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ABSTRACT

Infinite words over a finite special confluent rewriting system R are considered and
endowed with natural algebraic and topological structures. Their geometric signif-
icance is explored in the context of Gromov hyperbolic spaces. Given an endomor-
phism ¢ of the monoid generated by R, existence and uniqueness of several types of
extensions of ¢ to infinite words (endomorphism extensions, weak endomorphism
extensions, continuous extensions) are discussed. Characterization theorems and
positive decidability results are proved for most cases.

1 Introduction

In view of the possibilities offered to language theory by the study of free groups [14, 15]
and more general structures such as PR-monoids [16], it is a natural idea to extend some
of the theory on infinite words to the more general setting of monoids defined by finite
special confluent rewriting systems (in fact, some of our results hold for monadic confluent
and even length-reducing confluent rewriting systems). We recall that a rewriting system
{(r1,81),- -, (rn,8n)} is said to be special if s = ... = s, = 1.

Monoids defined through finite special confluent rewriting systems allow normal forms
consisting of irreducible elements, hence they can be viewed as proper subsets of a free
monoid with a particular binary operation (concatenation followed by total reduction, such
as in the free group case). This approach can, up to some extent, be generalized to infinite
words that are endowed with algebraic and topological structures that constitute natural



generalizations of their free monoid counterparts. The fact that we can view infinite words
as the space of ends of the undirected Cayley graph of the original monoid gives geometric
significance to this topology.

We should note that infinite iteration of a (finite) word can no longer be assumed in
every case due to the existence of periodic elements, thus our approach involves a partial
version of the usual concept of w-monoid [12].

This paper is specifically devoted to the basic problem of endomorphism extensions: un-
der which circumstances can an endomorphism ¢ of the monoid of finite words be extended
to an endomorphism (continuous map, weak endomorphism) on the partial w-monoid of in-
finite words? We introduce also the concept of extendable endomorphism, where attention
is focused on the “natural” extension to infinite words. Characterization theorems leading
to positive decidability results are obtained in most cases. To obtain them, various results
on rational languages over finite special confluent rewriting systems had to be proved. We
should also mention that a related paper (on the existence of infinite periodic points for
endomorphisms) [4] is being written by the authors.

The paper is organized as follows: Section 2 is devoted to preliminaries, Section 3 to
convergence of powers and Section 4 to the algebraic strucure called partial w-monoid. Sec-
tion 5 discusses the topology of infinite words from a geometric viewpoint, namely Gromov
hyperbolic spaces. Sections 6, 7 and 8 are devoted respectively to the fundamental neces-
sary condition of extendability, weak endomorphism extensions and continuous extensions.
Conclusions and open problems are summarized in Section 9.

2 Preliminaries

Let A denote a finite alphabet. A (finite) rewriting system over A is a (finite) subset R of
A* x A*. Given u,v € A*, we write u— v if

U =Iry, v=2IsY

for some xz,y € A* and (r,s) € R. We denote by — the reflexive and transitive closure of
the relation —. The subscript R will be usually omitted. The congruence on A* generated
by R will be denoted by R?. Note that Rf = ——p p-1. The quotient M = A*/RF is said
to be the monoid defined by the rewriting system R.

A rewriting system R over A is said to be

e length-reducing if |r| > |s| for every (r,s) € R;

e monadic if R C AT x (AU {1});

e special if R C AT x {1};

e noetherian if there is no infinite chain of reductions u; — ug — ug — ...

. * * . *
e confluent if, whenever u—wv and u—w, there exists z € A* such that v—z and
*
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e locally confluent if, whenever u—swv and u—w, there exists z € A* such that v—sz
and w——z:
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Lemma 2.1 [3, Theorem 1.1.13] A noetherian rewriting system is confluent if and only if
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It is known (see [3, Section 2.2]) that every monoid defined by a finite length-reducing
confluent rewriting system can be defined by a finite normalized length-reducing confluent
rewriting system, i.e., satisfying the two conditions:

e for every (r,s) € R, |r| > 1;
o if (r,s),(arb,s’) € R, then ab=1 and s’ = s.

Therefore, we are entitled to assume whenever convenient that our length-reducing confluent
systems are normalized.

Let R be a length-reducing confluent rewriting system over A. We say that w € A* is
irreducible (with respect to R) if w ¢ U, 5)cgA*rA*. For every u € A*, there is exactly one
irreducible v € A* such that u——wv: existence follows from R being length-reducing, and
uniqueness from confluence. We denote this unique irreducible word by @. It is well known
(see [3]) that the equivalence

uRv & u =1

holds for all u,v € A*, hence A* = {u | u € A*} constitutes a set of normal forms for the
monoid M = A*/RF. Moreover,
M = (A%,

where - denotes the binary operation on A* defined by u - v = wv. We denote the monoid
(A*,-) by A%. We shall often abuse notation and identify A% with A*. We write also
Al =A%\ {1}.

We denote by A the set of all infinite words of the form ajasas ..., with a, € A for
every n € N ={1,2,3,...}. Write

A = A" U A”.

Given a € A% and n € N, we denote by o™ the n-th letter of a (if a € A* and n > |a/,
we set a(® = 1). We write also

ol = W2 )



An infinite word a € A“ is said to be irreducible (with respect to R) if ol is irreducible
for every n € IN. We denote the set of all irreducible infinite words (with respect to R) by

A% and we write
x =ARUA%.

For all a, 8 € A%, we define

min{n € IN | a(® # 3™} if o # 3

00 ifa=p

)= {

and we write

d(a, B) = 277@P),

using the convention 27°° = 0. It follows easily from the definition that d is an ultrametric
on A, satisfying in particular the axiom

d(a, 8) < max{d(a,7),d(v,3)}-

We shall identify A with the metric space (A%, d). It is well known that the metric space
A> is compact (and therefore complete) [12, Chapter I1I]. Note that lim,_,o oy, = o if and
only if

Vk e NIm e NVn € N (n > m = ol = olf]),

Note that, since A®° is complete, a sequence uy, us, ... € A* converges if and only if it
is a Cauchy sequence, i.e., if the condition

Vk € N3m € NVn,n' € N (n,n' >m = ultl = uzg,])
holds. By transitivity, it follows that (u,), converges if and only if
k
Yk € N3m e NVn > m ulf! :uL_]H. (1)

Proposition 2.2 If R is a length-reducing confluent rewriting system over A, then A% is
a closed subspace of (A, d).

Proof. Let a € A%\ A%. Then al” is reducible for some n € IN. Let By (a) denote the
open ball with radius 2~ and centre a.. If 8 € By—n (), then (e, 3) > n and so ol = gl".
Hence f € A®\ A% and so

By-n(a) C A®\ A%.

Thus A> \ A% is open and consequently A% is closed. [J

This immediately yields

Corollary 2.3 If R is a length-reducing confluent rewriting system over A, then (A%, d)
is compact (and therefore complete).

We remark that, since a = lim,,_o, al?! for every o € A®, (A%, d) (respectively (A%, d))
is the completion of (A*,d) (respectively (A%, d)).

Note also that d induces the discrete topology on A* since By (ny1)(u) = {u} for every
ue A"

If R is finite monadic, rational languages are preserved by reduction:
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Theorem 2.4 [1] Let R be a finite monadic confluent rewriting system on A and let L C A*
be rational. Then L is rational and effectively constructible from L.

If we consider the whole reduction class, we are taken into the realm of deterministic
context-free languages, as follows from the combined results of Chottin and Sénizergues:

Theorem 2.5 [5, 13] Let R be a finite monadic confluent rewriting system on A and let
L C A* be rational. Then D = {u € A* | u € L} is deterministic context-free and
effectively constructible from L.

3 Convergence of powers

The rewriting systems in this section are all length-reducing confluent. Given a finite
length-reducing confluent rewriting system R = {(r1,s1),...,(rn, Sn)}, we write

tR = max{’ﬁ’, ‘7'2‘7 ey ’Tn‘}

The next lemma discusses convergence to a finite word.

Lemma 3.1 Let R be a length-reducing confluent rewriting system over A and let (uy), be
a sequence on Ay. Then:

(1) limy o0 un € A if and only if (uy)n is stationary;
(ii) if (Jun|)n is bounded and (uy), converges, then (uy)n is stationary.

Proof. (i) Suppose that lim, .o u, = v € A} and take | = |v| + 1. Then there exists some

m € IN such that ug] =oll = ¢ for every n > m. It follows that u, = v for every n > m
and so (up)y, is stationary.

The converse implication is trivial.

(ii) Assume that |u,| < K for every n € IN. If a = lim,,_, 0 up, there exists m € IN such
that ) = oK1 for every n > m. It follows that |al®]| < K and so a € A%. By part (i), it
follows that (uy), is stationary. [J

Now we present necessary and sufficient conditions for a sequence of powers to converge.

Recall that an element of a semigroup is said to be aperiodic if it generates an aperiodic
semigroup (i.e., with no nontrivial subgroups) and is said to have finite order if it generates
a finite semigroup. In particular, every element having infinite order must be aperiodic. On
the other hand, a finite order element wu is aperiodic if and only if u™ = u™*! for some n € IN.
If the rewriting system is clear from the context, we shall abuse terminology by saying that
u € A}, is aperiodic (respectively has finite order) if uR! is aperiodic (respectively has finite
order) in M = A*/RF.
Theorem 3.2 Let R be a length-reducing confluent rewriting system over A and let u €
Ap. Thﬁ the sequence (u™), converges in A if and only if u is aperiodic. Moreover,
lim,, oo u™ € A% if and only if u has infinite order.

Proof. Assume first that v has finite order. Then (|u"|),, is bounded and it follows from
Lemma 3.1 that (u™),, converges if and only if (u"),, is stationary, that is, if and only if u
is aperiodic. Moreover, lim,, o u™ € A}, in this case.
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Assume now that u has infinite order. In particular, u is aperiodic. Since u has infinite
order, there exists some n € IN such that

2Jultp < |u™| < Juntl.

Since R is confluent, we have

untl = yu™ = ylu.
Since R is length-reducing, the number of steps in uu?——u"+! is bounded by
Juf + [u™| = u T < ul.

Since u™ is irreducible, each step uses at most tg — 1 letters of u™ and so the prefix of u™
involved in the reduction uu"——u"+1 has length at most (|u| —1)(tg — 1). By duality, and
since |[u™| > 2|u|tgr, one has u™ = fgh with |f],|h| < (Ju| —1)(tg — 1) and

utl = ufgh = fghu. (2)
Note that

gl = [u™| = [f] = |hl > 2[ultr = 2(|u| = 1)(tr = 1) = 2Ju[ + 2tp — 2 > t5.

As |u™| < |untl|, we have |f| < |uf| and |h| < |hu|. By (2), we may write uf = fv and
hu = wh for some v, w € AE. Moreover, we obtain vg = gw. By [11, Proposition 1.3.4],
there exist p,q € A* and k > 0 such that

v=pq, w=qp, g=(pg)*p.

Since |v| > 0, p and ¢ are not both empty.
We have u” = fgh = f(pq)¥ph and unt! = fugh = f(pq)**'ph. We show that

untm = f(pq)Ftmph (3)

by induction on m. In fact, if un+tm = f(pq)**™ph, then

urtmil =yt = f(pg)Rtmphu = f(pg)ktmphu
= f(pg)**tmpwh = f(pq)k+m+1ph.

Since f(pq)**'ph = urt! is irreducible and |(pg)*p| = |g| > tg, it follows easily that
f(pg)* ™+ 1ph is itself irreducible and so untm+l = f(pq)F+tm+1ph,

Therefore (3) holds for every m € IN and it is immediate that lim, .. u™ = f(pq)* € A%
as required. [

Corollary 3.3 Let R be a length-reducing confluent rewriting system over A and suppose
that u € A% has infinite order. Then there exist x,y € Ay, v € A}, and ng € Ng = NU{0}

such that yz = v™ and

Vn > ng u™ = xv™ " "y.



Proof. If we denote n in the proof of Theorem 3.2 by n1, and take f, g = (pq)*p, h,v = pq
to have the same meaning, we have u™ = fv" " gh for every n > ny by (3). Writing 2’ = f
and y' = gh, we obtain

Vn > ny u = z'o" My (4)

Let £ > n1 be such that
(k —n1)|v] > (tr — 1)(|y'2"| — nalv]). (5)

By (4), we have

va%—my/ — w2k = ykyk = z ok =y plpk—ny.
Let m = |[y/2'| — ni|v|. Since |2/vF~"y/z/vk—m1q/| — |2/v?k~"1y/| = m, and R is length-
reducing, we need at most m steps to reduce z'v*~"1y/2'v¥"19/ . Since 2'v* "1y is irre-

ducible and each step involves at most tg letters, the suffix and the prefix of z/v*—"1y/

involved in the reduction process have length at most m(tg — 1) < [v*~™1| by (5). Hence

x/kanly/x/kanl y/ — x/kanl ylxlkaruy/ and so

kanly/xlvk—nl — U2k—n1 ]

Let ng = 2k — ny. Let z = 2/v*™™ and y = v*~™1y/. We obtain §Z = v™. Moreover, for
every n > ng, we have n —ny > ng —n; = 2(k —n1) > 0 and so (4) yields

/. n—mni, ! n—ni—2(k—mn1)

u = z'v y = av n—no

Yy=xv Y

as required. [

We recall that o € A% is said to be eventually periodic if « = uv® for some u € A* and
ve AT,
Corollary 3.4 Let R be a length-reducing confluent rewriting system over A and suppose
that u € A}, has infinite order. Then lim, ... u™ is eventually periodic.

Proof. By Corollary 3.3, there exist x,y € A}, v € AE and ng € Ny such that yx = v"°
and u™ = zv" ™y for every n > ng. Hence

n—no w

lim "™ = lim zv y= lim zv" = zv
n—oo n—oo n—oo

is eventually periodic. [J

The special case provides further simplification to Corollary 3.3.

Corollary 3.5 Let R be a special confluent rewriting system over A and suppose that u €
A% has infinite order. Then there exist x,y € A, v € AE and ng € Ny such that yz =1
and

Vn > ng u™ = zo"y.

Proof. By Corollary 3.3, there exist z,y € A%, v € AE and ng € INg such that yx = v™0
and
n—ng

Vn > ng u* = zv .
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If ng = 0 we are done, hence we assume that ng > 1. Since yZ = v™ and y, x are irreducible,
we may factor v = v'v” and write

y = UTU/yO, T = xovllvng 1— 'r

where 7079 = 1. Let vy = v"v'. For every n > ng, we have

ur = :mjnfnoy — xov/lvnoflfr,unfnov v Yo

—xov”v” IU/yo = TV (U/U”)n 1U/y0 — «TOUO Yo

as required. [

The next example shows that Theorem 3.2 cannot be generalized to noetherian confluent
rewriting systems.

Example 3.6 There exists a finite noetherian confluent rewriting system over A = {a,b}
and u € A* such that u has infinite order but (u™),, does not converge.

Proof. Let R = {(ba,ab), (a?,b)}.
Assume A ordered by a < b and INg x INy (well-)ordered lexicographically. Let ¢ : A* —
INyg x INg be the map defined by

= (Jul, [{(i,5) € {1, Jul}* : (i < j A u > u)Y)).
It is straightforward to check that
U— V= UP > VY

holds for all u,v € A*. Since INy x INg is well-ordered and therefore contains no infinite
descending chain, we conclude that R is noetherian.
To show that R is locally confluent, we only have to complete all possible diagrams of
the form
TYZ —> 52

|

xs'

where (zy, s), (yz,s') € R and y # 1. In particular, |zyz| < 3 and we only have to consider
the cases xyz = baa and xyz = aaa. Verifying each one of them, we conclude that R is
locally confluent and therefore confluent by Lemma 2.1.

A simple induction shows that

a?n =b", a?ntl = gb”

for every n € INy. Since the first letter alternates through the whole sequence, (a™),, does
not converge. However, a has infinite order, all the reduced forms a” being distinct. [



4 Partial w-monoids

;From now on, we fix R = {(r1,1),...,(rs,1)} to be a finite special confluent rewriting
system over A.

We generalize the concept of w-semigroup [12, Chapter 1.4] as follows. A partial w-
monoid is a structure of the form (My, My, -, 0,7), where - : My x My — M; and o :
My x My — My are binary operations and 7 : My = My x My x ... — My U M; is a
surjective partial map, such that:

(wl) (Mjy,-) is a monoid;

(w2) if (up,ug,...)m is defined and i; < d2 < ... is a sequence in IN, then
(Ul « o Wiy Wig 1 - - - Wigy Wig4+1 - - - Uig, - . )7 1s defined and equal to (uy,us,...)w;

(w3) if (u1,ug,...)w is defined and v € M, then (v, u1,us,...)w is defined and equal to the
product of v by (uqy,us,...)m;

(w4) (1,1,...)7 is defined and equals 1.

We note that these axioms imply the mixed associative law given by
uo(voa)=(u-v)oa«

for all u,v € My and a € M. In fact, since 7 is onto, we have a = (uq,ug,...)w for some
(un)n € My. By (w2) and (w3), we obtain

uo(woa)=uo (vo ((up,us,...)n))
=wuo ((v,uy,ug,...)T)
= (u,v,uy,ug,...)w
=(u-v,uy,ug,...)mw
= Eu -v) o ((u1,ug,...)m)

u-v)oa.
If My U M5 is endowed with a distance d such that:

e the operations - and o are continuous (considering the product topology on M; X
(M U My), for instance via the maz metric on the components);

o (uj,ug,...)w is defined if and only if lim, o ujusg ... u, exists, in which case they
coincide;

then we have a metric partial w-monoid.

It follows easily from (w3) and (w2) that the identity of M is a left identity for the
mixed product o.

If 7 is a full map, we have the standard concept of w-monoid (w-semigroup if we don’t
require (M7, -) to have an identity).

If u € M; and (u,u,u,...)w is defined, we denote it by u®.

An endomorphism of (Mj, Ma, -, 0, 7) is a mapping ¢ : My U My — M; U My such that:

(hl) Myp C My;



(h2) for all u,v € My, (u-v)p = (up) - (ve);

(h3) for all u € M; and a € My,

oale = J ) (ap) if ap e
noa)s {(w)O(acp) if ap € My

(h4) if (u1,ua,...)w is defined, then (u1p, uzep,...)w is defined and equal to (u1,us,...)Tp.
If we replace axiom (h4) by

(h4”) if u is defined, then (up)“ is defined and equal to u“¢,

we have a weak endomorphism. A (weak) endomorphism is said to be proper if Map C M.
We shall see that A% can be viewed naturally as a metric partial w-monoid, but first

we prove some lemmas that help us to understand better the reduction process.

Lemma 4.1 Let u,v,w € A} be such that |v| > |u|(tr — 1) and vw € A}. Then wvw =

uvw.

Proof. We use induction on |u|. The case |u| = 0 being trivial, assume that |u| > 0 and the
lemma holds for shorter words. We may assume that uv is reducible, otherwise |v| > (tp—1)
and vw irreducible yield wvw = uvw = wvw. Hence we may write u = «'r’ and v = v/’

with (r'r”,1) € R. Note that /,r" # 1 since u,v € A},. We have
W= o] = [r"] = Jul(tr = 1) = (tr = 1) = (Ju| = 1)(tr — 1) > [u'|(tr — 1),

hence the induction hypothesis yields v/v/w = w/v'w and so

wow = Wr'r"v'w = vv'w = wv'w = wow
as required. [

Lemma 4.2 For all u,v € A%,
(i) uw=1uv" and v =v"v" withwv = V", |u"V'| < min{|u|,|v|}-tg and |u"] < (tr—1)|v].
(i) [av| = maxflo] — (tr = Dlul, [u] = (tr = 1)[v]}.

(i1i) |u| < r(@o,u) — 1+ (tg — 1)|v].

Proof. (i) Let u,v € Aj},. Since R is special, we have factorizations v = v'v” and v = v'v"
such that wo = v/v”. We show that |u”v'| < min{|u|, |v|} - tg using induction on |uv|. The
case |uv| = 0 being trivial, assume that |uv| > 0 and the lemma holds for smaller lengths.
We may assume that wv is reducible, hence we may write u = ugu; and v = vgv; with
(u1v9,1) € R. We have factorizations ug = v'u and vy = vjv” such that wov; = v/v”. By
the induction hypothesis, we have |ujv]| < min{|uo|, |v1]} - tr and |uj| < (tr — 1)|v1|. Let
v’ = uyuy and v' = vov). Clearly, there exist factorizations v = v'v” and v = v'v” and

UV = UgU1V9V] = UgU] = u'v”.
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Moreover, since u1,vg # 1,

[0V = |ufuivovy| = Jurve| + |ufvi| < tr + min{|ug|, [v1]} - tr
= (1 4+ min{|ug|, |v1|})tr < min{|ul, |v|} - tg.
Also
[ = |ugua| < (tr — D|v1| + (tr — 1)
<(tr — Dlvov1| = (tr — 1)[v].
Thus (i) holds.
(ii) It follows from (i) that

@] = |ul + [v] = [u"V'| > |u] + o] — min{lul, [v[} - tr
= max{|u| + [v] = [ultr, [u] + o] = [v|tr}
=max{[v| — (tr — Dlul, [u] = (tr = Dv[}

as claimed.
(iii) Let w = v/v” and v = vv" with wo = «/v” and «w”’v' = 1. Then r(uv,u) > |u'| + 1
and |u”| < (tg — 1)|v] by (i), hence the result. O

Corollary 4.3 For all u,v € A}, the equation ux = v has only finitely many solutions
r e Ay

Proof. If x € A} is a solution of the equation, then |v| > |z| — (tg — 1)|u| by Lemma 4.2(ii)
and so |z| < |v| + (tg — 1)|u|. Thus there are only finitely many such solutions. [

We define a binary operation

. * w w
o: A x AY, — A%
(u, @) — ua

by taking m = |u|(tg — 1) and

aa = ualmla(mt) g (m+2)

By Lemma 4.1,

ualm+k] — yalmlo(m+l) o (m+2) (mtk)

for every k € IN and so nax € A% is well defined. Alternatively, ua = lim,, . ualnl,
The partial operation 7 : (A%)* — A% is defined as follows: for every sequence (un)n, €
(AR)%, (u1,ug,...)m is defined if and only if (@i .. uy,), converges. In such a case, we have

(ui,ug,...)m = lm ay .. Uy,.
n—oo

In particular, u¥ = (u,u,...)w is defined if and only if u is aperiodic, by Theorem 3.2.

Theorem 4.4 With the ultrametric d, (A%, A%, -, 0, 7) is a metric partial w-monoid.

11



Proof. Since R is confluent, (wl) holds. Axiom (w4) holds trivially.

Suppose that (uy,usg,...)w is defined and i1 < 2 < ... is a sequence in IN. Write
VL = UL .. Wip, V2 = Wip41 -« - Uigs V3 = WUjgq 1 - - - Uiy, ... OINCE V] ...0Vp = U] ... U;, for every
n € IN and (a1 .- up), converges, it follows that lim, oo 770, = lim, o U1 - - - Uy, and
(w2) holds.

Next we show that
A}‘% X A%O — AORO
(u, ) — uax

is continuous. If (u,a) € A} x A}, then for n = max{|ul, |a|} we have By (n1)(u, ) =
{(u, @)} and we are done.

Assume now that (u,«) € A x Af, and let € > 0. Let m = |u[(tg — 1) and take
n € IN such that 27" < e. Let (v,) € A% x A% be such that d(u,v) < 27+ and
d(a, B) < 2=+ Since u,v € A% agree up to the (Ju| + 1)-th letter, we have u = v. On
the other hand, o[**™ = gltml  Since

ua = ualmam o m+2) v = pBml glm+1) glm+2)
it follows that wal™ = w[n] and so d(ua,vf) < 27" < e. Thus A} x AR — AY is
continuous. In particular, both the product - : A} x A} — A% and the mixed product
o: A x A% — A% are continuous.

As a consequence, we also have that

a= lim v, = wa = lim uv, (6)
n—oo n—oo

for all u,v, € Aj.

We can now prove (w3). Suppose now that (uq,ug,...)r is defined and v € A},. It
follows that

v((uy,ug,...)m) =v lim uy .. a4, = lim vuy ..., = (v,uy, ug,...)".
n—oo n—oo

Finally, we observe that the partial map 7 : (A})* — A% is onto by remarking that
a = lim, oo @) ... o™ holds for every a € A%.
Therefore (A}, A%, -, 0,7) is a metric partial w-monoid. [J

(From now on, when referring to A% as a metric partial w-monoid, we shall be consid-
ering the above structure.

The following example shows that the operation 7 is not in general continuous, even
when considering the metric d’ on (A%)¥ defined by d'((un)n, (vn)n) = max{d(un,v,) |
n € IN}, which generates a finer topology than the product topology. Note that, since
d(un,vn) € {0y U{27% | k € N} for every n € IN, d’ is well defined.

Example 4.5 Let A = {a,b} and R = {(ab,1)}. Then 7 : ((AR)¥,d") — (A%, d) is not

continuous.

Proof. For every n € IN, let u,, = b"a™*!. It follows easily from induction that @ ..., =
ba"*! for every n € IN. Thus (uy,us,...)7 = ba®. Let k € IN. We show that there exists a
sequence (vy), in A} such that (vi, vy, ...)w is defined and

d'((un)n, (Vn)n) < 278 A d((u1,ug,...)m, (v1,v9,...)7) > 272
12



Define

o — u, ifn<k
"1 ™ otherwise

Clearly, r(up,v,) > k for every n € IN, hence d(up,v,) < 27 and d((un)n, (vn)n) < 27
Since U7 Upgz = bak bk H1pk+2 = pEH3 it follows easily that (vq,vs,...)7 = b* and so

d((u,uz, ...)m, (v1,v2,...)7) = d(ba®, b*) = 272
as claimed. Thus 7 is not continuous. O

A natural question to raise is whether or not we can define suitable w-monoid structures
in more general types of rewriting systems. The key feature is of course how the product
and the metric are articulated. We show next that (6) does not hold for monadic confluent.

Example 4.6 Let A = {a,b,c} and R = {(ba,c), (ca,b)}. Then:
(i) R is monadic and confluent;
(ii) (a™)y converges;
(ii) (ba™),, does not converge.

Proof. In view of Lemma 2.1, (i) is immediate, as well as (ii). A simple induction shows
that

ba?" = b, ba?"tl =c.

Thus (ba™),, does not converge. [

In the more general setting of length-reducing confluent, we may even have infinitely
many adherence values. We recall that = € X is an adherence value of (uy )y, if:

Ve >0Vn € NIm > n: d(up,x) < e.

This is equivalent to say that there exists some subsequence of (uy), converging to .
Example 4.7 Let A = {a,b,c} and R = {(ba®,ab), (ca?, cab), (ac, c), (be,c), (c%,¢)}. Then:

(i) R is length-reducing and confluent;
(ii) (a™)y converges;
(iii) the adherence values of (ca™), are all the words in A%, starting with c.

Proof. It follows easily from Lemma 2.1 and direct verification that R is confluent. Thus
(i) and (ii) hold.
For every n € IN, let

n=3% 2,3, (x; €{0,1,2}, 7, #0)
be the base 3 decomposition of n. We show by induction on n that

ca™ = ca®*ba"*1b ... ba* ba™.

13



This is of course trivial for ca = ca. Assume that it holds for ca®. If x, = zj,_1 = ...
xo = 2, successive application of the rule ba® — ab followed by ca® — cab yields

ca® ba™1b . .. ba" ba* a——ca’b* — cab®t!

and so, by the induction hypothesis,

ca™tl = ca®rba®1b ... ba*1ha*0q = cab®t!.

Since n + 1 = 3**1 in this case, the claim follows.
Assume now that z; < 2 and x; = 2 if 0 < ¢ < j. Similarly to the preceding case, we
obtain
ca®™ba™1b . .. ba" ba®™ a——ca® ba® b .. ba"i ab’ !

and so
ca™tl = ca®ba®1b ... ba% ab’

by the induction hypothesis. Since
n=%F 23 + %/ j2.3

yields ' '
n+1=3 23 + (x; +1)37

in this case, the claim is proved.
It is easy to see that A% consists precisely of all the sequences of the form

o %
e a"'ba?ba’b. .. (il € INg, i2,13,... € {0, 1,2})
e ca'lba’?ba®b. .. (i1,12,... € {0,1,2}).

If a = caba'?ba™b. .. € A% with iy # 0, then
caPr = ca'ba'?b. . . ba'

for p, = E;‘;Dlin,j?)j , hence av = lim,, o caP~ is an adherence value of (ca™),, and (iii) holds.
In fact, it is not difficult to check that, for every a € A%,

e the sequences (aal), and (bal"l), converge;

e the sequence (cal™), converges if and only if o # a*.

14



5 Hyperbolicity

The definitions introduced throughout this section may be found in [9].
We fix R to be a finite special confluent rewriting system on a finite set A. The Cayley
graph I'(A, R) is a directed A-graph defined by

V(I'(A, R)) = Ag;
E(I'(A,R)) = {(u,a,v) € A} x Ax A}, | ua = v}.

Note that I'(A4, R) is connected (as an undirected graph) since A}, is a monoid. We define
a metric s on A} by letting s(u,v) be the length of the shortest undirected path connecting
v and v in I'(4, R). Since s(u,v) < 1 = u = v for all u,v € A}, s induces the discrete
topology on A%,.

A nondirected path u — v of length n is said to be a geodesic if s(u,v) = n. It follows
from the definition of s that any subpath of a geodesic is itself a geodesic.

We can view (A%, s) as a geodesic space. A geodesic space is a metric space (X, d) such
that, for all z,y € X, there exists an isometry f : [0,d(x,y)] — X such that f(0) = z and
f(d(z,y)) = y, where the real interval [0,d(x,y)] is endowed with the usual metric. The
image of f is called a geodesic connecting x and y. Although (A%, s) is not geodesic in a
strict sense, we can embed it in the geometric realization of I'(A, R), where a riemannian
metric is defined uniformly for every edge, making it isomorphic to the interval [0,1]. The
global metric is still the length of the shortest undirected path connecting two given points.

Although there may be more than one geodesic connecting two vertices x and y, it is
handy to denote it by [z,y]. A geodesic triangle in X with (not necessarily distinct) vertices
x,y, z is the union of three geodesics

[z,y] Uy, 2] U [z, x].

Let 6 > 0 be any nonnegative real number. A geodesic space (X, d) is said to be d-hyperbolic
if, for every geodesic triangle [x,y] U [y, z] U [z, 2] and every u € [x,y], we have

d(u, [y, z] U [z,2]) < 0.
We recall that, given u € X and Y C X nonempty, we define
d(u,Y) = inf{d(u,v) | v € Y}.

We say that (X, d) is hyperbolic if it is d-hyperbolic for some ¢ > 0.
We intend to show that (A}, s) is indeed hyperbolic. We start with some lemmas. For
the whole of this section, we shall write

t=tr, m=max{l,t—1}.
Lemma 5.1 Let u,v € A} be adjacent vertices in AY,. Then one of them is a prefiz of the
other. Moreover, ||u| — |v|]| < m.

Proof. Without loss of generality, we may assume that v = wa. If ua is irreducible, then
u <wv and |v| = |u| + 1. Otherwise, since u is irreducible, v < w and |v| > |u| — (t — 1). O
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Corollary 5.2 For all u,v € Ay, ||u| —|v|| < ms(u,v).

Proof. Let u,v € A;. We assume that |u| > |v| and
U=T)— X] — ... — Tp =0

is a geodesic. By Lemma 5.1, we have |z;_1| — |z;| < m for i =1,...,n. Hence

n
[ u] = ol | = Z |zi—1| = |zi| < mn=ms(u,v)
i=1

as required. [

We remark that the combinatorial and the topological definitions of geodesic we intro-
duced so far are perfectly compatible in A%. We shall use the most suitable one in each
circumstance. In particular, we shall write p € [z, y| whenever the vertex p € A}, lies in the
geodesic [z,y].

Lemma 5.3 Let [x,y| be a geodesic in (A%, s). Then there exists a unique p € [x,y] of
minimum length, and p is a prefix of every u € [z,y].

Proof. Let p be the longest common prefix of all words u € [z,y]. It is enough to show
that p € [x,y]. Assume that [z,y] is the path

T=T)— T — ... — Ty =1

If p = z we are done, so we may assume that x € paA* for some a € A. By minimality of
p, there exists some i € {1,...,n} such that z;_; € paA* and z; ¢ paA*. By Lemma 5.1,
x; < xi—1. Since p < z; and x; ¢ paA*, we conclude that p = x; € [z,y] as desired. [J

We remark that p is not necessarily the longest common prefix of x and y. For instance,
for A = {a} and R = {(a®, 1)}, the path a* — 1 — a is a geodesic (in fact, the unique
geodesic connecting a* and a).

We shall denote p by plx,y]. The longest common prefix of z,y € A¥ will be denoted
by A(z,y).

Lemma 5.4 Let [z,y] be a geodesic in (A}, s) and let u € [x,y]. Then we may write
u = qu’ where |u'| < m?+m and q is a prefiz of either x ory.
Proof. Let p = pf[z,y]. Without loss of generality, we may assume that v € [z,p]. Let
[, p] be the path

T=29g— X — ... — Ty =7p
and assume that u = zx. Let ¢ = A(u,x) and write u = gu’. It remains to prove that
[u'| < m?+m.

Suppose that |u/| > m? 4+ m + 1. This implies & > 1. Let a be the first letter of u/. By
maximality of g, ga £ x. We show next that

Ji€{0,...,k—1}:x; € gAS™, (7)

where AS™ = {w € A* : |[w| < m}. Suppose that (7) does not hold. If ¢ = z, then
r € gAS™ and (7) would hold for i = 0, hence ¢ < x and we may write = gbz’ with

16



b e A\{a}. Let j € {0,...,k} be maximal with respect to gb < x;. Since b # a, we have
gb £ z) and so j < k. Write z; = ¢bx’;. We have |bz| > m + 1, otherwise (7) would hold
for i = j. By Lemma 5.1, we have ||z;11| — |z;|| < m and one of them is a prefix of the
other, hence ¢b < xj41, contradicting the maximality of j. Thus (7) holds.
Next we show that
Jje{k+1,...,n}:z; € gAS™, (8)

We have |[u/| > m? +m +1 > 1. Hence k < n, otherwise p = u = q and v/ = 1. Since
xp = qu’, it follows from Lemma 5.1 that ¢ < zj41. Let j € {k+1,...,n} be maximal with
respect to ¢ < x;. If j = n then ¢ = p and (8) holds trivially. Hence we may assume that
J < n. By maximality of j, we have ¢ £ x;41 and so z; £ x;41. It follows from Lemma 5.1
that ;41 < xj and | |zj41| — |z;|| < m. Since ¢ < zj, ¢ £ xj41 and 241 < z;, we obtain
Zjt1 < q. Thus |z;| < |zj41] +m < |g| + m and so (8) holds as claimed.

Taking x; and x; from (7) and (8), respectively, we get

s(xi, zj) < s(xi, q) + s(q ;) < 2m.
On the other hand, since |[u/| > m? + m + 1, it follows from Corollary 5.2 that

> |zk| — [l > |q,+m2+m+1—|q\—m:m2+1

s(xzi, xp) > 2
( k) m m m
Similarly,
2
m-+1
S(Tr,xi) > .
( k> J) = m
Since x; — 1, — x; is a geodesic, it follows that
2(m? +1)

2m > S(J}Z‘,-fj) = S(xi?mk) + S(.Tk,iﬁj) >
m

and so m2 > m? + 1, a contradiction. Therefore |u'| < m?2 + m and the lemma holds. [J

Lemma 5.5 Let [z,y] be a geodesic in (A}, s) and let w < x with |u| > |y|. Then uA<™N
[z,y] # 0.

Proof. Let p = pfz,y]. Since p < x by Lemma 5.3 and [p| < |y| < |ul|, v < z, we have
p < u. Suppose that [z,p] C [z,y] is the path

r=x90—T] — ... — Tp =D.

Let ¢ € {0,...,n} be maximal with respect to u < x;. If i = n, then u = p € [z, y], hence
we may assume that ¢ < n. By maximality of ¢, it follows that v € x;41, and so z; L x;41.
By Lemma 5.1, we get ;41 < x; and so x;41 < u. Moreover, |z;| < |ziq1| +m < |u] +m
and so x; € uA<"™ N [z,y]. O

Lemma 5.6 Let [x,y]| be a geodesic in (A}, s). Then
M, y)| = (m® —m) < |p[z,y]| < [A(z,y)|-
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Proof. Let p = p[z,y] and let ¢ = A(x,y). Since p is itself a common prefix of x and y, we
have [p| < gl

Since [z, p] C [z, y] is a geodesic, ¢ < x and |q| > |p|, there exists some u € gA<" N[z, p]
by Lemma 5.5. Similarly, there exists some v € ¢gA<™ N [p,y]. Hence s(u,v) < 2(m — 1).
Since u — p — v is a geodesic, we get s(u,p) + s(p,v) = s(u,v) < 2(m — 1) and we may
assume without loss of generality that s(u,p) < m — 1. By Corollary 5.2, it follows that

”U,‘ - ‘p| < ms(u,p) < m(m - 1) = m2 —m,

thus
pl > |u] — (m* —m) > |q| — (m* —m)

as required. [

Theorem 5.7 Let R be a finite special confluent rewriting system on a finite set A. Then
(A%, s) is hyperbolic.

Proof. Let § = 3m? + m. We show that (A%, s) is §-hyperbolic. Let [z, y] U [y, 2] U [z, 2]
be a geodesic triangle of (A%, s) and let u € [z,y]. By symmetry, it is enough to show that
s(u, [y,2] U [z,2]) < . By Lemma 5.4, we may write u = qu’ where |[u/| < m? +m and
q is a prefix of either x or y. Without loss of generality, we may assume that ¢ < x. Let
p = plz, 7]

Suppose that |¢g| > |p|. Since ¢ < z and [z,p] C [z, 2] is a geodesic, it follows from
Lemma 5.5 that there exists some v € ¢A<™ N [z, p]. Thus

s(u,v) < s(u, q) +s(qv) <m24+m4+m—1=m?>+2m—-1<3m?>+m=2,

and so s(u, [y, 2] U [z, z]) <.

We assume now that |g| < |p|. Since ¢ and p are both prefixes of z, it follows that ¢ < p
and so ¢ < z. Write p' = ply, z].

Suppose first that ¢ £ p’. We may write [y, z| as

Y=Y —Yr— ... — Ynp = Z2.

Let i € {0,...,n} be maximal with respect to ¢ £ y;. Since g £ p’ € [y, 2], i is well defined.
Since ¢ < z, we have i < n and so ¢ < y;41 by maximality of 7. Hence y;1+1 £ 3; and so
y; < y;41 by Lemma 5.1. Since ¢ and y; are both prefixes of y;11 and ¢ £ y;, we get y; < q.
Now [yi, 2] is a geodesic, ¢ < z and |q| > |y;|, thus Lemma 5.5 yields s(g, [yi, 2]) < m and so

s(u, [y, 2] U [z, 2]) < s(u, [y, 2]) < s(u,q) + s(q, [yi; 2]) <m? +m+m—1
=mZi4+m+m—-1=m2+2m—1<3m2+m=2.

Finally, we assume that ¢ < p’. Let p” = pu[z,y]. Since u € [z,y], we have |u| > |p”|.
Thus Lemma 5.6 yields |u| > |\(z,y)| — (m? — m) and so
lal > ul = (m* +m) > | Mz, y)| - 2m”
Now |A(z,y)| > min{|A(y, 2)|, |A\(z,2)|} implies that
lal = Xy, 2)| = 2m® or g = [A(z,2)| - 2m?.
18



In view of Lemma 5.6, this yields
lal = [p] —2m* or |g| > |p| —2m?.
Since we are assuming that ¢ < p’ and ¢ < p, this implies that s(q, {p,p'}) < 2m?2. Hence

s(u, [y, 2] U [z, 2]) < s(u, {p, p'}) < s(u,q) + s(q. {p,p'}) < m? +m + 2m?
=3m2+m=>5.

Therefore (A}, s) is 6-hyperbolic. [

We introduce now the Gromov product g (with base point 1) on A}, through

g(u,v) = %(S(u, 1)+ s(v,1) — s(u,v)).

Note that g(u,v) > 0 since s satisfies the triangle inequality. Since (A%, s) is hyperbolic, it
follows from [9, Prop. 2.21] that there exists some € > 0 such that

Va,y,z € Ag g(x, z) > min{g(z,y),g(y, 2)} — e.

Following [9, Section 7.1], we can view A% as the space of ends of A}: infinite reduced
words are viewed as rays from the base point 1, every (finite) prefix being a geodesic.

We proceed now to introduce the Gromov topology on the space of ends. A few prepara-
tory lemmas are needed.

Lemma 5.8 For all u,v € A%,

IA(u,v)| — (2m2 — 2m)

< g(u,v) < [A(u, )| +m® +m -2,
m

Proof. Let [u,v] be a geodesic. Write w = u[u, v] and p = A(u,v). By Lemma 5.6, we have
Ip| = (m* —m) < |w| < |p|.

Since w < p by Lemma 5.3, we get s(w,p) < m? —m.

Considering a geodesic [1,u], and since w < u, there exists some v’ € wA<™ N [1,u] by
Lemma 5.5. Similarly, considering a geodesic [1,v], there exists some v/ € wA<™ N [1,v].
We have

s(u',p) < s(u/,w) + s(w,p) <m—1+m? —m=m?—1.
Similarly, s(v’,p) <m?* — 1. Thus

s(u, 1) + s(v,1) = s(u,v) = s(u,u’) + s(u', 1) + s(v,0") + s(v/, 1) — s(u, w) — s(w,v)
(s(u,u') — s(u,w)) + (s(v,v') — s(w,v)) + s(u', 1) + s(v', 1)
(v, w) + s(v',w) + s(u', 1) + s(v', 1)

m—1) +s(u,p) + s(v',p) +2s(p, 1)

m — 1) +2(m? — 1) + 2|p|

m? +m —2) + 2|p|

IAIAIA
2000 o

and so g(u,v) < |p| +m? +m — 2.
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On the other hand, by Corollary 5.2 and our previous remarks,

s(u, 1) + s(v,1) — s(u,v) = s(u,v') + s(u', 1) + s(v,v') + s(v, 1) — s(u, w) — s(w,v)
(s(u,u) — s(u,w)) + (s(v,v") — s(w,v)) + s(v/, 1) + s(v', 1)
—s(u',w) — s(vi,w) + s(u/,1) +s(v, 1)

—2(m — 1) + 1l 4 [
—2(m—1)+ %

1) 4 2lpl=n=m)

m

AVARAVARAVARAVANT

—2(m —
_ 2(p|-(2m?—2m))

) > lp|—(2m?—2m)

and so g(u,v as required. O

Given a mapping f : IN x IN — R, we write lim; j_.o f(i,j) = oo if
VM >03k e NVi,j >k f(i,j) > M.

We write also
liminf f(i,§) = lim (inf{f(i,5) | i,j > n}).

1,j—00
Lemma 5.9 Let (uyn), be a sequence in Aj,. Then lim; j_.o g(ui, u;) = oo if and only if
(un)n converges to some a € A‘f% n (AORO’ d).

Proof. By Lemma 5.8, we have lim; j .o g(u;, uj) = oo if and only if

dim [ A(ug, uj)| = oo. 9)
1,j—00
Assume that (9) holds. Since r(u;, u;) = |A(ui, uj)| + 1 if u; # uj and +oo otherwise, it
follows that lim; j o0 (i, uj) = 00 and so lim; j_oc d(u;, u;) = 0. Hence (uy,), is a Cauchy
sequence in (A}, d). Since (A%, d) is complete by Corollary 2.3, (uy), converges to some
a € AF. Clearly, (9) implies a € A%.
Conversely, assume that lim, ..o u, = o € A%, in (A¥,d). Let M > 0. Then there
exists some k € IN such that r(up,a) > M + 1 for every n > k. Hence |A(up,a)| > M for
every n > k, and so |A(u;, uj)| > M for all i,j > k. Therefore (9) holds as required. [

Corollary 5.10 Let (un)n and (vp), be sequences in Af,. Then lim; j_.oo g(ui,v;) = oo if
and only if limp, o Uy = limy oo v, € A% in (AR, d).

Proof. By Lemma 5.8, we have lim; j .o g(us,v;) = oo if and only if

Tim [A(us,05)] = oo. (10)
2,] 0
Assume that (10) holds. Then
im A (ug, ug)| = Tim A (vi, v5)] = 00
1,j—00 1,j—00

and by the proof of Lemma 5.9 we obtain lim, ..o u, = «, lim, v, = B for some
a, 3 € A,. By (10), we must have oo = 3.

Conversely, assume that lim, .o v, = lim, v, = o € A% in (A%, d). Let M > 0.
Then there exists some k € IN such that r(u,, ), 7(v,,a) > M + 1 for every n > k. Hence
[A(wn, )|, [A(vn, )| > M for every n > k, and so |A(u;,vj)| > M for all i,j > k. Therefore
(10) holds as required. O
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We can now deﬁne the extension Of the GI‘OHIOV product to AR as fOHOWS: given a, /B €
Aw let
H’

g(a, B) = sup{liminf g(u;, vj) | (n)n, (vn)n are sequences in A%, lim u, = o, lim v, = G},
2,]—00 n—o00 n—oo

where the limits of (uy), and (v,), are taken in (A%, d).
Lemma 5.8 admits an immediate extension:

Corollary 5.11 For all o, 3 € A%, distinct,

(Ma, B)| = (2m? — 2m)

- < g(e, B) < M@, B)| +m? +m — 2.

Proof. Let (un)n, (vn)n be sequences in A}, such that lim, .. u, = « and lim, . v, = .
It suffices to show that

—(2m? -2
Aa, B)] — (2m m) < 1iminfg(ui,vj) < |AMa, B)] +m?+m-—2.
m ,]— 00

Thus we only need to show that there exists some n € IN such that

Ma, B)] — (2m? — 2m)

Let p = A(«, 8) and take n € IN such that |A(u;, «)|, [A(vs, B)| > |p| for every i > n. Then
p(us,vj) = p for all 4, j > n and (11) follows from Lemma 5.8. [

Vi,j >n

< g(uivy) < A, B)[+m* +m—2.  (11)

The Gromov topology G on A%, can now be defined as follows. Given o € A% and n > 0,
let

Vala) = {8 € Ak | g(, ) > n}.
We take {V,(«) | n > 0} as a fundamental system of neighbourhoods for a.
Theorem 5.12 The metric d on A% induces the Gromov topology G.

Proof. Since the open balls {B:(«) | € > 0} constitute a fundamental system of neighbour-
hoods for a in (A%, d), we only have to compare the two fundamental systems.
Let € > 0. For every 8 € A%, we have

d(a, ) < e < 277(@h) < 27loea(E™) o p(qr, B) > logy(e7Y)
& M@, 8)] > logy(=1) - 1.
Hence
Be(a) = {8 € A} | [\, B)] > logy(e™") — 1}
It follows from Corollary 5.11 that
gla, B) > logy(e ) = 1+m* +m—2 = [\a, 8)| > g(o, B) = (m* +m —2) > logy(e ") — 1,

hence V,(a) € B.(a) for any positive n > logy(7!) + m? + m — 3.

Conversely, let 7 > 0 and take e = 2~ (mn+2m*=2m+1) Lot 3 € B, (). Then | o, 8)] >
logy(e™1) — 1 = mn + 2m? — 2m and Corollary 5.11 yields
_ @.B)| — 2m® — 2m)
o m

9(a, B)
Therefore B.(a) C V;(a) and so d induces the Gromov topology G. [J
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It is somewhat surprising that the metric d, that can be naturally defined using the
directed Cayley graph of A%, induces a topology defined via the undirected Cayley graph of
A}, (check the definition of s). This phenomenon is reminiscent of the geometric behaviour
of prefix-automatic monoids in [17].

It is also interesting to note that A% is a word hyperbolic monoid for the definition
introduced by Duncan and Gilman [8]. Let w" denote the reversal of a word w. A monoid
M is called word hyperbolic if M has a rational set of representatives M C A* (where T
denotes the representative of x € M) such that the language

T = {u#v#uv" | u,v € M}

is context-free, where # is a new symbol. All the results on context-free languages we shall
use can be found in [10].

Theorem 5.13 Let R be a finite special confluent rewriting system on a finite set A. Then
A%, is word hyperbolic.

Proof. We may assume that R is normalized.
Since A}, is a rational language, it suffices to show that

T = {u#v#uv" | u,v € AR}
is context-free. By Lemma 4.2(i), we have
T = {ujugH#viveH#vyu] | urug, v1ve, u1ve € Ag, U0 = 1}.

Let
T = {ug#v1 | ug,v1 € Ap, ugvr = 1}.
We show that T} is context-free. This holds trivially if R = ), hence we may assume that
R # (). Since R is normalized, (w, 1) € R implies |w| > 2. Let {(r4,s;) | i =1,...,n} denote
the set of all possible nontrivial factorizations of relators in R (that is, (r;s;,1) € R and
ri,Si 7 1). Let
T = {7%'1 "‘Tik#sik .. S | k>0, ij € {1,...,71}}.

It is straightforward to check that
=1 N AE#AE

Let B = {b1,...,by, b7}, ...
by

b, !} and let ¢ : B* — A* be the homomorphism defined

ren

bip =1y, b;lwzsi (i=1,...,n).

The language
T3 = {w#w™ | w e B*}

is a well-known context-free language and To = T3p. Since the class of context-free lan-
guages is closed for morphisms and intersection with regular languages, it follows that
Ty = T3p and T1 =Ty N AR#A}, are context-free.
Let
Ty = {ur# vodtviu] | ug,vo € A*}
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and let ¢ : (AU{#,#'})* — (AU {#})* be the homomorphism defined by

# =1, ap=a (a€AU{#}).

Since the class of context-free languages is also closed for inverse morphisms and {w#w" |

w € A*} is context-free, it follows that
Ty =T~ N A*# A 4 A

is context-free.
Finally, let 6 : (AU{#,#'})* — (AU {#})* be the context-free substitution defined by

#0="T, ad =a (a€ AU{#}).

Since the class of context-free languages is also closed for context-free substitutions, it
follows that

T40 = {ujusFvivaFtosul | ur,va € A%, ug, vy € Ap, ugvr = 1}

is context-free. Therefore
T =T40 N AR#AR#AR

is context-free and A%, is word hyperbolic. [J

6 Extendable homomorphisms

For every u € A*, taking n = |u| + 1, we have By—n(u) = {u}. Hence the topology of
(A%, d) is discrete and so every endomorphism ¢ of A} = (A*,-) is continuous. Under
which conditions can we extend such an endomorphism to an endomorphism of A% or to a
continuous mapping ® : A% — A%¥? The next result shows that there is a unique candidate
to perform any of these roles.

Theorem 6.1 Let ¢ be an endomorphism of Ay and let ® : AR — AR be an extension
of . If ® is either continuous or an endomorphism of the partial w-monoid A%, then
a® = lim, .o @™o for every a € A%.

Proof. If ® is continuous, then it commutes with limits and so

a® = (lim o/™)® = lim o® = lim ol
n—oo n—oo n—oo
holds for every a € A%.
Assume now that ® is an endomorphism. Let o € A%. Since o = lim,, . o a,
then (o), a®, .. )7 is defined and equal to a. It follows that (a(V®, aP®, .. )7 is defined
and equal to a®. Thus

a® = lim (aW®)... (a™d) = lim ol

n—oo n—oo
as claimed. [J
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It follows that the convergence of the sequences (04[”]@)”, for a € A%, plays a key role
in the extension problems we are about to discuss. We say that an endomorphism ¢ of A}
is extendable if the sequence (a[”hp)n converges in A¥ for every a € A%,. Clearly, if ® is
a proper endomorphism of A%, then lim, .. alMe e A% for every a € A%. We shall say
that ¢ is properly extendable if lim,_ oy € A% for every o € A%,

We also introduce the notation

hy = max{|ay| : a € A}

for any endomorphism ¢ of A%,.
We shall need adequate characterization of idempotency:

Lemma 6.2 For every u € A%, the following conditions are equivalent:
(i) u is idempotent;
(i) vu = v for some v € A},.
(iii) [u?| = |ul;
(iv) u = xy with yz = 1;

Proof. (i) = (ii). Immediate.

(ii) = (iii). Assume that 7 = v for some v € A},. We may write v = v'v” and u = v'u”
with v”u/ = 1 and vu = v'u”. Tt follows that v'v” = v = vu = v'v” and so v = u”.
Therefore u2 = v/u"u/u" = wu" = u. In particular, (iii) holds.

(iif) = (iv). Assume that |[u2| = |u|. We may write u = w|u} = ubul with u2 = ujul
and v/ul, = 1. Since [u2| = |u|, we have |uj| = |u}| and so v} = ufj. Thus u = uhuy with
uuly = 1 and (iv) holds.

(iv) = (i). Immediate. O

The following lemma provides a combinatorial description of extendability.

Theorem 6.3 Let ¢ be an endomorphism of AY,. Then the following conditions are equiv-
alent:

(i) ¢ is extendable;
(it) Ya € AVu € A%, (((au)* C AR A (auau)p = (au)p) = (aua)p = (au)p).

Proof. (i) = (ii). Suppose that there exist a € A and u € A} such that (au)* C A}
and (auau)p = (au)p. Since (au)* C A%, a = (au)” € A%. As ¢ is extendable, (o),
converges, and therefore its subsequences ((au)"y), and (((au)"a)p), converge to the same
limit. Actually,
(au)"p = (au)p,  ((au)"a)p = (aua)e,

hence both subsequences are constant and (au)p = (aua)ep.

(ii) = (i). Suppose that (a™¢), does not converge for some o € A%. Then (al"yp),
fails (1) and so there exists some k € IN such that

vm e NIn > m: (aMp)F £ (orFp)H, (12)
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By Lemma 4.2(iii),

o] < r(alp, al ) =1+ (tg — D™ Vo] < k+ (tr — 1)hg.
Consequently |a["Hp| < k + trhy. Since there are only finitely many words of length
< k + tghy, it follows from (12) that there exists an infinite sequence iy < ip < ... in IN

such that ' ‘ A ‘
a[“]go = oe[”]go =...=xFy= oz[”“](p = oc[”“'l]go =...

Further refining of the sequence allows us to assume that

a(i1+1) — a(i2+1) =...=aQa e A

Since A’R is finite, there exist j,1 € IN such that [ >t and
alit2) o HI+tr) — \(Gt2) (Gt 1+tR) (13)
Write
u=al®t?  lii+)
and w = alil. Since (13) implies that
waua(u®l) = alilgit D042 (1) qnt D) o Gnt2) o (ntlttn) — oliat1+ts]

is irreducible and |u| > 1 — 1 > tg, we conclude that (au)* C A%. Moreover,

(wa)p = (alilaT)p = altitlly = 4

(waw)p = abrrilp = & = alilp = wp.
Hence

(wau)p = we # (wa)p.

By Lemma 6.2, (wau)p = we yields (auau)p = (au)p. Suppose that (aua)p = (au)p.

Then (wa)p = (waua)y = (wau)p = wyp, a contradiction. Therefore (aua)yp # (au)p and
(ii) does not hold as required. OJ

We introduce now some notation relative to finite automata (see [2] for details). A finite
A-automaton is described as a quadruple A = (S, so, T, E) where S is a finite set, s € S,
T C S and F is a finite subset of S x A x S. We denote the language recognized by A by
L(A). Given s € S and 7" C S, we use the notation Lsy» = L(S,s,T’, E) whenever the
automaton is clear from the context.

Note that, since

S
Ap = A"\ (| A*riAY),
i=1
it is clear that A% is a rational language.
Before proving that extendability is decidable, we prove a few decidability lemmas.

Lemma 6.4 Let L C A}, be rational and let
L'={ue A} |1€uL}.
Then L' is rational and effectively constructible.

25



Proof. Let {(f1,91),---,(fx,gr)} denote all pairs of nonempty words (f;, g;) such that f;g;
is a relator of R. Let B = {b1,...,b;} be a new alphabet, and define two homomorphisms
@, : B* — A* by bjp = f; and bjyp = g;. We show that L' = (Ly~1)¢ N A}, and therefore
L' is rational, since the family of rational languages is closed under morphism, inverse
morphism (of the free monoid) and reversal.

Assume that v € L'. Then wo = 1 for some v € L. Since u and v are both irreducible,
we may write v = fi, ... fi,, v = i, ...g; for some i1,...,i, € {1,...,k}. Clearly,
v=(b;, ...bi ), hence b;, ...b;, € Ly~ and so

in

—_—

U = fil i fzn = (bil . -bin)Qp € (Lw_l)QPQA*R

as claimed. o
Conversely, assume that v € (LY=)o N A},. Then there exists = b;, ...b;; € B* such
that ¢ € L and v = u. Let v = g;,, ... g;, = x. It follows that

and so wv = fi, ... fi.Gi, ---9i;, = 1. Since u € A%, we obtain v € L' and so L' =

(L) N A
Therefore L’ is rational and effectively constructible. [

Lemma 6.5 Let L C A%, be rational and let
L'={ue A} |Ivel:uw=u}

Then L' is rational and effectively constructible.

Proof. We may assume that L # ). Let A = (5, s9, T, E) be the minimal automaton of L
and let s € S. By Lemma 6.4, the language

Ki=LsrN{we Ag |1 € wly s}
is rational and effectively constructible. We show that

L= AR 0 (ARK). (14)
seS

Assume that u € L’. Then there exists some v € L such that

u=uv", v=0v", Wv =1 Jv"=u0=u.

In particular, vv" = uw = ¥/v” yields v = «”. Since v € L, we have v/ € Ly, s and
v" € Ly for some s € S. Since 1 = u"v/ = v"v' € v"Lg, 4, it follows that v” € K,. Hence
u=uu" =uv" yields u € A}, N (AL K,).

Conversely, assume that v € A}, N (A5 K,) for some s € S. Then we may write u = u'u”
with u” € Ks. Then we have vz = 1 for some z € Lg, 5. Let v = zu”. Since v € Ly, sLs1 C
L(A) = L and ww = v'u"zu” = w'u" = u, we obtain u € L.

Therefore (14) holds and so L’ is rational and effectively constructible. [J
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Corollary 6.6 Let v € A}, and
K ={ue Ay | uv = u}.
Then K is rational and effectively constructible.

Proof. It follows immediately from Lemma 6.5, where we consider the singleton set L =

{v}. O

Two more lemmas are needed:

Lemma 6.7 It is decidable whether or not a given rational language L C A}, contains some
idempotent.

Proof. We may assume that L # (). Let A = (S, s0,T, E) be the minimal automaton of
L. We show that L contains some idempotent if and only if 1 € UsegLs1Ls, 5. Since this
union is rational and effectively constructible by Theorem 2.4, decidability follows.

Assume that u € L is idempotent. By Lemma 6.2, we may write v = xy with gz = 1.
Since zy = u € L = L(A), we have © € Ly s and y € Ly for some s € S, hence
l=yze Ls,TLso,s-

Conversely, assume that 1 € Ly 7L, s for some s € S, say 1 = yz with y € Ly and
x € Ly, 5. It follows that zy € Lg, sLs7 € L(A) = L. Since xy is idempotent by Lemma
6.2, L contains an idempotent as required. [

Lemma 6.8 Let L C A}, be rational and let ¢ be an endomorphism of Ay. Then Ly is
rational.

Proof. Let ¢ : A* — A* be the endomorphism defined by ap = ap (a € A). If u =
ai...an € A (a; € A), then

up=(ay...an)p = (a1p)...(anp) = (a19) ... (anP)

=(a...an)p =up.

Hence Ly = L. Since rational languages are preserved by free monoid homomorphisms,
the lemma follows from Theorem 2.4. [J

Theorem 6.9 It is decidable whether or not an endomorphism of A}, is extendable.

Proof. Let ¢ be an endomorphism of A%. By Theorem 6.3, we need to show that condition
(i) in Theorem 6.3 is decidable. Fixing a € A and considering the negation, we must decide
if

Ju € AR ((au)* C AR A (auau)p = (au)p # (aua)yp). (15)
Let A = (S5, s0,T, E) denote the minimal automaton of A}, and let m = |S|. We define

2‘ . .
Y= U;”Zl {(s1,s2,...,825) € S | 50, 82,...,52j—2 are all distinct, so; = s9;
o j—1
for some i < j and a € M/_q Lsy; s0:11 }-

Clearly, 3 is finite and effectively constructible. For every o = (s1, s2,...,52;) € ¥, define



We show that (15) holds if and only if
Jdo = (s1,...,525) € ¥ Ju € A(0) : (auau)p = (au)p # (aua)p. (16)
In fact, if (15) holds for u € A%, then (au)™ labels a path in A of the form
80— 8] — 82— 83— . .. 89,

Let j € {1,...,m} be such that sy; is the first repetition in the sequence (sg, s2,. .., S2m).
Clearly, o = (s1, s2,...,525) € X. Moreover, u € A(c), hence (16) holds.

Conversely, assume that (16) holds for o = (s1,...,52;) € ¥ and u € A(0). We have a
path in A of the form

S0 % S21 D (au)i—!

where i € {0,...,j — 1} is such that sy; = s9;. Thus (au)” labels a path in A for every
n € IN. Therefore (au)* C A} and (15) holds.

To show that (16) is decidable, we may fix o = (s1,52,...,52;) € . Writing v = ayp,
we must show that

Jz € Ao)yp : vzvz = Uz # VzZ0 (17)

is decidable. Since rational languages are closed for Boolean operations, Lemma 6.8 implies
that A(o)y is rational. Define
K=A\{we A |wv=w}, K =uv(A(o)p).

It follows from Corollary 6.6 and Theorem 2.4 that K and K’ are rational and effectively
constructible. Moreover, (17) holds if and only if

Jwe KNK':ww = w.
By Lemma 6.7, this is decidable and so is the extendability of ¢. [

We consider now the proper case:

Theorem 6.10 Let ¢ be an endomorphism of Ay,. Then the following conditions are equiv-
alent:

(i) ¢ is properly extendable;
(ii) ¢ preserves infinite order;
(iii) Yu € A}, (u* C Ay = u’p # up).

Proof. (i) = (ii). Assume that ¢ is properly extendable and suppose that ¢ does not
preserve infinite order. Then there exists some u € A} with infinite order such that up
has finite order. By Corollary 3.5, there exist z,y € AL, v € AE and ng € Ny such that
yz = 1 and u® = xv"y for every n > ng. Clearly, v has infinite order. Moreover, |[u"y]
bounded yields |v"¢| bounded by Lemma 4.2(ii). Let a = v* = lim, . v". Since ¢ is
properly extendable, we have lim,_ a[”hp € A%. Thus lim, . v"¢ € A%. However,
|v™p| bounded implies lim,, ., v"¢ € A} by Lemma 3.1, a contradiction.
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Therefore ¢ preserves infinite order.

(ii) = (iii). Suppose that there exists some u € A}, such that u* C A% and u?¢ = uep.
Since u* C A% and u # 1, u has infinite order. However, uy is an idempotent and so has
finite order. Thus ¢ does not preserve infinite order.

(iii) = (i). Suppose that ¢ is not properly extendable. Suppose first that ¢ is not
extendable. By Theorem 6.3, there exist a € A and v € A} such that (av)* C A} and
(avav)y = (av)p # (ava)p. Taking u = av, we conclude that (iii) does not hold.

Suppose now that ¢ is extendable. Since ¢ is not properly extendable, there exists
some a € A% such that lim, ., ol € A%. By Lemma 3.1(i), the sequence (a["), is
stationary and so there exist v € A} and m € IN such that alMly = v for every n > m. Let
x be a factor of length ¢z having two disjoint occurrences in a(m*+Da(m+2)q(m+3)  Since
AR i finite, such an z exists. Hence we may write a = alflayz ... for some k > m and
y€ Ay Let u=uxy € AE. Since xyx, being a factor of «, is irreducible and |z| = tg, we
have u* = (zy)* C A},. Moreover,

v = ol = (aMu)p = (aFlp)(up) = v(up)

and so u?p = up by Lemma 6.2. Therefore (iii) does not hold as required. [J

Theorem 6.11 It is decidable whether or not an endomorphism of A}, is properly extend-
able.

Proof. Let ¢ be an endomorphism of A%. By Theorem 6.10, we need to show that
Vu € Ak (u* C A = up # up). (18)

is decidable. Let A = (S, sg, T, E') be the minimal automaton of A} and write

L= U (Ls,s \{1He.

seSs

We show that (18) holds if and only if L contains no idempotents.

Suppose first that (18) does not hold. Then there exists some u € AE such that u* C
L(A) and uy is idempotent. Since A is finite, we have u* € Ly for some k € IN and s € S.
Since u # 1, we have u* € L, ¢\ {1}. Moreover, u*¢ is idempotent since u¢ is idempotent.
Thus L contains the idempotent u*¢.

Conversely, suppose that L contains an idempotent, say ue with v € Ly s\ {1}. Since
u* C Ly, C A, it follows that (18) does not hold. Thus (18) holds if and only if L contains
no idempotents.

By Lemma 6.8, L is a rational language, and by Lemma 6.7, it is decidable whether or
not L contains no idempotents. [

In view of Theorem 6.10, one may wonder if ¢ preserving aperiodicity is equivalent to
i being extendable. The answer is negative:

Proposition 6.12 Let ¢ be an endomorphism of A%. If ¢ is extendable, then ¢ preserves
aperiodicity. The converse implication is not always true.
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Proof. Assume that ¢ is extendable and u € A} is aperiodic. Since utl = U yields
ng = u"p, we may assume that u has infinite order. By Corollary 3.5, there exist
z,y € AR, v € AE and ng € INg such that 7 = 1 and u” = xv"y for every n > ng. If
v has infinite order, then (|v"¢p|), is unbounded and so is (Ju™¢|),. Hence up has infinite
order and so is aperiodic.

Thus we may assume that vy has finite order. Let o = v*. Since ¢ is extendable,
(al"),, converges and so does its subsequence (v"¢),. Since vy has finite order, then
(|v™¢|)n is bounded and so (v™¢), is stationary by Lemma 3.1. Thus (u"¢), = ((z0"y)@)n
is stationary and so u¢ is aperiodic.

To show that the converse implication fails, we take A = {a,b,c} and R = {(ca,1)}.
Let ¢ be the endomorphism of A% defined by

ap=a, bp=cp=c.

It is clear that the unique finite order elements of A%, are those of the form a"c™ (n > 0) and
these are idempotents. Hence all elements are aperiodic and so, in particular, ¢ preserves
aperiodicity.

However, ¢ is not extendable by Theorem 6.3, since (ab)* C A}, and

(abab)p = acac = ac = (ab)p # a = aca = (aba)ep.

7 Weak endomorphism extensions

In the main result of this section, we show that it is decidable whether or not, given
an extendable endomorphism ¢ of A%, the extension ® : AR — A% defined by a® =
lim, oo @™ is a weak endomorphism. The problem of finding an algorithmic characteri-
zation of endomorphism extensions remains open.

Given u € AE, the notation v may refer to either a word in A“ or to lim, . u™ € A%.
In dubious cases, we shall use the notation u* = lim,,_,~, u™.

Lemma 7.1 Let ¢ be an extendable endomorphism of A}, and let ® : AR — AE be defined
by a® = lim, . al@. Then ® satisfies the endomorphism azioms (h1) — (h3).

Proof. First we note that, since ¢ is extendable, the mapping ® is well-defined. Since ®
extends ¢, axioms (h1l) and (h2) are trivially satisfied.
Let v € A}, and a € A%. We have

ua = ualm oM o(m+2)

for some m € IN. It follows easily from (6) that

(T8) = i (5T 0490 T, () (@)
= limp, oo (ug) (al™p) = (up) limy o0 el
= (up)(a®).

Therefore (h3) holds as required. [
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Therefore the fact of ® being an endomorphism (respectively weak endomorphism) of
A% depends solely of axiom (h4) (respectively (h4’)). We need the following lemma:

|un|

Lemma 7.2 Let (un)n, (Un)n be sequences in A}, such that (up)n, converges and limy, .o ol

= +o00. Then (unvy)n converges and

lim @,v, = lim u,.
n—oo n—oo

Proof. It is enough to show that
Vke Ndm € NVn > m unvn[k] = uﬁf}.

We may assume that v,, # 1 for infinitely many n € IN. Since lim,, ﬂ—:' = +oo and (up)n
converges, it follows that lim, o |uy| = +00.

Let k& € IN. Since lim,,_. % = lim;, 00 |un| = 400, there exists some m € IN such
that |u,| > k+tgr|v,| for every n > m. Let n > m. By Lemma 4.2(i), we have factorizations

Uy = w'u”, v, = 00" and w,v, = vV with |u”v'| < |v,|tg. Thus

| = |un| — [u"] > k + trlva| — |valtr =k
and so m[k] = ugﬁ ] for every n > m as required. [J

Theorem 7.3 Let ¢ be an extendable endomorphism of AR and let ® : AR — AR be
defined by a® = lim,,_,c a™@. The following conditions are equivalent:

(1) ® is a weak endomorphism of A ;
(i)
Va,y € ApVu € A} ((zuly C AR A gz =1 A u’p = up) = yp = 1). (19)

Proof. (i) = (ii). Assume that ® is a weak endomorphism. Let z,y € A% and u € A}, be
such that zuty C A%, y7 = 1 and u?p = uyp. Since (zuy)" = zuy for every n € IN and
u # 1, it follows from Lemma 7.2 that

(zuy)® = lim (zuy)” = lim zu"y = lim zu” = zu®” = zu®.
n—oo n—oo n—oo

Since ® is a weak endomorphism and up = u%p, we obtain

(zuy)p =Ty oo ((zu"y) ) = limn—oo (zuy)"p = limn oo ((Tuy)e)”
= ((zuy)p)” = (zuy)*® = (zu®)® = (2¢p)(uP)
= Ew))(limnﬁoo (up)™) = () (limp 00 u™p) = (2¢) (up)
= (zu)p.

By Lemma 6.2, we obtain y2¢ = yp and so
yp = yPap =JTp = lp = 1.

Thus (19) holds.
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(ii) = (i). Assume that (19) holds. By Lemma 7.1, axioms (hl) — (h3) are satisfied. It
remains to check (h4’).

Let u € A% and assume that u® is defined. We show that (u)® is defined and u“® =
(up)®. )

By Theorem 3.2, u is aperiodic. By Proposition 6.12, uy is aperiodic and so (up)“
is defined. Suppose that u has finite order. Then u™ = u™*1 for some m € IN and so
(up)™ = (up)™+1. Therefore

ud = lim wlp = ump = (up)™ = lim (up)" = (up)®.
n—oo n—oo
Assume now that u has infinite order. By Corollary 3.5, there exist z,y € A%, v € AE
and ng € INg such that yZ = 1 and u™ = xv™y for every n > ng. Hence v has also infinite

order. By the proof of Corollary 3.4, we have

u = lim u® = xv*.
n—oo

Thus u¥® = lim,, . (zv*)" ¢ and since (zv"), is a subsequence of ((zv*)"),, we obtain

u?® = lim (zv")e. (20)
On the other hand, )
(up)? = lim u"@ = lim (xv"y)p. (21)

If vy has infinite order, all powers (vp)™ are distinct and so lim,—,« |(vp)™| = +00. Thus
[(zv™)e| _
lyel

lim,, o [(z0™)p| = +00 by Lemma 4.2(ii). Hence lim,,_ +o00 and Lemma 7.2
yields
lim (zv")p = lim (zv"y)e.
n—oo n—oo
Therefore u“® = (ug)® by (20) and (21).
Thus we may assume that vp has finite order. Since v has infinite order, vy is aperiodic
by Proposition 6.12. Thus (vp)™ = (vp)™*! for some m € IN. For k = max{ng,m}, we

may write

p() 'ty C AR gE=1, (") =1b.
Since v* € A}, we may apply (19) and obtain ye = 1. Together with (20) and (21), this
yields A A
u?® = lim (zv")p = lim ((zv"y)¢) = (up)®.
n—oo n—oo

Therefore (h4’) holds and @ is a weak endomorphism as required. [J

The properly extendable case is straigthforward:
Corollary 7.4 Let ¢ be a properly extendable endomorphism of AL, and let ® : AR — AR
be defined by a® = lim,_,~ a[”]cp. Then ® is a weak endomorphism of A% .

Proof. Since ¢ is properly extendable, it preserves infinite order by Theorem 6.10. Hence
conditions zuTy C A} and u*¢p = up cannot occur simultaneously. Therefore (19) holds
trivially and so ® is a weak endomorphism by Theorem 7.3. [J
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The next counterexample shows that the analogue of Corollary 7.4 does not hold for
extendable endomorphisms. If we are using an alphabet A containing formal inverses of
some of its letters, we say that an endomorphism ¢ : A} — A% is matched if, whenever
a,a”! € A, all letters in ap have formal inverses and a= 1y = (ap)~! (the formal inverse of
the word ay).

Example 7.5 Let A = {a,b,c,b=', ¢} and R = {(bb=1,1), (cc™1,1), (¢ e, 1)}, Let ¢ :
Ay — A% be the matched endomorphism defined by

ap =b"1b, bp=cbe, cp=c>

Then ¢ is extendable but the mapping ® : AR — AR defined by a® = lim, . al™y is not
a weak endomorphism.
Proof. Let B = {b,b"1,c,c™'}. We may identify B} with the submonoid B* of A%. We
show that

(A) ¢

By Theorem 6.10, we have to show that u* C B* implies u?¢ # u¢ for an arbitrary u € BE.
The case u € ¢ U (¢~ )T being trivial, we may assume that

7+ preserves infinite order.

u = cOp Ik pin-1p=inphin din

with n > 1; dg,ip € Z; i1,...,in—1 € Z\ {0} and j;,k; >0, j;+k >0for i =1,...,n. We
have

up = 2o (c1b=le=1) a1 (cbe)krc?in .. c2in—1(c=1b= e 1)In (che)kn c2in, (22)

Since b=1lc=leb = b~ 1b and bec?iic—1b—1 = bc?ib~ ! for [ =1,...,n — 1, it follows easily that
no occurrence of either b or b=! is involved in the reduction in (22). Thus

022:0_117_1 . bc%"f1 ' ' if j1,kn >0
wo — cZo=1p=1 | p71Zinml op Zo—1p=12i=l if 5 > 0 and ky, =0
YT iotly . pe2intl or cZiotlpc?atl if 4 =0 and k, > 0
cZlotly | plc2in—t if j1,k, =0

If (up)(up) = u?¢p = up, we must have reduction between b and b~! in the product
(up)(up), hence j1,k, > 0 and c2intlc2io=1 = 1. Thus i, = —ig. Since u? is irreducible,
bkncinciop=it ig irreducible as well. Thus 4, = ip = 0 and j1,kn > 0 implies that bb~ ! is
irreducible, a contradiction. Therefore ¢ | By, preserves infinite order.

We remark also that

(B) L(¢ |g) " = {1}.

It is clear that ¢ = 1 < n = 0 and the general case follows from neither b or b~! being
involved in the reduction in (22).

We show next that

(C) B*¢o = {c® | n € Z} U {cFotly=iphictinp=izphac2iz | clin—1p=inphnc2intl | p > 1;
10,0n € L 11, ..., ip_1 € Z\{O} and j;,k; >0, 51+ k>0 forl = 1,...,n}.
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Clearly, all elements of By are contained in the right hand side set, which we denote
by P. Straightforward checking shows that P(By) C P, hence B*¢ C P. Conversely,
every element of P is clearly a product of words of the form c¢?,¢72, cbe™! and cb~lct.
Since cbe™! = (cbe)c=2 = (be™ L) and cble™t = 2(e1h~1e ) = (cb 1)y, it follows that
B*p = P as required.

Our next step is to prove that

(D) If u € A} and up ¢ B*p, then ugp is idempotent if and only if u = va'w for some
t € IN and v,w € B* satisfying wv = 1.

It suffices to prove the direct inclusion, the opposite inclusion being immediate. Since
u € A} has at least one occurrence of a, we may write u = upattuy . .. up_jattuy with
u; € B* and uy,...,up_1 # 1. Hence

wp = (ugp)b~1b(u1) - . . (up—10)b~1b(ukp).

By (B), we have wjp,...,up_1¢o # 1 and so, by (C), we may in fact write

up = (uoe)b b(urp) ... (up_10)b tb(urp). If (upp)(uop) # 1, it follows easily from (C)
that

b=10(urp) (uo@)b~1b = b~ b(ugp) (uo )b~ "b
and so u is not idempotent. Hence b=1b(uyp)(uop)b~1b = b~'b and so

(u0)b ™' b(urep) . . . (ug—19)b” b(upp) = up = (up)?
= (uop)b™'b(ure) . . . (up—19)b~ b (urp) (uop)b~1b(urp) . . . (u—10)b~ " bugp)
= (uop)b~'b(ure) . .. (uk—19)b~ " b(u1) . .. (up—10)b~ b(urp)

yields k =1 and so (u1¢)(upp) = 1. By (B), we obtain wjug = 1 and (D) holds.
We prove next that ¢ is extendable. By Theorem 6.3, we must show that

((2w)" C A} A (zuzu)p = (zu)p) = (vuz)p = (xu)g

holds for all z € A and u € A%,

Let € A and u € A} be such that (zu)* C A}, and (zuzu)p = (zu)p. Then zu
has infinite order and (zu)y is idempotent, so by (A) zu cannot be in B*. We may write
xu = vaw with v € B*, so that (zu)p = (vp)b~tb(wy). Since vy does not end in b by (C),
we obtain (zu)p = (ve)b~tb(wep). It also follows from (C) that (v¢)b~! cannot be a prefix
of some word in B*p (either vy = ", but no word in B*¢p starts with ¢?*b~1, or vy ends in
bt1c?in=1 but no word in B*¢ contains b*1c?n~1b~1). Consequently (zu)p ¢ B*p. By (D),
we conclude that zu = va'w with t € IN, v,w € B* and wov = 1. Since zuzu = valwvalw

is irreducible, it follows that v = w = 1 and zu = a'. Then z = a and
(zuz)p = a o = b7 = alp = (zu)e.

Therefore ¢ is extendable.

By Theorem 7.3, ® not being a weak endomorphism follows from the existence of x,y €
Ap and u € AE such that zuty C A%, yz = 1, u?p = up and yp # 1. All the conditions
are clearly satisfied by x = b, u =a and y = b. [
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We can also get decidability for ® being a weak endomorphism:

Theorem 7.6 Let ¢ be an extendable endomorphism of Ay and let ® : AR — A% be de-

fined by a® = lim,,_.oc @M. Then it is decidable whether or not ® is a weak endomorphism
of A% .
Proof. By Theorem 7.3, we only need to show that (19) is decidable. Let A = (S, 50,7, E)

be the minimal automaton of A% and write m = |S|. For every o = (s1, s2, s3) € S°, define

Alo) = (LS1,82 N L827S2> \ {1}.
We show that (19) fails if and only if there exists some o = (s1, s2,53) € S3 such that:
(a) (A(0))p contains an idempotent;

(b) 3y € Lgy 55 (1 € yLsy s, Ny # 1).

Suppose that (19) fails. Then there exist z,y € A} and u € AE such that
zuty C AR, yr=1, vo=up, yp#l. (23)
In particular, we have a path in A of the form

80 ——=> 51 e S Quk

For some k € IN, we may replace u by v in (23) and assume that there is a path in A of

the form
u

M
\ ¥
S0 p S1 ” S92 m S3.

Since u € A(o), (a) holds. Clearly, (b) holds as well.

The converse implication is straightforward, hence we are bound to decide whether or
not (a) and (b) hold simultaneously for some o = (s1, s9, 53) € S°.

Fix o = (s1, 52, 53) € S3. Since A(0) is rational, so is (A(c))y by Lemma 6.8. Thus (a)
is decidable by Lemma 6.7. In view of Lemma 6.4, the language

K = Ls, 53N {ye A*R RES yLSo,81}

is rational and effectively constructible. Since (b) holds if and only if there exists some
y € K such that yp # 1, i.e., if and only if

Ko € {1},

decidability follows from Lemma 6.8 and the standard decidability properties of rational
languages.
Therefore (19) is decidable as required. O

35



In the next example, we show that the endomorphism ¢ may have different (proper)
weak endomorphism extensions:
Example 7.7 Let A = {a,b,c} and R = {(ac,1),(bc,1)}. Then the identity mapping of
A% admits two proper weak endomorphism extensions in A% .

Proof. let + : A — A% denote the identity mapping. Clearly, the identity mapping
¢ : AR — A% is a proper weak endomorphism extension of (. We define a mapping
U AR — A by

“ otherwise

ol — {a if «v is either finite or eventually periodic
c

It is immediate that U satisfies axioms (hl) and (h2). In view of Corollary 3.4, (h4’) also
holds. Let u € A} and a € A%.
If « is eventually periodic, then so is wa and thus

(wa)¥ =ua = (ul)(al).

Assume now that « is not eventually periodic. If ¢ occurs n times in v and |u| = n + m,
then v = ¢™v with v € {a,b}* and uc™ = ?vc™ = ¢". Since @ is not eventually periodic
either, we obtain

(wa)¥ = ¢ = uc? = (u¥)(al).

Therefore (h3) holds and VU is a weak homomorphism extending ¢.
Since there exist non eventually periodic words in A%, for instance ababa®ba’h ..., W is
not the identity mapping on A%. [J

8 Continuous extensions

Clearly, the trivial endomorphism ¢ : A} — A% defined by up = 1 admits as continuous
extension the trivial endomorphism of A%. Throughout this section, we exclude the trivial
case.

We start with one of the simplest situations.

Lemma 8.1 If all the elements of A}, have finite order, then |A| =1 and A}, is a finite
cyclic group.

Proof. We assume R to be normalized. Let a € A. Since a* is finite, we have (a",1) € R
for some n > 1. Thus we have relations (a™,1) € R for every a € A. We assume that n, is
minimal for every a. Suppose that (ar,1) € R with a € A and r € AT. Then a™r — r and
na=l " Since the reduction process is confluent and r,a™ ! are both irreducible
ma=1 and so all relations in R must be of

ar — a
due to R being normalized, it follows that r = a
the form (a",1).

If A contains some other letter b # a, ab € A}, would have infinite order, hence |A| =1
and so R = {(a",1)} implies that A% is a finite cyclic group. [J
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The following lemma provides a simple set-theoretical characterization of uniform con-
tinuity, which will play a central role in this section.

Lemma 8.2 Let ¢ be a nontrivial endomorphism of Ay,. Then the following conditions are
equivalent:

(i) @ is uniformly continuous;

(i) we™t is finite for every w € A%,.

Proof. The endomorphism ¢ is not uniformly continuous if and only if
Je >0V > 0Ju,v € AR (d(u,v) < A d(up,vp) > ),
that is,
Jk € NVm € N Jup, vy € AR (7(Um, vm) > m A 7(Um@, Vme) < k). (24)

Let wy,, denote the longest common prefix of u,, and v,,. We still have r(wp,, wp, ), (W, Vi) >
m. Moreover,

min{r(um¢7 ’lUmQO), r(wm907 UmQO)} S T(um(pa ’Um(P) S k
and so we may assume that w,, is a prefix of v,,. Then |u,,| > m. If v, = upa; ... a, with
ai,...,an € A, then r(upmay ...a;—1,umay ...a;) >mfori=1,..., n. Since

min{r((umai ... a;i—1)@, (umar ...a;)p) | i=1,...,n} < r(unp, vme) <k,

we may assume that v, = upa., for some a,, € A. Since we may replace U, Gy, by Uy, ayn
if m < n, we may assume that the letter a,, is always the same. Thus (24) holds if and
only if

Jda € A3k € NVm € N Juy, € AR (Jum| > m A r(ume, (uma)p) < k). (25)
For every m € IN, by Lemma 4.2(iii), we have
umep| < 7((Uma)p, ump) =14 (tr = D]ap| <k =1+ (tr = Dhy.

Replacing u,, by some higher index u, whenever necessary, we may assume that u,,p is
constant and so (25) is equivalent to

Jda € AJw € A% (w(ap) #w A ¥Ym € N Juyy, € AL (Jum| > m A unp = w)),

and thus to
Ja € AJw € Ay (w(ap) #w A |lwp™| = 00),

that is,
Jw € AR (w(ARp)  {w} Alwp™| = o0). (26)

We show that (26) holds if and only if
Jw € Af : Jwe | = 0. (27)
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To prove this equivalence, we may assume that R is normalized, since both (26) and (27)
are independent of the rewriting system.

Assume that |wp™!| = oo for some w € A}. Suppose that w(A%p) = w. By Lemma
6.2, uyp is idempotent for every u € Ay,. If (pg, 1) € R, it follows that

Py = p2qp = pgp = 1.

Considering successively all prefixes of relators, we conclude that ap = 1 for every letter a
appearing in some relator. Let A; denote the set of all such letters.

If A% is finite, Lemma 8.1 implies that A% is a finite cyclic group and 1 its unique
idempotent. Since any idempotent of A} belongs to A% by Lemma 6.2, it follows that
AR =1 and so ¢ is trivial, a contradiction.

Thus Aj is infinite, and so A} C 1¢~! implies that 1p~! is infinite. Since ¢ is not
constant by our initial assumption, we have 1(up) # 1 for some u € A}, thus (26) holds
taking w = 1.

Since (26) implies (27) trivially, we conclude that they are equivalent.

We have proved that (24) is equivalent to (27). Since they are precisely the negations
of conditions (i) and (ii), the lemma holds. O

Corollary 8.3 Let ¢ be a nontrivial endomorphism of A%. If ¢ is uniformly continuous,
then it is properly extendable.

Proof. Assume that ¢ is uniformly continuous. Suppose that u € AE and u* C Ay. If
u?p = uyp, then upp~! contains uT and is therefore infinite, contradicting Lemma 8.2.
Hence u?¢ # ug and so ¢ is properly extendable by Theorem 6.10. O

In the next theorem, we establish several equivalent conditions to the existence of con-
tinuous extensions.

Theorem 8.4 Let ¢ be a nontrivial endomorphism of AfL. Then the following conditions
are equivalent:

(i) ¢ can be extended to a continuous mapping ® : AR — A¥;

(ii) ¢ can be extended to a proper uniformly continuous endomorphism of the metric partial
w-monoid AY;

(iii) ¢ is uniformly continuous;

(iv) ¢ preserves Cauchy sequences;

(v) wp=! is finite for every w € Apg.

Moreover, if these conditions hold the continuous mapping ® is unique and given by
a® = lim,, . a["]go.

Proof. First we note that the given definition of ® and its uniqueness follow from Lemma
6.1.

(i) = (ii). If & : A® — A% is a continuous extension of ¢, then it is uniformly
continuous since A% is compact. By Theorem 6.1, ¢ is extendable and so ® is proper by
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Corollary 8.3. Moreover, the homomorphism axioms (hl) — (h3) hold by Lemma 7.1. It
remains to show that (h4) also holds.

Suppose that (ug,ug,...)w is defined. Then (uy - .. uy )y, converges to (ug,usg,...)m. Since
® is uniformly continuous, it follows that

lm (u1¢)...(upp) = lim a1 upe = lim wp . u,® = (ug,ug,...)7d,
n—00 n—00 n—o0

hence (u1p, usep, ...)w is defined and equals (u1, ug, ...)7®. Therefore ® is an endomorphism
of A% and (ii) holds.

(ii) = (i). Trivial.

(i) = (iv). If @ is continuous, it preserves convergent sequences (that is, Cauchy se-
quences, since A% is complete). So does its restriction ¢.

(iv) = (iil). Suppose that ¢ is not uniformly continuous. Then there exists some € > 0
such that

1
Vn € IN Juy,, vy, € A* (d(up, vp) < - A d(unp, vnp) > €).

Since A% is compact, the sequence (uy), has an adherence value o € A%. Let (uy,), be
some subsequence converging to «. It is straightforward that the sequence w;,, vy, , Uiy, Vig, - - -
is still convergent to «, and so is Cauchy. However, u;, ¢, vi, @, ui, @, Vi, @, . . . is clearly not
Cauchy and so ¢ does not preserve Cauchy sequences.

(iii) = (i). By [7, Corollary XIV.6.2].

(iii) & (v). By Lemma 8.2. [

The particular case of groups provides a simple corollary:

Corollary 8.5 If Ay is a group with no finite nontrivial normal subgroups and ¢ is an
endomorphism of A%, the following conditions are equivalent:

(i) ¢ can be extended to a continuous mapping ® : AR — A¥;
(ii) ¢ is either trivial or injective.

Moreover, if these conditions hold the continuous mapping ® is unique and given by
a® = lim, a["]go.
Proof. The nontrivial case follows immediately from Theorem 8.4, taking into account

that, in a group, |we~!| = [Kery| for every w € A% and Keryp is a normal subgroup. [J

This corollary can be of course applied to free groups, but not only:
Example 8.6 Let A = {a,b,b7'} and R = {(a®1),(bb71,1),(b"1b,1)}. Then A% is a
group (the free product of Z by Zs, actually) with no finite nontrivial normal subgroups.

Proof. Let u € AE. If u has finite order, then
we (0" UG e U ) el U b))

and so {b"ub~" | n € Z} is infinite. Thus u belongs to no finite normal subgroup. O
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Theorem 8.7 It is decidable whether or not an endomorphism ¢ of A}, can be extended to
a continuous mapping ® : AR — A% .

Proof. We may assume that ¢ is nontrivial. By Theorem 8.4, it suffices to show that it is
decidable whether or not |wyp~!| = co for some w € A%,
We show that if |wp™!| = oo for some w € A% then

FJw € A% (Jw| < 2hy A Jwp ™| = o0). (28)

=00 forw=ay...an (a; € A). Let (u,), be an infinite sequence

Assume that |we
consisting of distinct elements of we~!. For every n € IN, there exists a finite sequence

0=1p <1 <i2 <...<tipy, =msuch that we may write
Un = Gnobn1gni - - - bnmy, Gnm,,
for b,; € A, gn; € A}, satisfying
bnj = PnjQi;_y+1 - - - Qi; Qnj

forj=1,...,m, and

Gnj(Gnj@)Pnj+1 =1

for j =0,...,my, where ¢,0 = Pn,m,+1 = 1. By the pigeonhole principle, we may refine the
sequence (uy), to assume that:

e there exists some k € IN such that m,, = k for every n € IN;
e the sequence 0 =i < i1 < 19 < ... < i = m is the same for every n € IN;
o for each j € {1,...,k}, the letter b,; is the same for every n € IN, say b,; = b;;

e for each j € {0,...,k}, the words py jt1 (respectively gn;) are the same for every
n € N, say pnji1 = pjr1 (respectively gnj = g;).
Write
io1=-1, Jigp1=m+1, ao=amny1 =bo=0br1 =po=qrs1 =1

Since the u,, are all distinct, one of the sets {gn; | n € IN} is infinite for some j € {0,...,k}.
Let w’ = Pja;, 41 Gi;;1q;+1- Clearly,

(W' < pjai; 41 aij| +laij41 - aig gl < bl + [bjpap] < 2hg.

Moreover,

(0jgnjbjt1)P = Dj@i; 141 - Qi GG (GngPIPj+1Qi5 41 - - - Qiy 1 Qi1
:pjaij,1+1 s aijaij+1 s aij+1qj+1 = pjaij,1+1 s ainQj—i—l
/
=w

for every n € IN. Since {g,; | n € IN} is infinite, we obtain |w'¢~1| = co and so (28) holds.
Since there are only finitely many words of length < 2h,, we only need to show that,
given a fixed word w € A%, it is decidable whether or not |wyp~!| = oco.
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Let ¢ : A* — A* be the endomorphism defined by a¢p = ap (a € A). Since {w}
is a rational language, it follows from Theorem 2.5 that D,, = {u € A* | © = w} is
(deterministic) context-free. We show that

wp ! = D@t N A% (29)

Let u € we~!. Since up = up = w, we have up € D, and so u € D,p~'. Thus

wp™ C Dy N A%,

Conversely, if u € Dy,¢™t N A%, then up = up = w and so u € wy~'. Therefore (29)
holds.

Since the class of context-free languages is closed for inverse morphisms and intersection
with rational languages, and we can test whether or not a context-free language is infinite
or not [10], it follows that we can decide whether or not |we~!| = co as required. [

In the following example, we show that a properly extendable endomorphism of A% is
not necessarily uniformly continuous, even if it admits a (proper) endomorphism extension.
Example 8.8 Let A = {a,b,c,d,d Y e;et f,f 19,97} and R =
{(zz71,1) | 2 = d,d" Y e,e f, f1 9,971}, Let ¢ be the matched endomorphism of A%
defined by

ap = fg dp =d fo=e’de™?
bp = flg7? ep = ede™? gp = e3de™3
cp = g_l.

Then:

(i) ¢ is properly extendable;

(ii) ¢ can be extended to an endomorphism of A% ;
(iii) ¢ is not uniformly continuous.
Proof. (i) Let B = {a,b,c} and C = {d,d t,e,e !, f, f~1, 9,97 '}. We show that

lo~'nB* ={1}. (30)
Since C* is a free group, we can define a group homomorphism 1 : C* — Z? by
dy =ep =(0,0), fy=(1,0), g¢=(0,1).

Let |u|, denote the number of occurrences of the letter = in u. If u € B* is such that
up = 1, then (0,0) = upyp = (ule — |ulp, |ule — |ulp — |ul|c). This implies |ulq, = |ulp and
|t|c = 0. Then u € {a,b}* and no cancellation can occur in up, so u = 1.
Next we show that
lo~tnCc* ={1}. (31)

The submonoid C* of A}, is a free group on the set {d, e, f,g}. If we apply the well-known
Reidemeister-Serre-Stallings algorithm [6] to the finite subset {d, ede™!, e2de™2,e3de3} of
this free group, we obtain the finite automaton

d d d d
(y () () ()
e ——>0—>0—=>0

€ e e
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The horizontal edges constitute a maximal subtree and according to the algorithm the four
remaining edges yield {d, ede™!, e2de2, e3de 3} as a basis of the subgroup of C* generated
by them. It follows that ¢ | is injective and so (31) holds.

(From (30) and (31) we can deduce that

o™t ={1}. (32)

Indeed, any u € AE van be written as ujus...u,, n € IN, with the u; alternately in B™
and C*\{1} (or conversely). Then u;p # 1 by (30) and (31), and the u;p are alternately in
{d,d=1,e,e=1}*\{1} and {f, f~1, 9,97 }*\{1}. Thus up = (u1p)(u2¢p) ... (unp) is reduced
and so uy # 1. Therefore (32) holds.

Let u € AE be such that u* C A%. Suppose that u?¢ = uyp. Since uy is an idempotent
of the free group C*, we obtain up = 1, contradicting (32). Thus u?¢ # up and so ¢ is
properly extendable by Theorem 6.10.

(ii) By Corollary 7.4, the mapping ® : A% — A% defined by a® = lim,,_. oMy is a
weak endomorphism. We have to show that & satisfies axiom (h4), that is, if (ug, u2,...)w
is defined, then (ujp,usgp,...)w is defined and equal to (ui,usg,...)m®. This is equivalent
to say that if lim, oo Uy - .- Uy = «, then (U .. Upp), converges and lim, oo Uy ... Upp =
a® = lim,, . a[”]go.

Given u € A*, we define un to be the unique k € INg such that u € B*(CTBH)*kC*.
Equivalently, un is the number of factors of u belonging to C'B. Since the letters of B
cannot be reduced, we have won > un for all u,v € A}.

Assume that lim,, oo U1 ... Uy = Q.

We suppose first that (wy ... u,n)y is unbounded. Let & € IN. Since a® = lim,, . aln ]go,

there exists some p > k such that (al@)* = (a®)*! for every n > p.

Since (uy-.-upn)y is nondecreasing, there exists some m € IN such that wy ... w,n > p
for every n > m. Let ui.. un, = xoy121...YpTpvym with zg € B*, x1,...,7) € BT,
Yi,---,Yp € CT and vy, € A . Slnce the letters of B cannot be reduced, we have

Vn > m3v, € AR 1 U1 .. Up = TYIL] - - - YpTpUn,. (33)

Once again, it follows from (30) and (31) that

L Unp = (o) (Y10)(@19) - - - (Ypp) (Tpvn) @

for every n > m. Since |(209)(y19)(x19) - - - (ypp)| > 2p—1 > p > k, we obtain (a1 unyp) ¥

= ((zoy11 - . . yp) )] for every n > m.
On the other hand, (33) implies that o = zoy121 ... ypa,0 for some 5 € A% and so (30)
and (31) yield

a® = (2op) (Y1) (210) - - - (Yp) (Tp) (Bep)-
Since [(zop)(y19)(z19) ... (Ypp)| > 2p — 1 > p > k, we obtain
(OC‘I’)W = ((woyrmy .. -yp)SO)[k] = (u1- --unSO)[k]
for every n > m. Thus

VkeINIm e IN(n>m = (ur. unp)H = (a®)H)
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and lim, o Uy - . - upp = aP as required.

We assume now that (w7 ... u,n)y, is bounded with maximum value k. Then there exists
some p € IN such that uy..-w,n = k for every n > p. Since the letters of B cannot be
reduced, there exist zg € B*, x1,...,25-1 € BT and y1,...,y, € C such that

Vn > p3v, € BT 3w, € CF : Ui Uy = ToY121 - - . YiUnWn.

If £k =0, we may assume xg = 1 to have uy ... u, = v, wy.

Suppose first that (|v,|), is bounded. If |v,| is maximum for n = r > p, we have
UL - - - Uy = TY1X1 - - - YpUrwy, for every n > r. In particular, u, € C* and w, = Wylr+1 - - - Up,
for every n > r. Clearly, ols) = zoy11 ... ypv, for s = |xoy121 ... ypvr|. It is immediate
that lim,— o wy, = a3t a6+2) | Let f = a5t ls+2) |

Now we can view R as a rewriting system over C. Let oo = ¢ |CI*% and &¢c = ® |C;§-
By (31), Theorem 8.4 and Corollary 8.5, ®¢ is a continuous endomorphism of the metric
partial w-monoid CF. In particular,

lim wpp = lim wypo = P = BO.
n—oo n—oo

Thus

limy, oo U1 - URY = hmnaoo(xoylxl .- -ykvrwn)@ = (l‘oylwl .- -ykvr)@(ﬁ@)
= zoy121 - . - Ypvr 3P = (1)@ = ad

as required.
Finally, suppose that (|v,|), is unbounded. Since v, is a prefix of v,41 for every n > p,
we can define lim,, oo v, = 0 € B“. Clearly,

a= lim uy.. u, = lim xoy121 ... YpUpWn = Toy121 - - - Y0
n—od n—oo

and so

a® = (zoy121 - - - Yk )p(BP) (34)

by Lemma 7.1. Since 3 € B¥ and ¢ is properly extendable, we have lim,,_.o 8¢ = ® €
A%. Since (vp,vpt1,...) is a subsequence of (3IM),,, it follows that lim, .o(vnp) = BP.
Moreover, since (v,¢)(wnyp) is irreducible, we have

lim (vp0)(wnp) = lim (v,p) = P
n—oo n—oo

and so (34) yields

a® = (zoy171 - .- Yk )P(BP) = (o121 - - . yr)p(limp— 0 (V) (Wi p))
=1lim, o0 (Toy121 - - . Yr)(n@) (Wrp) = limy, oo ((Toy121 - . . YpVRWR)P)
=1limy, 00 (U1 - -~ Unep).

Therefore ® is an endomorphism as claimed.

(iii) To show that ¢ is not uniformly continuous, we show that g~'¢~! is infinite. In
fact, (ach)y = cp = g~! yields (a"cb™)p = g~! for every n € IN. Therefore g~p~! is
infinite and so ¢ is not uniformly continuous by Theorem 8.4. [J
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9 Conclusion

Our results indicate that it is worthwhile studying infinite words on nonstandard algebraic
settings. Since homomorphisms constitute the ultimate algebraic concept, our characteri-
zation theorems and particularly the positive decidability results provide evidence of that
fact.

At this point, the main open questions in this line of research should be:

1. Is it decidable if an endomorphism ¢ of A} admits an endomorphism extension?

2. If an endomorphism ¢ of A} admits a weak endomorphism extension, does a® =
lim,, o oz[”]go define a weak endomorphism extension?
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