
NON-GENERIC CUSPS

MICHA L MISIUREWICZ AND ANA RODRIGUES

Abstract. We find the order of contact of the boundaries of the cusp for two-
parameter families of vector fields on the real line or diffeomorphisms of the real
line, for cusp bifurcations of codimensions 1 and 2. Moreover, we create a machinery
that can be used for the same problem in higher codimensions and perhaps for other,
similar problems.

1. Introduction

In the study of two-parameter families of circle maps, one encounters various objects
that can be called tongues or cusps. The most popular are classical Arnold tongues.
They are sets of parameters for which there is an attracting periodic point of a given
rotation number. They can be encountered whenever in a more complicated system
one gets an invariant circle on which the map is a homeomorphism, and the rotation
number of this homeomorphism varies with the parameters. They have been studied
extensively, by various authors, see for instance [2, 3, 4, 5, 6, 10] and other papers
cited there.

A standard example of a family in which Arnold tongues appear is the family of
standard maps

Aa,b(x) = x+ a +
b

2π
sin(2πx) (mod 1)

introduced by Arnold in [1]. In [8, 9] we studied the family of double standard maps,
which are obtained from the standard maps by replacing rotations of the circle by
the composition of its doubling with rotations:

fa,b(x) = 2x+ a+
b

π
sin(2πx) (mod 1).

In this family, tongues (sets of parameter values for which there is an attracting
periodic point, this time of a given type (see [8]), not a given rotation number) also
appear. However, their nature is different, since here for the values of the parameters
at the tip of a tongue the system undergoes the cusp bifurcation (see [7]), which is
not the case for the Arnold tongues. Thus, perhaps a more proper name for them is
cusps.

Once the existence of cusps and their order are established, the next natural prob-
lem is about their shapes. One of the basic characteristics of the shape is the order of
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contact of the left and the right boundaries of the cusp at its tip. This is the same as
considering the rate with which the width of the cusp decreases to 0 as we approach
its tip. By the definition of the order of contact, if this order is r then the rate is xr+1

(where x is the distance from the tip in the vertical direction). For Arnold tongues
in the family of standard maps the order of contact depends on the rotation number
of the tongue. If the rotation number is p/q (with p and q coprime) then the order is
q − 1 (see [1]). For the family of double standard maps the situation is different. By
the results for the cusp bifurcation (see, e.g., [7]), the generic order of contact is 1/2.
In [8] we checked that this is the order for the cusp corresponding to the attracting
fixed point. However, we do not know whether the situation is generic for tips of
cusps corresponding to the attracting periodic points of higher period. This moti-
vates the study of the order of contact at the cusp bifurcation point for non-generic
cases, which we perform here.

In fact, this problem is interesting by itself, and since our setup has nothing to
do with the specific situation of double standard maps, the results can be applied to
much more general cases.

The aim of this paper is twofold. We find the order of contact of the boundaries
of the cusp for two-parameter families of vector fields on the real line or diffeomor-
phisms of the real line, in codimensions 1 and 2 (we include also the generic case for
completeness). What is perhaps more important, we create a machinery that can be
used for the same problem in higher codimensions (although there will be more and
more cases) and perhaps for other, similar problems.

As we said, we consider a two-parameter family of vector fields on the real line or
diffeomorphisms of the real line. We look at them locally, so both parameters a, b
and the variable x will be taken from some neighborhoods of 0. Thus, we will work
in a neighborhood U of (0, 0, 0) in R

3. In order to have automatically all continuous
functions bounded, we assume that U is compact. We will be analyzing the shape of
the bifurcation set in the cusp bifurcation – generic and of small codimensions.

The bifurcation set in the cusp bifurcation is given as the projection to the (a, b)-
plane of the set of all solutions to the system of equations:

(1.1)

{
F (a, b, x) = 0

Fx(a, b, x) = 0

Here F is the vector field in the continuous case, and the map minus the identity in
the discrete case. For simplicity, we will assume that F is real analytic. However, it
is enough to assume that it is sufficiently smooth, that is, that all derivatives used in
the formulas and proofs exist and are continuous.

We will denote by T the set of solutions to (1.1), that is,

T = {(a, b, x) ∈ U : F (a, b, x) = 0, Fx(a, b, x) = 0}.
In order to make (1.1) relevant for the cusp bifurcation, we write F (0, 0, x) = f(x)

and assume that there is an odd integer k ≥ 3 such that

(1.2) f(0) = f ′(0) = f ′′(0) = · · · = f (k−1)(0) = 0, f (k)(0) 6= 0.

If we write F in the form

(1.3) F (a, b, x) = A0(a, b) + A1(a, b)x+ A2(a, b)x
2 + · · · + Ak(a, b)x

k + ϕxk+1,
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where ϕ is an analytic (or sufficiently smooth) function, we have

(1.4) A0(0, 0) = A1(0, 0) = · · · = Ak−1(0, 0) = 0, Ak(0, 0) 6= 0.

Consider the gradients: V0 of A0 at the origin and V1 of A1 at the origin. Generically
for the cusp bifurcation k = 3 and V0 and V1, are linearly independent. We increase
the codimension by increasing the number of equalities in the assumptions. Observe
that k in (1.4) has to be odd, and replacing k = 3 by k = 5 requires adding two extra
equalities. Thus, the only possibility to get codimension 1 is to assume that V0 and V1

are non-zero, linearly dependent, and k = 3 (a gradient is a vector, so to make it zero
we need two equalities). In the study of this case in Section 4 we come across certain
scalar quantities, β and ∆, which we can assume to be non-zero without changing the
codimension. In particular, the results will depend on the sign of ∆. In codimension
2 we have four possibilities. We can assume that k = 5, that V0 is zero, that ∆ = 0,
or that β = 0. Assuming that V1 is zero does not give us anything new, since in the
codimension 1 case we do not assume that it is non-zero.

In order to summarize the results, we produce a table. In the table we indicate
the codimension, the number k, information about V0 and V1, and about β and ∆
(if relevant). Then we say what kind of cusp we get. It can be simple, consisting
of two curves beginning at the origin and tangent there, or double, consisting of two
curves passing through the origin and tangent there (see Figure 1). In those cases we
also give the order of contact of those curves. However, we can also get a non-cusp,
where the two curves begin at the origin, but the angle between them is π (see also
Figure 1), or even we can get the origin isolated (no curves nearby).

Figure 1. From the left: a simple cusp, a double cusp, and a non-cusp

The paper is organized as follows. In Section 2 we present the main idea of the
proofs and derive the main technical tool of the paper, which will be used in all other
sections, except the last one. In Section 3 we study the well known generic case for
the sake of completeness and in order to illustrate our methods in a relatively simple
case. Moreover, we treat there all k ≥ 3 odd, which in particular covers one case of
codimension 2. In Section 4 we study the codimension 1 case, and in Sections 5, 6
and 7 all remaining codimension 2 cases.
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Codimension Assumptions Type of cusp Order of
contact

0 k = 3, V0 and V1 linearly independent simple cusp 1/2

1 k = 3, V0 and V1 linearly dependent,
V0 non-zero, β 6= 0, ∆ > 0 double cusp 2

1 k = 3, V0 and V1 linearly dependent,
V0 non-zero, β 6= 0, ∆ < 0 isolated point

2 k = 5, V0 and V1 linearly independent simple cusp 1/4

2 k = 3, V0 and V1 linearly dependent,
V0 non-zero, β 6= 0, ∆ = 0 simple cusp 7/2

2 k = 3, V0 zero, V1 non-zero non-cusp

2 k = 3, V0 and V1 linearly dependent,
V0 non-zero, β = 0, ∆ 6= 0 double cusp 2

Table 1. Summary of the results

2. Main lemma

Suppose that we have the system of equations

(2.1)

{
aµ(a, b, x) + σ(b, x) = 0,

aν(a, b, x) + τ(b, x) = 0,

where µ(0, 0, 0) = 1, τ(b, x) =
∑

i,j cijb
ixj , σ(b, x) =

∑
i,j dijb

ixj and ν(a, b, x) =∑
l,i,j elija

lbixj . Choose the smallest p such that c0p 6= 0 and the smallest q such that
cq0 6= 0. Assume that

(0) µ(0, 0, 0) = 1

and there is t > 0 such that:

(1) if i
q

+ j
p
< 1 then cij = 0,
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(2) if i
q

+ j
p
< t then dij = 0,

(3) if i
q

+ j
p

+ t+ tl < 1 then elij = 0,

(4) if qt is an integer then
∑

l,i
i/q+t+tl=1

eli0(−dqt,0)
1+l + cq0 6= 0,

(5) if pt is an integer then
∑

l,j
j/p+t+tl=1

el0j(−d0,pt)
1+l + c0p 6= 0.

In concrete cases we will illustrate assumptions (1) and (2) on figures. We will use
a grid to indicate the lowest order non-zero coefficients (with respect to b and x) of
σ and τ . We use circles for σ and dots for τ . The choice of p and q is indicated by
the dots on the x and b axes respectively. In Figure 2 we have p = 2 and q = 1.

Condition (1) means that there are no dots to the left of the line L drawn through
(0, p) and (q, 0). Condition (2) means that if we draw the line L′ through (0, tp) and
(tq, 0) then there are no circles to the left of L′. In Figure 2 we have t = 3/2.

Our main idea is that in order for a function to be zero on some set close to the
origin, we must have at least two non-zero terms of the lowest order, so they can
cancel each other. The dots represent those terms and the slope of the line depends
on the relative order of the variables x and b on T .

b

x

L L’

Figure 2. An example.

Lemma 2.1. Under the hypotheses (0)-(5), there exist constants K1, K2, K3 and K4

such that |b|q ≤ K1|x|p, |x|p ≤ K2|b|q, |a| ≤ K3|b|tq and |a| ≤ K4|x|tp in a small
neighborhood of (0, 0, 0) in the set T of solutions to (2.1).

Proof. We want to prove that there exists a constant K1 such that |b|q/|x|p ≤ K1 in
a small neighborhood of (0, 0, 0) in T . Suppose that this is not the case. Then there
exists a sequence of points (an, bn, xn) ∈ T convergent to (0, 0, 0) such that xp

n/b
q
n → 0.

Set z = xp/bq in (2.1) and divide the first equation by btq and the second equation
by bq:

(2.2)
a

btq
µ(a, b, (zbq)1/p) +

∑

i,j

dijb
q( i

q
+ j

p
−t)zj/p = 0,
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(2.3)
a

bq
ν(a, b, (zbq)1/p) +

∑

i,j

cijb
q( i

q
+ j

p
−1)zj/p = 0.

In the sums, by the assumptions (1) and (2), the powers are non-negative. The above
formulas hold in particular for the sequence (an, bn, zn). Consider the limit of the left
hand side of (2.2) as n→ ∞. In teh first expression we take (0) into account. In the
sum, since zn → 0, we are left with the terms with j = 0. Also bn → 0, so we are left
with terms with i/q − t = 0. Thus, we get

(2.4) lim
n→∞

an

btqn
= −dqt,0,

provided qt is an integer; otherwise the limit is zero. Similarly, for the sum appearing
in (2.3), in view of (1) we get

(2.5) lim
n→∞

∑

i,j

cijb
q( i

q
+ j

p
−1)

n zj/p
n = cq0.

We compute now the limit of the left hand side of (2.3) for (an, bn, zn) as n → ∞.
Set wn = an

btq
n

, so an = wnb
tq
n . Then

an

bqn
ν(an, bn, (znb

q
n)1/p) =

∑

l,i,j

elijw
1+l
n zj/p

n b
q( i

q
+ j

p
+t+tl−1)

n .

In the limit when n→ ∞, the only possible non-zero terms in the above sum will be
when j = 0 and i/q + t+ tl = 1. Therefore, taking (2.5) into account, we get

lim
n→∞

∑

l,i
i/q+t+tl=1

eli0w
1+l
n + cq0 = 0,

where the limit of wn is given by (2.4). We take the sum over those l, i for which
i/q + t+ tl = 1. There are finitely many such pairs, and we get

∑

l,i
i/q+t+tl=1

eli0(−dqt,0)
1+l + cq0 = 0.

This contradicts (4) if qt is an integer. If qt is not an integer, we get cq0 = 0, contrary
to the choice of q. This proves the existence of K1 such that |b|q/|x|p ≤ K1.

By the same argument with the following pairs switched: b, x; p, q; i, j; cq0, c0p;
dqt,0, d0,pt; assuming (5) we prove that there exists a constant K2 such that |x|p ≤
K2|b|q in a small neighborhood of (0, 0, 0) in T .

The inequality |a| ≤ K3|b|tq follows immediately from (2.2), since b and z are
bounded and the sum in (2.2) is a continuous function of b and z. Again we switch b
with x and p with q to get |a| ≤ K4|x|tp. This completes the proof. �

3. Generic case

The generic case is well known, see for instance [7]. However, we include it here to
show in the simplest case how our method is working. Moreover, we generalize it a
bit. Namely, in the generic case we have k = 3. However, since k = 5 appears in the
codimension 2 case and the proofs are the same for all odd k ≥ 3, we will treat here
a more general situation with any value of k ≥ 3 odd.
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By ϕ1, ϕ2, . . . we will denote analytic (or sufficiently smooth) functions of the vari-
ables a, b, x. We will omit their arguments, since usually the only important property
of those functions is that they are bounded in U (and occasionally we will have to
differentiate them, but not explicitly).

We write F in the form (1.3) with conditions (1.4). The first generic assump-
tion is that the gradient of A0 at the origin is non-zero. Therefore we can change
(diffeomorphically) coordinates in the parameter plane and assume that

(3.1) A0(a, b) ≡ a

(actually, we can also assume that A1(a, b) ≡ b, but we do not need it). Therefore (1.3)
takes form

(3.2) F (a, b, x) = a + A1(a, b)x+ A2(a, b)x
2 + · · ·+ Ak(a, b)x

k + ϕxk+1.

Another generic assumption that we make is that the gradients of A0 and A1 at
the origin are linearly independent. In view of (3.1), this assumption means that

(3.3)
∂A1

∂b
(0, 0) 6= 0.

Set

(3.4) ε =
∂A1

∂b
(0, 0), δ = Ak(0, 0).

By (1.4) and (3.3), those numbers are non-zero. Now, taking into account (1.4), we
can write

F (a, b, x) = a+ εbx+ δxk + ϕ1ax+ ϕ2b
2x+ ϕ3bx

2 + ϕ4x
k+1,(3.5)

Fx(a, b, x) = εb+ kδxk−1 + ϕ5a+ ϕ6b
2 + ϕ7bx+ ϕ2x

k.(3.6)

b

x

Figure 3. The lowest order non-zero coefficients for equations (3.5)
and (3.6) with k = 3.

Lemma 3.1. There exist constants K1, K2, K3, K4 such that |b| ≤ K1|x|k−1, |x|k−1 ≤
K2|b|, |a| ≤ K3|b|k/(k−1) and |a| ≤ K4|x|k.
Proof. We claim that the assumptions (0)-(5) of Lemma 2.1 are satisfied with p =
k − 1, q = 1 and t = k

k−1
. Indeed, µ(0, 0, 0) = 1, so (0) holds. Next, τ(b, x) =

εb+kδxk−1 + · · · , so c10 = ε 6= 0, c0,k−1 = kδ 6= 0 and c00 = c01 = · · · = c0,k−2 = 0, see
the dots in Figure 3. Also σ(b, x) = εbx+ δxk + · · · , so d11 = ε 6= 0, d0k = δ 6= 0 and
d00 = d01 = · · · = d0,k−1 = d10 = 0, see the circles in Figure 3 (the only pairs (i, j)
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for which i + j/(k − 1) < k/(k − 1) are (0, 0), (0, 1), . . . , (0, k − 1) and (1, 0)). This
proves (1) and (2). Since t ≥ 1, there are no (l, i, j) satisfying the inequality in (3),
so (3) holds. The number qt is not an integer, so (4) holds. Furthermore, pt = k is
an integer, but since t > 1, the sum in (5) is empty. Thus, since c0p = kδ 6= 0, (5)
holds. Therefore, we can use Lemma 2.1, and the lemma follows. �

Lemma 3.2. As (a, b, x) ∈ T and x→ 0 then b/xk−1 → −kδ/ε and a/xk → (k−1)δ.

Proof. By Lemma 3.1, the last 4 terms in (3.6) are bounded by |x|k times a constant
independent of a, b, x. This proves that b/xk−1 → −kδ/ε as (a, b, x) ∈ T and x→ 0.

Again by Lemma 3.1, the last 4 terms in (3.5) are bounded by |x|k+1 times a
constant independent of a, b, x. Thus, taking into account the result of the preceding
paragraph, we see that a/xk → (k − 1)δ as (a, b, x) ∈ T and x→ 0. �

Note that up to now we proved some properties of the solutions to (1.1), but we
do not know yet whether those solutions exist, apart of (0, 0, 0). We will establish it
now. Recall that the order of contact is defined in such a way that the curves y = 0
and y = xn have order of contact n− 1.

Theorem 3.3. Consider the set Υ which is the projection to the (a, b)-plane of the
set of solutions of the system (1.1), for F of the form (3.2), under assumptions (1.4)
and (3.3). Then, close to the origin, Υ is the union of two smooth curves, beginning
at the origin, disjoint except this point, and tangent there with the order of contact
1/(k − 1).

Proof. Recall that k is an odd integer. We may assume that −kδ/ε > 0, using a
coordinate change that replaces b by −b if necessary. Then by Lemma 3.2, close to
the origin there are no solutions to (1.1) with b < 0 (because then b/xk−1 would be

negative). For b ≥ 0 we make a substitution a = âb̂k, b = b̂k−1 and x = x̂b̂ in (3.5)
and (3.6). We get

Ĝ(â, b̂, x̂) = âb̂k + εx̂b̂k + δx̂k b̂k + b̂k+1ψ1,(3.7)

Ĥ(â, b̂, x̂) = εb̂k−1 + kδx̂k−1b̂k−1 + b̂kψ2,(3.8)

where ψ1 and ψ2 are analytic (or sufficiently smooth) functions of â, b̂, x̂. For b > 0

the system of equations Ĝ = 0, Ĥ = 0 is equivalent to (1.1). However, it is also
equivalent to the system

(3.9)

{
â + εx̂+ δx̂k + b̂ψ1 = 0,

ε+ kδx̂k−1 + b̂ψ2 = 0.

For b̂ = 0 the system (3.9) becomes

(3.10)

{
â+ εx̂+ δx̂k = 0,

ε+ kδx̂k−1 = 0,

whose solutions (in (â, x̂)) are

u− =

(
−(k − 1)ε

k

(
− ε

kδ

) 1

k−1

,
(
− ε

kδ

) 1

k−1

)
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and

u+ =

(
(k − 1)ε

k

(
− ε

kδ

) 1

k−1

,−
(
− ε

kδ

) 1

k−1

)
.

The gradients of the functions appearing in (3.10) (as functions of â and x̂) at u−
and u+ are linearly independent. Therefore the solutions of (3.9) form two smooth

curves intersecting transversally the plane b̂ = 0 at u− and u+. This takes care of all

solutions of (3.9) sufficiently close to any given compact subset of the plane b̂ = 0.

The only other solutions close to the plane b̂ = 0 that can exist, have to escape
to infinity in the â, x̂-directions. However, there are no such solutions, because by

Lemma 3.2 in T , if b→ 0 then â, b̂, x̂ converge to finite limits.
For b > 0 there is a one-to-one correspondence between the solutions of (1.1)

and (3.9) and it is given by a = âb̂k, b = b̂k−1 and x = x̂b̂. The solutions of (1.1)

projected to the (â, b̂)-plane are (close to the plane b̂ = 0) graphs of functions â =

g±(̂b), with g±(0) equal to the first component of u±. In the (a, b)-plane they are
graphs of the functions a = g±(b1/(k−1))bk/(k−1). Since g−(0) 6= g+(0), this proves the
properties of Υ stated in the theorem. �

4. Codimension 1

In the codimension 1 case the integer k in (1.2) is 3. Furthermore, the gradient of
A0 at the origin is non-zero (making a vector in R

2 zero requires 2 equalities). Thus,
we can perform the change of coordinates (3.1). The only nongeneric hypothesis that
we can make is that the gradients of A0 and A1 at the origin are linearly dependent.
That is,

(4.1)
∂A0

∂a
(0, 0)

∂A1

∂b
(0, 0) − ∂A0

∂b
(0, 0)

∂A1

∂a
(0, 0) = 0,

which in view of (3.1) becomes

(4.2)
∂A1

∂b
(0, 0) = 0.

Thus we can write

F (a, b, x) = a+ βb2x+ γbx2 + δx3 + ϕ1ax+ ϕ2b
3x+ ϕ3b

2x2 + ϕ4bx
3 + ϕ5x

4,(4.3)

Fx(a, b, x) = βb2 + 2γbx+ 3δx2 + ϕ6a+ ϕ7b
3 + ϕ8b

2x+ ϕ9bx
2 + ϕ10x

3.(4.4)

Note that A3(0, 0) = δ, so in view of (1.4) and because k = 3 we have

(4.5) δ 6= 0.

Moreover, without changing the codimension, we can assume that

(4.6) β 6= 0.

Lemma 4.1. There exist constants K1, K2, K3, K4 such that |b| ≤ K1|x|, |x| ≤ K2|b|,
|a| ≤ K3|b|3 and |a| ≤ K4|x|3.
Proof. We claim that the assumptions (0)-(5) are satisfied with p = q = 2 and t = 3

2
.

Indeed, µ(0, 0, 0) = 1, so (0) holds. Next, τ(b, x) = βb2 + 2γbx + 3δx2 + · · · , so
c20 = β, c11 = 2γ, c02 = 3δ and c00 = c01 = c10 = 0, see the dots in Figure 4. Also
σ(b, x) = βb2x + γbx2 + δx3 + · · · , so, d21 = β, d12 = γ, d03 = δ and d00 = d01 =
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b

x

Figure 4. The lowest order non-zero coefficients for equations (4.3)
and (4.4).

d10 = d02 = d11 = d20 = d30 = 0, see the circles in Figure 4 (the only pairs (i, j) for
which i/2+ j/2 < 3/2 are (0, 0), (0, 1), (1, 0), (0, 2), (1, 1) and (2, 0)). This proves (1)
and (2). Since t ≥ 1, there are no (l, i, j) satisfying the inequality in (3), so (3)
holds. Since t > 1, the sums in (4) and (5) are empty. Moreover, c20 = β 6= 0 and
c02 = 3δ 6= 0. This proves (4) and (5). Therefore, we can use Lemma 2.1, and we get
the desired inequalities. �

With the notation as in (4.3) and (4.4), set

(4.7) ∆ = γ2 − 3βδ.

Let ζ± be the solutions to the equation βt2 + 2γt + 3δ = 0 if ∆ > 0 and ζ the only
solution to this equation if ∆ = 0.

Lemma 4.2. As (a, b, x) ∈ T and x → 0, if ∆ > 0 then b/x → ζ± and a/x3 →
−βζ2

±
− γζ± − δ; if ∆ < 0 then (0, 0, 0) is an isolated point in T , and if ∆ = 0 then

b/x→ ζ and a/x3 → −βζ2 − γζ − δ.

Proof. By Lemma 4.1, the last five terms in (4.4) divided by x2 go to 0 when x →
0 and (a, b, x) stays in T . This proves that b/x goes to solutions of the equation
βt2 + 2γt+ 3δ = 0 as (a, b, x) ∈ T and x → 0. That is, if ∆ > 0, then b/x→ ζ± and
if ∆ = 0 then b/x → ζ (provided the solutions exist). Moreover, if ∆ < 0 we get no
solutions near the origin (except the origin itself).

By similar arguments, the last five terms in (4.3) divided by x3 go to 0 when
x → 0 and (a, b, x) stays in T . Thus, taking into account the result of the preceding
paragraph we see that if ∆ > 0 then a/x3 → −βζ2

±
− γζ± − δ and if ∆ = 0 then

a/x3 → −βζ2 − γζ − δ as (a, b, x) ∈ T and x→ 0. �

We investigate now the existence of solutions.

Theorem 4.3. Consider the set Υ which is the projection to the (a, b)-plane of the
set of solutions of the system (1.1) for F of the form (3.2), under assumptions (1.4)
with k = 3, (4.1) and (4.6). If ∆ > 0, close to the origin Υ is the union of two smooth
curves, passing through the origin, disjoint except this point, and tangent there with
the order of contact 2. If ∆ < 0 then close to the origin Υ consists of a single point.

Proof. Observe that if (a, b, x) ∈ T is in a small neighborhood of the origin (but is
not the origin), then by Lemma 4.2 b 6= 0, because otherwise we would have ζ+, ζ−
or ζ equal to 0. This would imply δ = 0, contrary to (4.5).
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We make a substitution a = âb3 and x = x̂b in (4.3) and (4.4), and get

Ĝ(â, b, x̂) = âb3 + βx̂b3 + γx̂2b3 + δx̂3b3 + ψ1b
4,(4.8)

Ĥ(â, b, x̂) = βb2 + 2γx̂b2 + 3δx̂2b2 + ψ2b
3,(4.9)

where ψ1 and ψ2 are analytic (or sufficiently smooth) functions of â, b, x̂. For b 6= 0

the system of equations Ĝ = 0, Ĥ = 0 is equivalent to (1.1). However, it is also
equivalent to the system

(4.10)

{
â+ βx̂+ γx̂2 + δx̂3 + ψ1b = 0,

β + 2γx̂+ 3δx̂2 + ψ2b = 0.

whose solutions (in (â, x̂)) for b = 0 (in the limit case) are u− = (â−, x̂−) and u+ =
(â+, x̂+), where

x̂± =
−γ ±

√
∆

3δ
and

â± = −(βx̂± + γx̂2
±

+ δx̂3
±
).

Thus, two solutions exist if ∆ > 0, and if ∆ < 0 we get no solution.
We claim that if ∆ > 0 then â+ 6= â−. We have

â− − â+ = β(x̂+ − x̂−) + γ(x̂2
+ − x̂2

−
) + δ(x̂3

+ − x̂3
−
)

= (x̂+ − x̂−)(β + γ(x̂+ + x̂−) + δ(x̂2
+ + x̂+x̂− + x̂2

−
)).

Now,

x̂+ + x̂− =
−2γ

3δ
,

and

x̂2
+ + x̂+x̂− + x̂2

−
= (x̂+ + x̂−)2 − x̂+x̂− =

4γ2

9δ2
− β

3δ
.

Hence,

β + γ(x̂+ + x̂−) + δ(x̂2
+ + x̂+x̂− + x̂2

−
) = β − 2γ2

3δ
+

4γ2

9δ
− β

3
=

6βδ − 2γ2

9δ
=

−2∆

9δ
.

Moreover,

x̂+ − x̂− =
2
√

∆

3δ
,

so

â− − â+ =
−4∆

√
∆

27δ2
6= 0.

If ∆ > 0 then the gradients of the functions appearing in (4.10) (as functions of
â and x̂) with b = 0, at u− and u+ are linearly independent. Thus, the three sur-
faces: two given by the equations (4.10), and the third one b = 0, intersect transver-
sally. Hence, the solutions to the system (4.10) form two smooth curves intersecting
transversally the plane b = 0. This takes care of all solutions of (4.10) sufficiently
close to any given compact subset of the plane b = 0. The only other solutions close
to the plane b = 0 that can exist, have to escape to infinity in the â, x̂-directions.
However, there are no such solutions by Lemma 4.2 and the fact that in T if b → 0
then x→ 0.
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Since a = âb3, we see that close to the origin the set Υ consists of two curves of
the form â1(b)b

3 and â2(b)b
3, where the limits of â1(b) and â2(b) as b → 0 are â+ and

â− respectively. Since â+ 6= â−, the order of contact of those two curves is 2.
For ∆ < 0 similar considerations show that the set of solutions of (4.10) close to

the plane b = 0 is empty. �

5. Codimension 2

The codimension 2 case is more difficult, since we can have four distinct situations.
We study each case separately.

If k = 5 in (1.4) and the gradients of A0 and of A1 at the origin are non-zero and
are linearly independent, then Theorem 3.3 applies and the order of contact is 1/4.

A codimension 2 case takes place also when k = 3 in (1.4), the gradients of A0 and
of A1 at the origin are non-zero and are linearly dependent, and

(5.1) β 6= 0 and ∆ = 0.

Under these hypotheses (4.3) and (4.4) hold. Observe that by (4.5), (4.7) and (5.1),
we have γ 6= 0. With the substitution x = y − βb/γ and taking into account that
∆ = 0, we have

a+ βb2x+ γbx2 + δx3 = a+
γ2

3β
y3 − β2

3γ
b3,(5.2)

βb2 + 2γbx+ 3δx2 =
γ2

β
y2.(5.3)

Therefore this substitution applied to (4.3) and (4.4) gives

G(a, b, y) = a− β2

3γ
b3 +

γ2

3β
y3(5.4)

+ ξ1ab+ ξ2ay + ξ3b
4 + ξ4b

3y + ξ5b
2y2 + ξ6by

3 + ξ7y
4,

H(a, b, y) =
γ2

β
y2 + ξ8a+ ξ9b

3 + ξ10b
2y + ξ11by

2 + ξ12y
3,(5.5)

where ξ1, ξ2, . . . are analytic (or sufficiently smooth) functions of the variables a, b, y
related to ϕ1, ϕ2, . . .. Moreover, we did not assume any special properties or inter-
dependencies of the functions ϕi (separately in each equation), so it is easy to check
using (5.2) and (5.3) that there are no such properties or interdependencies in (5.4)
and (5.5), except that ξ1 = −ϕ1β/γ and ξ2 = ϕ1, so ξ1 = −ξ2β/γ.

Now we rewrite (5.4) and (5.5) separating the values of ξi at the origin for i =
1, 2, 3, 4, 8, 9:

G(a, b, y) = a− β2

3γ
b3 +

γ2

3β
y3 − κβ

γ
ab+ κay + λb4 + ρb3y + ω1a

2(5.6)

+ ω2ab
2 + ω3aby + ω4ay

2 + ω5b
2y2 + ω6by

3 + ω7y
4 + ω8b

5 + ω9b
4y,

H(a, b, y) =
γ2

β
y2 + εa+ ζb3(5.7)

+ ω10a
2 + ω11ab+ ω12ay + ω13b

2y + ω14by
2 + ω15y

3 + ω16b
4,

where ωi are analytic (or sufficiently smooth) functions of the variables a, b, y.
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Set

ϑ = − β

γ2

(
εβ2

3γ
+ ζ

)
and η = λ− κβ3

3γ2
.

Without changing the codimension, we may assume that

(5.8) ζ 6= 0 and ϑ 6= 0.

b

y

Figure 5. The lowest order non-zero coefficients for equations (5.6)
and (5.7).

Lemma 5.1. There exist constants K1, K2, K3 such that |b|3 ≤ K1y
2, y2 ≤ K2|b|3

and |a| ≤ K3|b|3.
Proof. In what we use from Section 2, we replace x by y. We claim that the assump-
tions (0)-(5) are satisfied with p = 2, q = 3 and t = 1. Indeed,

µ(a, b, y) = 1 − κβ

γ
b+ κy + ω1a+ ω2b

2 + ω3by + ω4y
2,

so (0) holds. Further,

τ(b, y) =
γ2

β
y2 + ζb3 + ω13b

2y + ω14by
2 + ω15y

3 + ω16b
4,

so c02 = γ2/β 6= 0, c30 = ζ 6= 0, while c00 = c01 = c10 = c11 = c20 = 0, see the dots in
Figure 5. This proves (1). Also,

σ(b, y) = −β
2

3γ
b3 +

γ2

3β
y3 + λb4 + ρb3y + ω5b

2y2 + ω6by
3 + ω7y

4 + ω8b
5 + ω9b

4y,

so d30 = −β2/(3γ), d03 = γ2/(3β) and d00 = d01 = d10 = d11 = d20 = d02 = 0, see the
circles in Figure 5. This proves (2). There are no (l, i, j) satisfying i/3 + j/2 + l < 0
and this proves (3). The number qt = 3 is an integer and the only pair (l, i) satisfying
i/3 + l = 0 is (0, 0). Thus, the condition from (4) is −e000d30 + c30 6= 0. Since

ν(a, b, y) = ε+ ω10a+ ω11b+ ω12y,

we have e000 = ε, so −e000d30 + c30 = −ϑγ2/β. Thus, by (5.8), (4) holds. Similarly,
the condition from (5) is −e000d02 + c02 6= 0. Since d02 = 0 and c02 6= 0, this is
true, so (5) holds. Thus, by Lemma 2.1, there exists constants K1, K2, K3 such that
|b|3 ≤ K1y

2, y2 ≤ K2|b|3 and |a| ≤ K3|b|3. �

Lemma 5.2. As (a, b, x) ∈ T , b 6= 0 and b→ 0, then a/b3 → β2/(3γ) and y2/b3 → ϑ.
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Proof. By Lemma 5.1, all terms of (5.6), except the first two, divided by b3 go to 0
when b→ 0 and (a, b, x) stays in T . This proves that a/b3 goes to β2/(3γ).

Similarly, all terms of (5.7), except the first three, divided by b3 go to 0 when b → 0
and (a, b, x) stays in T . Therefore, using the result of the preceding paragraph, we
see that y2/b3 goes to ϑ. �

Lemma 5.3. Consider the set Υ̃ of solutions of the system (1.1) for F of the
form (3.2), under assumptions (1.4) with k = 3, (5.1) and (5.8). Then close to

the origin Υ̃ is the union of two smooth curves, beginning at the origin and disjoint
except this point.

Proof. By Lemma 5.1, if (a, b, x) ∈ T and b = 0 then also y = a = 0. Now, for b 6= 0
we make a substitution

a = s

(
â+

β2

3γ

)
b̂6, b = ŝb2 and y = ŷb̂3,

where s = sgn ϑ. This makes sense only when sb > 0, but this is consistent with the
last statement of Lemma 5.2. We get from (5.6) and (5.7)

Ĝ(â, b̂, ŷ) = sâb̂6 +
γ2

3β
ŷ3b̂9 − κβ

γ

(
â+

β2

3γ

)
b̂8

+ sκ

(
â+

β2

3γ

)
ŷb̂9 + λb̂8 + sρŷb̂9 + ψ1b̂

10,

Ĥ(â, b̂, ŷ) =
γ2

β
ŷ2b̂6 + sε

(
â+

β2

3γ

)
b̂6 + sζb̂6 + ψ2b̂

7,

where ψ1 and ψ2 are analytic (or sufficiently smooth) functions of â, b̂, ŷ.

For b̂ 6= 0 the system of equations Ĝ = 0, Ĥ = 0 is equivalent to (1.1). However, it
is also equivalent to the system

(5.9)

{
sâ+ ηb̂2 − κβ

γ
âb̂2 +

(
γ2

3β
ŷ2 + sρ+ sκβ2

3γ

)
ŷb̂3 + sκâŷb̂3 + ψ1b̂

4 = 0,
γ2

β
(ŷ2 − |ϑ|) + sεâ+ ψ2b̂ = 0.

For b̂ = 0 the system becomes

(5.10)

{
â = 0,
γ2

β
(ŷ2 − |ϑ|) + sεâ = 0,

whose solutions (in (â, ŷ)) are u+ = (0,
√
|ϑ|) and u− = (0,−

√
|ϑ|). The gradients of

the functions appearing in (5.10) (as functions of â and ŷ) at u+ and u− are linearly
independent. Therefore the solutions of (5.9) form two smooth curves intersecting

transversally the plane b̂ = 0 at u+ and u−. This takes care of all solutions of (5.9)

sufficiently close to any given compact subset of the plane b̂ = 0. The only other

solutions close to the plane b̂ = 0 that can exist, have to escape to infinity in the
â, ŷ-directions. However, there are no such solutions, because by Lemma 5.2 in T , if

b̂→ 0 then â, ŷ converge to finite limits. �

We will now concentrate on the first equation of (5.9).
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Lemma 5.4. There exists a constant K4 such that |â| ≤ K4 |̂b|2. Moreover, â/b̂2 →
−sη.
Proof. We follow the proof of Lemma 2.1. If such constant does not exist, then there

is a sequence of points satisfying (5.9) for which b̂n → 0 and b̂2n/ân → 0. Dividing
the first equation of (5.9) by ân we get the left-hand side converging to s as n→ ∞,
while the right-hand side stays 0. This contradiction completes the proof of the first
property.

Now, all terms of the first equation of (5.9), except the first two, divided by b̂2 go
to 0, and this proves the second property. �

Now we rewrite the first equation of (5.9) substituting â = (̂̂a− sη)̂b2 and dividing

it by b̂2 (we still assume b̂ 6= 0):

(5.11) ŝ̂a+

(
γ2

3β
ŷ2 + sρ+

sκβ2

3γ

)
ŷb̂+ ψ3b̂

2 = 0,

where ψ3 is an analytic (or sufficiently smooth) function of ̂̂a, b̂, ŷ.
Theorem 5.5. Consider the set Υ which is the projection to the (a, b)-plane of the
set of solutions of the system (1.1) for F of the form (3.2), under assumptions (1.4)
with k = 3, (5.1) and (5.8). Then close to the origin Υ is the union of two smooth
curves, beginning at the origin, disjoint except this point, and tangent there with the
order of contact 7/2.

Proof. The set Υ is the projection to the (a, b)-plane of the set Υ̃ from Lemma 5.3.
Thus, it remains to find out the order of contact of the two curves after the projection.

By Lemma 5.2, ŷ → ±
√

|ϑ| as b̂ → 0, where the sign is + for one curve and − for

the other one. Thus, by (5.11) and Lemma 5.4, the limit of ̂̂a/b̂ as b̂→ 0 is

∓
√

|ϑ|
(
γ2

3β
ŷ2 + sρ+

sκβ2

3γ

)
,

where again the sign depends on the curve. Thus, the difference of the values of ̂̂a on

both curves, divided by b̂, goes to a non-zero constant. Looking at the substitutions

that we made, we see that this difference divided by b̂ is equal to the difference of the

values of a divided by b̂9, that is, by (sb)9/2. Therefore in the (a, b) plane the curves
are tangent of order 7/2. �

6. Another codimension 2 case

Another codimension 2 phenomenon occurs when k = 3 in (1.3) and the gradient
of A0 at the origin is zero. We may assume that the gradient of A1 at the origin is
non-zero. Therefore we can change (diffeomorphically) coordinates in the parameter
plane and assume that A1(a, b) = a. We can write

F (a, b, x) = αb2 + ax+ εx3 + ϕ1ax
2 + ϕ2bx

2 + ϕ3x
4 + ϕ4a

2 + ϕ5ab+ ϕ6b
3(6.1)

Fx(a, b, x) = a+ 3εx2 + ϕ7ax+ ϕ8bx+ ϕ9x
3.(6.2)

Note that A3(0, 0) = ε, so in view of (1.4) and because k = 3 we have

(6.3) ε 6= 0.
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Moreover we can assume that

(6.4) α 6= 0.

b

x

Figure 6. The lowest order non-zero coefficients for equations (6.2)
and (6.1).

Lemma 6.1. There exist constants K1, K2 and K3 such that |b|2 ≤ K1|x|3, |x|3 ≤
K2|b|2 and |a| ≤ K3|x|2.
Proof. When using Lemma 2.1, we consider (6.2) to be the first equation and (6.1)
to be the second one. We claim that the assumptions (0)-(5) are satisfied with p = 3,
q = 2 and t = 2/3. Indeed µ(0, 0, 0) = 1, so (0) holds. Next, τ(b, x) = αb2 + εx3 +
ϕ2bx

2 + ϕ3x
4 + ϕ6b

3, so c20 = α, c03 = ε and c00 = c01 = c10 = c11 = c02 = 0,
see the dots in Figure 6. Also, σ(b, x) = 3εx2 + ϕ8bx + ϕ9x

3, so d02 = 3ε and
d00 = d01 = d10 = 0, see the circles in Figure 6. This proves (1) and (2). Now the only
triple (l, i, j) satisfying i/2 + j/3 + 2l/3 < 1/3 is (0, 0, 0) and we have e000 = 0. This
proves (3). The number qt is not an integer and we are done with (4). Furthermore,
pt = 2 is an integer, d02 = 3ε, c03 = ε, the only pair (l, j) satisfying j/3 + 2l/3 = 1/3
is the pair (0, 1) and e001 = 1. This proves (5) because −3ε+ ε = −2ε 6= 0. Thus, by
Lemma 2.1, there exist constants K1, K2 and K3 such that |b|2 ≤ K1|x|3, |x|3 ≤ K2|b|2
and |a| ≤ K3|x|2. �

Lemma 6.2. As (a, b, x) ∈ T and x → 0 then a/x2 → −3ε and b2/x3 → 2ε/α.
Moreover, in the plane x = 0 the origin is isolated in T .

Proof. By Lemma 6.1, the last 3 terms of (6.2) are bounded by |x|5/2 times a constant
independent of a, b, x. This proves that a/x2 → −3ε as (a, b, x) ∈ T and x→ 0.

Again by Lemma 6.1, the last 6 terms of (6.1) are bounded by |x|7/2 times a
constant independent of a, b, x. Thus, taking into account the result of the preceding
paragraph, we see that b2/x3 → 2ε/α as (a, b, x) ∈ T and x→ 0.

Consider now what happens when x = 0. By (6.2), a = 0, so by (6.1) αb2+ϕ(b)b3 =
0, where ϕ is an analytic (or sufficiently smooth) function of b. The solution b = 0 is
then isolated. �

Theorem 6.3. Consider the set Υ which is the projection to the (a, b)-plane of the
set of solutions of the system (1.1) for F of the form (6.1), under assumptions (6.3)
and (6.4). Then close to the origin Υ is the union of two smooth curves, beginning at
the origin, disjoint except this point, and not forming a cusp. More precisely, those
curves are tangent at the origin, but go in the opposite directions.
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Proof. Set s = sgn(αε). By Lemma 6.2, if x is close to 0 then b2/x3 has the sign s,
so since b2 > 0, the sign of x also has to be s. Thus, we consider only x with sx ≥ 0

and make the substitution a = âx̂4, b = b̂x̂3 and x = sx̂2 in (6.1) and (6.2). Since
we want this change of coordinates to be 1-to-1 (except that the whole plane x̂ = 0
corresponds to the origin in the (a, b, x) coordinates), we consider only x̂ ≥ 0. We get

Ĝ(â, b̂, x̂) = αb̂2x̂6 + sâx̂6 + sεx̂6 + ψ1x̂
7,

Ĥ(â, b̂, x̂) = âx̂4 + 3εx̂4 + ψ2x̂
5,

where ψ1 and ψ2 are analytic (or sufficiently smooth) functions of â, b̂, x̂.

For sx > 0 the system of equations Ĝ = 0, Ĥ = 0 is equivalent to (1.1). However,
it is also equivalent to the system

(6.5)

{
αb̂2 + sâ+ sε+ ψ1x̂ = 0,

â+ 3ε+ ψ2x̂ = 0.

For x = 0 the system becomes

(6.6)

{
αb̂2 + sâ+ sε = 0,

â+ 3ε = 0,

whose solution (in (â, b̂)) are

u+ =

(
−3ε,

√∣∣∣∣
2ε

α

∣∣∣∣

)
and u+ =

(
−3ε,−

√∣∣∣∣
2ε

α

∣∣∣∣

)
.

The gradients of the functions appearing in (6.5) (as functions of â and b̂) at u+

and u− are linearly independent. Therefore the solutions of (6.5) form two smooth
curves intersecting transversally the plane x̂ = 0 at u+ and u−. This takes care of all
solutions of (6.5) sufficiently close to any given compact subset of the plane x̂ = 0.
The only other solutions close to the plane x̂ = 0 that can exist, have to escape

to infinity in the â, b̂-directions. However, there are no such solutions, because by

Lemma 6.2 in T , if x̂→ 0 then â, b̂ converge to finite limits.
With (a, b, x) ∈ T close to the origin, â has to have the same sign as −3ε, so a = âx̂4

has also this sign. Similarly, b̂ has to be positive on the first curve and negative on

the second one, so b = b̂x̂3 is positive on the first curve and negative on the second
one.

Looking at the substitution we made, we see that x̂ = (b/b̂)1/3, so a = (â/b̂4/3)b4/3.

We have on T , as we approach the origin along each curve, â/b̂4/3 → −3ε(α/(2ε))2/3 6=
0 and 4/3 > 1, so the projections to the (a, b)-plane of the two curves meet each other
at the origin with tangent vectors in the opposite directions along the b-axis. This
means that no cusp is formed, rather the union of the two curves is a curve of class
C1 (but not higher, because of the origin). �

7. Yet another codimension 2 case

Yet another codimension 2 phenomenon occurs with assumptions like for the codi-
mension 1 case (see Section 4), except (4.6). That is, we assume that F is of the
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form (3.2), under assumptions (1.4) with k = 3 and (4.1), but in the formulas (4.3)
and (4.4) we set β = 0. Thus, we get

F (a, b, x) = a+ γbx2 + δx3 + ϕ1ax+ ϕ2b
3x+ ϕ3b

2x2 + ϕ4bx
3 + ϕ5x

4,(7.1)

Fx(a, b, x) = 2γbx+ 3δx2 + ϕ6a+ ϕ7b
3 + ϕ8b

2x+ ϕ9bx
2 + ϕ10x

3.(7.2)

We can assume that

(7.3) γ 6= 0.

Note that those assumptions imply that ∆ = γ2 > 0 (although we will not use this
inequality explicitly).

If we try to use Lemma 2.1, we cannot assume that ϕ7(0, 0, 0) = 0 (this would give
us codimension 3), so we get p = 2, q = 3, but c11 = 2γ 6= 0 (see Figure 7). Therefore
assumption (1) of Lemma 2.1 is not satisfied. Fortunately, we do not need this lemma
in its full extent, and we can prove what we need using a similar method.

b

x

Figure 7. The lowest order non-zero coefficients for equation (7.2).

Lemma 7.1. There exist constants K1 and K2 such that |x| ≤ K1|b| and |a| ≤ K2|b|3.
Proof. Suppose that there is no constant K1 such that |x| ≤ K1|b|. Then there exists
a sequence of points (an, bn, xn) ∈ T convergent to (0, 0, 0) such that bn/xn → 0. By
dividing (7.1) by x3 and setting z = b/x, we get

a

x3
+ γz + δ + ψ1

a

x3
x+ ψ2x = 0,

where ψ1 and ψ2 are analytic (or sufficiently smooth) functions of a, x, z. Therefore
an/x

3
n → −δ as n→ ∞.

Using the same substitution in (7.2) divided by x2 we get

2γz + 3δ + ψ3
a

x3
x+ ψ4x = 0,

where ψ3 and ψ4 are analytic (or sufficiently smooth) functions of a, x, z. Taking into
account the result of the preceding paragraph, we get by taking a limit along our
sequence δ = 0, a contradiction. This completes the proof of the first inequality of
the lemma.

Now, if b = 0 then by what we already proved x = 0, so by (7.1), a = 0. If b 6= 0
then we divide (7.1) by b3 and we get, setting y = x/b

a

b3
+ γy2 + δy3 + ψ5

a

b3
by + ψ6by = 0,
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where ψ5 and ψ6 are analytic (or sufficiently smooth) functions of a, b, y. As a, b→ 0,
y stays bounded (as we proved), so a/b3 stays bounded. �

Lemma 7.2. As (a, b, x) ∈ T and b → 0, then either x/b → 0 and a/b3 → 0 or
x/b→ −2γ/(3δ) and a/b3 → −4γ3/(27δ2).

Proof. By Lemma 7.1, all but the first two terms of (7.2) divided by b2 go to 0 when
b → 0 and (a, b, x) stays in T . This proves that x/b goes to the solutions of the
equation 2γt+ 3δt2 = 0. Those solutions are 0 and −2γ/(3δ).

By similar arguments, all but the first three terms of (7.1) divided by b3 go to 0,
so we get a/b3 → −γt2 − δt3, where t is the solution from the preceding paragraph.
Thus, we get as the limit of a/b3 the values: 0 in the first case, and

−γ
(−2γ

3δ

)2

− δ

(−2γ

3δ

)3

= − 4γ3

27δ2

in the second case. �

Theorem 7.3. Consider the set Υ which is the projection to the (a, b)-plane of the set
of solutions of the system (1.1) for F of the form (7.1), under the assumptions (7.3).
Then close to the origin Υ is the union of two smooth curves, passing through the
origin, disjoint except this point, and tangent there with the order of contact 2.

Proof. We make a substitution x = x̂b and a = âb3 in (7.1) and (7.2). We get

G(â, b, x̂) = âb3 + γx̂2b3 + δx̂3b3 + ξ1b
4,(7.4)

H(â, b, x̂) = 2γx̂b2 + 3δx̂2b2 + ξ2b
3,(7.5)

where ξ1, ξ2 are analytic (or sufficiently smooth) functions of â, b, x̂. For b 6= 0 the
system of equations G = 0, H = 0 is equivalent to (1.1). However, it is also equivalent
to the system

(7.6)

{
â+ γx̂2 + δx̂3 + ξ1b = 0

2γx̂+ 3δx̂2 + ξ2b = 0.

For b = 0 the system (7.6) becomes

(7.7)

{
â+ γx̂2 + δx̂3 = 0

2γx̂+ 3δx̂2 = 0,

whose solutions (in (â, x̂)) are

u0 = (0, 0) and u1 =

(
− 4γ3

27δ2
,
−2γ

3δ

)
.

The gradients of the functions appearing in (7.7) (as functions of â and x̂) at u0 and
u1 are linearly independent. Therefore the solutions of (7.6) form two smooth curves
intersecting transversally the plane b = 0 at u0 and u1. This takes care of all solutions
of (7.6) sufficiently close to any given compact subset of the plane b = 0. The only
other solutions close to the plane b = 0 that can exist, have to escape to infinity in
the â, x̂-directions. However, there are no such solutions, because by Lemma 7.2 in
T , if b → 0 then â, x̂ converge to finite limits. Finally, if b = 0, then by Lemma 7.1
also a = x = 0.
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Thus, close to the origin Υ is the union of two smooth curves, passing through
the origin, disjoint except this point, and tangent there with the order of contact 2
(because we had a = âb3). �
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