πy0(XΓ)
if the associated translation is (vα, y0), i.e., if its last component equals the width
of the projection (figure 4). This happens because the restriction, fy0 , of f to the
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Figure 3. The invariance of the pattern under the reflection in
the vertical line ensures an analogous symmetry after projection,
for all y0, by condition (I) of Theorem 3.1.

projection band is invariant under the action of these elements. Moreover their ac-
tion does not mix the direction of projection with the other directions. Thus, when
the coordinate y is collapsed by Πy0 , what remains is a function with symmetry
(vα, α), the part of the original symmetry concerning the n first coordinates of fy0 .
If the width of the projection is changed, then these elements of Γ no longer induce
symmetries of the projected functions.������������������������ x

x
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2y0

Figure 4. The rotations of π around the black dots are symme-
tries of the pattern. The rotation of π around the lower black
dot leaves fy0 (black region) invariant and, by condition (II) of
Theorem 3.1, acts as a reflection for the projected pattern.

(III) If L has an element in the direction of the projection whose norm coincides
with the projection width, i.e., if (0, y0) ∈ L, then any element of Γ whose orthog-
onal component is either α+ or α− will induce some symmetry on all projected
functions (figure 5). This happens because the pattern of f in Rn+1 can be built
by the repetition of fy0 . Therefore, all the symmetries of f are somehow inscribed
in fy0 . Symmetries that act separately in the n first coordinates, remain when the
last coordinate is removed.
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x

x0
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(0,y0) (P,y1)

(0,0)

P0

Πy0

y0

Figure 5. If (0, y0) ∈ L then repeated vertical translations of the
projected band of width y0 (black region) cover the whole pattern.
After the projection, (P, y1) acts as a translation by P (condi-
tion (III) of Theorem 3.1).

For n = 1 we recover the results of Labouriau and Pinho [5] both on periodicity
(α = 1) and on parity of the projected functions (α = −1).

3.2. reformulation of Theorem 3.1 for symmetry groups. Consider the sub-
group Γ′ of elements of Γ with orthogonal part α± for some α ∈ O(n), i.e., of all
elements in Γ of the form(

(vα, yα),
(

α 0
0 β

))
with β = ±1.

Theorem 3.1 states that the elements in Γ that effectively contribute to the sym-
metry of Πy0(XΓ) are those in a subgroup Γ′′ of Γ′. If (0, y0) 6∈ L then Γ′′ contains
those elements of Γ′ where either yα = 0 with β = 1 or where yα = y0 with β = −1.
If (0, y0) ∈ L then Γ′′ = Γ′.

The map

Γ′ −→ E(n) ∼= Rn n O(n)(
(vα, yα),

(
α 0
0 β

))
7−→ (vα, α)

defines a group homomorphism whose kernel is given by elements such that vα = 0
and α = Idn. Let Σ be the group of symmetries of Πy0(XΓ), i.e., the largest
subgroup of E(n) ∼= Rn nO(n) that fixes all the elements in Πy0(XΓ). Theorem 3.1
states that Σ is the image of Γ′′ by this homomorphism.

3.3. structure for the proof of Theorem 3.1. Each one of the conditions (I),
(II) and (III) of Theorem 3.1 is sufficient by basic properties of the integrals. Thus,
we omit the proof of sufficiency for Theorem 3.1 and refer to Pinho [8] for details.

Proving that the conditions of Theorem 3.1 are necessary will be our main as-
signment. First, in Proposition 4.1 below we establish an equivalence between the
(vα, α)-invariance of all the functions in Πy0(XΓ) and a set of properties of the
group Γ and of the dual lattice L∗. Then, in section 6, we show that these proper-
ties impose restrictions on Γ and L. More specifically, they will imply the presence
of some particular elements in Γ, as in Theorem 3.1.
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4. Symmetry of Πy0(XΓ) Related to Γ and L∗

4.1. structure of L∗ due to σ. The simultaneous presence of the reflection (vσ, σ)
and of (v+, α+) in a group Γ imposes strong restrictions on L∗. One of these
restrictions is fundamental for the formulation and the proof of Proposition 4.1 and
is presented in next Lemma.

Lemma 4.1. If both (vσ, σ) ∈ Γ and (v+, α+) ∈ Γ then 2(σv+ − v+) ∈ L.

Proof. Since (vσ, σ) · (v+, α+) = (vσ + σv+, α−) and (v+, α+) · (vσ, σ) = (v+ +
α+vσ, α−), then v = vσ +σv+−v+−α+vσ ∈ L. As σL = L then v−σv = 2(σv+−
v+)+(Idn+1−α+−σ+α−)vσ also belongs to L. Using−α+−σ+α− = −Idn+1 we get
v − σv = 2(σv+ − v+) or, equivalently, 2 < k, σv+ − v+ >∈ Z for all k ∈ L∗. �

4.2. how symmetry restricts the dual lattice L∗.

Proposition 4.1. All functions in Πy0(XΓ) are invariant under the action of
(vα, α) ∈ Rn n O(n) if and only if one of the following conditions holds:

(A) (v+, α+) ∈ Γ and
for each k ∈ L∗ either < k, (0, y0) >∈ Z− {0} or < k, v+ − (vα, 0) >∈ Z,

(B) (v−, α−) ∈ Γ and
for each k ∈ L∗ either < k, (0, y0) >∈ Z− {0} or < k, v− − (vα, y0) >∈ Z,

(C) both (vσ, σ) ∈ Γ and (v+, α+) ∈ Γ. Moreover, if < k, σv+ − v+ >∈ Z then
one of the conditions (Ci), (Cii) or (Ciii) below holds and, if < k, σv+ −
v+ > + 1

2 ∈ Z, one of the conditions (Ci) or (Civ) holds:
(i) < k, (0, y0) >∈ Z− {0},
(ii) < k, v+ − (vα, 0) >∈ Z,
(iii) < k, vσ − (0, y0) > + 1

2 ∈ Z,
(iv) < k, v− − (vα, y0) >∈ Z and

either < k, vσ − (0, y0) > + 1
4 ∈ Z or < k, vσ − (0, y0) > − 1

4 ∈ Z.

4.3. subsets of the dual lattice. A more concise formulation of this result is
possible using the subsets of L∗ that we proceed to define. Let M∗, M∗

+ and M∗
−

be the modules

M∗ = {k ∈ L∗ : < k, σv+ − v+ >∈ Z}
M∗

+ = {k ∈ L∗ : < k, v+ − (vα, 0) >∈ Z}
M∗

− = {k ∈ L∗ : < k, v− − (vα, y0) >∈ Z}

and let

N ∗ =
{

k ∈ L∗ : < k, σv+ − v+ > +
1
2
∈ Z

}
N ∗

y0
= {k ∈ L∗ : < k, (0, y0) >∈ Z− {0}}

N ∗
σ =

{
k ∈ L∗ : < k, vσ − (0, y0) > +

1
2
∈ Z

}
N ∗

σ̃ =
{

k ∈ L∗ : < k, vσ − (0, y0) > ±1
4
∈ Z

}
.

The last four sets are not modules. The smallest modules generated by each of
them are, respectively, N ∗ = N ∗ ∪M∗, which equals L∗ under the conditions of
Lemma 4.1,

N ∗
y0

= N ∗
y0
∪M∗

y0
, N ∗

σ = N ∗
σ ∪M∗

σ and N ∗
σ̃ = N ∗

σ̃ ∪N ∗
σ ,

where all the unions are disjoint and M∗
y0

and M∗
σ are the modules

M∗
y0

= {k ∈ L∗ : < k, (0, y0) >= 0} and M∗
σ = {k ∈ L∗ : < k, vσ − (0, y0) >∈ Z} .
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We summarize below some properties of N ∗
σ and N ∗

σ̃ that will be used in the
sequel.

Properties of N ∗
σ and N ∗

σ̃ . Let m1,m2 ∈ Z.

(1) If g1, g2 ∈ N ∗
σ then m1g1 + m2g2 ∈

{
M∗

σ if m1 + m2 even
N ∗

σ if m1 + m2 odd .

(2) If g1, g2 ∈ N ∗
σ̃ then m1g1 + m2g2 ∈

{
N ∗

σ if m1 + m2 even
N ∗

σ̃ if m1 + m2 odd
.

4.4. reformulation of Proposition 4.1. With this notation Proposition 4.1 may
be written the following equivalent way:

Proposition 4.2. All functions in Πy0(XΓ) are invariant under the action of
(vα, α) ∈ Rn n O(n) if and only if one of the following conditions holds:

(A) (v+, α+) ∈ Γ and L∗ = N ∗
y0
∪M∗

+,
(B) (v−, α−) ∈ Γ and L∗ = N ∗

y0
∪M∗

−,
(C) both (vσ, σ) and (v+, α+) belong to Γ and, moreover,

M∗ ⊂
(
N ∗

y0
∪M∗

+ ∪N ∗
σ

)
and N ∗ ⊂

(
N ∗

y0
∪

(
M∗

− ∩N ∗
σ̃

))
.

5. Proof of Proposition 4.1

5.1. structure for the proof of Proposition 4.1. There are three main steps in
the proof of Proposition 4.1. First, in Lemma 5.1, we write the (vα, α)-invariance of
the projection of f ∈ XΓ as conditions relating the operator Πy0 to the projection
of the dual lattice L∗ and to the coefficients of the formal Fourier expansion of
f in waves. Second, we prove that the conditions (A), (B) and (C) are sufficient,
writing explicitly the restrictions they impose on L∗ and on the Fourier coefficients.
Finally we conclude that the conditions of Proposition 4.1 are also necessary by the
(vα, α)-invariance of the projection of the functions Ik, whose real and imaginary
components are the simplest Γ-invariant functions. This last part is divided into
lemmas.

The main tools used in this proof are properties of waves and of Fourier coef-
ficients, due to the symmetries in Γ and to the symmetry (vα, α) ∈ Rn n O(n),
together with properties of the modules and subsets of L∗ defined above.

5.2. symmetry of Πy0(XΓ) related to L∗1. For αL∗1 = {αk1 : k1 ∈ L∗1}, we have:

Lemma 5.1. Let f ∈ XΓ and (vα, α) ∈ Rn n O(n). The projection Πy0(f)(x) is
(vα, α)-invariant if and only if for each k1 ∈ L∗1 the following conditions hold:

(1) if k1 ∈ L∗1 ∩ αL∗1 then D(k1) = ωk1(−vα)D(α−1k1),
(2) if k1 /∈ L∗1 ∩ αL∗1 then D(k1) = 0.

Proof. Notice first that the equality

Πy0(f)(x) = (vα, α) ·Πy0(f)(x) = Πy0(f)(α−1x− α−1vα)

is equivalent to

(5.1)
∑

k1∈L∗1

ωk1(x)D(k1) =
∑

k1∈L∗1

ωk1(α
−1x)ωk1(−α−1vα)D(k1),

where, by orthogonality, the right hand side equals
∑

k1∈L∗1
ωαk1(x)ωαk1(−vα)D(k1)

and, for k̃1 = αk1, is given by
∑

k̃1∈αL∗1
ωk̃1

(x)ωk̃1
(−vα)D(α−1k̃1). Thus, by the

unicity of the Fourier expansion, expression (5.1) is valid for all x ∈ Rn if and only
if, for any k1 ∈ L∗1, the conditions hold. �
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5.3. proof of sufficiency in Proposition 4.1. For each case we write D(k1) −
ωk1(−vα)D(α−1k1), in the form∑

k2:(k1,k2)∈L∗
C(k1, k2)G(k1, k2)

∫ y0

0

ωk2(y)dy,

and show that it is zero, by an explicit computation of G(k1, k2).

Proof. Suppose either condition (A) or condition (B) happens. Since either α+

or α−, α± =
(

α 0
0 ±1

)
, belongs to J then α±L∗ = {α±k : k ∈ L∗} = L∗,

which implies αL∗1 = L∗1. Therefore, for any f ∈ XΓ, the projection Πy0(f)(x) =∑
k1∈L∗1

ωk1(x)D(k1) is (vα, α)-invariant if and only if condition (1) of Lemma 5.1
is valid for all k1 ∈ L∗1.

The (v±, α±)-invariance of f implies C(k) = ωk(−v±)C(α−1
± k) for all its Fourier

coefficients. Writing L∗± = {k2 : (α−1k1,±k2) ∈ L∗} then D(α−1k1) is∑
k2∈L∗±

C(α−1k1,±k2)
∫ y0

0

ω±k2(y)dy =
∑

k2∈L∗±

ωk(v±)C(k1, k2)
∫ y0

0

ω±k2(y)dy.

As {k2 : (k1, k2) ∈ L∗} = L∗± and using, in the minus sign case, the property

(5.2)
∫ y0

0

ω−k2(y)dy = ωk2(−y0)
∫ y0

0

ωk2(y)dy,

the above expressions equal either∑
k2:(k1,k2)∈L∗

ωk(v+)C(k1, k2)
∫ y0

0

ωk2(y)dy

or ∑
k2:(k1,k2)∈L∗

ωk(v−)ωk2(−y0)C(k1, k2)
∫ y0

0

ωk2(y)dy.

Thus D(k1)− ωk1(−vα)D(α−1k1), for all k1 ∈ L∗1, is∑
k2:(k1,k2)∈L∗

(1− ωk(v± − (vα, β±)))C(k1, k2)
∫ y0

0

ωk2(y)dy,

with β+ = 0 and β− = y0, which is zero because either
∫ y0

0
ωk2(y)dy = 0, if

< k, (0, y0) >∈ Z− {0}, or 1− ωk(v± − (vα, β±)) = 0 for < k, v± − (vα, β±) >∈ Z.

When (C) happens then σ =
(

In 0
0 −1

)
∈ J and so (k1,−k2) ∈ L∗ if (k1, k2) ∈

L∗. Thus D(k1) is

1
2

∑
k2:(k1,k2)∈L∗

(
C(k1, k2)

∫ y0

0

ωk2(y)dy + C(k1,−k2)
∫ y0

0

ω−k2(y)dy

)

=
1
2

∑
k2:(k1,k2)∈L∗

(1 + ωk(vσ)ωk2(−y0))C(k1, k2)
∫ y0

0

ωk2(y)dy,

by property (5.2), and D(α−1k1) equals

1
2

∑
k2:(α−1k1,k2)∈L∗

(
C(α−1k1, k2)

∫ y0

0

ωk2(y)dy + C(α−1k1,−k2)
∫ y0

0

ω−k2(y)dy

)

=
1
2

∑
k2:(α−1k1,k2)∈L∗

(ωk(v+) + ωk(v−)ωk2(−y0))C(k1, k2)
∫ y0

0

ωk2(y)dy

by the invariance of f under the action of (v+, α+) and (v−, α−), as α− = σα+ ∈ J.
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Condition (1) of Lemma 5.1 is valid for all k1 ∈ L∗1 because the terms of the
summation in the expression below vanish:

D(k1)− ωk1(−vα)D(α−1k1) =
∑

k2:(k1,k2)∈L∗
G(k1, k2)C(k1, k2)

∫ y0

0

ωk2(y)dy,

where

G(k1, k2) = 1 + ωk(vσ)ωk2(−y0)− ωk1(−vα) (ωk(v+) + ωk(v−)ωk2(−y0)) .

If (Ci) happens then
∫ y0

0
ωk2(y)dy = 0, otherwise, we show below that G(k1, k2) = 0

if k verifies any other condition of case (C).
First notice that the hypotheses of Lemma 4.1 are valid and (see the proof of

Lemma 4.1)

(5.3) ωk(v−) = ωk(vσ)ωk(σv+).

If < k, σv+ − v+ >∈ Z then ωk(σv+ − v+) = 1 and G(k1, k2) equals, using (5.3),

1 + ωk(vσ)ωk2(−y0)− ωk1(−vα)ωk(v+) (1 + ωk(σv+ − v+)ωk(vσ)ωk2(−y0))

= (1− ωk(v+ − (vα, 0))) (1 + ωk(vσ − (0, y0))) = 0
because either 1−ωk(v+−(vα, 0)) = 0, by condition (Cii), or 1+ωk(vσ−(0, y0)) = 0,
by (Ciii).

If < k, σv+ − v+ > + 1
2 ∈ Z then ωk(σv+)ωk(−v+) = −1 and

ωk1(−vα)ωk(v+) = −ωk1(−vα)ωk(σv+)
= −ωk1(−vα)ωk(v−)ωk(−vσ), by expression (5.3)
= −ωk(v− − (vα, y0))ωk(−vσ + (0, y0)).

Thus G(k1, k2) is 1+ωk(vσ−(0, y0))+ωk(v−−(vα, y0)) (ωk(−vσ + (0, y0))− 1) = 0
because, by condition (Civ), ωk(vσ−(0, y0)) = ±i and ωk(v−−(vα, y0)) = 1. Notice
that we use the property ωk(−v) = ωk(v) in order to obtain this result. �

5.4. proof of necessity in Proposition 4.1. We want to show that if the hypoth-
esis of Proposition 4.1 holds for the projection of the simplest invariant functions
in XΓ, the real and imaginary parts of

Ik(x, y) =
∑
δ∈J

ωδk(−vδ)ωδk(x, y),

then one of the three conditions (A), (B) or (C) must hold.
The functions Ik are given by a summation over J, which corresponds to an orbit

on L∗. This orbit is projected into L∗1 as a new orbit that may be used as an index
for the summation of Πy0(Ik) wirting it in a form suitable for the use of Lemma 5.1.

Proof. For δ ∈ O(n + 1) and k ∈ L∗, let δk = (k̃1, k̃2), where k̃1 ∈ Rn and
k̃2 ∈ R. With the notation δk|1 = k̃1 and δk|2 = k̃2, the projections of the Ik,
with k ∈ L∗, have the form Πy0(Ik)(x) =

∑
δ∈J ωδk|1(x)D′(δ, k), where D′(δ, k) =

ωδk(−vδ)
∫ y0

0
ωδk|2(y)dy. This corresponds to a summation over the projection of

the orbit Jk given by: Jk|1 = {δk|1 : δ ∈ J} ⊂ L∗1. Grouping the terms with the
same first n components, we obtain

Πy0(Ik)(x) =
∑

k̃1∈Jk|1

ωk̃1
(x)

∑
k̃2:(k̃1,k̃2)∈Jk

D′(δ, k̃).

In particular, for k = (k1, k2), the Fourier coefficient of Πy0(Ik) associated to ωk1

is
∑

δ∈JId(k) D′(δ, k), where JId(k) is the subset of J which preserves k1, JId(k) =
{δ ∈ J : δk|1 = k1} . Analogously, we define Jα(k) =

{
δ ∈ J : δk|1 = α−1k1

}
.

Since Πy0(Ik) is (vα, α)-invariant, by hypothesis, then Lemma 5.1 holds and
therefore, for all k = (k1, k2) ∈ L∗, we have:
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(a) if k1 ∈ L∗1 ∩ αL∗1 then
∑

δ∈JId(k) D′(δ, k) = ωk1(−vα)
∑

δ∈Jα(k) D′(δ, k),
(b) if k1 /∈ L∗1 ∩ αL∗1 then

∑
δ∈JId(k) D′(δ, k) = 0.

The rest of the proof is divided in three Lemmas. Although these conditions
involve the sets JId(k) and Jα(k) for all k ∈ L∗, we show in Lemmas 5.2, 5.3
and 5.4 below that for this proof we will only need the elements of J that lie in the
following subsets:

JId = {Idn+1, σ} ∩ J and Jα =
{
α−1

+ , α−1
−

}
∩ J.

In Lemma 5.2 we describe all the possibilities for JId and Jα and obtain in each
case some consequences for L∗ in terms of the subsets defined before the statement
of Proposition 4.2. In Lemma 5.3 we study the set of all k ∈ L∗ such that either
JId(k) 6= JId or Jα(k) 6= Jα. Finally, conditions (A), (B) and (C) are obtained in
Lemma 5.4. �

5.5. the sets JId and Jα.

Properties of JId(k) and Jα(k). Let k ∈ L∗.
(1) JId(k) = {δ ∈ J : δk = k ∨ δk = σk} and

Jα(k) =
{
δ ∈ J : δk = α−1

+ k ∨ δk = α−1
− k

}
.

(2) JId ⊂ JId(k) , Jα ⊂ Jα(k) and JId(0, 0) = Jα(0, 0) = J.

Proof. Property (1), for JId(k), follows by orthogonality of J, since any element of
the orbit J(k1, k2) whose n first components equal k1 is of the form (k1,±k2). For
Jα(k), the elements on J(k1, k2) with n first components α−1k1 are of the form
(α−1k1,±k2), by orthogonality of J and of α.

Property (2) follows directly from the previous one and from the definitions of
JId and Jα. �

5.6. the set O∗. Next lemma describes, under the hypothesis of Proposition 4.1,
the structure of the set

O∗ =
{
k ∈ L∗ : JId(k) = JId ∧ Jα(k) = Jα

}
according to each of the possible cases for JId and Jα. In its proof we use the
definition of O∗ in order to simplify conditions (a) and (b). Applying the properties
of the waves we will be able to restate these conditions in terms of the submodules
and subsets of L∗ previously defined.

Lemma 5.2. Suppose that
(a) if k1 ∈ L∗1 ∩ αL∗1 then

∑
δ∈JId(k) D′(δ, k) = ωk1(−vα)

∑
δ∈Jα(k) D′(δ, k) and

(b) if k1 /∈ L∗1 ∩ αL∗1 then
∑

δ∈JId(k) D′(δ, k) = 0,

for all k = (k1, k2) ∈ L∗. Then one of the following cases holds:
(1) JId = {Idn+1}, Jα = ∅ and O∗ ⊂ N ∗

y0
,

(2) JId = {Idn+1, σ}, Jα = ∅ and O∗ ⊂
(
N ∗

y0
∪N ∗

σ

)
,

(3) JId = {Idn+1}, Jα = {α−1
+ } and O∗ ⊂

(
N ∗

y0
∪M∗

+

)
,

(4) JId = {Idn+1}, Jα = {α−1
− } and O∗ ⊂

(
N ∗

y0
∪M∗

−
)
,

(5) JId = {Idn+1, σ}, Jα = {α−1
+ , α−1

− },
(O∗ ∩M∗) ⊂

(
N ∗

y0
∪M∗

+ ∪N ∗
σ

)
and (O∗ ∩N ∗) ⊂

(
N ∗

y0
∪

(
M∗

− ∩N ∗
σ̃

))
.

Proof. Cases (1) to (5) enumerate all the possibilities for JId and Jα. This happens
because JId is a group; if α−1

+ , α−1
− ∈ J then α+α−1

− = σ ∈ J and if σ ∈ J then
either Jα = ∅ or Jα has two elements.

In this proof we will use the property

(5.4) ωk(−σvσ) = ωk(vσ) if k ∈ L∗ and (vσ, σ) ∈ Γ,
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and this hods because if (vσ, σ) ∈ Γ then (vσ, σ) · (vσ, σ) = (vσ + σvσ, I) ∈ Γ
implying vσ + σvσ ∈ L.

If Jα = ∅ then, for all k = (k1, k2) ∈ O∗, the conditions in the hypothe-
sis of the lemma become

∑
δ∈JId D′(δ, k) = 0. Thus, either

∫ y0

0
ωk2(y)dy = 0 or∫ y0

0
ωk2(y)dy + ωσk(−vσ)

∫ y0

0
ω−k2(y)dy = 0, according to the absence or presence

of σ in J. Using (5.2), the second case is equivalent to

(1 + ωσk(−vσ)ωk2(−y0))
∫ y0

0

ωk2(y)dy = 0 ⇔

⇔ (1 + ωk(vσ − (0, y0)))
∫ y0

0

ωk2(y)dy = 0,

by orthogonality and property (5.4). Cases (1) and (2) follow because∫ y0

0
ωk2(y)dy = 0 implies k ∈ N ∗

y0
and 1 + ωk(vσ − (0, y0)) = 0 implies k ∈ N ∗

σ .
In the remaining cases either α+ or α− belong to J. Thus, αL∗1 = L∗1 and the

first condition in the hypothesis of the lemma must be verified for all k1 ∈ L∗1. For
k ∈ O∗ this condition becomes

(5.5)
∑

δ∈JId

D′(δ, k) = ωk1(−vα)
∑
δ∈Jα

D′(δ, k).

Recall that (vδ, δ)−1 = (−δ−1vδ, δ
−1) when writing D′(δ, k) explicitly, below. In

case (3), the condition above is
(
1− ωk1(−vα)ωα−1

+ k(α−1
+ v+)

) ∫ y0

0
ωk2(y)dy = 0

and, by orthogonality, is equivalent to (1− ωk1(−vα)ωk(v+))
∫ y0

0
ωk2(y)dy = 0. The

result follows because 1− ωk1(−vα)ωk(v+) = 0 implies k ∈M∗
+.

For case (4), condition (5.5) is equivalent to∫ y0

0

ωk2(y)dy − ωk1(−vα)ωα−1
− k(α−1

− v−)
∫ y0

0

ω−k2(y)dy = 0 ⇔

⇔ (1− ωk1(−vα)ωk(v−)ωk2(−y0))
∫ y0

0

ωk2(y)dy = 0.

Thus, either k ∈ N ∗
y0

or 1− ωk1(−vα)ωk(v−)ωk2(−y0) = 0, which implies k ∈M∗
−.

Condition (5.5) is, for case (5), equivalent to∫ y0

0

ωk2(y)dy + ωσk(−vσ)
∫ y0

0

ω−k2(y)dy−

−ωk1(−vα)
(
ωα−1

+ k(α−1
+ v+)

∫ y0

0

ωk2(y)dy + ωα−1
− k(α−1

− v−)
∫ y0

0

ω−k2(y)dy

)
=0,

which, by orthogonality and properties (5.2) and (5.4), has the form G(k1, k2)
∫ y0

0
ωk2(y)dy =

0, where G(k1, k2) = 1 + ωk(vσ)ωk2(−y0)− ωk1(−vα) (ωk(v+) + ωk(v−)ωk2(−y0)) ,
as in the proof of Proposition 4.1. Therefore, either k ∈ N ∗

y0
or G(k1, k2) = 0.

In case (5) we are under the conditions of Lemma 4.1 and so O∗ ⊂ (M∗ ∪N ∗).
If k = (k1, k2) ∈ M∗ then G(k1, k2) = 0 is equivalent, as shown in the proof of
Proposition 4.1, to (1− ωk(v+ − (vα, 0))) (1 + ωk(vσ − (0, y0))) = 0 and the result
follows. For k = (k1, k2) ∈ N ∗, the term G(k1, k2) equals, by the proof of Proposi-
tion 4.1, 1 + ωk(vσ − (0, y0)) + ωk(v− − (vα, y0))

(
ωk(vσ − (0, y0))− 1

)
. Equation

G(k1, k2) = 0 is equivalent, for ωk(vσ − (0, y0)) = z1 and ωk(v− − (vα, y0)) = z2, to
(1 + z1)/(1− z1) = z2 because z1 = 1 is not a solution of G(k1, k2) = 0. Therefore,
|(1 + z1)/(1− z1)| = 1 which implies Re(z1) = 0 ⇔ ωk(vσ − (0, y0)) = ±i and
z2 = ωk(v− − (vα, y0)) = 1, leading to k ∈

(
M∗

− ∩N ∗
σ̃

)
. �
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5.7. the set P∗. Let P∗ be the complement of O∗ in L∗:

P∗ =
{
k ∈ L∗ : JId(k) 6= JId ∨ Jα(k) 6= Jα

}
.

In Lemma 5.4 we reformulate the cases of Lemma 5.2 in terms of L∗ instead of O∗.
We show that the set P∗ is very small. In the first two cases of Lemma 5.2 it is too
small so these cases cannot occur. In the remaining cases we show that P∗ may be
ignored and, therefore, that L∗ can replace O∗ in the expressions given. Thus, the
estimate of the size of P∗ in the next lemma is an essential step.

Lemma 5.3. P∗ is contained in the union of a finite number of vector subspaces
of Rn+1 with codimension at least one.

Proof. P∗ is the union of the submodules⋃
δ∈J−JId

M∗
δ,Id ∪

⋃
δ∈J−Jα

M∗
δ,α

whereM∗
δ,Id =

{
k ∈ L∗ : δ ∈ JId(k)

}
and M∗

δ,α = {k ∈ L∗ : δ ∈ Jα(k)} . This union
is finite because J is a finite group. Moreover, for all ξ ∈ O(n + 1), Fix(ξ) ={
(x, y) ∈ Rn+1 : ξ(x, y) = (x, y)

}
is a vector subspace of Rn+1 and Fix(ξ) = Rn+1 ⇔

ξ = Idn+1.
Let δ ∈ J− JId. If k ∈ M∗

δ,Id then either δk = k or δk = σk ⇔ σδk = k, which
implies M∗

δ,Id ⊂ (Fix(δ) ∪ Fix(σδ)) . Moreover, neither δ = Idn+1 nor σδ = Idn+1,
by the hypothesis δ ∈ J−JId. Thus, the codimensions of subspaces the Fix(δ) and
Fix(σδ) are at least one.

Analogously, if δ ∈ J − Jα and k ∈ M∗
δ,α then either δk = α−1

+ k ⇔ α+δk = k

or δk = α−1
− k ⇔ α−δk = k. Therefore, M∗

δ,α ⊂ (Fix(α+δ) ∪ Fix(α−δ)) , where
both Fix(α+δ) and Fix(α−δ) have codimensions at least one due to the hypothesis
δ ∈ J− Jα. �

Lemma 5.4. Suppose that
(a) if k1 ∈ L∗1 ∩ αL∗1 then

∑
δ∈JId(k) D′(δ, k) = ωk1(−vα)

∑
δ∈Jα(k) D′(δ, k) and

(b) if k1 /∈ L∗1 ∩ αL∗1 then
∑

δ∈JId(k) D′(δ, k) = 0,

for all k = (k1, k2) ∈ L∗. Then one of the following cases holds:
(A) Jα = {α−1

+ } and L∗ = N ∗
y0
∪M∗

+,
(B) Jα = {α−1

− } and L∗ = N ∗
y0
∪M∗

−,
(C) Jα = {α−1

+ , α−1
− },

M∗ ⊂
(
N ∗

y0
∪M∗

+ ∪N ∗
σ

)
and N ∗ ⊂

(
N ∗

y0
∪

(
M∗

− ∩N ∗
σ̃

))
.

Notice that the conditions in Lemma 5.4 are the same of Proposition 4.1 as
δ−1 ∈ Jα is equivalent to (vδ, δ) ∈ Γ for some vδ ∈ Rn+1, by definition.

Proof. At first, we prove that

(5.6)
(
M∗

y0
∩ P∗)− {(0, 0)} = ∅.

If k ∈ M∗
y0

then k = (k1, 0) for some k1 ∈ Rn. If, moreover, k ∈ P∗ then either
δ(k1, 0) = (k1, 0), for some δ ∈ J−JId, or δ(k1, 0) = (α−1k1, 0), for some δ ∈ J−Jα,
by the definition of P∗ and the properties of JId(k) and Jα(k). By orthogonality
of δ the first case implies, for k1 6= 0, either δ = I or δ = σ, which is equivalent to
δ ∈ JId. Similarly, for k1 6= 0, the second case implies δ ∈ Jα, by orthogonality of
δ and α.

For any element k 6= (0, 0) of the dual lattice L∗, let g 6= (0, 0) be the smallest
element of L∗ in the direction of k. Thus, there are elements g1, . . . , gn ∈ L∗ such
that L∗ = {g, g1, . . . , gn}Z .
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Let M∗
k be the submodule M∗

k = {g1, g2, . . . , gn}Z ⊂ L∗ and, given h ∈M∗
k, let

Q∗
k,h be the set Q∗

k,h = {k + mh : m ∈ Z} .
We claim that there is some h ∈M∗

k such thatQ∗
k,h∩P∗ is a finite set. Lemma 5.3

asserts that P∗ ⊂
⋃m

i=1 Hi, where each Hi is a codimension one subspace of Rn+1.
Let p ∈ N and consider the subset of k +M∗

k with pn elements:

Wp = {k + m1g1 + · · ·+ mngn : mi ∈ Z, 1 ≤ mi ≤ p} .

Each Hi has at most pn−1 elements in Wp and so Wp∩
⋃m

i=1 Hi has, at most, mpn−1

elements. For p > m we have pn > mpn−1 and there is some h ∈ M∗ such that
k +h /∈

⋃m
i=1 Hi. For this h, let r be a line containing Q∗

k,h. Since for each i, r∩Hi

is either r or a finite set, and r contains at least the element k + h /∈ Hi, it follows
that

⋃m
i=1 (r ∩Hi) is a finite set. The claim is proved because Q∗

k,h∩P∗ is a subset
of

⋃m
i=1 (r ∩Hi).

Let k be any element of L∗−{(0, 0)} and choose some h ∈M∗
k such thatQ∗

k,h∩P∗

is a finite set. For simplicity of notation we write Q∗ instead of Q∗
k,h.

The intersection Q∗∩N ∗
y0

is either the empty set or a set with only a point or an
infinite set of equally spaced points. This happens because N ∗

y0
is a module and the

existence of any two distinct elements of Q∗ ∩N ∗
y0

, k + m1h and k + m2h, implies
(m2 −m1)h ∈ N ∗

y0
and

{k + m1h + m(m2 −m1)h : m ∈ Z} ⊂
(
Q∗ ∩N ∗

y0

)
.

A characteristic period, τy0 , is given by the smallest difference between two elements
of Q∗ ∩N ∗

y0
.

For the set Q∗ ∩ N ∗
σ there are also the three possible results. Although N ∗

σ is
not a module, the smallest difference between two elements of Q∗ ∩ N ∗

σ defines a
period τσ ∈ M∗

σ, by properties of N ∗
σ , in subsection 4.3. Thus, whenever Q∗ ∩N ∗

σ

has more than one element, if k + m1h ∈ N ∗
σ then

{k + m1h + mτσ : m ∈ Z} = Q∗ ∩N ∗
σ .

An analogous construction may be done for the sets Q∗ ∩M∗
+ and Q∗ ∩M∗

−.
Thus, if these sets have more than one element we may define, respectively, char-
acteristic periods τ+ and τ−.

If the set Q∗ ∩
(
M∗

− ∩N ∗
σ̃

)
has two distinct elements, k + m1h and k + m2h,

then (m2 −m1)h ∈
(
M∗

− ∩N ∗
σ

)
and

{k + m1h + m(m2 −m1)h : m ∈ Z} ⊂
(
Q∗ ∩

(
M∗

− ∩N ∗
σ̃

))
,

by the module structure of M∗
− and by the properties of N ∗

σ̃ , in subsection 4.3. As
above, this set has also a period, τσ̃.

Under the hypothesis of the Lemma, one of the cases (1) to (5) of Lemma 5.2
must happen.

If case (1) happens then L∗ = N ∗
y0
∪P∗, which implies M∗

y0
⊂ P∗ and, by (5.6),

M∗
y0

= {(0, 0)}. Moreover, Q∗ ∩ N ∗
y0

must be an infinite set because Q∗ ∩ P∗ is,
by construction, finite. Thus, there exists the period τy0 implying that Q∗−N ∗

y0
is

either the empty set or an infinite set. Since
(
Q∗ −N ∗

y0

)
⊂ (Q∗ ∩ P∗) is finite, it

follows that L∗ = N ∗
y0

. However, by property (2) of the bases, in the next section,
in this case M∗

y0
6= {(0, 0)} and so case (1) cannot occur.

In case (2), L∗ = N ∗
y0
∪N ∗

σ ∪P∗ which, by (5.6), implies M∗
y0
⊂ (N ∗

σ ∪ {(0, 0)}).
Moreover, M∗

y0
6= {(0, 0)} due to the existence of σ in J, (see properties (2) and

(3) of the bases. Suppose k̃ ∈ M∗
y0

and k̃ 6= (0, 0). Thus, k̃ ∈ N ∗
σ and 2k̃ ∈ M∗

y0
.

However, by properties of N ∗
σ in subsection 4.3, 2k̃ /∈ N ∗

σ and so case (2) is also
impossible.
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For case (3) we follow the arguments of case (1). As L∗ = N ∗
y0
∪ M∗

+ ∪ P∗

then Q∗ ∩
(
N ∗

y0
∪M∗

+

)
is an infinite set and at least one of the periods τy0 or

τ+ must exist. The least common multiple of the existing periods is a period of
Q∗∩

(
N ∗

y0
∪M∗

+

)
which implies that Q∗−

(
N ∗

y0
∪M∗

+

)
is the empty set. Therefore

k ∈
(
N ∗

y0
∪M∗

+

)
and condition (A) follows by definition of k and because (0, 0) ∈

M∗
+.
In a similar way, with M∗

− and τ− instead of M∗
+ and τ+, we prove that case (4)

of Lemma 5.2 leads to condition (B).
In case (5) (Q∗ ∩M∗) −

(
N ∗

y0
∪M∗

+ ∪N ∗
σ

)
must be the empty set by the nec-

essary existence of, at least, one of the periods τy0 , τ+ or τσ and, analogously,
(Q∗ ∩N ∗) −

(
N ∗

y0
∪

(
M∗

− ∩N ∗
σ̃

))
is empty due to the least common multiple of

the periods τy0 and τσ̃. Besides, either k ∈ (Q∗ ∩M∗) or k ∈ (Q∗ ∩N ∗) and, as
(0, 0) /∈ N ∗, condition (C) follows. �

This completes the proof of Propositions 4.1 and 4.2.

6. Proof of Theorem 3.1

Theorem 3.1 will be proved when we show how conditions (A), (B) and (C) of
Proposition 4.1 lead to the conclusion that one of the cases (I), (II) and (III) of the
theorem must hold.

Proposition 4.1 states that the elements of Γ ensuring some symmetry after pro-
jection have orthogonal components α+ or α−. Information on the non-orthogonal
components (v+, v− ∈ Rn+1) appears as constraints on the structure of the dual
lattice L∗.

Our aim is then to translate the restrictions on the group Γ and its dual lattice
L∗ into restrictions on Γ and its lattice L. One major tool will be to use the
conditions of Proposition 4.2 to obtain restrictions on a basis of L∗. This in turn
is used to find a suitable basis for L. The properties of the modules involved will
also be extensively used.

We begin by stating some properties of the bases for the lattices. Then we show
that the conditions in Proposition 4.2 imply those of Theorem 3.1. Each condition
of Proposition 4.2 is treated in a separate lemma.

6.1. the lattices L and L∗.

Properties of the bases for L and L∗ and notation.
Let {l1, . . . , ln+1} be a basis for L and

{
l∗1, . . . , l

∗
n+1

}
be its dual basis, i.e., a basis

for L∗ such that < l∗i , lj >= δij for i, j ∈ {1, . . . , n + 1}.

For M =

 l1
...

ln+1

 then M∗ =
(
M−1

)T =

 l∗1
...

l∗n+1

 and the following prop-

erties hold:

(1) If (vδ, δ) ∈ Γ then, given the real numbers r1, . . . , rn+1, we may write vδ =∑n+1
i=1 sili with (si − ri) ∈ [0, 1[ for all i ∈ {1, . . . , n + 1}.

(2) If (0, a) ∈ L for some a 6= 0 then we may choose the basis {l1, . . . , ln+1} for
L such that
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(i) M =
(

A B
0 b

)
, where b = a

m for some m ∈ Z ,

A =

 a1

...
an

 , with ai ∈ Rn for i ∈ {1, . . . , n} and

B =

 b1

...
bn

 , with bi ∈ R for i ∈ {1, . . . , n}.

(ii) M∗ =
(

A∗ 0
− 1

b BT A∗ 1
b

)
, where A∗ =

(
A−1

)T =

 a∗1
...

a∗n

 , with <

a∗i , aj >= δij for i, j ∈ {1, . . . , n}.
(iii) The set {a1, . . . , an} is a basis for a lattice in Rn and {a∗1, . . . , a∗n} is

a basis for its dual.
(iv) l∗i = (a∗i , 0) for i ∈ {1, . . . , n} and M∗

y0
= {l∗1, . . . , l∗n}Z .

(3) If σ belongs to the holohedry of L then there is some nonzero a ∈ R such
that (0, a) ∈ L. Moreover, each entry bi of the matrix B defined above, may
be taken to be either zero or b/2.

Proof. (1) The set {l1, . . . , ln+1} is a basis for Rn+1 and so vδ =
∑n+1

i=1 sili with
si ∈ R for all i ∈ {1, . . . , n + 1}. As vδ is defined up to elements of L then we may
restrict each si to an interval [ri, ri + 1[, where ri ∈ R.

(2) Given (0, a) ∈ L, a 6= 0, let (0, b), b 6= 0, be the smallest element of L in the
direction of (0, a). Thus (0, b) is a generator and (0, a) = m(0, b) for some m ∈ Z.
Moreover, there are elements l1, . . . , ln in L such that L = {l1, . . . , ln, (0, b)}Z. For
li = (ai, bi), with i ∈ {1, . . . , n}, and (0, b) = ln+1 we obtain the matrix M and
it is easy to show that M∗ has the form given in (2ii). Property (2iv) follows by
definition of M∗

y0
.

(3) There is some (c, d) in L with d 6= 0. If σL = L then (c, d) − σ(c, d) =
(0, 2d) ∈ L and property (2) is valid. For li = (ai, bi), with i ∈ {1, . . . , n}, the
elements li − σli = (0, 2bi) belong to L and so (0, 2bi) = m(0, b) for some m ∈ Z.
Therefore li =

(
ai,

mb
2

)
, and either li = (ai, 0) or li =

(
ai,

b
2

)
up to multiples of

(0, b) = ln+1. �

6.2. L∗ constraining Γ.

Lemma 6.1. If (v+, α+) ∈ Γ and L∗ = N ∗
y0
∪ M∗

+ then one of the following
conditions of Theorem 3.1 holds:

(I) ((vα, 0), α+) ∈ Γ,
(III) (0, y0) ∈ L and ((vα, y1), α+) ∈ Γ for some y1 ∈ R .

Proof. If L∗ = N ∗
y0
∪M∗

+ then either L∗ = N ∗
y0

or L∗ = M∗
+. In the second case

< k, v+ − (vα, 0) >∈ Z for all k ∈ L∗, i.e. , v+ − (vα, 0) ∈ L, and so

(−v+ + (vα, 0), I) · (v+, α+) = ((vα, 0), α+) ∈ Γ.

If L∗ = N ∗
y0

then (0, y0) ∈ L and we may use the basis
{
l∗1, . . . , l

∗
n+1

}
for L∗ having

the properties (2) above. As M∗
y0
⊂ M∗

+, it follows that < l∗i , v+ − (vα, 0) >∈ Z
for all i ∈ {1, . . . n}. Now we show that v+− (vα, y1) ∈ L for some y1 ∈ R. For any
element k ∈ L∗ and any y1 ∈ R,

< k, v+ − (vα, y1) > = < k, v+ − (vα, 0) > − < k, (0, y1) >
= m1 + m2 < l∗n+1, v+ − (vα, 0) > −m2

m
y0

y1,
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with m1,m2 ∈ Z. Taking, for instance, y1 =< l∗n+1, v+ − (vα, 0) > y0
m we obtain <

k, v+− (vα, y1) >∈ Z. Thus, (−v+ + (vα, y1), I) · (v+, α+) = ((vα, y1), α+) ∈ Γ. �

Lemma 6.2. If (v−, α−) ∈ Γ and L∗ = N ∗
y0
∪ M∗

− then one of the following
conditions of Theorem 3.1 holds:

(II) ((vα, y0), α−) ∈ Γ,
(III) (0, y0) ∈ L and ((vα, y1), α−) ∈ Γ for some y1 ∈ R .

Proof. The proof of this lemma is analogous to the previous one with v−− (vα, y0)
instead of v+ − (vα, 0) and y1 =< l∗n+1, v− − (vα, y0) > y0

m + y0. �

Lemma 6.3. If both (vσ, σ) and (v+, α+) belong to Γ, and if both

M∗ ⊂
(
N ∗

y0
∪M∗

+ ∪N ∗
σ

)
and N ∗ ⊂

(
N ∗

y0
∪

(
M∗

− ∩N ∗
σ̃

))
,

then one of the following conditions of Theorem 3.1 holds:
(I) ((vα, 0), α+) ∈ Γ,
(II) ((vα, y0), α−) ∈ Γ,
(III) (0, y0) ∈ L and either ((vα, y1), α+) ∈ Γ or ((vα, y1), α−) ∈ Γ, for some

y1 ∈ R .

The proof of Lemma 6.3 has three main steps. First we describe some properties
of the linear components of (vσ, σ) and (v+, α+), elements of Γ, and restrict the
bases of L and L∗ under the hypothesis of the Lemma. In particular we show that
either v1 = vα or we may choose a1 = 2 (v1 − vα). Afterwards, we prove the result
for each of these two cases.

Proof. Let v+ = (v1, v2) with v1 ∈ Rn and v2 ∈ R and notice that, since σ ∈ J,
the bases {l1, . . . , ln+1} and

{
l∗1, . . . , l

∗
n+1

}
have the properties (1) to (3) described

above, where, in particular, l1 = (a1, b1) and (0, b) ∈ L. We claim that the following
properties are also verified:

(1) vσ + σvσ ∈ L.
(2) σv+ − v+ = −(0, 2v2). Therefore

(i) (0, 4v2) ∈ L and
(ii) if (0, 2v2) ∈ L then N ∗ = ∅.

(3) M∗
y0
⊂

(
M∗

+ ∪N ∗
σ

)
.

(4) Either v1 = vα or we may choose a1 = 2 (v1 − vα).
(5) In both cases of property (4), l∗i ∈M∗

+ for all i ∈ {2, . . . , n}.
We now prove the claims above.
(1) This property has already been used and proved, see (5.4).
(2) Lemma 4.1 is valid and these properties are a consequence of the definition

of M∗ and N ∗.
(3) The sets M∗

y0
and N ∗ are disjoint, by (2) and by the property (2iv) of the

bases. Thus the hypothesis of Lemma 6.3 implies this result.
(4) The last property implies that for all i ∈ {1, . . . , n},

either < (a∗i , 0), v+ − (vα, 0) >∈ Z or < (a∗i , 0), vσ − (0, y0) > +
1
2
∈ Z.

If l∗i ∈ N ∗
σ then 2l∗i /∈ N ∗

σ and so, for all i ∈ {1, . . . , n},
2 < (a∗i , 0), v+ − (vα, 0) >=< a∗i , 2(v1 − vα) >∈ Z.

Therefore, 2(v1 − vα) =
∑n

i=1 miai with mi ∈ Z for all i ∈ {1, . . . , n} and, if
v1 6= vα, we may choose a1 = 2(v1−vα)

m for some m ∈ Z, by the property (2iii) of the
bases. If vα =

∑n
i=1 riai, with ri ∈ R, then, by property (1) of the bases, v+ may

be writen as
∑n+1

i=1 sili such that 2 (ri − si) ∈ [0, 2[ for all i ∈ {1, . . . , n}. Thus,
m = 1 and the result follows.
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(5) v1 − vα is either zero or a1/2. Therefore

< l∗i , v+ − (vα, 0) >=< a∗i , v1 − vα >= 0,

for i ∈ {2, . . . , n}.
Property (4) above, divides Lemma 6.3 in two major cases that we consider

separately.

Suppose v1 = vα.
Thus v+ − (vα, 0) = (0, v2) and all the elements l∗1, . . . , l

∗
n belong to the module

M∗
+.
If l∗n+1 ∈M∗

+ then L∗ = M∗
+ and, as in the proof of Lemma 6.1, ((vα, 0), α+) ∈

Γ, i.e., condition (I) holds.
If l∗n+1 ∈ N ∗

y0
then, by property (2iv) of the bases, L∗ = N ∗

y0
, which implies

(0, y0) ∈ L. Condition (III) follows since ((vα, v2), α+) ∈ Γ.
Now suppose that

(6.1)
l∗n+1 /∈

(
M∗

+ ∪N ∗
y0

)
and, consequently,

l∗i + l∗n+1 /∈
(
M∗

+ ∪N ∗
y0

)
for all i ∈ {1, . . . , n}.

If (0, 2v2) ∈ L then we may choose 2v2 = b and the above conditions, as N ∗ = ∅,
lead to

l∗n+1 ∈ N ∗
σ and l∗i ∈M∗

σ for all i ∈ {1, . . . , n}
and, if vσ =

∑n+1
i=1 sili, with si ∈ [0, 1[ for i ∈ {1, . . . , n}, then

sn+1 −
y0

b
+

1
2
∈ Z and si = 0 for all i ∈ {1, . . . , n}.

Therefore, up to multiples of (0, b), we have vσ = (0, y0 + b/2) = (0, y0 + v2) and

((0, y0 + v2), σ) · ((vα, v2), α+) = ((vα, y0), α−) ∈ Γ,

i.e., condition (II).
If (0, 2v2) /∈ L then conditions (6.1) imply

l∗n+1 ∈M∗
− and l∗i ∈M∗

− for all i ∈ {1, . . . , n}.
Thus, L∗ = M∗

− and, as in Lemma 6.2, ((vα, y0), α−) ∈ Γ, completing the proof in
the case v1 = vα.

Now suppose that v1 6= vα and let a1 = 2(v1 − vα).
Since l∗1 /∈M∗

+, property (3) above implies

l∗1 ∈ N ∗
σ and l∗i ∈M∗

σ for all i ∈ {2, . . . , n},

which, for vσ =
∑n+1

i=1 sili, with si ∈ [0, 1[ for i ∈ {1, . . . , n}, can be writen as

s1 =
1
2

and si = 0 for all i ∈ {2, . . . , n}.

Thus, vσ = l1/2 + sn+1(0, b) and , by property (1), (a1, 0) ∈ L, i.e., b1 = 0. As
vσ = (a1/2, 0) + sn+1(0, b) = v+ − (vα, 0) + (0, sn+1b − v2), property (1) allows us
to conclude that (−σv+ + (vα, sn+1b− v2), σ) ∈ Γ.

If l∗n+1 ∈ N ∗
y0

then, as in the proof of the previous Lemma, (0, y0) ∈ L. Moreover,

(−σv+ + (vα, sn+1b− v2), σ) · (v+, α+) = ((vα, sn+1b− v2), α−) ∈ Γ

and condition (III) follows.
Now suppose that l∗n+1 /∈ N ∗

y0
and, consequently, that l∗i + l∗n+1 /∈ N ∗

y0
for

all i ∈ {1, . . . , n}. If l∗n+1 ∈ M∗
+ then < l∗n+1, l1/2 + (0, v2) >= v2/b ∈ Z and

(0, v2) ∈ L, since (0, b) ∈ L. Moreover, as l∗1 /∈M∗
+, we must impose l∗1 +l∗n+1 ∈ N ∗

σ ,
which implies sn+1 + y0/b ∈ Z. Therefore, choosing sn+1 = y0/b,

((0, v2), I) · (−σv+ + (vα, y0 − v2), σ) · (v+, α+) = ((vα, y0), α−) ∈ Γ.
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For (0, 2v2) ∈ L, the only missing case is l∗n+1 ∈ N ∗
σ , where sn+1+y0/b+1/2 ∈ Z

and, up to multiples of (0, b), sn+1b− v2 = y0. Condition (II) follows because

(−σv+ + (vα, y0), σ) · (v+, α+) = ((vα, y0), α−) ∈ Γ.

If (0, 2v2) /∈ L then both l∗n+1 and l∗i + l∗n+1 belong to M∗
− for i ∈ {1, . . . , n}.

Thus, as in the previous Lemma, condition (II) follows. �

7. Restriction

In this section we present, for the restriction of functions in XΓ, results that are
analogous to those obtained for the projection.

7.1. Theorem for the restriction. Recall that, for r ∈ R, the operator Φr

maps f(x, y) to its restriction to the affine subspace {(x, r) : x ∈ Rn} given by
Φr(f)(x) = f(x, r). If f ∈ XΓ then, formally,

Φr(f)(x) =
∑

k1∈L∗1

ωk1(x)
∑

k2:(k1,k2)∈L∗
C(k1, k2)ωk2(r),

where L∗1 = {k1 : (k1, k2) ∈ L∗}.

Theorem 7.1. All functions in Φr(XΓ) are invariant under the action of (vα, α) ∈
Rn n O(n) if and only if one of the following conditions holds:

(I) ((vα, 0), α+) ∈ Γ,
(II) ((vα, 2r), α−) ∈ Γ.

7.2. notes about the proof. For any function f ∈ XΓ its restriction, Φr(f), and
its projection, Πy0(f), have analogous formal Fourier series. The difference lies on
the term ωk2(r) of the restriction that corresponds, in the projection, to the integral∫ y0

0
ωk2(y)dy. Thus, the results concerning the restriction Φr are similar to the ones

proved throughout the previous sections for the projection Πy0 .
We do not present the proof of Theorem 7.1 because it is analogous to the one

for the projection, with ωk2(r) instead of
∫ y0

0
ωk2(y)dy. The condition ωk2(r) = 0

is never verified and so the sets N ∗
y0

and M∗
y0

disappear and we don’t have an
analogous to the condition (0, y0) ∈ L. Moreover, the expression∫ y0

0

ωk2(y)dy − ωk2(y0)
∫ y0

0

ω−k2(y)dy = 0

has the analogous
ωk2(r)− ωk2(2r)ω−k2(r) = 0.

It follows that 2r appears where originally we had the variable y0.
We now present some intermediate results in order to obtain Theorem 7.1 and

make remarks about the proof for the analogous of Lemma 5.4.

Proposition 7.1. All functions in Φr(XΓ) are invariant under the action of (vα, α) ∈
Rn n O(n) if and only if one of the following conditions holds:

(A) (v+, α+) ∈ Γ and L∗ = M∗
+,

(B) (v−, α−) ∈ Γ and L∗ = M∗
−,

(C) both (vσ, σ) and (v+, α+) belong to Γ, M∗ ⊂
(
M∗

+ ∪N ∗
σ

)
and N ∗ ⊂(

M∗
− ∩N ∗

σ̃

)
.

The analogous to Lemma 5.2 is, for D′(δ, k) = ωδk(−vδ)ωδk|2(r):

Lemma 7.1. Suppose that
(a) if k1 ∈ L∗1 ∩ αL∗1 then

∑
δ∈JId(k) D′(δ, k) = ωk1(−vα)

∑
δ∈Jα(k) D′(δ, k) and

(b) if k1 /∈ L∗1 ∩ αL∗1 then
∑

δ∈JId(k) D′(δ, k) = 0,

for all k = (k1, k2) ∈ L∗. Then one of the following cases holds:
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(1) JId = {Idn+1, σ}, Jα = ∅ and O∗ ⊂ N ∗
σ ,

(2) JId = {Idn+1}, Jα = {α−1
+ } and O∗ ⊂M∗

+,
(3) JId = {Idn+1}, Jα = {α−1

− } and O∗ ⊂M∗
−,

(4) JId = {Idn+1, σ}, Jα = {α−1
+ , α−1

− }, (O∗ ∩M∗) ⊂
(
M∗

+ ∪N ∗
σ

)
and (O∗ ∩N ∗) ⊂(

M∗
− ∩N ∗

σ̃

)
.

In a similar way, we may state a lemma analogous to Lemma 5.4. Under the
conditions for the restriction, in the proof of Lemma 5.4, property (5.6) concerning
the set M∗

y0
does not hold. By Lemma 7.1 above, the paragraph corresponding to

case (1) disappear and in the paragraph corresponding to case (2), the dual lattice
is L∗ = N ∗

σ ∪ P∗. In this paragraph the arguments concerning M∗
y0

and N ∗
y0

must
be replaced by: let k̃ /∈ P∗ and, thus, k̃ ∈ N ∗

σ . However both 2k̃ /∈ P∗ and 2k̃ /∈ N ∗
σ ,

by definition of P∗ and the properties of N ∗
σ , and so this case is not possible.
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E. M. Pinho — Departamento de Matemática Aplicada, Faculdade de Ciências da

Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
E-mail address: eopinho@fc.up.pt

Isabel S. Labouriau — Centro de Matemática da Universidade do Porto, Rua do
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