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Abstract. Motivated by the random Lorentz gas, we study deterministic

walks in random environment and show that (in simple, yet relevant, cases)

they can be reduced to a class of random walks in random environment where
the jump probability depends (weakly) on the past. In addition, we prove few

basic results (hopefully the germ of a general theory) on the latter, purely

probabilistic, model.

1. Introduction

The motion of a point particle among periodically distributed elastically reflect-
ing convex bodies has been intensively studied from many years. Both in the case
of diluted obstacles, that can be treated with kinetic theory ideas (Boltzmann-Grad
limit, see [20] and related work), and in the opposite case of high density (finite
horizon) starting with the seminal work of Bunimovich, Sinai, Chernov [2] till the
recent and much more precise results obtained in [7] using to the new standard pairs
and martingale problem techniques introduced in the field by Dolgopyat (see [6] for
an elementary introduction to such ideas and reference to the original works).

We are interested in the latter case, in particular to the statistical properties of
the infinite system (recurrence, ergodicity, mixing, C.L.T. etc.).

While all the above results deal with the purely periodic case, in real situation any
material is expected to have defects. It would hence be of paramount importance to
obtain similar results for a situation in which the obstacles are distributed according
to some random, translation invariant, stationary process. This encompasses a
wide range of possibilities from small perturbations of a periodic array to obstacles
distributed according to a Poisson process. The present work is motivated by
variants of the former possibility, see section 2 for a more detailed description of a
concrete example.
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Naively one could expect that the extra randomness coming from the distribution
of the obstacles would simplify, rather than complicate, the problem. Unfortunately
this seems not to be the case. Indeed, essentially no results are available in the non
periodic case with the notable exception of [10, 11], where it is proven recurrence
for special examples, and [8], where it is proven the CLT, for the situation in which
the periodicity is broken only in a fixed finite region (hence translation invariance
is violated). Note however that some results holds in full generality: [3, 23] estab-
lish criteria for recurrence and [10] shows that recurrent systems are ergodic. For
example, the problems of recurrence and ergodicity are reduced, in the two dimen-
sional case, to establishing a Central Limit Theorem, see [11] for details. Also, to
establish recurrence for the case of a one dimensional arrays of obstacles (tubes) is
substantially simpler and has been obtained in [25, 5, 4, 25, 13]. Nevertheless, even
in the simpler one dimensional situation the study of rate of mixing and C.L.T. are
wide open.

Part of the difficulties in studying the above problems stems from the fact that,
on the one hand, one needs non trivial results in dynamical systems concerning the
decay of correlations in order to show that the deterministic dynamics enjoy some
type of memory loss, hence it is akin, in some precise technical sense, to a random
process. On the other hand, one has to overcome the same type of hard obstacles
that exists in analysing the problems of random walks in random environment (see
[27] for a review on the subject).

In this article we aim at separating the above two difficulties, so they can be
(hopefully) solved independently. To this end we investigate more general, and
hence more flexible, models. First we describe a (purely deterministic) class of
models for a deterministic random walk in random environments (see section 3),
then a (purely probabilistic) class of models of random walks (with memory) in
random environment (see section 4). The former includes, as special examples,
many relevant cases of random Lorentz gases, in particular the ones discussed in
section 2; while the latter contains, as a simple case, persistent random walks and,
more in general, allows the transition probabilities to depend on all the past history
of the particle, although in a precisely controlled way.

The introduction of these two class of models is motivated by the following con-
jecture: many relevant deterministic walks in random environment are equivalent
to the above mentioned probabilistic models. Hence establishing, e.g., the CLT for
the probabilistic model implies the CLT for the deterministic walk.

Of course, stated as above, the conjecture is rather vague. The rest of the paper
is devoted to making it precise and proving it in some cases. We first illustrate
explicitly such an equivalence in some unrealistically simple examples (see section
5) and then we prove the above mentioned equivalence for a much less trivial class
of systems in Sections 6 and 7. In such systems the dynamics has properties sim-
ilar to the billiard dynamics, yet, it is much simpler. This substantially reduces
the technical difficulties, hence allowing to flash out the proposed strategy in a
more transparent form. So, while the problem of proving the equivalence with a
purely random model for the random Lorentz gas remains open, we believe we have
convincingly shown that it is a very reasonable possibility.

Notation. In the following we will use C# to designate a generic constant that
depends only on the parameters of the considered model. The actual value of C# is
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immaterial. In particular, the value of C# can change from one occurrence to the
next.

1.1. Results and structure of the paper. The paper is organised as follows: in
the next section we recall briefly what is meant for Lorentz gases and we describe a
subclass of examples that, although not fully general, provide a good starting point
for the study of the general situation. In Section 3 we describe a general class of
deterministic walks in random environment which encompass both the Lorentz gas
and the example with a simpler dynamics that we will consider later.

In Section 4 we describe the class of random systems to which we hope to reduce
the deterministic ones. We state precisely a set of properties for the random systems
under which one can prove ergodicity of the process as seen from the particle. This
show, in particular, that if one would succeed in reducing the Lorentz gas to such
probabilistic model, then one would automatically recover all the known results.
Of course, we believe that much more follows form such a reduction. For example,
we do not make any use of an important property of the Lorentz gas: reversibility.
Clearly, more work is needed to determine if our strategy can yield the hoped results
(e.g. CLT of for some examples of the Lorentz gas), yet we believe that the present
results justify pursuing further this line of thought.

In Section 5 we show that if one restricts the dynamics to a Markov one dimen-
sional expanding map, admittedly an unreasonably excessive simplification, then
the dynamical part of the problem can be completely obliterated and one is easily
lead to a purely probabilistic problem, although not a trivial one.

Next, we explore the possibility of obliterating the deterministic dynamics in
more realistic models. This is the content of Section 6 in which we illustrate pre-
cisely our simplified (but not absurdly so) model and we state precisely our results
(stating exactly in which sense the deterministic dynamics can be disposed of and
which kind of purely probabilistic model one can reduce to).

As the results stated in Section 6 holds under some technical condition, in Sec-
tion 7 we show that such conditions are satisfied for a large set of one dimensional
non-Markov expanding maps, whereby showing the they are not unreasonable. The
following sections contains the proof of the statements in Section 6, they use dy-
namical systems techniques to show that the dynamics can be forgotten and the
problem reduced to a purely probabilistic one.

2. The Random Lorentz gas

The random Lorentz gas consists of a distribution of convex, non overlapping,
obstacles in Rd, d ≥ 2 and independent point particles that move of free motion
and collides elastically with the obstacles. If one describes the particle density by a
distribution, then the problem is reduced to studying the motion of one particle with
an initial distribution given by a measure. If the obstacle distribution is described
by some probability measure, then the goal is to study the dynamics of the particle
for almost all obstacle distributions.

Of course, the problem of studying this situation depends rather heavily by the
the type of measure describing the obstacle distribution. Two reasonable assump-
tions are that the distribution enjoys some type of stationarity and ergodicity with
respect to some subgroup of the space translations. Also a key properties is the
existence or not of trajectories that can spend a unboundedly long time without
experiencing any collision (the presence of such trajectories adds an extra layer of
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complexity to the problem). Given the many possibilities, let us consider an explicit
example that, while not being the most general case, is already very interesting: a
small perturbation of a periodic array of discs on Z2. Note however that similar
examples can be considered for d = 1 (Lorentz tubes [5, 4, 25]) and d > 2 .

We start with an exactly periodic distribution on a square lattice, such a periodic
array divides naturally R2 in cells. In each of these cells we assume that there is
another disc which position is random in a small neighborhood of the center of the
cell and the radius is large enough to prevent trajectory that can enter and leave
the cell without experiencing a collision. The location of the central obstacle in
different cell is independent and identically distributed. See figure 1 for a pictorial

Figure 1. A random obstacle configuration for the random
Lorentz gas

illustration of a region of such an obstacle distribution.
The above is a reasonable model for a material with a periodic structure and

random impurities. The presence of the periodic structure makes a bit easier to
describe the model as a simple dynamical systems. Indeed, we can partition R2 in
cells, each one containing only one random obstacle. See Figure 2 for the picture
of such a single cell. Then we can observe the system only when the point particle
either hits one of the periodic obstacles or crosses from one cell to another. This
is pictorially illustrated by the bold line (solid around the obstacle and dashed in
the corridors among different cells) in Figure 2. Technically, this corresponds to
defining a Poincaré section.

More precisely, one can suppose, without loss of generality, that the obstacles
disposed periodically have centers at the points (2k+ 1, 2j + 1), (k, j) ∈ Z2. While
the random obstacles have as center the points 2z + ω(z), where z ∈ Z2 and ω(z)
being a random variable on Z2 with values in R2, identically distributed, such that
‖ω(z)‖ ≤ δ for some δ small enough. The obstacle distribution is then described

by a product measure P, over Ω = {ω ∈ R2 : ‖ω‖ ≤ δ}Z2

. On Ω are naturally
defined the translations: for each z ∈ Z2, τz : Ω→ Ω is defined

τz(ω̄)w = (ω̄)w+z,

for all ω̄ ∈ Ω ad w ∈ Z2.
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Figure 2. Billiard Cell. Poincaré section in bold

Next, let us consider the particle that moves among such an obstacle config-
uration. Note that, since the energy is conserved we can assume, without loss of
generality that the particle moves with velocity one. Hence we can consider a parti-
cle at the position q ∈ R2 and with velocity p, ‖p‖ = 1. Note that the billiard has a
natural invariant measure, Lebesgue. Then, given an obstacle configuration ω ∈ Ω,
and an initial condition (q, p), we have that the position and velocity of the particle
at time t are given by (q(t), p(t)) = φω,t(q, p), for some flow φω,t which depends on
the obstacle configuration. We are interested in the long time behaviour of such a
system. For example, if it has an asymptotic velocity (Law of large numbers), i.e.
for almost all ω and initial conditions there exists

(2.1) V = lim
t→∞

t−1[q(t)− q(0)]

and if the CLT holds, i.e. when the initial conditions are distributed according to
a measure absolutely continuous w.r.t. Lebesgue, then

(2.2)
1√
t
[q(t)− q(0)− V t]

converges in law to a Gaussian Random Variable for almost all ω (quenched Cen-
tral Limit Theorem). Before discussing further such questions it is convenient to
describe some alternative descriptions of the system.

2.1. Poincaré section. We can then consider a single cell centered around zero
(see Figure 2) and the set B = ∪4

i=1Ci ∪ Bi where Ci = Ci × [−π/2, π/2], Ci
being one of the arcs centered at the corners of the box and [−π/2, π/2] being
the angle that the post-collisional velocity forms with the external normal. While
Bi = Bi × [−π/2, π/2], Bi being one of the segments constituting the boundary
of the box not contained in the obstacles and [−π/2, π/2] being the angle that the
velocity forms with the external normal to the box boundary. We can then consider
the phase space B = B × Z2 and, for each obstacle configuration ω̄, the dynamics

(2.3) Fω̄(x, z) = (fω̄z+e(ω̄z,x)
(x), z + e(ω̄z, x)).
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The coordinate z specifies in which cell is the particle, x specifies where the particle
is on B, and ω̄z specifies the position of the central obstacle in the cell of coordinate
z. Given a particle with coordinates (x, z), one can follow its motion till it hits
B again, this defines the map fω̄z (x). Note that, by convention, x and fω̄z (x)
denote the pre-collisional position of the particle in B× {z} and B× {z+ e(ω̄z, x)}
respectively. For future use let W = {(0, 0), (±1, 0), (0,±1)}. Next, we divide
∪4
i=1Ci ∪ Bi into five parts (which we call gates): G(0,0) = ∪4

i=1Ci, G(1,0) is the

element of ∪4
i=1Bi on the right, G(−1,0) is the element on the left, G(0,1) is the

element on top and G(0,−1) is the element at the bottom (always referring to Figure
2), we define then

e(ω̄z, x) =
∑
w∈W

1Gw(x)w,

where 1B is the characteristic function of the set B.
A moment thought shows that F is the Poincaré map associated to the the billiard

flow. Namely, given a point (x, z), Fω̄ is obtained by first crossing the Poincaré
section and updating the cell to which the particle belongs if it has crossed a gate,
then following the particle till it gets to the Poincaré section again.

2.2. The random process. If we want to make a connection to the random walk
problem, then we need to have some stochasticity in the system. Since the dy-
namics is deterministic, the stochasticity can be only in the initial conditions, this
agrees with our previous discussion that the initial condition should be given by a
probability measure. We can assume, w.l.o.g. that the particle starts from the zero
cell with probability one, on the contrary we need to assume some regularity on the
x distribution in order to hope for reasonable results. More precisely we assume

E(ϕ) =

∫
B
ϕ(0, x)h0(x)dx

were h0 is some smooth distribution on B. Accordingly, we can consider

(x(ω̄, n), z(ω̄, n)) = Fnω̄(x, z)

as random variables.1

We can then consider the path space M = {(z(n)) ∈ (Z2)N : z(0) = 0, z(n +
1) − z(n) ∈ W} and the random process on Ω? = Ω ×M defined, for each ω̄ ∈ Ω
by the probabilities,

P?({z(1), . . . , z(n)} | ω̄) =

∫
B

n−1∏
k=0

1Gw(k)
(x(ω̄, k))h0(x)dx,

where w(k) = z(k + 1)− z(k), while ω̄ is distributed according to P.
We can write the above expression in a style more dynamical systems prone by

introducing the transfer operators2

Lω̄,z,wϕ(x) =
∑

{y : fω̄z (y)=x}

|det ∂yfω̄z+w(y)|−11Gw(y)ϕ(y).

1Using the probabilistic usage we will often suppress the ω̄ dependency, when this does not
create confusion.

2 Note that in the present case the set on which we take the sum consists of only one element
and the determinant of the Jacobian of the fω is always one. Yet, it is convenient to define it like
this, also for consistency with our subsequent examples.
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Then, changing variable repeatedly, yields

(2.4) P?({z(1), . . . , z(n)} | ω̄) =

∫
B
Lω̄,z(n−1),w(n−1) · · · Lω̄,z(0),w(0)h0.

The above formula reduces the problem of understanding the measure P? to the
problem of studying products of transfer operators. Of course, the process P? is, in
general, not Markov, however we expect it to exhibit a very strong loss of memory.
More precisely, we conjecture:

Conjecture. Under some appropriate technical conditions on P and the initial
density h, there exist ν ∈ (0, 1) and C# > 0 such that for all ω̄ ∈ Ω∣∣P?(z(n) | zn, ω̄)− P?(ẑm(n−m) | ẑn−m, τz(m)ω̄)

∣∣ ≤ C#ν
n−m,

where zk = z(1), . . . , z(k−1), ẑk = ẑm(1), . . . , ẑm(k−1) and ẑm is the path starting
at 0 defined by ẑm(k) = z(m+ k)− z(m).

If the above were true, then one could reduce the study of the dynamical system
to a purely probabilistic problem (see section 4), albeit non necessarily an easy one.
See however Section 4 for a beginning of a theory in some important cases.

In the rest of the paper we will try to convince the reader that this is a reasonable
and fruitful point of view by first putting the described Lorentz gas models in a
larger context and then working out simpler, but non trivial, classes of examples.
In particular, we will prove the above conjecture for such examples, giving an idea
of what some appropriate technical conditions might mean (see Theorem 6.1).

Remark 2.1. Remark that the results obtained in section 4 do not apply in an
obvious manner to the general determinist model discussed in section 6 due to the
difficulty to verify condition (Abs) stated in section 4.2 (which may, in fact, be too
strong). This is due to the fact that the models we analyse, due to their simplicity,
typically cannot enjoy two important properties that hold for a vast class of Lorentz
gasses (see however section 7.2 where we present a class of models that satisfy
property (a)):

a) all the maps fω share the same invariant measures and, at the same time, can
have deterministic gates;

b) the dynamics is reversible (i.e., W is symmetric and there exists an involution
i, i2(x, z) = (x, z), such that i ◦ Fω̄ = F−1

ω̄ ◦ i).

Indeed, we believe that the above two properties can play a major role in the study
of the associated probabilist model making it more tractable than the general case.

We conclude the section with a brief discussion of the above properties and
of their probabilistic meaning. In the case of Billiards the involution is given by
(q, p)→ (q,−p), which, at the level of the Poincaré map, writing x ∈ ∪w∈WGw as
x = (w, s, θ)3, reads i(w, s, θ, z) = (−w, s, θ, z+w).4 Also, let π(w, s, θ, z) = (w, s, θ)
and i1(w, s, θ) = (−w, s, θ) so that i1 ◦ π = π ◦ i. Thus, choosing as initial measure

3 The curvilinear coordinate s is chosen such that the segments s → (w, s) and s → (−w, s),
w 6= 0 go in the same direction.

4Recall that we are considering the case of deterministic gates, although the following consid-
eration easily extend to the general case. In particular, e is a function of x only, and we have
e(w, s, θ) = w.
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the common invariant measure of the Poincaré maps h0 (hence h0 ◦ i1 = h0), we
have

P?({z(1), . . . , z(n)} | ω̄) =

∫
B

n−1∏
k=0

1Gw(k)
◦ π ◦ Fkω̄(x, 0)h0(x)dx

=

∫
B

n−1∏
k=0

1Gw(k)
◦ π ◦ Fkω̄ ◦ i(i1(x), e(x))h0(x)dx

=

∫
B

n−1∏
k=0

1G−w(k)
◦ π ◦ F−kω̄ (x,−e(x))h0(x)dx

=

∫
B

n−1∏
k=0

1G−w(k)
(f−1
ω̄z(k)

◦ · · · ◦ f−1
ω̄z(1)

(x))h0(x)dx,

where, in the third line, we have used the invariance of the measure with respect
to i1 and the relation e(i1(x)) = −e(x). Next, using the invariance of the measure
with respect to the maps fσ,

P?({z(1), . . . , z(n)} | ω̄) =

∫
B

n−1∏
k=0

1G−w(k)
(fω̄z(k+1)

◦ · · · ◦ fω̄z(n−1)
(x))h0(x)dx.

Then, setting w̃(k) = −w(n− 1− k), z̃(k) =
∑k−1
j=0 w̃(j) and ω̃ = τz(n)ω̄,

P?({z(1), . . . , z(n)} | ω̄) =

∫
B

n−1∏
k=0

1Gw̃(k)
(fω̃z̃(k)

◦ · · · ◦ fω̃z̃(1)
(x))h0(x)dx

= P?({z̃(n− 1), . . . , z̃(0)} | τz(n)ω̄).

(2.5)

Note that z̃(k) = z(n− k)− z(n).
The above is just the reversibility of the random process and has important

consequences (see Lemma 4.6 for a concrete example).

3. Deterministic walks in random environment

As already mentioned there is an extreme scarcity of results pertaining the ran-
dom Lorentz Gas (apart from the low density regime, see [19] for a review of the
Lorentz gas in the Boltzmann-Grad limit). It is then sensible to consider simpler
models in which one can start to solve some of the outstanding difficulties. To this
end, following Lenci [11], it is convenient to see the Lorentz gas as a special case of a
more general class of models: deterministic walks in random environment. Even for
such models very few results exist. Exceptions are [14] in which a zero-one law for
systems with local dynamics which are markovian, but deterministic, is established
and [26] which considers statistical properties for a related (simplified) model with
local dynamics consisting of expanding linear maps of the circle or hyperbolic toral
automorphisms.

The model can be stated in rather general terms, for simplicity let us restrict
to the case of the Zd lattice with bounded jumps W ⊂ Zd, #W < ∞,5 and local
dynamics which live all on the same phase space M.

Consider the set A = {(fα,M,Pα)}α∈A, where A is a finite index set, fα :M→
M are maps, and Pα = {Gα,w}w∈W are partitions of M. The environment is

5 That is only jumps w ∈ W are allowed.
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described by the probability space Ω = AZd equipped with a translation invariant
probability P. Also we assume that all the maps fα : M → M are nonsingular
with respect to some reference measure m on M. Then, for each realisation ω̄ ∈ Ω
we can define the dynamics Fω̄(·, ·) :M× Zd →M× Zd by

Fω̄(x, z) = (fω̄z+e(ω̄z,x)
(x), z + e(ω̄z, x))

e(α, x) =
∑
w∈W

1Gα,w(x)w.

Finally, the randomness at fixed environment comes from the assumption that the
initial condition is described by some probability measure µ absolutely continuous
with respect to m.

In other words z(0) = z0 while x(0) is distributed according to µ. We will
assume, w.l.o.g., z(0) = 0. Then the path (z(n))n∈N is a random process in M =
{(zn) ∈ (Zd)N : z0 = 0, zn+1 − zn ∈ W}, which we call the space of admissible
paths. Let P? be the law of the resulting process on Ω? = Ω×M.

Each map fα admits a transfer operator Lfα : L1(m)→ L1(m) defined by∫
M

(Lfαφ)ψdm =

∫
M
φ · ψ ◦ fαdm

for all φ ∈ L1(m) and ψ ∈ L∞(m).
Let h0 be the density of the initial condition (dµ = h0dm). Then, setting

w(n) = z(n+ 1)− z(n), repeated changes of variables yield

(3.1) P?(z(1), . . . , z(n) | ω̄) =

∫
M
Lω̄,z(n−1),w(n−1) · · · Lω̄,z(0),w(0)h0dm

for each ω̄ ∈ Ω and each admissible path (z(n)) ∈M, and with

(3.2) Lω̄,z,w(φ) = Lfω̄z+w (1Gω̄z,wφ).

3.1. The point of view of the particle. An important process associated to our
deterministic walk is the process of the environment as seen from the particle. This
is the dynamical system defined on Ω×M by

F(ω̄, x) = (τe(ω̄0,x)ω̄, fω̄e(ω̄0,x)
(x)).

This is known to be a fruitful point of view, in particular if one knows the invariant
measure. As noted by Lenci [10, 11], in an important subclass of deterministic
random walks the invariant measure can be trivially computed.

Lemma 3.1. If all the maps fα have the same invariant measure λ and the set
Pα is deterministic (i.e., it does not depend on α), then the probability measure
P? = P× λ is invariant for the map F .

Proof. Let E? be the expectation with respect to P?. Since the set Pα is deter-
ministic, we can write e(α, x) = e(x) for all α ∈ A and x ∈ M. For each bounded
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measurable function ϕ we have

E?(ϕ ◦ F) =

∫
ϕ(τe(x)ω̄, fω̄e(x)

(x))P(dω̄)λ(dx)

=

∫
ϕ(τe(x)ω̄, f(τe(x)ω̄)0

(x))P(dω̄)λ(dx)

=

∫
ϕ(ω̄, fω̄0

(x))P(dω̄)λ(dx)

=

∫
ϕ(ω̄, x)P(dω̄)λ(dx) = E?(ϕ),

where we have used first the invariance of P with respect to the translations and
then the invariance of λ with respect to the maps fα. �

Hence now we have a dynamical system with a finite measure.

Lemma 3.2. In the hypotheses of Lemma 3.1 the limit

V = lim
n→∞

1

n
z(n)

exists P? almost surely. Moreover, if (Ω×M,F ,P?) is ergodic, then V = λ(e).

Proof. Note that, by setting (ω̄(n), x(n)) = Fn(ω̄, x), we have

1

n
z(n) =

1

n

n−1∑
k=0

e(x(k)).

Hence the existence of the limit follows from Birkhoff ergodic theorem for the dy-
namical system (Ω×M,F ,P?) applied to ϕ(ω̄, x) = e(ω̄0, x) = e(x). By ergodicity,
the limit equals the average of ϕ with respected to P? which is equal to E?(e). �

Just to emphasize that the above Lemmata are not devoid of applications, let
us recall the following,

Lemma 3.3. For the random Lorentz gas described in section 2 we have V = 0.

Proof. In [11] is proven that (F ,P?) is ergodic. Then Lemma 3.2 implies that
V =

∑
w∈W wλ(Gw) which average is zero due to the fact that λ is invariant for

the change p→ −p. �

4. Gibbs random walks in random environment

We do not expect the process described by P? to be Markov, yet we expect
that the jump rates have a weak dependence of the past. To be more precise, we
conjecture that the process is a random walk in random environment with weak
memory. In the probabilistic literature random walks with a finite memory are
called persistent, here we expect the memory to be infinite although depending
weakly on the far past, exactly like a potential of a Gibbs measure. Let us specify
exactly what we mean by this.

Let A be a finite set and W ⊂ Zd, 2 ≤ ]W < ∞. Consider the measurable

space Ω = AZd and a translation invariant, ergodic, probability distribution P
that describes the distribution of the environments ω̄ ∈ Ω. For each n ∈ N and
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(w0, . . . , wn−1) ∈ Wn, assume that are given compatible probabilities p(ω̄, n, ·) on
Wn, i.e. ∑

(w0,...,wn−1)∈Wn

p(ω̄, n, w0 . . . wn−1) = 1,

and

p(ω̄, n, w0 . . . wn−1) =
∑
w∈W

p(ω̄, n+ 1, w0 . . . wn−1w)

for all ω̄ ∈ Ω, n ≥ 0 and (w0, . . . , wn−1) ∈ Wn. Assume also that all the maps
ω̄ 7→ p(ω̄, n, w0 . . . wn−1) are measurable. We have then for each ω̄ ∈ Ω a probability
measure Pω̄ on the spaceWN by Kolmogorov extension theorem. By the monotone
class theorem, the map G 7→ Pω̄(G) is measurable for any measurable set G ⊂ WN,
and we can thus define a probability measure P? on Ω×WN by

P?(dω̄, dw̄) = P(dω)Pω̄(dw̄).

Remark 4.1. The measure P? can be naturally identified with a measure on the
space Ω? = Ω ×M, where M = {(zn) ∈ (Zd)N : z0 = 0, zn+1 − zn ∈ W, ∀n} is
the space of admissible paths starting at 0, since there is a 1-to-1 correspondance
between elements of Wn and admissible paths of length n, via the relations wk =
zk+1 − zk.

4.1. The weak memory requirement. We find convenient, although not strictly
necessary, to require the following assumption that ensures that all admissible paths
have positive probability:

(Pos): for P-a.e. ω̄ ∈ Ω, for all n ≥ 0 and all w̄ ∈ WN,

p(ω̄, n, w̄0 . . . w̄n−1) > 0.

We write Pω̄(w̄n | w̄0 . . . w̄n−1) for the conditional probability p(ω̄,n+1,w̄0...w̄n−1w̄n)
p(ω̄,n,w̄0...w̄n−1) .

The requirement of weak memory is made precise by the following:

(Exp): there exist C# > 0 and ν ∈ (0, 1) such that for P-a.e. ω̄ ∈ Ω, all
n > m ≥ 0 and all w̄ ∈ WN

(4.1)
∣∣Pω̄(w̄n | w̄0 . . . w̄m−1w̄m . . . w̄n−1)− Pτzm ω̄(w̄n | w̄m . . . w̄n−1)

∣∣ ≤ C#ν
n−m,

where zm =
∑m−1
k=0 w̄k.

Remark 4.2. This is the property we have conjectured to be true for the random
Lorentz gas at the end of Section 2.

Note that the above condition implies loss of memory:

Lemma 4.3. If P? satisfies (4.1), then (using the notation of Remark 4.1),

|P?(zn+1 | zn−m+1, . . . , zn, ω̄)− P?(zn+1 | z1, . . . , zn, ω̄)| ≤ C#ν
m.

Proof. Let p(zn−m+1) be the set of admissible paths (w0, . . . , wn−m) that arrive in

zn−m+1, i.e.
∑n−m
i=0 wi = zn−m+1, and set wi = zi+1 − zi for i = n−m+ 1, . . . , n.
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Then we have, using (Exp):

P?(zn+1 | zn−m+1, . . . , zn, ω̄) =
∑

w∈p(zn−m+1)

p(ω̄, n+ 1, w0 . . . wn)

P?(zn−m+1, . . . , zn | ω̄)

=
∑

w∈p(zn−m+1)

Pω̄(wn | w0 . . . wn−1)
p(ω̄, n, w0 . . . wn−1)

P?(zn−m+1, . . . , zn | ω̄)

= Pτzn−m+1
ω̄(wn | wn−m+1 . . . wn−1) +O(νm),

and

P?(zn+1 | z1, . . . , zn, ω̄) = Pω̄(wn | w0 . . . wn−1)

= Pτzn−m+1
ω̄(wn | wn−m+1 . . . wn−1) +O(νm).

�

4.2. The point of view of the particle and three further assumptions.
One can define the process of the environment as seen from the particle also in this
context. It is given by the dynamical system on the space Ω? = Ω×WN defined by

F?(ω̄, w̄) = (τw̄0 ω̄, τ?w̄),

where τ? : WN → WN is the unilateral shift. Note that, in general, P? is not
invariant for F?. Next, in the attempt to convince the reader that the present class
of systems is not completely unreasonable, let us show that some easy properties of
the Markov case persists in the present context, under reasonable extra conditions.

Remark 4.4. Note that in the probabilistic literature, see for instance [27], it is
more usual to consider the random process ω̄(n) = τz(n)ω̄ on Ω = ΩN, and its law

P when ω̄(0) is distributed according to P (as we did in Section 3.1). When the set
of periodic environments has probability 0, these two points of view are equivalent,
since the map which associates to each (ω̄, w̄) ∈ Ω? the corresponding sequence
(ω̄(n)) ∈ Ω is invertible almost everywhere and realizes a conjugacy between the
two dynamical systems (Ω?,F?,P?) and (Ω, τ̄ ,P), where τ̄ is the shift on Ω. The
same comments holds also for the definition given in Section 3.1. See also Remark
4.24 for further comments.

We are interested in the asymptotic properties for zn. Note that if we define
ϕ(ω̄, w̄) = w̄0, then we have zn =

∑n−1
k=0 ϕ ◦ Fk? .

The following assumption is useful to prove the existence of an interesting in-
variant measure for F?:

(Abs): There exists C# > 0 such that for P-a.e. ω̄ ∈ Ω, all n ≥ 0, all k ≥ 1
and all w̄ ∈ WN,

C−1
# ≤

∑
(w1,...,wk)∈Wk

p(τ−(w1+...+wk)ω̄, n+ k,w1 . . . wkw̄0 . . . w̄n−1)

p(ω̄, n, w̄0 . . . w̄n−1)
≤ C#.

To legitimate this assumption, we prove two relevant facts.

Lemma 4.5. If there exists a probability measure Q? equivalent to P?, invariant
for F? and such that its density satisfies c−1 ≤ dQ?

dP? ≤ c for some c > 0, then (Abs)

holds. In particular, (Abs) holds if P? is F?-invariant.
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Proof. For all measurable set A ⊂ Ω and all cylinder [w̄0 . . . w̄n−1] ⊂ WN, the
preimage F−k? (A× [w̄0, . . . , w̄n−1]) is equal to the disjoint union⋃

(w1,...,wk)∈Wk

τ−(w1+...+wk)(A)× [w1 . . . wkw̄0 . . . w̄n−1].

Let B = A× [w̄0 . . . w̄n−1]. By definition of P?, we have

P?(B) =

∫
A

p(ω̄, n, w̄0 . . . w̄n−1)P(dω̄)

and

P?(F−k? B) =
∑

(w1,...,wk)∈Wk

∫
τ−(w1+...+wk)

A

p(ω̄, n+ k,w1 . . . wkw̄0 . . . w̄n−1)P(dω̄)

=

∫
A

∑
(w1,...,wk)∈Wk

p(τw1+...+wk ω̄, n+ k,w1 . . . wkw̄0 . . . w̄n−1)P(dω̄)

thanks to the translation invariance of P.
Since P?(B) ≤ cQ?(B) = cQ?(F−k? B) ≤ c2P?(F−k? B), we have∫
A

p(ω̄, n,w̄0 . . . w̄n−1)P(dω̄)

≤ c2
∫
A

∑
(w1,...,wk)∈Wk

p(τw1+...+wk ω̄, n+ k,w1 . . . wkw̄0 . . . w̄n−1)P(dω̄),

and similarly,∫
A

∑
(w1,...,wk)∈Wk

p(τw1+...+wk ω̄, n+ k,w1 . . . wkw̄0 . . . w̄n−1)P(dω̄)

≤ c2
∫
A

p(ω̄, n, w̄0 . . . w̄n−1)P(dω̄).

Since it holds for all measurable sets A ⊂ Ω, and that the set of cylinders is
countable, this proves the lemma. �

We say thay the process is reversible if (see also (2.5) for the definition) W is
symmetric (i.e. −w ∈ W for all w ∈ W) and, for P-a.e. ω̄ ∈ Ω, all n ≥ 0 and all
w̄ ∈ WN:

p(ω̄, n, w0 . . . wn−1) = p(τ(w0+···+wn−1)ω̄, n,−wn−1, . . . ,−w0).

Lemma 4.6. If the process is reversible, then P? is F?-invariant. In particular,
(Abs) is verified, by Lemma 4.5.
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Proof. It suffices to consider a measurable set B of the form B = A×[w̄0, . . . , w̄n−1].
We have:

P?(F−1
? B) = P?

( ⋃
w∈W

τ−w(A)× [w, w̄0, . . . , w̄n−1]

)

=
∑
w∈W

∫
τ−w(A)

p(ω̄, n+ 1, w, w̄0, . . . , w̄n−1)P(dω̄)

=
∑
w∈W

∫
A

p(τ−wω̄, n+ 1, w, w̄0, . . . , w̄n−1)P(dω̄)

=
∑
w∈W

∫
A

p(τ(w̄0+...+w̄n−1)ω̄, n+ 1,−w̄n−1, . . . ,−w̄0,−w)P(dω̄)

=

∫
A

p(τ(w̄0+...+w̄n−1)ω̄, n,−w̄n−1, . . . ,−w̄0)P(dω̄)

=

∫
A

p(ω̄, n, w̄0 . . . w̄n−1)P(dω̄) = P?(B).

�

Remark 4.7. Lemma 4.5 suggest that (Abs) is too strong. Yet, there are simple
models (e.g. Sinai walk, see Example 1 in Section 5.1) for which there does not exist
an invariant probability measure absolutely continuous with respect to P?. Hence
some condition is necessary.

As common for random walks, we require an ellipticity assumption:

(Ell): There exist γ0 > 0 and n? ≥ 0 such that for P?-a.e. ω̄ ∈ Ω, all n ≥ n?
and all w̄ ∈ WN,

Pω̄(w̄n | w̄0 . . . w̄n−1) ≥ γ0.

We finally formulate an assumption on the probability measure P that governs
the environment distribution:

(Pro): Let G(W) = {z ∈ Zd : z = w0 + · · · + wn−1, n ∈ N, wi ∈ W}. We
assume that G = G(W) is an additive group and that P is ergodic with
respect to the action of G.

Remark 4.8. It might not be necessary to assume that G(W) is a group, but
we will not pursue in this direction, as the main example we have in mind, the
Lorentz gas described in Section 2, satisfies the above assumption: indeed, G(W)
is an additive group whenever W is symmetric. We leave to the interested reader
possible weakening of property (Pro). We nevertheless mention that a closer look at
its proof reveals that Theorem 4.9 remains valid if P is ergodic for each translation
τz, z ∈ Zd, z 6= 0 (for instance if P is mixing when d = 1, or if P is i.i.d. when
d > 1), without any extra assumption on W.

4.3. A few basic results.
The above assumptions are justified by the following Theorem. The rest of the
section is devoted to its proof.

Theorem 4.9. Suppose that the conditions (Pos), (Exp), (Abs), (Ell) and
(Pro) hold. Then there exists a unique F?-invariant probability measure Q? equiv-
alent to P? and the dynamical system (Ω?,F?,Q?) is ergodic. In particular, we
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have

(4.2) lim
n→∞

zn
n

= V,

P?-a.s., with V =
∫

Ω?
ϕdQ? ∈ Rd.

Remark 4.10. If P? is invariant, then

V =

∫
Ω?

ϕdP? =
∑
w∈W

w

∫
Ω

p(ω̄, 1, w)P(dω̄).

As an immediate but important consequence, we deduce the recurrence in 1-d:

Corollary 4.11. Under the conditions of the above theorem, if d = 1 and V = 0,
then the process (zn) is recurrent: zn = 0 infinitely often, P?-a.s..

Proof of Corollary 4.11. We refer to [24] for a nice survey on the recurrence
of cocycles. Since (Ω?,F?,Q?) is ergodic by Theorem 4.9, part (1), when d = 1,
the walk is recurrent if V = 0, see [1] or [24, Theorem 3]. Note that this result
for recurrence of cocycles is stated for invertible dynamical systems, but it can be
extended to non-invertible systems using the natural extension, see for instance [12,
Appendix A.2]. �

Remark 4.12. When d = 2 and V = 0, if (zn) satisfied an annealed central
limit theorem, i.e. if zn√

n
converges in law to a Gaussian distribution under the

probability measure Q?, then the process (zn) is recurrent by the results of Conze
[3] and Schmidt [23].

From now on and till the end of the section we will assume conditions (Pos),
(Exp), (Abs), (Ell) and (Pro) if not explicitly stated otherwise.

To prove Theorem 4.9, we will analyze the properties of the transfer operator L?
associated to F? with respect to P?. More precisely, we will show that the operator
L? enjoys some regularization properties on a space of Hölder functions. We first
define the usual separation time on WN by

s(w̄, w̄′) = inf{n ≥ 0 : w̄n 6= w̄′n},

and for 0 < θ < 1, the metric dθ(w̄, w̄
′) = θs(w̄,w̄

′) on WN.
For a measurable function f : Ω×WN → C, we set:

‖f‖∞ = ess sup
ω̄∈Ω

sup
w̄∈WN

|f(ω̄, w̄)|,

|f |θ = ess sup
ω̄∈Ω

sup
w̄ 6=w̄′

|f(ω̄, w̄)− f(ω̄, w̄′)|
dθ(w̄, w̄′)

,

and define

H∞ = {f : Ω×WN → C : ‖f‖∞ <∞},
Hθ = {f : Ω×WN → C : ‖f‖θ := ‖f‖∞ + |f |θ <∞}.

The space Hθ is Banach algebra. The following result about density of Hν is based
on very classical ideas, but we include it here for completeness:

Lemma 4.13. For any function ϕ ∈ L1(P?), there exists (ϕε)ε ⊂ Hν such that
ϕε → ϕ in L1(P?). Moreover, if ϕ is bounded, (ϕε)ε can be chosen such that
supε ‖ϕε‖∞ <∞.
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Proof. We first consider the case where ϕ = 1A is the indicator function of a
measurable set A ⊂ Ω?. We endow Ω? with the metric d?((ω̄, w̄), (ω̄′, w̄′)) =
dΩ(ω̄, ω̄′) + dν(w̄, w̄′), where dΩ is any metric defining the product topology on
Ω. The metric d? defines the product topology on Ω?. For any open set O ⊂ Ω?,
we define

ϕk,O(ω̄, w̄) = inf{k d?((ω̄, w̄),Ω? \O), 1}.

We clearly have 0 ≤ ϕk,O ≤ ϕk+1,O ≤ 1O ≤ 1, and limk ϕk,O(ω̄, w̄) = 1O(ω̄, w̄) for
all (ω̄, w̄) ∈ Ω?. The function ϕk,O is clearly lipschitzian with respect to the metric
d?, which also implies that ϕk,O ∈ Hν . Since P? is a probability measure on the
compact metric space Ω?, it is outer regular, see [22, Theorem 2.17]: for any Borel
set A ⊂ Ω? and any ε > 0, there exists an open set Oε ⊂ Ω? such that A ⊂ Oε and
P?(Oε \A) ≤ ε. By the dominated convergence theorem

lim
k→∞

∫
Ω?

|ϕk,Oε − 1Oε | dP? = 0.

We choose kε ≥ 0 such that
∫

Ω?
|ϕk,Oε − 1Oε | dP? ≤ ε and set ϕε = ϕkε,Oε . By the

above arguments, we have ϕε ∈ Hν , ‖ϕε‖∞ ≤ 1, and

‖ϕε − 1A‖L1(P?) ≤ ‖ϕε − 1Oε‖L1(P?) + P?(Oε \A) ≤ 2ε,

which proves the convergence in L1(P?). Next, assume ϕ ∈ L∞. Without loss of
generality we can assume ϕ ≥ 0 and ‖ϕ‖∞ = 2. Let A1 = {ξ ∈ Ω? : ϕ(ξ) ≥ 1}
and

Ak =

ξ ∈ Ω? : ϕ(ξ) ≥ 2−k +

k−1∑
j=0

1Aj2
−j

 .

By construction ‖ϕ−
∑k−1
j=0 1Aj2

−j‖∞ ≤ 2−k, hence we can use the above approx-

imations of the characteristic functions to approximate ϕ in L1 with a sequence
with norm bounded by 2. The case ϕ ∈ L1 can be obtained by approximation by
bounded functions. �

Next, we state a useful technical lemma.

Lemma 4.14. Under assumptions (Pos), (Exp) and (Ell) there exists γ∗ ∈
L∞(Ω,P), γ? > 0 such that, for all n > n? and w̄ ∈ WN, we have

γ?(ω) ≤ p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0
ω̄, n− 1, w̄1 . . . w̄n−1)

≤ γ?(ω)−1
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Proof. For all n > n?, we have

p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0
ω̄, n− 1, w̄1 . . . w̄n−1)

=
p(ω̄, n, w̄0 . . . w̄n−1)

p(ω̄, n− 1, w̄0 . . . w̄n−2)

p(ω̄, n− 1, w̄0 . . . w̄n−2)

p(τw̄0
ω̄, n− 1, w̄1 . . . w̄n−1)

= Pω̄(w̄n−1 | w̄0 . . . w̄n−2)
p(ω̄, n− 1, w̄0 . . . w̄n−2)

p(τw̄0 ω̄, n− 1, w̄1 . . . w̄n−1)

≥
[
Pτw̄0

ω̄(w̄n−1 | w̄1 . . . w̄n−2)− C#ν
n
] p(ω̄, n− 1, w̄0 . . . w̄n−2)

p(τw̄0
ω̄, n− 1, w̄1 . . . w̄n−1)

=

[
p(τw̄0

ω̄, n− 1, w̄1 . . . w̄n−1)

p(τw̄0 ω̄, n− 2, w̄1 . . . w̄n−2)
− C#ν

n

]
p(ω̄, n− 1, w̄0 . . . w̄n−2)

p(τw̄0 ω̄, n− 1, w̄1 . . . w̄n−1)

=

[
1− C#ν

n p(τw̄0 ω̄, n− 2, w̄1 . . . w̄n−2)

p(τw̄0
ω̄, n− 1, w̄1 . . . w̄n−1)

]
p(ω̄, n− 1, w̄0 . . . w̄n−2)

p(τw̄0
ω̄, n− 2, w̄1 . . . w̄n−2)

≥ (1− C#γ
−1
0 νn)

p(ω̄, n− 1, w̄0 . . . w̄n−2)

p(τw̄0 ω̄, n− 2, w̄1 . . . w̄n−2)

≥
n∏

j=n?+1

(1− C#γ
−1
0 νj)

p(ω̄, n? + 1, w̄0 . . . w̄n?)

p(τw̄0
ω̄, n?, w̄1 . . . w̄n?)

,

where we have used (Exp) at the third line and (Ell) at the last line. The lower
bound follows then by (Pos), provided that C#γ

−1
0 νn? < 1, which we can always

ensure by eventually redefining n?. The upper bound can be established similarly.6

�

Remark 4.15. Note that a slight strengthening of (Pos) would imply that γ? can
be chosen to be constant.7 Then Lemma 4.14 would imply: for each k ∈ N, there
exists Ck > 0 such that for P-a.e. ω̄ ∈ Ω, all n ≥ 0 and all w̄ ∈ WN,

C−1
k ≤

∑
(w1,...,wk)∈Wk

p(τ−(w1+...+wk)ω̄, n+ k,w1 . . . wkw̄0 . . . w̄n−1)

p(ω̄, n, w̄0 . . . w̄n−1)
≤ Ck.

Hence the all point of assumption (Abs) rests in the uniformity with respect to k.

We can now define what will turn out to be the potential associated to L?:

Lemma 4.16. There exists a measurable function J : Ω×WN → R+ such that for
for all n ≥ 0

(4.3) ess sup
ω̄∈Ω

sup
w̄∈WN

∣∣∣∣ p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0 ω̄, n− 1, w̄1 . . . w̄n−1)
− J(ω̄, w̄)

∣∣∣∣ ≤ C#ν
n.

Moreover, J belongs to Hθ for all ν ≤ θ < 1, and J(ω̄, w̄) > 0 for P-a.e ω̄ ∈ Ω and
all w̄ ∈ WN.

6 Note however that (Ell) is not needed to prove the upper bound.
7 That is, one could ask, for all n > n?, infω∈Ω p(ω̄, n, w̄0 . . . w̄n−1) > 0, which holds in all the

example we have in mind.
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Proof. Let pn(ω̄, w̄) = p(ω̄,n,w̄0...w̄n−1)
p(τw̄0 ω̄,n−1,w̄1...w̄n−1) . Using (Exp), we have

|pn(ω̄, w̄)− pn+1(ω̄, w̄)| = p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0
ω̄, n, w̄1 . . . w̄n)

×
∣∣∣∣ p(τw̄0

ω̄, n, w̄1 . . . w̄n)

p(τw̄0 ω̄, n− 1, w̄1 . . . w̄n−1)
− p(ω̄, n+ 1, w̄0 . . . w̄n)

p(ω̄, n, w̄0 . . . w̄n−1)

∣∣∣∣
=

p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0
ω̄, n, w̄1 . . . w̄n)

∣∣Pτw̄0 ω̄
(w̄n | w̄1 . . . w̄n−1)− Pω̄(w̄n | w̄0 . . . w̄n−1)

∣∣
≤ C#ν

n p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0
ω̄, n, w̄1 . . . w̄n)

.

From (Abs), substituting τw̄0
ω̄ to ω̄, we have

(4.4) p(ω̄, n, w̄0 . . . w̄n−1) ≤ C#p(τw̄0
ω̄, n− 1, w̄1 . . . w̄n−1),

from which it follows, using (Ell), for all n ≥ n?,

p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0
ω̄, n, w̄1 . . . w̄n)

≤ C#
p(τw̄0 ω̄, n− 1, w̄1 . . . w̄n−1)

p(τw̄0
ω̄, n, w̄1 . . . w̄n)

≤ C#γ
−1
0 .

We thus get for all n ≥ n?

|pn+1(ω̄, w̄)− pn(ω̄, w̄)| ≤ C#ν
n,

and so for any m ≥ 0,

(4.5) |pn+m(ω̄, w̄)− pn(ω̄, w̄)| ≤ C#

m−1∑
k=0

νn+k ≤ C#ν
n.

It follows that (pn(ω̄, w̄))n is a Cauchy sequence for P-a.e. ω̄ ∈ Ω and all w̄ ∈ WN,
and has thus a limit J(ω̄, w̄). Taking the limit m → ∞ in (4.5), we obtain (4.3)
for all n ≥ n?. From (4.4), it follows that ‖J‖∞ <∞, which also allows to deduce
(4.3) for all n ≥ 0. The fact that |J |θ <∞ for all ν ≤ θ < 1 is a direct consequence
of (4.3).

The positivity of J follows then by Lemma 4.14. �

Accordingly, log J is Hölder with respect to the usual metric on the shift. Hence
it can be seen as a potential of a Gibbs measure. Of course, such a Gibbs mea-
sure is random, depending on ω̄, and non translation invariant, but it is a natural
generalisation of the usual random walk in random environment situation in which
one has a random Markov chain on WN.

The transfer operator L? has the following expression:

Lemma 4.17. For any f ∈ L1(P?), we have

(4.6) L?f(ω̄, w̄) =
∑
w∈W

J(τ−wω̄, ww̄)f(τ−wω̄, ww̄).

Proof. We have to prove that, for all f ∈ L1(P?) and g ∈ L∞(P?),

(4.7)

∫
Ω?

f g ◦ F? dP? =

∫
Ω?

L?f g dP?,
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where L?f is given by (4.6). We first assume that both f and g are bounded, and
depend only on (ω̄, w̄0, . . . , w̄k−1) for some k ≥ 1. For any n ≥ k, we have∫

Ω?

f g ◦ F? dP? =

∫
Ω

∫
WN

f(ω̄, w̄0, . . . , w̄k−1) g(τw̄0 ω̄, w̄1, . . . , w̄k)Pω̄(dw̄)P(dω̄)

=

∫
Ω

∑
w̄0,...,w̄n∈W

p(ω̄, n+ 1, w̄0 . . . w̄n)f(ω̄, w̄0, . . . , w̄k−1)g(τw̄0 ω̄, w̄1, . . . , w̄k)P(dω̄)

=
∑

w̄0,...,w̄n∈W

∫
Ω

p(τ−w̄0 ω̄, n+ 1, w̄0 . . . w̄n)f(τ−w̄0 ω̄, w̄0, . . . , w̄k−1)g(ω̄, w̄1, . . . , w̄k)P(dω̄)

=

∫
Ω

(∑
w∈W

p(τ−wω̄, n+ 1, ww̄0 . . . w̄n−1)

p(ω̄, n, w̄0 . . . w̄n−1)
f(τ−wω̄, w, w̄0, . . .)

)
g(ω̄, w̄)P?(dω̄, dw̄),

where we have used the translation invariance of P at the third line. Taking the
limit as n → ∞ and using Lemma 4.16, we obtain (4.7). The result for general f
and g is obtained by approximation. �

Define for each k ≥ 1,

Jk(ω̄, w̄) =

k−1∏
i=0

J(F i?(ω̄, w̄)) = lim
n→∞

p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0+...w̄k−1
ω̄, n− k, w̄k . . . w̄n−1)

.

It is immediate to verify that, for any f ∈ L1(P?),

Lk?f(ω̄, w̄) =
∑

wk∈Wk

Jk(τ−wk ω̄, w
kw̄)f(τ−wk ω̄, w

kw̄)

where, for wk = (w0, . . . , wk−1), τ−wk = τ−(w0+···+wk−1).

We introduce, for wk = (w0, . . . , wk−1) ∈ Wk, the map

ψwk(ω̄, w̄) = (τ−wk ω̄, w
kw̄),

so that

Lk?f =
∑

wk∈Wk

Jk ◦ ψwkf ◦ ψwk .

Lemma 4.18. Jk belong to Hθ, ν ≤ θ < 1, for all k ≥ 1.

Proof. Recall the notation pn(ω̄, w̄) = p(ω̄,n,w̄0...w̄n−1)
p(τw̄0 ω̄,n−1,w̄1...w̄n−1) , and set

pn,k(ω̄, w̄) :=
p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0+...w̄k−1
ω̄, n− k, w̄k . . . w̄n−1)

=

k−1∏
i=0

pn−i(F i?(ω̄, w̄)).

By Lemma 4.16, we have∣∣J(F i?(ω̄, w̄))− pn−i(F i?(ω̄, w̄))
∣∣ ≤ C#ν

n−i,

and, consequently, using the inequality∣∣∣∣∣
k−1∏
i=0

ai −
k−1∏
i=0

bi

∣∣∣∣∣ ≤
k−1∑
i=0

|ai − bi|
∏
j 6=i

max{aj , bj},
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valid for all non-negative sequences (ai), (bi), we obtain

|Jk(ω̄, w̄)− pn,k(ω̄, w̄)| ≤ C#ν
n
k−1∑
i=0

ν−i
∏
j 6=i

max{‖J‖∞, ‖pn−i‖∞}

= Ckν
n.

where Ck depends only on k, since ‖J‖∞ <∞ by Lemma 4.16 and supn ‖pn‖∞ <∞
by (Abs). The lemma follows immediately. �

Lemma 4.19. There exists C# > 0 such that C−1
# ≤ Lk?1(ω̄, w̄) ≤ C# for all

k ≥ 0, P-a.e. ω̄ ∈ Ω and all w̄ ∈ WN.

Proof. This is a simple reformulation of (Abs), as

Lk?1(ω̄, w̄) =
∑

(w0,...,wk−1)∈Wk

Jk(τ−(w0+...+wk−1)ω̄, w0 . . . wk−1w̄)

= lim
n→∞

∑
(w0,...,wk−1)∈Wk

p(ω̄, n, w̄0 . . . w̄n−1)

p(τw̄0+...w̄k−1
ω̄, n− k, w̄k . . . w̄n−1)

.

�

Lemma 4.20. There exist C# > 0 and ξ ∈ (0, 1) such that for all n ≥ 0 and all
f ∈ Hν ,

‖Ln?f‖∞ ≤ C#‖f‖∞,
‖Ln?f‖ν ≤ C#ξ

n‖f‖ν + C#‖f‖∞.

Proof. For f ∈ Hν , we have

|Ln?f | ≤
∑

wn∈Wn

Jn ◦ ψwn |f | ◦ ψwn ≤ ‖f‖∞Ln?1 ≤ C#‖f‖∞,

by Lemma 4.19. This proves that ‖Ln?f‖∞ ≤ C‖f‖∞. We also have, setting
η = ψwn(ω̄, w̄) and η′ = ψwn(ω̄, w̄′)

|Ln?f(ω̄, w̄)− Ln?f(ω̄, w̄′)| ≤
∑

wn∈Wn

Jn(η)|f(η)− f(η′)|+
∑

wn∈Wn

|Jn(η)− Jn(η′)||f(η′)|

≤

( ∑
wn∈Wn

Jn(η)|f |ν +
∑

wn∈Wn

|Jn|ν‖f‖∞

)
dν(wnw̄, wnw̄′)

≤ (Ln?1(ω̄, w̄)|f |ν + (]W)n|Jn|ν‖f‖∞) νndν(w̄, w̄′).

By Lemma 4.19, this shows that, for all n ≥ 0 and f ∈ Hν ,

‖Ln?f‖ν ≤ C#ν
n|f |ν + (1 + (]W)nνn|Jn|ν)‖f‖∞

≤ C#ν
n‖f‖ν + Cn‖f‖∞.

In particular, L? : Hν → Hν is a continuous operator.
Take k ≥ 0 such that the term ν̃ := C#ν

k in front of ‖f‖ν is strictly less than

1 and set ξ = ν̃
1
k . Writing n = qk + r, with 0 ≤ r < k, we have, by iterating the

previous inequality,

‖Ln?f‖ν ≤ ν̃q‖Lr?f‖ν + C#Ck(1− ν̃−1)‖f‖∞
≤ ν̃q sup

r<k
‖Lr?‖Hν→Hν‖f‖ν + C#‖f‖∞

≤ C#ξ
n‖f‖ν + C#‖f‖∞.
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�

Lemma 4.21. There exists a continuous projection Π : L1(P?) → L1(P?) with
Π(L1(P?)) = ker(id− L?) such that

1

n

n−1∑
k=0

Lk? → Π

in the strong operator topology.

Proof. For h ∈ Hν , Lemma 4.20 implies that the sequence
{

1
n

∑n−1
k=0 Lk?h

}
n≥1

is

bounded in L∞(P?). By the Banach-Alaoglu theorem, since L∞(P?) is the dual of

L1(P?), the set
{

1
n

∑n−1
k=0 Lk?h

}
n≥1

is weakly relatively compact in L1(P?). This

holds for all h ∈ Hν , which is dense in L1(P?) by Lemma 4.13, and so by the

Kakutani-Yosida theorem [9, VIII.5.2, 5.3], the operators 1
n

∑n−1
k=0 Lk? converge in

the strong operator topology to the projection Π with range the set of fixed points
of L? in L1(P?) and kernel the closure of (id− L?)(L1(P?)). �

Define

h? = Π1 = lim
n→∞

1

n

n−1∑
k=0

Lk?1,

in L1(P?). By Lemma 4.21,we have L?h? = h?. We clearly have
∫

Ω?
h?dP? = 1,

and the fact that C−1
# ≤ h? ≤ C#, P?-a.e., is an immediate consequence of Lemma

4.19. Consequently, the probability measure Q? defined by

(4.8) dQ? = h?dP?
is F?-invariant and equivalent to P?.

Next, we show that Π(L1(P?)) is the one-dimensional subspace generated by
h?.Firstly, we prove that it is included in Hν .

Lemma 4.22. If f ∈ L∞(P?) and L?f = f , then f ∈ Hν .8

Proof. Let (ϕε)ε ⊂ Hν such that ‖f − ϕε‖L1(P?) = O(ε) and ‖ϕε‖∞ = O(1) by
Lemma 4.13. We have

f = Ln?f = Ln?ϕε + Ln? (f − ϕε)

=: ϕ̂(n)
ε + γ(n)

ε .

This decomposition satisfies

‖γ(n)
ε ‖L1(P?) = ‖Ln? (f − ϕε)‖L1(P?) ≤ ‖f − ϕε‖L1(P?) = O(ε),

and
‖ϕ̂(n)

ε ‖ν = ‖Ln?ϕε‖ν ≤ C#ξ
n‖ϕε‖ν + C#‖ϕε‖∞ = O(ξn‖ϕε‖ν + 1),

using Lemma 4.20. If we choose nε such that ξnε‖ϕε‖ν = O(1) and set ϕ̂ε = ϕ̂
(nε)
ε

and γε = γ
(nε)
ε , we then have f = ϕ̂ε+γε with ‖γε‖L1(P?) = O(ε) and ‖ϕ̂ε‖ν = O(1).

For δ > 0, we define

Bε,δ = {|f − ϕ̂ε| > δ} = {|γε| > δ},
which satisfies P?(Bε,δ) ≤ δ−1‖γε‖L1(P?) by Markov’s inequality.

8 Of course, it means that there exists an element in the equivalence class of f that belongs to
Hν .
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For P-a.e. ω̄ ∈ Ω and all w̄, w̄′ ∈ WN such that both (ω̄, w̄) and (ω̄, w̄′) do not
belong to Bε,δ, we have

|f(ω̄, w̄)− f(ω̄, w̄′)| ≤ |ϕ̂ε(ω̄, w̄)− ϕ̂ε(ω̄, w̄′)|+ |γε(ω̄, w̄)− γε(ω̄, w̄′)|
≤ |ϕ̂ε|νdν(w̄, w̄′) + |γε(ω̄, w̄)|+ |γε(ω̄, w̄′)|
≤ Cdν(w̄, w̄′) + 2δ.

We set Bδ =
⋂
k≥0

⋃
j≥k B2−j ,δ, which satisfies P?(Bδ) = 0, since

P?

⋃
j≥k

B2−j ,δ

 = O

∑
j≥k

‖γ2−j‖L1(P?)

 = O

∑
j≥k

2−j

 = o(1).

Thus, B = ∪n∈NB1/n is also of zero measure and, eventually changing f on the
zero measure set B, we have f ∈ Hν . �

We can now prove the main theorem:

Proof of Theorem 4.9. The probability measure Q? defined by (4.8) is F?-invariant
and equivalent to P?. If A ⊂ Ω? is a F?-invariant set, we have

L?(1Ah?) = L?((1A ◦ F?)h?) = 1AL?(h?) = 1Ah?,

and so 1Ah? is a fixed point of L? in L∞(P?). By Lemma 4.22, we have 1Ah? ∈ Hν ,
and so 1A = h−1

? (h?1A) ∈ Hν 9. This implies that there exists NA > 0 such that
1A(ω̄, w̄) = 1A(ω̄, w0, . . . , wNA−1).

By the invariance of A it follows, for each m ≥ NA,

1A(ω̄, w0, . . . , wNA−1) = 1A ◦ Fm? (ω̄, w0, . . . , wNA−1)

= 1A(τw0+···+wm−1
ω̄, wm, . . . , wNA+m−1).

(4.9)

By (Pro) we can choose m and wNA , . . . , wm−1 such that w0 + · · ·wm−1 = 0. It
follows that 1A(ω̄, w̄) = 1A(ω̄). But then equation (4.9) implies τw0+···+wm−1

A ⊂ A
for all (w0, . . . , wm−1) ∈ Wm. Accordingly, A is invariant for the group generated
by W and, by (Pro) again, it is either of zero or full measure due to ergodicity of
P, which concludes the proof. �

Lemma 4.23. For all f ∈ L1(P?), we have

Πf =

(∫
Ω?

f dP?
)
h?.

Proof. For each ϕ ∈ L∞ we have∫
Ω?

ϕΠfdΠ∗ = lim
n→∞

1

n

n−1∑
k=0

∫
Ω?

ϕLk?fdP∗ = lim
n→∞

1

n

n−1∑
k=0

∫
Ω?

ϕ ◦ Fk? · fdP?

=

[∫
Ω?

ϕh?dP?
] [∫

Ω?

fdP?
]

where, in the second inequality, we have used Lebesgue dominated convergence The-
orem and, in the second line, we have used the Birkhoff theorem and the ergodicity
of Q? (and hence of fP?) established in Theorem 4.9. �

9h? belongs to Hν by Lemma 4.22 and so does h−1
? since inf h? > 0.
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4.4. Application to deterministic walks in random environment. Deter-
ministic walks in random environment, as presented in Section 3, naturally de-
fine random processes as described in the previous subsections. Indeed, if A =
{(fα,M,Pα)}α∈A is a deterministic walk in random environment, where all maps
fα are non-singular with respect to some reference measure m on M, and the ini-
tial condition is given by an absolutely continuous probability measure dµ = h0dm,
then the probabilities p(ω̄, n, w0 . . . wn−1) are given by

(4.10) p(ω̄, n, w0 . . . wn−1) =

∫
M
Lω̄,zn−1,wn−1

. . .Lω̄,z0,w0
h0dm,

as we have seen in Section 3. Recall that wn = e(ω̄zn , xn), where (xn, zn) =
Fnω̄(x0, z0).

Remark 4.24. Note that we have a priori defined two different notions of envi-
ronment as seen from the particle, in subsections 3.1 and 4.2, but the map Φ :
Ω×M→ Ω×WN defined by Φ(ω̄, x) = (ω̄, w̄) with w̄ = (wn)n, is a semi-conjugacy
between (Ω ×M,F) and (Ω × WN,F?), and if the maps fα are expansive, it is
invertible a.e.

If we are able to check the assumptions (Pos), (Exp), (Abs), (Ell) and (Pro),
then Theorem 4.9 applies, and we deduce the existence of a deterministic drift V .

An particular situation, which we have already encountered in Lemma 3.1, occurs
when all maps fα preserve the same invariant measure dλ = h0dm, and the set Pα is
deterministic, i.e. Gα,w = Gw does not depend on α ∈ A. In this case, the measure
P? on Ω ×WN is invariant under F?, since it is the push-forward of P? = P × λ,
which is F-invariant and the condition (Abs) is automatically satisfied by Lemma
4.5.

Remark 4.25. In this situation, Lemma 3.2 and Remark 4.10 are in agreement,
since ∑

w∈W
w

∫
Ω

p(ω̄, 1, w)P(dω̄) =
∑
w∈W

w

∫
Ω

∫
M
Lω̄,0,wh0 dmP(dω̄)

=
∑
w∈W

w

∫
Ω

∫
M
Lfω̄w1Gwh0 dmP(dω̄)

=
∑
w∈W

w

∫
Gw

h0dm

and

E?(e ◦ π) =

∫
Ω

∫
M
e(π(ω̄, x))h0(x)m(dx)P(dω̄)

=

∫
Ω

∫
M
e(ω̄0, x)h0(x)m(dx)P(dω̄)

=
∑
w∈W

w

∫
Gw

h0dm.

5. Examples

It is an easy exercise to verify that the Random Lorentz gas presented in Section
2 is a special example of a deterministic walk in random environment. Note however
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that the Random Lorentz gas has several special features that could make much
easier its study:

(1) the maps fα have all the same invariant measure λ, the Lebesgue measure;
(2) the set Pα is non random, i.e. it does not depend from α;
(3) the dynamics is reversible, in particular λ(e) = 0.

On the other hand it has a rather complex dynamics that is very hard to study. It is
then reasonable to consider models where some of such properties do not hold, but
the local dynamics is much simpler. It seems likely that if one is able to develop a
sensible approach for such simpler models, then a similar line of attack could work
also for billiards.

Interestingly, even super simple models yield a very rich set of probabilistic walks.

5.1. Markovian models. To try to get a better feeling for the difficulties involved
in studying the above questions, let us try to invent a model stripped of all the tech-
nical difficulties present in the Lorentz gas dynamics. For simplicity let us discuss
the case d = 1, although similar considerations hold in any higher dimensional lat-
tice. To simplify the dynamics f in (2.3) let us suppose that it is a map from [0, 1]
to itself. Hence the map Fω̄ acts on [0, 1]×Z. Also, we assume that the environment
is a random variable distributed according to a Bernoulli product measure over the
space Ω = AZ = {−1, 1}Z.

Example 1. The dynamics is defined by the map fα(x) = 4x mod 1 for α ∈ A,
with G−1,−1 = [0, 1/4], G−1,+1 = [1/4, 1] and G+1,−1 = [0, 3/4], G+1,+1 = [3/4, 1].

Remark 5.1. Here we are considering a more general situation than the one de-
scribed for the Lorentz gas insofar also the gates are random. This is indeed the
general case also for the Lorentz gas. We considered the case of deterministic gates
only to simplify the exposition.

Also, we consider the initial distribution h0 = 1. Then an elementary computa-
tion shows that

P?(z(n+ 1)− z(n) = ±1 | ω̄, z(n), . . . , z(0)) =
∣∣Gω̄z(n),±1

∣∣ =
1

2
∓
ω̄z(n)

4
.

This is an example of Sinai’s walk, hence we do not have the classical CLT.

Example 2. Assume that Gα,−1 = G−1 = [0, 1/2] and Gα,+1 = G+1 = (1/2, 1] for
any α and the maps are defined by

f−1(x) =

{
2x x ∈ [0, 1/4]

4x mod 1 x > 1/4

f+1(x) =

{
4x mod 1 x ∈ [0, 3/4]

2x− 1 x > 3/4.

Again let us consider the initial distribution h0 = 1. Denote by Lα,w the oper-
ator Lα,w(φ) = Lfα(1Gwφ). The two dimensional vector space V = {a−11G−1 +
a+11G+1

: a−1, a+1 ∈ R} is left invariant by the operators {Lα,w}α,w. Since
h0 ∈ V, this allows to compute the transition probabilities by using formula (3.1).



DETERMINISTIC WALKS IN RANDOM ENVIRONMENT 25

If φ = a−11G−1
+a+11G+1

, a direct computation shows that Lα,w(φ) = awLα,w(1),
and thus Lα′,w′Lα,w(φ) = awLα′,w′Lα,w1. For any ω̄ and z(1), . . . , z(n), z(n + 1),
denote by αk = ω̄z(k)+w(k) and wk = w(k) = z(k + 1)− z(k). We have

P?(z(1), . . . , z(n) | ω̄) =

∫
Lαn−1,wn−1

. . .Lα0,w0
1.

Set φ = Lαn−2,wn−2
. . .Lα0,w0

1 = a−11G−1
+ a+11G+1

∈ V. We have

P?(z(1), . . . , z(n) | ω) =

∫
Lαn−1,wn−1

φ = awn−1

∫
Lαn−1,wn−1

1

and

P?(z(1), . . . , z(n), z(n+ 1) | ω̄) = awn−1

∫
Lαn,wnLαn−1,wn−11.

It follows that

P?(z(n+ 1) | z(1), . . . , z(n), ω̄) =

∫
Lαn,wnLαn−1,wn−1

1∫
Lαn−1,wn−11

which is a function of z(n−1), z(n) and z(n+1) only. We have obtained a persistent
random walk, that is a walk where the transition probability depends not only on
the current position of the particle but also on its previous position.

Initial conditions. A natural question that arises at this point is what happens
if one starts by a different initial measure. A moment thought shows that this is a
non trivial issue. For instance, in the first example, there exists a Cantor set C (of
zero Lebesgue measure) that corresponds to the coordinates x(n) never belonging to
(1/4, 3/4). For such points x ∈ C, the set {x(n) ∈ Gα,w} does not depend on α, and
so the process (z(n)) is completely unaffected by the environment. If we identify
naturally the Cantor set C with {−1,+1}N (in such a way that x ∈ C is identified
with the sequence (in) such that x(n) ∈ Iin for all n ≥ 0, where I−1 = [0, 1/4] and
I+1 = [3/4, 1]), then the initial distribution of x can be identified with a probability
measure on {−1,+1}N and this measure will be the distribution law of the random
process (w(n)). In particular, if we consider the Bernoulli measure with equal
probabilities on such a Cantor set as the initial distribution of x, then we obtain a
standard random walk which has a very different behaviour than the Sinai’s walk.

Without going to such extremes, one can (perhaps more naturally) start from a
measure absolutely continuous with respect to Lebesgue and wonder which kind of
process this will yield. We do not discuss this issue at present because is it part of
the more general discussion that we will start in the next chapter.

Remark 5.2. The above examples (among other obvious limitations) are unreason-
able in one key aspect: their Markov structure. It is inevitable to ask what happens
when the Markov structure is absent (as for billiards). The next section is devoted
to investigating such a situation.

6. Non-Markovian examples: general discussion

We now consider a model of d-dimensional deterministic random walk in random
environment A = {(fα,M,Pα)}α∈A for a finite set A, where M = [0, 1], all maps
fα : [0, 1] → [0, 1] are piecewise C2 and uniformly expanding (i.e. |f ′α| ≥ λ > 1),
and the partitions Pα = {Gα,w}w∈W are made of subintervals of [0, 1], for a given
bounded subset W ⊂ Zd.
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Let P be a translation invariant probability on the set Ω = AZd . For a given
environment ω̄ ∈ Ω, we have the dynamics Fω̄(·, ·) : M× Zd →M× Zd given by
Fω̄(x, z) = (fω̄z+e(ω̄z,x)

(x), z + e(ω̄z, x)), where e(α, x) =
∑
w∈W 1Gα,w(x)w.

We are interested in the quenched evolution, (xn, zn) = Fnω̄(x0, z0), of such a
system when the initial condition x0 is distributed according to the measure

µ(ϕ) =

∫ 1

0

ϕ(x, 0)h0(x) dx

for some h0 ∈ BV, with inf h0 > 0.
Recall the definition of the probability measure P? and the dynamical system

(Ω?,F?) of the point of view of the particle, from Section 4.
Our goal is to reduce the study of this model to a situation as similar as possible

to a conventional r.w.r.e. situation, as exposed in the previous sections. To this end
we will need some technical conditions. We state them in the following subsection,
and then we state the results.

6.1. Conditions (C1), (C2), (C3).
Let T = {fα}α∈A be the (finite) set of all the possible maps on [0, 1], and H be the
(finite) set of all the possible intervals of the partitions, i.e. H = {Gα,w}w∈W,α∈A.

Notation. The set T ×H is canonically isomorphic to A× (A×W), ρ((α, β)) =
(fα, Hβ) being the correspondence.

From now on we will write (Tσ, Hσ) = (fπ1◦ρ−1(σ), Hπ2◦ρ−1(σ)), π1(α, β) = α and
π2(α, β) = β .

Set Σ = T × H and let τ : ΣN → ΣN be the unilateral shift. For σ ∈ ΣN, we
write σ = (σ1, σ2, . . .) with σk = (Tσk , Hσk). We denote Tnσ = Tσn ◦ . . . ◦ Tσ1 and

Hn
σ =

⋂n−1
j=0 (T jσ)−1(Hσj+1

).
Let Lσk be the transfer operator of the map Tσk with respect to the Lebesgue

measure, i.e.

Lσkf(x) =
∑

Tσky=x

f(y)

|T ′σk(y)|
.

We set L̂σkf = Lσk(f1Hσk ) and L̂nσ = L̂σn ◦ . . . ◦ L̂σ1
. We can write L̂nσf(x) =∑

Tnσ y=x g
n
σ (y)f(y), where gnσ = gσ1 × . . .× gσn ◦ Tn−1

σ , with gσk = 1Hσk
1
|T ′σk |

. Let

D > 0 and 0 < Θ < 1 be such that ‖gnσ‖∞ ≤ DΘn for all n and σ ∈ ΣN. Note that
we can choose D = 1 and Θ−1 = infT∈T infx |T ′(x)|.

We will only consider systems that satisfy

(C1): There exists δ > 0 such that for all σ1 ∈ T ×H, inf L̂σ11 ≥ δ.
Observe that this condition is satisfied if, for any choice of T and H, T admits

at least one full branch inside H. By iteration, we also have inf L̂nσ1 ≥ δn for any
σ ∈ ΣN and n ≥ 1.

Next, we define the functionals

Λσ(f) = lim
n→∞

inf
L̂nσf
L̂nσ1

.

This limit is well defined as the limit of an increasing and bounded sequence. Indeed,
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inf
L̂n+1
σ f

L̂n+1
σ 1

≥ inf
L̂σn+1(L̂nσ1

L̂nσf
L̂nσ1

)

L̂n+1
σ 1

≥ inf
L̂nσf
L̂nσ1

inf
L̂σn+1

(L̂nσ1)

L̂n+1
σ 1

= inf
L̂nσf
L̂nσ1

;

and −‖f‖∞ ≤ inf
L̂nσf
L̂nσ1
≤ ‖f‖∞.

The above functional satisfies the following properties:

• Λσ(1) = 1;
• |Λσ(f)| ≤ ‖f‖∞;
• f ≥ g implies Λσ(f) ≥ Λσ(g) (monotonicity);
• Λσ(λf) = λΛσ(f), for λ > 0 (positive homogeneity);
• Λσ(f + g) ≥ Λσ(f) + Λσ(g) (super-additivity);
• Λσ(f + b) = Λσ(f) + b for all b ∈ R.

All the above follows immediately from the definition. Note that it is not clear at
the moment if Λσ is linear or not.

We set

(6.1) ρσ = Λτσ(L̂σ1
1) ; ρ = inf

σ∈ΣN
ρσ.

Let Znσ be the partition of smoothness intervals of Tnσ , and Ẑnσ be the coarsest
partition which is finer than Znσ and enjoying the property that the elements of the
partition are either disjoint or contained in Hn

σ .
Let us define the collections of intervals

Znσ,? = {Z ∈ Ẑnσ |Z ⊂ Hn
σ },

Znσ,b = {Z ∈ Znσ,? |Λσ(1Z) = 0}
Znσ,g = {Z ∈ Znσ,? |Λσ(1Z) > 0}.

(6.2)

Definition 1. We will call contiguous two elements of Znσ,? that are either con-
tiguous in the usual sense, or separated by a connected component of (Hn

σ )c =⋃n−1
j=0 (T jσ)−1(Hc

σj+1
).

We can now introduce the other conditions needed to state our results.

(C2): there exist constants K ≥ 0 and ξ ≥ 1 such that for any n and σ ∈ ΣN,
at most Kξn elements of Znσ,b are contiguous. In addition, θ := ξΘ < ρ. In
particular, ρ > 0.

(C3(N,N ′)): there exists εn > 0 such that inf
L̂N
′

σ 1Z

L̂N′σ 1
≥ εn for all n ≤ N and

Z ∈ Znσ,g, and for any sequence σ ∈ ΣN. In particular, Λσ(1Z) ≥ εn.

6.2. The results.
We are finally able to state our main result.

Theorem 6.1. There exists an integer n2 ≥ 1 depending on the classes T and H,
explicitly computable (see Remark 9.10), such that if (C1), (C2) and (C3(n2, n3))
hold for some n3 ≥ n2, then the condition (Exp) holds. In particular, the property
of loss memory from Lemma 4.3 is verified.
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As we already pointed out in Section 5, the choice of the initial condition might
play an important role. The following result states that if we restrict ourselves to
initial conditions absolutely continuous to Lebesgue, with density in BV bounded
uniformly away from 0, this difference is not so important in the sense that for large
times, the transition probabilities are exponentially close. For two different initial
densities h0, h

′
0 ∈ BV with inf h0 > 0 and inf h′0 > 0, we denote by P? and P′? the

probability measures corresponding to h0 and h′0 respectively.

Theorem 6.2. Under the assumptions of Theorem 6.1, we have for all realisation
of the environment ω̄ ∈ Ω, n ≥ 0 and all densities h0, h

′
0 as above:

|P?(z(n) | z(1), . . . , z(n− 1), ω̄)− P′?(z(n) | z(1), . . . , z(n− 1), ω̄)| ≤ Ch0,h′0
νn,

where Ch0,h′0
> 0 depends only on the densities h0 and h′0.

Next, we consider the situation where all maps fα preserve a common density
h0 ∈ BV such that inf h0 > 0, and when the partitions Pα are deterministic, i.e.
Gα,w = Gw does not depend on α ∈ A. In this situation, the dynamical system
(Ω?,F?,P?) is measure-preserving, and so condition (Abs) holds by Lemma 4.5.

Theorem 6.3. Under the assumptions of Theorem 6.1, if the maps fα preserve a
common density, the partitions Pα are deterministic, and if furthermore condition
(Pro) of Section 4.2 holds, then the dynamical system (Ω?,F?,P?) is ergodic. In
particular, for P-a.e. ω̄ ∈ Ω and Lebesgue-almost every x0,

lim
n→∞

1

n
z(n) =

∑
w∈W

w

∫
Gw

h0dm.

Remark 6.4. The assumption that the maps all preserve a common measure and
that the partitions are deterministic is only used to check the validity of condition
(Abs) thanks to Lemma 4.5, and to have an explicit formula for the drift. If for
a concrete example, one is able to check (Abs) by any other mean, then Theorem
4.9 applies and there exists V ∈ Rd such that limn→∞

1
nz(n) = V for P-a.e. ω̄ ∈ Ω

and Lebesgue-almost every x0.

The proofs of Theorems 6.1, 6.2 and 6.3 will be provided in Section 8.

7. Existence of Non-Markovian examples: β-maps

The conditions under which Theorem 6.1 holds look rather convoluted, so the
reader might wonder if examples that satisfy them exist at all. We acknowledge
that the conditions are a bit contrived, yet they are checkable: they pertain only the
properties of a finite set of maps and gates. Of course, to check them in a specific
situation might be laborious, nevertheless to ensure that they are not empty it
suffices to verify them in some limiting regime, for example when the dynamics
has a lot of expansion. This is the aim of the present section. To further simplify
things we will limit ourselves to β maps, a rather popular class of maps in the field
of dynamical systems.

7.1. General β-maps. More precisely, we consider the situation where the class
of maps is T = {Tβ1 , Tβ2} for β2 > β1 > 1, with Tβ(x) = βx mod 1 and the
partitions Pα are such that H = {[0, 1

2 ], ( 1
2 , 1]}. Note that W is not specified, and
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Pα can be random 10. For σ ∈ ΣN = (T × H)N, we denote by βσi the value of β
such that Tσi = Tβσi . For simplicity, we will fix $ > 1 and assume that β1 = β and

β2 = $β. We will show that assumptions (C1), (C2) and (C3) are verified for a
large set of β. When needed, we will denote by Znσ (β) the partition of smoothness
intervals of Tnσ , to emphazise the dependence on β, and similarly for the objects
defined in equation (6.2). We will do the same with the subsets of this partition
introduced in Section 6.

Proposition 7.1. There exists a set B ⊂ (1,∞), with Leb(B∩ (1, t)) = O(log t) as
t → ∞, such that the model described above satisfies the assumptions of Theorem
6.1 when β /∈ B.

The rest of the section is devoted to the proof of Proposition 7.1. If suffices to
check conditions (C1), (C2) and (C3).

7.1.1. Condition (C1). This condition is satisfied if every map T ∈ T admits at
least one full branch inside any interval H ∈ H. This is the case whenever β ≥ 3.

7.1.2. Condition (C2). We first give a general criterion to check this condition.
Let Znσ,f be the collection of elements Z in Znσ,? such that Tnσ Z = [0, 1], and let

Znσ,u = Znσ,? \ Znσ,f .
We will say the system is ξ-full branched, with ξ > 0, if there exists K > 0 such

that for all σ ∈ Σ and all n, the number of contiguous elements in Znσ,u does not
exceed Kξn.

Clearly, a system ξ-full branched satisfies the condition (C2) with the same ξ > 0.

Lemma 7.2. Calling Cnσ the maximal number of contiguous elements in Znσ,u, holds

Cnσ ≤ 2

n−1∑
i=0

(C(1) + 2)iC(1),

where C(1) is the supremum over all σ of C1
σ.

Proof. The proof is by induction on n. Clearly it is true for n = 1. Let us suppose
it true for n. The elements of the partition Zn+1

σ,? are formed by {T−1
σ1
Z∩Z1} where

Z ∈ Znτσ,? and Z1 ∈ Z1
σ,?. Now, if Z1 ∈ Z1

σ,f , the elements maintain the same

nature, i.e. if Z ∈ Znτσ,f (resp. Znτσ,u) then T−1
σ1
Z ∩ Z1 ∈ Zn+1

σ,f (resp. Zn+1
σ,u ).

So we have in Z1 at most Cnτσ contiguous elements of Zn+1
σ,u . The only problem

can arise when a block of contiguous elements ends at the boundary of Z1 since
in such a case it can still be contiguous to others elements of Zn+1

σ,u . Yet, if the

contiguous elements of Z1 are in Z1
σ,f , then there can be at most a block of length

2Cnτσ. One must then analyze what can happen if Z1 ∈ Z1
σ,u. In this case, a set

of contiguous elements can either have only partial preimage in Z1, hence we get a
shorter group of contiguous elements, or all the group can have preimage. In this
last case, the worst case scenario is when the elements contiguous to the groups
(that must belong to Znτσ,f ) are cut while taking preimages. This means that at
most two new contiguous elements can be generated, but in this case the group
must end at the boundary of Z1. Since there are at most C1

σ contiguous elements
in Z1

σ,u in this way we can generate at most C1
σ(Cnτσ + 2) contiguous elements that,

10For instance, W = {−1,+1} and whether [0, 1
2

] and ( 1
2
, 1] correspond to −1,+1 or +1,−1

respectively is random.
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again in the worst case scenario, can be contiguous to two blocks belonging to the
neighboring elements in Z1

σ,f . Accordingly,

Cn+1
σ ≤ C1

σ(Cnτσ + 2) + 2Cnτσ = (C1
σ + 2)Cnτσ + 2C1

σ ≤ 2

n∑
i=0

(C(1) + 2)iC(1),

where we have used the induction hypothesis. �

This lemma implies that any system is ξ-full branched with ξ = C(1) + 2. We

can also set K = 2C(1)

C(1)+1
in condition (C2).

In order to check condition (C2) one has also to estimate ρ. We can first remark

that ρσ ≥ inf L̂σ11. Letting N to be the minimal number of onto branches of T
inside H for any T ∈ T and H ∈ H, the following holds:

L̂σ1
1(x) =

∑
Tσ1

y=x

1Hσ1
(y)

1

|T ′σ1
(y)|
≥ N

M
,

with M = supT |T ′(x)|. Thus, we have ρ ≥ N
M , and condition (C2) is satisfied if

(C(1) + 2)Θ < N
M .

For our example with β transformations, we have C(1) = 2 and thus ξ = 4 and
K = 4

3 . We also have Θ = β−1, M = $β and N ≥ bβ2 c−1. Condition (C2) is then

satisfied if 4$β < β(bβ2 c − 1), which is the case if β ≥ 8$ + 4.

7.1.3. Condition (C3). We need the following:

Lemma 7.3. For each m ≥ 1, there exists a set Bm ⊂ (1,∞) with Leb(Bm ∩
(1, t)) = O(log t) as t→∞, such that for any β > 1 with β /∈ Bn,

(7.1) ∀n ≤ m, ∀σ ∈ ΣN, ∀Z ∈ Znσ,?(β), Tn+1
σ (Z∩Hn+1

σ ) = [0, 1] or Tnσ Z ⊂ Hc
σn+1

.

This lemma establishes a strong dichotomy between good and bad elements of
Znσ,?(β) when β /∈ Bm: either Tnσ Z ∩Hσn+1

is large enough to cover [0, 1] after one
more iteration if Z is good, or it is empty if Z is bad.

Lemma 7.3 implies that if β /∈
⋃
k≤n Bk then (C3(n, n + 1)) is satisfied with

εn = 1
(2$β)n+1 . Indeed, for Z ∈ Zkσ,g(β), k ≤ n, we have Tn+1

σ (Z ∩ Hn+1
σ ) =

Tn−k
τk+1σ

(T k+1
σ (Z ∩Hk+1

σ ) ∩Hn−k
τk+1σ

) = [0, 1] and then

L̂n+1
σ 1Z(x) =

∑
Tn+1
σ y=x

1Z(y)1Hn+1
σ

(y)

|(Tn+1
σ )′(y)|

≥ 1

sup |(Tn+1
σ )′|

≥ 1

($β)n+1
,

and L̂n+1
σ 1(x) ≤ Ln+1

σ 1(x) ≤ 2n+1, since LTβi1(x) ≤ 2.
The above facts suffice to prove Proposition 7.1:

Proof of Proposition 7.1. We can choose B = (1, β0) ∪
⋃n
k=1 Bk for β0 > 1 and

n ≥ 1 large enough. From our analysis of conditions (C1) and (C2), we must choose
β0 > 8$ + 4. We use Remark 9.10 to determine the value of n2 given in Theorem
6.1.

We first show that when β is large enough, we can choose n0 = 1. By Remark
9.4, the constant C? can be chosen so that D(3C + 5) + (3C + 2)2Kξn) ≤ C?ξn for
all n. In our situation, all maps are piecewise linear, and then C = 0. Since D = 1,
K = 4

3 and ξ = 4, we thus need (5 + 16
3 4n) ≤ C?4

n. This is verified for C? = 31
3 .

To have n0 = 1, by Remark 9.10, we have to be able to choose η ∈ (θρ−1, 1) so that
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C
1
n
? θρ

−1 ≤ η and C?η
n ≤ 1

4 for all n ≥ 1. Since C? > 1 and η < 1, it is sufficient
to check it for n = 1, i.e. we need

(7.2) C?θρ
−1 ≤ η ≤ 1

4C?

and θρ−1 < η < 1. Since θ = ξΘ = 4β−1 and, by the analysis in subsection 7.1.2,
ρ−1 ≤ $β

b β2 c−1
= O(1) as β → ∞, we have C?θρ

−1 = O(β−1). Since 1
4C?

is a

constant independent of β, the set of η satisfying (7.2) is non empty for all β large
enough.

Now, if n0 = 1 and β /∈ B1 then condition (C3(1,2)) is satisfied with ε1 =
1

(2$β)2 and then C1 = 2(2Kξ1 + 1)Θ1ε−1
1 = O(β) by Remark 9.4. Consequently,

a0 = 8C1ρ
−1 + C1

C?θ1 = O(β2), a = O(β2) and B = 1 + 2aC? = O(β2). We have

δ−1 = 4aB(1 + 2C1ρ
−1) = O(β5). Since D = 1, θρ−1 = O(β−1) and δ−1 = O(β5),

we see by Remark 9.10 that n2 = n1(δ) = 6 is sufficient for β large enough, say for

β ≥ β0. We can then set B = (1, β0) ∪
⋃6
k=1 Bk to conclude the proof, as for each

β /∈ B, we have n2 = 6 and C(n2, n2 + 1) is satisfied. �

The rest of the section is devoted to the proof of Lemma 7.3. Due to the form

of the elements of Ẑnσ (β), we have to discard β when the n-th iterates of elements

of ∂Ẑnσ (β) come too close to
{

0, 1
2 , 1
}

as it will be made precise later. We have:

Lemma 7.4. For all σ ∈ ΣN and n ≥ 1, one has Tnσ (∂Ẑnσ (β)) ⊂ Qn(β) :=
{0, 1} ∪ {T iσ′(1), T iσ′(

1
2 ) / i = 1, . . . , n, σ′ ∈ ΣN}.

Proof. We proceed by induction, the result being clearly true for n = 1. Note that

Qn(β) ∪ T 1
τnσ(Qn(β)) ⊂ Qn+1(β). Since every Z ∈ Ẑn+1

σ (β) is of the form Z =

Z ′ ∩ (Tnσ )−1(Z ′′) for Z ′ ∈ Ẑnσ (β) and Z ′′ ∈ Ẑ1
τnσ(β), if a ∈ ∂Ẑn+1

σ (β), then either

a ∈ ∂Ẑnσ (β) or Tnσ a ∈ ∂Ẑ1
τnσ(β). In the first case, Tn+1

σ a ∈ T 1
τnσ(Tnσ (Ẑnσ (β))) ⊂

Qn+1(β), and in the second case, Tn+1
σ a ∈ T 1

τnσ(∂Ẑ1
τnσ(β)) ⊂ Q1(β) ⊂ Qn+1(β).

�

We thus see that we need to control all the possible orbits of 1 and 1
2 . For this

purpose, for x ∈ (0, 1]11 and σ ∈ ΣN, we introduce the map φx,σn : (1,∞) → [0, 1]
defined by φx,σn (β) = Tnσ (x). For non negative integers i1, . . . , in, we define the
intervals

Ix,σi1,...,in =
{
β ∈ (1,∞) | bβσkφ

x,σ
k−1(β)c = ik, k = 1, . . . , n

}
.

Note that Ix,σi1 = [ i1x ,
i1+1
x ) if βσ1

= β1, Ix,σi1 = [ i1$x ,
i1+1
$x ) if βσ1

= β2, and that in

both cases, Ix,σi1 ⊂ [ i1$x ,
i1+1
x ). The family {Ix,σi1,...,in,in+1

}in+1≥0 forms a partition

into finitely many (at most b$ i1+1
x c + 1) intervals of Ix,σi1,...,in . From the relation

φx,σn+1(β) = βσn+1φ
x,σ
n (β) mod 1, we deduce easily by induction:

Lemma 7.5. The map φx,σn is C1 and stricly increasing on each interval Ix,σi1,...,in ,

and verifies (φx,σn )′(β) ≥ βn−1x.

Lemma 7.6. For each x ∈ (0, 1] and n ≥ 1, there exists a set Bn,x ⊂ (1,∞), with
Leb(Bn,x ∩ (1, t)) = O(log t) as t→∞, such that, if β /∈ Bn,x,

∀σ ∈ ΣN, d(φx,σn (β), {0, 1/2, 1}) > 3β−1.

11Note that we will only consider x = 1
2

and x = 1 in the following.



32 ROMAIN AIMINO AND CARLANGELO LIVERANI

Proof. Fix n ≥ 1 and σ ∈ Σ, and consider β ∈ Ix,σi1,...,in . We have β−1 ≤ $xi−1
1 and

thus d(φx,σn (β), {0, 1/2, 1}) > 3β−1 whenever

(7.3) d(φx,σn (β), {0, 1/2, 1}) > 3$xi−1
1 .

Define Bx,σn,i1 to be the set of β in Ix,σi1 which do not satisfy (7.3). By Lemma 7.5,

the Lebesgue measure of Bx,σn,i1 ∩ I
x,σ
i1,...,in

is less than12

3

(
inf

Ix,σi1,...,in

|(φx,σn )′|

)−1

3$xi−1
1 ≤ C$,x,ni−n1 .

As {Ix,σi1,...,in}i2,...,in forms a partition of Ix,σi1 into at most C$,x,ni
n−1
1 elements, the

set Bx,σn,i1 has a measure less than C$,x,ni
−1
1 . For j = 1, 2, set Bx,jn,i1 =

⋃
{σ | βσ1=βj} B

x,σ
n,i1

.

For n fixed, the condition (7.3) depends on σ only through its n first terms, and

thus Bx,jn,i1 is of measure less than C$,x,ni
−1
1 . The set Bn,x =

⋃
j=1,2

⋃
i1≥1 B

x,j
n,i1

then satisfies the conclusion of the lemma. �

We can now conclude the proof:

Proof of Lemma 7.3. We set Bm = ∪1≤n≤mBn,1/2 ∪ Bn,1 and we proceed by

induction over n ≤ m. Note that if Z ∈ Znσ,?(β), then Z ∩Hk
σ = Z for all k ≤ n.

If Z ∈ Z1
σ,?(β), then either Z is a full interval of Z1

σ,?(β) and so T 2
σ (Z ∩H2

σ) =

Tσ2
([0, 1] ∩ Hσ2

) = [0, 1], or one of the endpoints of Z is 1
2 or 1. In the latter

case, the other endpoint of Z must be sent after one iteration to 0 or 1 and so if
T 1
σZ ∩ H1

τσ is not empty, then |T 1
σZ ∩ H1

τσ| > 3β−1 by Lemma 7.6. The interval
T 1
σZ ∩ H1

τσ therefore contains at least one full interval of Z1
τσ,?(β), which implies

T 2
σ (Z ∩H2

σ) = [0, 1].
Now, we suppose that (7.1) holds for n and we will prove it still holds for n+ 1,

if n+ 1 ≤ m.
Any Z ∈ Zn+1

σ,? (β) is of the form Z = Z ′ ∩ (Tnσ )−1(Z ′′) with Z ′ ∈ Znσ,?(β)

and Z ′′ ∈ Z1
τnσ,?(β). If both endpoints of Z belong to the interior of Z ′, then

Tnσ Z = Z ′′ ∈ Z1
τnσ,?(β) and we have

Tn+2
σ (Z ∩Hn+2

σ ) = T 2
τnσ(Tnσ Z ∩H2

τnσ) = T 2
τnσ(Z ′′ ∩H2

τnσ) = [0, 1],

or

Tn+1
σ Z = T 1

τnσ(Tnσ Z) = T 1
τnσZ

′′ ⊂ Hc
σn+1

,

according to whether Z ′′ is a good a or bad element of Z1
τnσ,?(β) respectively.

If one endpoint of Z is also an endpoint of Z ′, then Tnσ Z = [Tnσ a, b]
13 with

a ∈ ∂Znσ,?(β) and b ∈ ∂Z1
τnσ,?(β). By Lemma 7.4, Tnσ a = T iσ′x, with σ′ ∈ Σ,

0 ≤ i ≤ n and x ∈
{

1
2 , 1
}

.14 We consider two subcases: either b /∈
{

1
2 , 1
}

or

b ∈
{

1
2 , 1
}

.

In the first subcase, we have y := Tσn+1
b ∈ {0, 1}. Therefore, Tn+1

σ Z =

[Tσn+1
T iσ′x, y]. Since i + 1 ≤ n + 1 ≤ m, β /∈ Bn+1,y and one of the endpoints

of Tn+1
σ Z belongs to {0, 1}, it follows that Tn+1

σ Z ∩ Hσn+2
, if it is non empty, is

12In the following, C$,x,n will denote a constant, the value of which may change from one line

to another, depending on $, x and n, but not on i1.
13We write [x,y] to denote the interval joining x and y, disregarding whether x ≤ y or x ≥ y.
14Note that if Tnσ a = 0, then we are reduced to the previous situation.
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an interval of length strictly larger than 3β−1 by Lemma 7.6 and thus contains at
least one full interval of Z1

τn+1σ,?(β). Consequently, Tn+2
σ (Z ∩Hn+2

σ ) = [0, 1].

In the second subcase, Tnσ Z = [T iσ′x, b] has one endpoint belonging to
{

0, 1
2 , 1
}

,
and so, as above, we obtain that Tnσ Z ∩Hσn , if it is non empty, is of length striclty
larger than 3β−1 by Lemma 7.6. We deduce that Tnσ Z ∩Hσn contains at least one
full interval of Z1

τnσ,?(β), which implies that Tn+2
σ (Z ∩Hn+2

σ ) = [0, 1].
Finally, if both endpoints of Z are also endpoints of Z ′, then Z = Z ′ ∈ Znσ,?(β).

Since Z ∈ Zn+1
σ,? (β), we have Tnσ Z ⊂ Hσn+1

and so by our induction hypothesis, we

can only have Tn+1
σ Z = Tn+1

σ (Z ′∩Hn+1
σ ) = [0, 1]. This implies Tn+2

σ (Z ∩Hn+2
σ ) =

[0, 1] and concludes the induction. �

7.2. Markov maps with non-Markov gates. The reader might wonder if it is
possible to produce an example more similar to the Lorenz gas. In particular, one
in which the invariant measures of the maps is always the same and the gates are
deterministic, so that one knows explicitly the invariant measure of the process of
the environment as seen from the particle.

This is indeed possible, as we discuss briefly. We consider now the situation where
the class of maps is T = {Tβ1

, Tβ2
}, β2 > β1 are both integers, and the partitions

Pα = P are deterministic with W = {−1, 0,+1} and G−1 = [0, y], G0 = (y, 1 − y]
and G+1 = (1− y, 1], for 0 < y < 1

2 . Proceeding similarly to the previous section,
but considering this time y as a parameter, instead of β, for fixed β1 and β2, we
can show the following:

Proposition 7.7. Let $ > 1. Then for each 1 < β1 < β2 < $β1 integers, there
exists a measurable set Bβ1,β2

⊂ (0, 1
2 ), with Leb(Bβ1,β2

) = O(β−1
1 ) as β1 → ∞,

such that the model described above, with y 6∈ Bβ1,β2
, satisfies the assumptions of

Theorems 6.1.

In particular, this class of models is non-empty when β1 is large enough. Since all
maps in T preserves the Lebesgue measure and all gates are deterministic, Theorem
6.3 also applies15 and we therefore have 1

nz(n)→ 0 a.e., since the drift is equal to

V =
∑
w∈W

w

∫
Gw

h0dm =
∑

w∈{−1,0,+1}

w|Gw| = 0.

By corollary 4.11, the walk (zn) is then recurrent.

8. Equivalence with a Gibbs random walk

In this section, we prove Theorem 6.1. The proof will rely on a property of

exponential loss of memory for compositions of the operators L̂σ. More precisely,

we will investigate the properties of compositions of the form L̂nσf , in order to
understand better the asymptotics of the probabilities p(ω̄, n, w0 . . . wn−1). For
convenience, we will consider bi-infinite sequences σ ∈ ΣZ = (T × H)Z, with τ :

ΣZ → ΣZ the bilateral shift. We can extend the definitions of L̂nσ, ρσ, Caσ and Λσ
to the case σ ∈ ΣZ in a straightforward way. We will prove that for n large, L̂nσf
is exponentially close in the L∞-norm to ρσ . . . ρτn−1σΛσ(f)hτnσ, where {hσ} is a

family of positive functions in BV satisfying L̂1
σhσ = ρσhτσ. This is summarized in

the following result, whose proof is contained in Section 9.

15Condition (Pro) is satisfied here, since W is symmetric.
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Proposition 8.1. There exists an integer n2 ≥ 1 depending on the classes T and
H, explicitely computable, such that if (C1), (C2) and (C3(n2, n3)) hold for some
n3 ≥ n2, then there exist ν ∈ (0, 1), a family of positive numbers {ρσ}σ∈ΣZ and
a family of positive functions {hσ}σ∈ΣZ in BV such that Λσ(hσ) = 1 and for all
σ ∈ ΣZ, f ∈ BV and n ≥ 0:

(8.1)

∥∥∥∥∥ L̂nσf
ρσ · · · ρτn−1σ

− Λσ(f)hτnσ

∥∥∥∥∥
∞

≤ C#ν
n‖f‖BV.

Remark 8.2. The statement of the above result is similar to the one in [21]. Note
however that here the setting is very different insofar in [21] only small holes and
near by maps are considered. The upgrade of the result to large holes and arbitrary
maps (as we inescapably need) turns out to be highly non trivial.

To prove Proposition 8.1, we will adapt the strategy of [17]. More precisely, we
will show that the family of cones

Caσ = {h ∈ BV | h 6= 0, h ≥ 0,
∨
h ≤ aΛσ(h)}

is stricly invariant under compositions of large enough length of transfer operators

(i.e. L̂nσCaσ ⊂ C
a/2
τnσ for all n ≥ n0) for a suitable a > 0, see Lemma 9.6. From this,

we will deduce that L̂nσCaσ has uniform finite diameter in Caτnσ for the corresponding

Hilbert metric (Lemma 9.13), which will imply that L̂nσ is a strict contraction for
the Hilbert metric, and then enjoys exponential loss of memory.

Remark 8.3. To deduce Theorem 6.1 from Proposition 8.1, we will need some
technical facts which will be proved throughout Section 9 and that we list below:

(1) for all n ≥ 0 and σ ∈ ΣN, inf L̂nσ1 ≥ %′Λτnσ(L̂nσ1) (Remark 9.12);

(2) for all n ≥ 0 and σ ∈ ΣN, ‖L̂nσ1‖∞ ≤ BΛτnσ(L̂nσ1) (proof of Lemma 9.7);

(3) for all n ≥ 0 and σ ∈ ΣN, Λτnσ(L̂nσ1) = ρσ . . . ρτn−1σ (Lemma 9.16);
(4) for all σ ∈ ΣZ, inf hσ ≥ % and ‖hσ‖∞ ≤ 1 + a (Lemma 9.14).

We also note that, since T ×H is finite, ‖L̂1
σ1‖∞ <∞ and inf L̂1

σ1 > 0, there exist

δ > 0 and M < ∞ such that ‖L̂nσ1‖∞ ≤ Mn and inf L̂nσ1 ≥ δn for all n ≥ 0 and

σ ∈ ΣN. Also, ρσ ≤ ‖L̂1
σ1‖∞ ≤M , and so supσ ρσ <∞.

Recall from Section 4 that the transition probabilities are given by (4.10). For

(ω̄, w̄) ∈ Ω?, we define σ = σ(ω̄, w̄) ∈ ΣN such that L̂σn = Lω̄,zn−1,w̄n−1 , so that

p(ω̄, n, w̄0 . . . w̄n−1) =

∫
L̂nσh0dm.

We will still denote by σ ∈ ΣZ an arbitrary element of ΣZ which coincides with σ
for future components (for instance, given an arbitrary σ? ∈ Σ, we identify σ ∈ ΣN

with the element σ̃ ∈ ΣZ defined by σ̃i = σi if i ≥ 1 and σ̃i = (σ?)i if i ≤ 0).
We are now ready to prove the announced results.

Proof of Theorem 6.1. We have

(8.2) Pω̄(w̄n | w̄0 . . . w̄n−1) =
p(ω̄, n+ 1, w̄0 . . . w̄n)

p(ω̄, n, w̄0 . . . w̄n−1)
=

∫
L̂n+1
σ h0dm∫
L̂nσh0dm
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and

Pτzm ω̄(w̄n | w̄m . . . w̄n−1) =
p(τzm ω̄, n−m+ 1, w̄m . . . w̄n)

p(τzm ω̄, n−m, w̄m . . . w̄n−1)

=

∫
L̂n−m+1
τzmσ

h0dm∫
L̂n−mτzmσh0dm

.

(8.3)

We can then write∫
L̂n+1
σ h0dm∫
L̂nσh0dm

= ρτnσ

∫
L̂n+1
σ d0dm

ρσ . . . ρτnσ

ρσ . . . ρτn−1σ∫
L̂nσh0dm

.

Using Proposition 8.1, we have

(8.4)

∣∣∣∣∣
∫
L̂nσh0dm

ρσ · · · ρτn−1σ
− Λσ(h0)

∫
hτnσdm

∣∣∣∣∣ ≤ C#ν
n‖h0‖BV,

which also implies

(8.5)

∣∣∣∣∣ρσ · · · ρτn−1σ∫
L̂nσh0dm

−
(

Λσ(h0)

∫
hτnσdm

)−1
∣∣∣∣∣ ≤ C#ν

n ‖h0‖BV

(inf h0)2
,

since ∫
L̂nσh0dm

ρσ · · · ρτn−1σ
≥ (inf h0)

inf L̂nσ1
ρσ · · · ρτn−1σ

≥ (inf h0)
%′Λτnσ(L̂nσ1)

ρσ . . . ρτn−1σ
= %(inf h0),

and Λσ(h0)
∫
hτnσdm ≥ % inf h0.

Note that we also have∫
L̂nσh0dm

ρσ · · · ρτn−1σ
≤ ‖h0‖∞

‖L̂nσ1‖∞
ρσ · · · ρτn−1σ

≤ B‖h0‖∞.

Consequently, using (8.4) with n replaced by n+1, (8.5) and the above inequalities:∣∣∣∣∣
∫
L̂n+1
σ h0dm∫
L̂nσh0dm

− ρτnσ
∫
hτn+1σdm∫
hτnσdm

∣∣∣∣∣ ≤
[∣∣∣∣∣
∫
L̂n+1
σ h0dm

ρσ · · · ρτnσ
− Λσ(h0)

∫
hτn+1σdm

∣∣∣∣∣ ρσ · · · ρτnσ∫
L̂nσh0dm

+Λσ(h0)

∫
hτn+1σdm

∣∣∣∣∣ρσ · · · ρτn−1σ∫
L̂nσh0dm

−
(

Λσ(h0)

∫
hτnσdm

)−1
∣∣∣∣∣
]

≤ C#ν
n

(
‖h0‖BV

inf h0
+
‖h0‖2BV

(inf h0)2

)
.

Hence, for all n ≥ 0,

(8.6) sup
σ∈Σ

∣∣∣∣∣
∫
L̂n+1
σ h0dm∫
L̂nσh0dm

− ρτnσ
∫
hτn+1σdm∫
hτnσdm

∣∣∣∣∣ ≤ Ch0
νn,

where Ch0
depends only on the density h0, and, by (8.2) and (8.3), this implies

(Exp). �

Proof of Theorem 6.2. By (8.6), we have

sup
σ∈Σ

∣∣∣∣∣
∫
L̂n+1
σ h0dm∫
L̂nσh0dm

−
∫
L̂n+1
σ h′0dm∫
L̂nσh′0dm

∣∣∣∣∣ ≤ (Ch0
+ Ch′0)νn,

for all n ≥ 0, and the theorem follows with Ch0,h′0
= Ch0

+ Ch′0 . �
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Proof of Theorem 6.3. According to Theorem 4.9 and the discussion in Section
4.4, and since condition (Exp) already holds by Theorem 6.1, it is enough to show
that assumptions (Pos) and (Ell) are satisfied for the probabilities defined by
(4.10).

Verification of (Pos). We have, by Proposition 8.1

p(ω̄, n, w̄0 . . . w̄n−1) =

∫
L̂nσh0dm = ρσ · · · ρτn−1σ

∫
L̂nσh0dm

ρσ · · · ρτn−1σ

≥ ρn
(

Λσ(h0)

∫
hτnσ − C#ν

n‖h0‖BV

)
≥ ρn (% inf h0 − C#ν

n‖h0‖BV) .

Consequently, p(ω̄, n, w̄0 . . . w̄n−1) > 0 for all n large enough, and since this quan-
tity is non-increasing, this proves the positivity for all n ≥ 0.

Verification of (Ell). By (8.6), we have for all n ≥ 0,

Pω̄(w̄n | w̄n−1 . . . w̄0) =

∫
L̂n+1
σ h0dm∫
L̂nσh0dm

≥ ρτnσ
∫
hτn+1σdm∫
hτnσdm

− Ch0
νn

≥ ρ %

1 + a
− Ch0

νn,

which proves (Ell). �

9. Loss of Memory

To prove Proposition 8.1, we will adapt the strategy of [17] to our non-stationary
case, and employ the theory of Hilbert metrics, that we recall below.

Definition 2. Let V be a vector space. We will call convex cone a subset C ⊂ V
which enjoys the following properties:

(i) C ∩ −C = ∅.
(ii) ∀λ > 0, λC = C.

(iii) C is a convex set.
(iv) ∀f, g ∈ C, ∀αn ∈ R αn → α, g − αnf ∈ C ⇒ g − αf ∈ C ∪ {0}.

We now define the Hilbert metric on C:

Definition 3. The distance dC(f, g) between two points f, g in C is given by

α(f, g) = sup{λ > 0 | g − λf ∈ C},
β(f, g) = inf{µ > 0 | µf − g ∈ C},

dC(f, g) = log
β(f, g)

α(f, g)
,

where we take α = 0 or β =∞ when the corresponding sets are empty.

The next theorem shows that every positive linear operator is a contraction,
provided that the diameter of the image is finite.
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Theorem 9.1 ([15, Theorem 1.1]). Let V1 and V2 be two vector spaces, C1 ⊂ V1

and C2 ⊂ V2 two convex cones and L : V1 → V2 a positive linear operator (which
implies L(C1) ⊂ C2). If we denote

∆ = sup
f,g∈L(C1)

dC2(f, g),

then

dC2(Lf, Lg) ≤ tanh

(
∆

4

)
dC1(f, g) ∀f, g ∈ C1.

The following lemma links the Hilbert metric to suitable norms on V:

Lemma 9.2 ([18, Lemma 2.2]). Let ‖ · ‖ be a norm on V such that

∀f, g ∈ V g − f, g + f ∈ C ⇒ ‖f‖ ≤ ‖g‖
and let ` : C → R+ be a homogeneous and order preserving function, i.e.

∀f ∈ C,∀λ ∈ R+ `(λf) = λ`(f),

∀f, g,∈ C g − f ∈ C ⇒ `(f) ≤ `(g),

then

∀f, g ∈ C `(f) = `(g) > 0⇒ ‖f − g‖ ≤ (edC(f,g) − 1) min(‖f‖, ‖g‖).
From now on, we will always assume that conditions (C1) and (C2) hold. Our

main tool will be the following Lasota-Yorke type inequality:

Lemma 9.3. If condition (C3(N,N ′)) holds, then for any n ≤ N , for any σ ∈ ΣN

and h ∈ BV, we have ∨
L̂nσh ≤ C?(ξΘ)n

∨
h+ CNΛσ(|h|),

where C? and CN do not depend on h and σ.

Proof. First notice that L̂nσ(h1Z) = 0 if Z ∈ Ẑnσ \ Znσ,?. We can then write

L̂nσh =
∑

Z∈Znσ,?

L̂nσ(1Zh) =
∑

Z∈Znσ,?

(1Zg
n
σh) ◦ (Tnσ,Z)−1,

where (Tnσ,Z)−1 is the inverse branch of Tnσ restricted to Z.
Accordingly, ∨

L̂nσh ≤
∑

Z∈Znσ,?

∨
1Tnσ Z(gnσh) ◦ (Tnσ,Z)−1.

We estimate each term of the sum separately.∨
1Tnσ Z(gnσh) ◦ (Tnσ,Z)−1 ≤

∨
Z

hgnσ + 2 sup
Z
|hgnσ |

≤ 3
∨
Z

hgnσ + 2 inf
Z
|hgnσ |

≤ 3‖gnσ‖∞
∨
Z

h+ 3 sup
Z
|h|
∨
Z

gnσ + 2 inf
Z
|hgnσ |

≤ 5‖gnσ‖∞
∨
Z

h+ 3C sup
Z
|h|‖gnσ‖∞ + 2‖gnσ‖∞ inf

Z
|h|

≤ (3C + 5)‖gnσ‖∞
∨
Z

h+ (3C + 2)‖gnσ‖∞ inf
Z
|h|,
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where we have used the fact there exists a constant C such that
∨
Z g

n
σ ≤ C‖gnσ‖∞

for all n, σ and Z ∈ Znσ,? by bounded distortion.
By assumption (C3(N,N ′)), we have for each x ∈ [0, 1],

inf
Z∈Znσ,g

L̂N ′σ 1Z(x)

L̂N ′σ 1(x)
≥ εN .

Accordingly, for each x ∈ [0, 1], h ∈ BV and Z ∈ Znσ,g holds

L̂N
′

σ (|h|1Z)(x) ≥ inf
Z
|h|L̂N

′

σ 1Z(x) ≥ inf
Z
|h|εN L̂N

′

σ 1(x).

To deal with elements in Znσ,b, we use condition (C2). Note that elements of Znσ,g
can be separated by at most Kξn elements of Znσ,b. For each Z ∈ Znσ,b, let I±(Z)
be the union of the contiguous elements of Znσ,b on the left and on the right of Z

respectively. Clearly, for each Z ′ ⊂ I±(Z), holds

inf
Z′
|h| ≤ inf

Z
|h|+

∨
I±(Z)

h.

Accordingly, ∑
Z∈Znσ,b

inf
Z
|h| ≤ 2Kξn

 ∑
Z∈Znσ,g

inf
Z
|h|+

∨
h

 .
For all x, we thus have∑

Z∈Znσ,?

inf
Z
|h| ≤ (2Kξn + 1)

∑
Z∈Znσ,g

inf
Z
|h|+ 2Kξn

∨
h

≤ (2Kξn + 1)
1

εN

∑
Z∈Znσ,g

L̂N ′σ (|h|1Z)(x)

L̂N ′σ 1(x)
+ 2Kξn

∨
h

≤ (2Kξn + 1)
1

εN

L̂N ′σ (|h|)(x)

L̂N ′σ 1(x)
+ 2Kξn

∨
h.

We can then conclude∨
L̂nσh ≤((3C + 5) + (3C + 2)2Kξn)‖gnσ‖∞

∨
h

+ (3C + 2)(2Kξn + 1)‖gnσ‖∞
1

εN

L̂N ′σ (|h|)(x)

L̂N ′σ 1(x)
.

Taking the inf over x in the previous expression and recalling that ‖gnσ‖∞ ≤ DΘn

and infx
L̂N
′

σ (|h|)(x)

L̂N′σ 1(x)
≤ Λσ(|h|), we obtain the result. �

Remark 9.4. The constants C? and CN in the Lasota-Yorke inequality can be
chosen so that D((3C+5)+(3C+2)2Kξn) ≤ C?ξn and (3C+2)(2Kξn+1)Θn 1

εN
≤

CN for all n ≤ N , where C is such that
∨
Z g

n
σ ≤ C‖gnσ‖∞ for all n, σ and Z ∈ Znσ,?.

Note that if all the maps in T are piecewise linear, we can take C = 0.

We will show that the family of cones

Caσ = {h ∈ BV | h 6= 0, h ≥ 0,
∨
h ≤ aΛσ(h)}

is strictly invariant under the transfer operators defined above.
Recall that, under assumption (C2), θ = ξΘ < ρ.
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Lemma 9.5. For all σ and all g ∈ BV, g ≥ 0, we have Λτσ(L̂σ1
g) ≥ ρσΛσ(g). In

particular, Λτnσ(L̂nσg) ≥ ρnΛσ(g) and Λτnσ(L̂nσ1) ≥ ρn.

Proof. We just need to prove the first part of the statement, the second part follows
by iteration, since ρσ ≥ ρ for all σ. For each g ∈ BV, g ≥ 0 and x ∈ [0, 1], holds

L̂nτσL̂σ1g(x)

L̂nτσ1(x)
≥
L̂σn+1

[
L̂nσg
L̂nσ1
L̂nσ1

]
(x)

L̂nτσ1(x)
≥ L̂

n
τσ(L̂σ11)(x)

L̂nτσ1(x)
inf
L̂nσg
L̂nσ1

and taking the inf on x and the limit n→∞, we get the result. �

Lemma 9.6. There exist n0 ∈ N and a0 > 0 such that if C3(n0, N
′) holds, then

for all a ≥ a0 and σ, we have

L̂nσCaσ ⊂ C
a/2
τnσ ∀n ≥ n0 and L̂nσCaσ ⊂ C

2aC?
τnσ ∀n ≥ 0.

Proof. Let n0 ∈ N which will be chosen later. Let h ∈ Caσ, then we can write each
n as n = kn0 +m, m < n0, and by Lemma 9.3, we have

(9.1)∨
L̂nσh ≤ C?θn0

∨
L̂(k−1)n0+m
σ h+ Cn0

Λτ(k−1)n0+mσ(L̂(k−1)n0+m
σ h)

≤ Ck? θkn0

∨
L̂mσ h+

k−1∑
i=0

Cn0
(C?θ

n0)iΛτ(k−i−1)n0+mσ(L̂(k−i−1)n0+m
σ h)

≤ Ck+1
? θn

∨
h+

k−1∑
i=0

Cn0(C?θ
n0)iΛτ(k−i−1)n0+mσ(L̂(k−i−1)n0+m

σ h)

+ Cm(C?θ
n0)kΛσ(h).

Using Lemma 9.5, we obtain

∨
L̂nσh ≤

[(
a+

Cm
C?θm

)
Ck+1
? θn

ρn
+
Cn0

ρn0

k−1∑
i=0

(
C?θ

n0

ρn0

)i]
Λτnσ(L̂nσh).

If k = 0, for a0 ≥ maxi≤n0

Ci
C?θi

, we have∨
L̂nσh ≤ 2aC?Λτnσ(L̂nσh).

When k > 0 instead

∨
L̂nσh ≤

[
1

4

(
a+

Cm
C?θm

)
+ 2Cn0

ρ−n0

]
Λτnσ(L̂nσh)

provided n0 is such that
Ck+1
? θn

ρn ≤ 1
4 for all n ≥ n0. This can be achieved by

choosing first η ∈ ( θρ , 1) and n?0 such that C
1/n
? θρ−1 ≤ η for all n ≥ n?0. If we

choose n0 ≥ n?0 such that C?η
n ≤ 1

4 for all n ≥ n0, then we have
Ck+1
? θn

ρn ≤

C?

(
C

1/n0
? θ
ρ

)n
≤ C?ηn ≤ 1

4 for all n ≥ n0.

Hence, for all n ≥ n0 and a ≥ a0 = 8Cn0ρ
−n0 + maxi≤n0

Ci
C?θi

,∨
L̂nσh ≤

a

2
Λτnσ(L̂nσh).
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�

Lemma 9.7. If (C3(n0, N
′)) holds, there exists B > 0 such that for each h ∈ BV,

h ≥ 0, n ∈ N and σ ∈ ΣN,

Λτnσ(L̂nσ1)Λσ(h) ≤ Λτnσ(L̂nσh) ≤ BΛτnσ(L̂nσ1)Λσ(h).

Proof. For x ∈ [0, 1], we have

L̂mτnσ(L̂nσh)(x)

L̂mτnσ1(x)
≥
L̂nτmσ

[
L̂mσ h
L̂mσ 1
L̂mσ 1

]
(x)

L̂mτnσ1(x)
≥ L̂

m
τnσ(L̂nσ1)(x)

L̂mτnσ1(x)
inf
L̂mσ h
L̂mσ 1

where we have used twice the fact that L̂mσnσL̂nσ = L̂nσmσL̂mσ . Taking the inf on x
and the limit m→∞, we get the first inequality.

For the second, for x ∈ [0, 1], we have

L̂mτnσ(L̂nσh)(x)

L̂mτnσ1(x)
=
L̂mτnσ(L̂nσh)(x)

L̂mτnσ(L̂nσ1)(x)

L̂mτnσ(L̂nσ1)(x)

L̂mτnσ1(x)
≤ L̂

n+m
σ h(x)

L̂n+m
σ 1(x)

‖L̂nσ1‖∞,

which, by taking the inf on x and the limit m→∞, yields

Λτnσ(L̂nσh) ≤ ‖L̂nσ1‖∞Λσ(h).

By applying Lemma 9.6 to 1 ∈ Caσ, we obtain
∨
L̂nσ1 ≤ 2aC?Λτnσ(L̂nσ1). Thus

‖L̂nσ1‖∞ ≤ Λτnσ(L̂nσ1) +
∨
L̂nσ1 ≤ (1 + 2aC?)Λτnσ(L̂nσ1),

from which the result follows with B = 1 + 2aC?. �

Lemma 9.8. For each δ > 0, there exists n1 = n1(δ) such that for each n ≥ n1,

the partition Ẑnσ has the property that

sup
Z∈Ẑnσ

Λσ(1Z) ≤ δ.

Proof. Choose n1 ∈ N such that for all n ≥ n1, Dθnρ−n ≤ δ, which is possible due

to condition (C2). Then, for Z ∈ Ẑn1 ,

L̂nσ1Z(x) =
∑

Tnσ y=x

gnσ (y)1Z(y) ≤ ‖gnσ‖∞ ≤ Dθn.

Accordingly, for each x ∈ [0, 1],

L̂mτnσL̂nσ1Z(x)

L̂mτnσL̂nσ1(x)
≤ Dθn 1

inf
L̂m
τnσ

(L̂nσ1)

L̂m
τnσ

1

.

Taking the inf on x and the limit m→∞, this yields

Λσ(1Z) ≤ Dθn 1

Λτnσ(L̂nσ1)
≤ Dθnρ−n ≤ δ

where we have used Lemma 9.5. �
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Lemma 9.9. If (C3(n0, N
′)) holds, then for each a ≥ a0, there exists n2 ∈ N such

that for each n ≥ n2 and h ∈ Caσ there exists Z ∈ Znσ,g with

inf
Z
h ≥ 1

4
Λσ(h).

Proof. For each n,m with n < m, we can write

L̂mσ h(x) =
∑
Z∈Ẑnσ

L̂mσ (h1Z)(x) =
∑

Z∈Znσ,?

L̂mσ (h1Z)(x).

Suppose the lemma is not true. Then, we have

L̂mσ h(x) =
∑

Z∈Znσ,g

L̂mσ (h1Z)(x) +
∑

Z∈Znσ,b

L̂mσ (h1Z)(x)

≤
∑

Z∈Znσ,g

L̂mσ 1Z(x)
Λσ(h)

4
+

∑
Z∈Znσ,g

L̂mσ 1Z(x)
∨
Z

h+ ‖h‖∞
∑

Z∈Znσ,b

L̂mσ 1Z(x)

≤ L̂mσ 1(x)
Λσ(h)

4
+

∑
Z∈Znσ,g

[
Λτmσ(L̂mσ 1Z) +

∨
L̂mσ 1Z

]∨
Z

h

+ ‖h‖∞
∑

Z∈Znσ,b

L̂mσ 1Z(x).

If Z ∈ Znσ,b, by Lemma 9.7, we have Λτmσ(L̂mσ 1Z) ≤ BΛτmσ(L̂mσ 1)Λσ(1Z) = 0,
which implies

L̂mσ 1Z(x) ≤
∨
L̂mσ 1Z ≤ 2C

m/n0+1
? θm ≤ 2C?(C

1/n0
? θρ−1)mΛτmσ(L̂mσ 1),

by inequality (9.1) and Lemma 9.5.
If Z ∈ Znσ,g, the same argument gives

∨
L̂mσ 1Z ≤ 2C

m/n0+1
? θm + 2Cn0

ρ−n0Λτmσ(L̂mσ 1Z)

≤
[
2C?(C

1/n0
? θρ−1)m + 2Cn0ρ

−n0BΛσ(1Z)
]

Λτmσ(L̂mσ 1).

Setting κ = C
1/n0
? θρ−1 ≤ 4−1/n0 , we have

Λτmσ(L̂mσ h) ≤Λσ(h)

4
Λτmσ(L̂mσ 1)

+
∑

Z∈Znσ,g

Λτmσ(L̂mσ 1)
∨
Z

h
[
B(1 + 2Cn0

ρ−n0)Λσ(1Z) + 2C?κ
m
]

+ ‖h‖∞
∑

Z∈Znσ,b

2C?κ
mΛτmσ(L̂mσ 1).
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Dividing this inequality by Λτmσ(L̂mσ 1) and taking the limit m→∞ yields

Λσ(h) ≤ Λσ(h)

4
+B(1 + 2Cn0

ρ−n0)
∨
h sup
Z∈Znσ,g

Λσ(1Z)

≤

[
1

4
+ aB(1 + 2Cn0ρ

−n0) sup
Z∈Znσ,g

Λσ(1Z)

]
Λσ(h) ≤ 1

2
Λσ(h)

where we have chosen n large enough and applied Lemma 9.8. This yields the
announced contradiction. �

Remark 9.10. Note that n2 is, at least in principle, computable for any given pair
(T , H). Let us explain how: recall the values of C? and Cn from Remark 9.4, and
the definitions of ρ, θ and D from Section 6.1.

(1) We choose η ∈ ( θρ , 1) and n?0 such that C
1/n
? θρ−1 ≤ η for all n ≥ n?0 and

then define n0 ≥ n?0 so that C?η
n ≤ 1

4 for all n ≥ n0, see the proof of
Lemma 9.6.

(2) We have a0 = 8Cn0
ρ−n0 + maxi≤n0

Ci
C?θi

, see the proof of Lemma 9.6. We

then set a = max{a0, 1}.
(3) We have B = 1 + 2aC?, see the proof of Lemma 9.7.
(4) For δ > 0, n1(δ) is such that Dθnρ−n ≤ δ for all n ≥ n1(δ), see the proof

of Lemma 9.8.
(5) We set δ = 1

4 (aB(1 + 2Cn0ρ
−n0))−1 and choose n2 = n1(δ), see the proof

of Lemma 9.9.

Lemma 9.11. If (C3(n2, n3)) holds for some n3 ≥ n2, then there exists % > 0 such
that

inf L̂nσf ≥ %Λτnσ(L̂nσf),

for all n ≥ n3, all σ ∈ ΣN and all f ∈ Caσ.

Proof. We first prove the result when n = n3 and then extend it to all n ≥ n3. By
Lemma 9.9, for each f ∈ Caσ , there exists Z ∈ Zn2

σ,g such that

inf
Z
f ≥ 1

4
Λσ(f).

Consequently, for any n, we have

inf L̂nσf ≥
1

4
Λσ(f) inf

L̂nσ1Z
L̂nσ1

inf L̂nσ1.

Since condition (C3(n2, n3)) holds, one has

inf
L̂nσ1Z
L̂nσ1

≥ εn2

for all σ ∈ ΣN, Z ∈ Zn2
σ,g and n ≥ n3, and we thus get

(9.2) inf L̂nσf ≥
εn2

4
Λσ(f) inf L̂nσ1.

By Lemma 9.7,

Λσ(f) ≥ B−1 Λτn3σ(L̂n3
σ f)

Λτn3σ(L̂n3
σ 1)

≥ B−1 Λτn3σ(L̂n3
σ f)

sup L̂n3
σ 1

.
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By assumption (C1), we have inf L̂nσ1 ≥ δn for any σ and n. Since T and H are

finite, we can find a constant M > 1 such that ‖L̂nσ1‖∞ ≤Mn for any σ and n.
We obtain

inf L̂n3
σ f ≥ %′Λτn3σ(L̂n3

σ f),

with %′ = B−1 εn2

4 ( δ
M )n3 .

By Lemma 9.6, L̂n0
σ C

a
σ ⊂ Caτn0σ for all σ. We thus have

inf L̂n3+kn0
σ f ≥ %′Λτn3+kn0σ(L̂n3+kn0

σ f),

for all k ≥ 0, σ ∈ ΣN and f ∈ Caσ .
Let now n ≥ n3. We write n = kn0 + n3 + r = n′ + r with r < n0. We have

inf L̂nσf = L̂r
τn′σ
L̂n
′

σ f ≥ %′Λτn′σ(L̂n
′

σ f) inf L̂r
τn′σ

1

≥ %′δrΛτn′σ(L̂n
′

σ f)

≥ %′δn0Λτn′σ(L̂n
′

σ f).

But,

Λτn′σ(L̂n
′

σ f) = lim
k→∞

inf
L̂k
τn′+rσ

L̂r
τn′σ
L̂n′σ f

L̂k
τn′+rσ

L̂r
τn′σ

1

≥M−r lim
k→∞

inf
L̂k
τn′+rσ

L̂n′+rσ f

L̂k
τn′+rσ

1

= M−rΛτn′+rσ(L̂n
′+r
σ f)

≥M−n0Λτnσ(L̂nσf).

We have thus proved the result with % = %′( δ
M )n0 .

�

Remark 9.12. Since ‖L̂nσ1‖∞ ≤Mn and inf L̂nσ1 ≥ δn for all n ≥ 0 and σ ∈ ΣN,
we have

inf L̂nσ1 ≥ %′Λτnσ(L̂nσ1),

with %′ = min{%, 1, δM , . . . , ( δ
M )n3−1}.

Lemma 9.13. If (C3(n2, n3)) holds for some n3 ≥ n2, then there exists a > 0 such
that for all σ ∈ ΣN and n ≥ n3, one has

L̂nσCaσ ⊂ Caτnσ
with uniform finite diameter less than ∆n <∞.

Proof. By (9.2), we have

inf L̂nσh ≥
εn2

4
Λσ(h) inf L̂nσ1,

for any σ ∈ ΣN, h ∈ Caσ and n ≥ n3 and, using Lemma 9.7,

sup L̂nσh ≤ Λτnσ(L̂nσh) +
∨
L̂nσh ≤

(
1 +

a

2

)
BΛσ(h)Λτnσ(L̂nσ1).

Since ‖L̂nσ1‖∞ ≤Mn and inf L̂nσ1 ≥ δn for any σ and n, we obtain:
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diamCa
τnσ
L̂nσ(Caσ) ≤ 2 log

max
{

3
2 , BM

n(1 + a
2 )
}

min
{

1
2 ,

εn2
δn

4

}
 =: ∆n <∞

for any σ ∈ ΣN.
Indeed, by a simple adaptation of the proof of [16, Lemma 3.1], one has

dCaσ (g,1) ≤ log

[
max {(1 + ν)Λσ(g), sup g}
min {(1− ν)Λσ(g), inf g}

]
for any g ∈ Cνaσ with 0 < ν < 1. Using this with ν = 1

2 , we obtain the desired

bound on the diameter, since L̂nσ(Caσ) ⊂ Ca/2τnσ by Lemma 9.6. �

Since we are interested in functions of the form L̂nτ−nσf , we will need to consider

functions f that belong to the intersections of all the cones Caσ , σ ∈ ΣZ. For this
purpose, we introduce the family of cones

Cainf = {f ∈ BV : f 6= 0, f ≥ 0,
∨
f ≤ a inf f}.

We clearly have Cainf ⊂ Caσ for any σ ∈ ΣZ, and thus dCaσ ≤ dCainf
by Theorem 9.1.

Lemma 9.14. There exist ν ∈ (0, 1) and a family of positive functions {hσ}σ∈ΣZ

in BV such that for all f ∈ Cainf , σ ∈ ΣZ and n ≥ 0:∥∥∥∥∥ L̂nτ−nσf
Λσ(L̂nτ−nσf)

− hσ

∥∥∥∥∥
∞

≤ C#ν
n,

and ∥∥∥∥∥Λσ(L̂nτ−nσf)

L̂nτ−nσf
− h−1

σ

∥∥∥∥∥
∞

≤ C#ν
n.

Furthermore, hσ ∈ Ca/2σ , ‖hσ‖∞ ≤ 1 + a and inf hσ ≥ % > 0 for all σ ∈ ΣZ, where
% is defined in Lemma 9.11.

Proof. Writing n ≥ 2n3 as n = kn3 + r, with k ≥ 2 and r < n3, for all f ∈ Cainf ,
σ ∈ ΣZ and m ≥ 0, we have by Theorem 9.1 and Lemma 9.13:

dCaσ (L̂nτ−nσf, L̂
n+m
τ−(n+m)σ

f) ≤ γk−2dCa
τ−(k−2)n3σ

(L̂2n3+r
τ−nσ f, L̂

2n3+r+m
τ−(n+m)σ

f),

with γ = tanh
(

∆n3

4

)
< 1.

Since both L̂n3+r
τ−nσf and L̂n3+r+m

τ−(n+m)σ
f belong to Ca

τ−(k−1)n3σ
by Lemma 9.13 again,

as f ∈ Cainf ⊂ Caτ−nσ ∩ C
a
τ−(n+m)σ

, we have, using Lemma 9.13 one more time:

dCa
τ−(k−2)n3σ

(L̂2n3+r
τ−nσ f, L̂

2n3+r+m
τ−(n+m)σ

f) ≤ ∆n3
.

Consequently, for all n ≥ 2n3, m ≥ 0, σ ∈ ΣZ and f ∈ Cainf ,

dCaσ (L̂nτ−nσf, L̂
n+m
τ−(n+m)σ

f) ≤ C#ν
n,

with ν = γ
1
n3 .

Using Lemma 9.2 with ‖ · ‖ = ‖ · ‖∞ and `(·) = Λσ(·), we get∥∥∥∥∥ L̂nτ−nσf
Λσ(L̂nτ−nσf)

−
L̂n+m
τ−(n+m)σ

f

Λσ(L̂n+m
τ−(n+m)σ

f)

∥∥∥∥∥
∞

≤ (e
dCaσ (L̂n

τ−nσf,L̂
n+m

τ−(n+m)σ
f)−1)

∥∥∥∥∥ L̂nτ−nσf
Λσ(L̂nτ−nσf)

∥∥∥∥∥
∞

.
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Since L̂nτ−nσf ∈ C
a
σ , we have

(9.3) ‖L̂nτ−nσf‖∞ ≤ Λσ(L̂nτ−nσf) +
∨
L̂nτ−nσf ≤ (1 + a)Λσ(L̂nτ−nσf),

and we deduce that∥∥∥∥∥ L̂nτ−nσf
Λσ(L̂nτ−nσf)

−
L̂n+m
τ−(n+m)σ

f

Λσ(L̂n+m
τ−(n+m)σ

f)

∥∥∥∥∥
∞

≤ C#ν
n.

This implies that
L̂n
τ−nσf

Λσ(L̂n
τ−nσ

f)
is a Cauchy sequence in L∞, and thus converges to

a function hσ ∈ L∞. Since C
a/2
σ is closed in L∞ and L̂nτ−nσf ∈ C

a/2
σ for n ≥ n0

by Lemma 9.6, we have hσ ∈ Ca/2σ . Passing to the limit m → ∞ in the previous
relation, we obtain ∥∥∥∥∥ L̂nτ−nσf

Λσ(L̂nτ−nσf)
− hσ

∥∥∥∥∥
∞

≤ C#ν
n,

for all n ≥ 2n3, and all σ ∈ ΣZ. Using the same reasoning, we have for any pair
f, f ′ ∈ Caτ−nσ,

(9.4)

∥∥∥∥∥ L̂nτ−nσf
Λσ(L̂nτ−nσf)

−
L̂nτ−nσf

′

Λσ(L̂nτ−nσf ′)

∥∥∥∥∥
∞

≤ C#ν
n,

which proves that the limit hσ does not depend on the choice of f ∈ Cainf . By

Lemma 9.11, L̂nτ−nσf ≥ %Λσ(L̂nτ−nσf) for all n ≥ n3, whence we obtain inf hσ ≥ %.
Remark that (9.3) implies ‖hσ‖∞ ≤ 1 + a. When n < 2n3, we have∥∥∥∥∥ L̂nτ−nσf

Λσ(L̂nτ−nσf)
− hσ

∥∥∥∥∥
∞

≤ M2n3

δ2n3

sup f

inf f
+ (1 + a) ≤ (1 + a)

(
M2n3

δ2n3
+ 1

)
≤ C#ν

n,

where M > 1 and 0 < δ < 1 are such that ‖L̂nσ1‖∞ ≤Mn and inf L̂nσ1 ≥ δn for all

n ≥ 0 and σ. For n ≥ n3 and f ∈ Cainf , since inf hσ ≥ % and inf
L̂n
τ−nσf

Λσ(L̂n
τ−nσ

f)
≥ % by

Lemma 9.11, we have∥∥∥∥∥Λσ(L̂nτ−nσf)

L̂nτ−nσf
− h−1

σ

∥∥∥∥∥
∞

≤ %−2

∥∥∥∥∥ L̂nτ−nσf
Λσ(L̂nτ−nσf)

− hσ

∥∥∥∥∥
∞

≤ C#ν
n.

We handle the case n < n3 as previously, since ‖hσ‖∞ ≤ 1 + a. �

Lemma 9.15. For all σ ∈ ΣZ, there exists λσ ≥ ρσ such that L̂1
σhσ = λσhτσ.

Proof. Applying Lemma 9.7 with h = L̂nτ−nσ1, we have by definition of ρσ =

Λτσ(L̂1
σ1):

ρσ ≤
Λτσ(L̂n+1

τ−nσ1)

Λσ(L̂nτ−nσ1)
≤ Bρσ.

Consequently, there exist a subsequence {nj} and λσ ∈ [ρσ, Bρσ] such that

λσ = lim
j

Λτσ(L̂nj+1

τ−njσ
1)

Λσ(L̂nj
τ−njσ

1)
.
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We can now compute

L̂1
σhσ = lim

j
L̂1
σ

L̂nj
τ−njσ

1

Λσ(L̂nj
τ−njσ

1)
= lim

j

L̂nj+1

τ−njσ
1

Λτσ(L̂nj+1

τ−njσ
1)

Λτσ(L̂nj+1

τ−njσ
1)

Λσ(L̂nj
τ−njσ

1)

= lim
j

L̂nj+1

τ−(nj+1)τσ
1

Λτσ(L̂nj+1

τ−(nj+1)τσ
1)

Λτσ(L̂nj+1

τ−njσ
1)

Λσ(L̂nj
τ−njσ

1)

= λσhτσ.

�

Lemma 9.16. For all σ ∈ ΣN, the functional Λσ (restricted to BV) is linear,

positive, and enjoys the property Λτσ(L̂1
σf) = ρσΛσ(f) for all f ∈ BV. Moreover,

λσ = ρσ and
∥∥∥ L̂nσfL̂nσ1 − Λσ(f)

∥∥∥
∞
≤ C#ν

n‖f‖BV for all f ∈ BV.

Proof. For f ∈ Cainf , we can write

L̂nσf
L̂nσ1

=
L̂nσf

Λτnσ(L̂nσf)

Λτnσ(L̂nσf)

Λτnσ(L̂nσ1)

Λτnσ(L̂nσ1)

L̂nσ1
.

So∥∥∥∥∥ L̂nσfL̂nσ1 − Λτnσ(L̂nσf)

Λτnσ(L̂nσ1)

∥∥∥∥∥
∞

=
Λτnσ(L̂nσf)

Λτnσ(L̂nσ1)

∥∥∥∥∥ L̂nσf
Λτnσ(L̂nσf)

Λτnσ(L̂nσ1)

L̂nσ1
− 1

∥∥∥∥∥
∞

≤ ‖f‖∞

(∥∥∥∥∥ L̂nσf
Λτnσ(L̂nσf)

− hσ

∥∥∥∥∥
∞

∥∥∥∥∥Λτnσ(L̂nσ1)

L̂nσ1

∥∥∥∥∥
∞

+ ‖hσ‖∞

∥∥∥∥∥Λτnσ(L̂nσ1)

L̂nσ1
− h−1

σ

∥∥∥∥∥
∞

)
.

Since
∥∥∥Λτnσ(L̂nσ1)

L̂nσ1

∥∥∥
∞
≤ %−1 for n ≥ n3 by Lemma 9.11, we get, using Lemma 9.14,

for all f ∈ Cainf and n ≥ n3:

(9.5)

∥∥∥∥∥ L̂nσfL̂nσ1 − Λτnσ(L̂nσf)

Λτnσ(L̂nσ1)

∥∥∥∥∥
∞

≤ C#ν
n‖f‖∞.

But, Λσ(f) = limn→∞ inf
L̂nσf
L̂nσ1

by definition, and, since
Λτnσ(L̂nσf)

Λτnσ(L̂nσ1)
are constants, we

deduce that limn→∞
Λτnσ(L̂nσf)

Λτnσ(L̂nσ1)
= Λσ(f) and

lim
n→∞

∥∥∥∥∥ L̂nσfL̂nσ1 − Λσ(f)

∥∥∥∥∥
∞

= 0.

Now, if f ∈ BV, we have f + c ∈ Cainf for c = (1 + a−1)‖f‖BV, so we get that

Λσ(f) = limn→∞
L̂nσf
L̂nσ1

in L∞ for all f ∈ BV, since Λσ(f + c) = Λσ(f) + c. The

linearity of Λ follows from the linearity of the limit.

Next, as L̂1
σf ∈ BV, we know that

Λτσ(L̂1
σf) = lim

n→∞

L̂n+1
σ f

L̂nτσ1
= lim
n→∞

L̂n+1
σ f

L̂n+1
σ 1

L̂n+1
σ 1

L̂nτσ1
= Λσ(f)Λτσ(L̂1

σ1) = ρσΛσ(f).

But then ρσ = λσ is obtained by taking f = hσ, since Λσ(hσ) = 1. In particular,

we have Λτnσ(L̂nσf) = ρσ · · · ρτn−1σΛσ(f) for all f ∈ BV, so
Λτnσ(L̂nσf)

Λτnσ(L̂nσ1)
= Λσ(f).
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But if we look back to (9.5), the above implies that for all f ∈ Cainf and n ≥ n3:∥∥∥∥∥ L̂nσfL̂nσ1 − Λσ(f)

∥∥∥∥∥
∞

≤ C#ν
n‖f‖∞.

This can be easily extended to all n ≥ 0, since
∥∥∥ L̂nσfL̂nσ1 − Λσ(f)

∥∥∥
∞
≤ 2‖f‖∞. We

can again cover the general case f ∈ BV using the fact that f + c ∈ Cainf for
c = (1 + a−1)‖f‖BV, which finally implies∥∥∥∥∥ L̂nσfL̂nσ1 − Λσ(f)

∥∥∥∥∥
∞

≤ C#ν
n‖f + c‖∞ ≤ C#ν

n‖f‖BV.

�

Remark 9.17. Following the ideas of [17], it is possible to prove that Λσ can be
interpreted as a non-atomic measure µσ, i.e. Λσ(f) =

∫
f dµσ for all f ∈ BV, and

that the measure νσ defined by dνσ = hσdµσ satisfies (T 1
σ )?νσ = ντσ. Since we will

not make use of these facts, we leave their proofs to the interested reader.

The main properties of Λσ being proved, we can now improve Lemma 9.14 by
extending it to general functions in BV. This allows to deduce Proposition 8.1:

Proof of Proposition 8.1. By (9.4) with f ′ = hσ, for any f ∈ Caσ , we get using
Lemma 9.16∥∥∥∥∥ L̂nσf

ρσ · · · ρτn−1σ
− Λσ(f)hτnσ

∥∥∥∥∥
∞

≤ C#ν
nΛσ(f) ≤ C#ν

n‖f‖∞.

Now, if f ∈ BV, we have f + chσ ∈ Caσ for all σ ∈ ΣZ with c = 2(1 + a−1)‖f‖BV.
Indeed, since

∨
hσ ≤ a

2 Λσ(hσ) = a
2 by Lemma 9.14, we have∨

(f + chσ) ≤
∨
f + c

∨
hσ ≤

∨
f +

ac

2
,

and

Λσ(f + chσ) = Λσ(f) + c ≥ inf f + c.

So f+chσ ∈ Caσ if c ≥ 2(a−1
∨
f− inf f), which is the case for our particular choice

of c. Consequently, we have∥∥∥∥∥ L̂nσ(f + chσ)

ρσ · · · ρτn−1σ
− Λσ(f + chσ)hτnσ

∥∥∥∥∥
∞

≤ C#ν
n‖f + chσ‖∞ ≤ C#ν

n‖f‖BV,

which leads to (8.1) after simplifications, since L̂nσ(f+chσ) = L̂nσf+cρσ · · · ρτn−1σhτnσ
and Λσ(f + chσ) = Λσ(f) + c. �
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H. Poincaré Probab. Statist., 39(3):385–412, 2003.

[18] C. Liverani, B. Saussol, and S. Vaienti. Conformal measure and decay of correlation for
covering weighted systems. Ergodic Theory Dynam. Systems, 18(6):1399–1420, 1998.

[19] J. Marklof. The low-density limit of the lorentz gas: periodic, aperiodic and random. In

Proceedings of the ICM 2014, Seoul, Vol. III, pages 623–646. 2004.
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