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We continue to investigate boundedness properties in a two-parametric family of Lebesgue spaces for con-
volutions related to the Fourier and Kontorovich-Lebedev transforms. Norm estimations in the weighted
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1 Introduction
This paper is a continuation of our investigation of convolution operators, given recently in [6] for the
Fourier cosine and Kontorovich-Lebedev transformations [3, 4, 5]

(Fcf)(x) =

√
2

π

∞∫

0

f(t) cos xtdt, (1)

Kix[f ] =

∞∫

0

Kix(t)f(t)dt, (2)

where Kix(t) is the modified Bessel function [1], Vol. 2. We will involve here the Fourier sine transform

(Fsf)(x) =

√
2

π

∞∫

0

f(t) sin xtdt, (3)

and base on the following formula [2, relation(2.16.48.19)] (see also (13))

∞∫

0

cos bxKix(t)dx =
π

2
exp(−t cosh b). (4)
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Throughout the paper we will deal with a two-parametric family of Lebesgue spaces

Lα,β
p ≡ Lp(R+; K0(βt)tαdt), α ∈ R, 0 < β ≤ 1, (5)

introduced in [6] and normed by

||f ||Lα,β
p

=




∞∫

0

|f(t)|p K0(βt) tαdt




1/p

< ∞. (6)

It is widely known, that Fourier transforms (1), (3) are well-defined on the space L1(R+; dt). Moreover, if
g(x) = (Fcf)(x) ∈ L1(R+; dx) or g(x) = (Fsf)(x) ∈ L1(R+; dx) we have reciprocal inversion formulas
f(x) = (Fcg)(x), f(x) = (Fsg)(x). In the case of L2(R+; dt)- space we should define the cosine and sine
Fourier transforms in the mean-square convergence sense, namely

(F{ c
s
}f)(x) = l.i.m.

N→∞

√
2

π

N∫

1/N

f(t)

{
cos xt

sin xt

}
dt, (7)

and familiar Plancherel’s theorem [5], [4], [3] says that Fc, Fs : L2(R+; dt) → L2(R+; dt) are isometric
isomorphisms with reciprocal inversion formulas

f(x) = l.i.m.
N→∞

√
2

π

N∫

1/N

(F{ c
s
}f)(t)

{
cos xt

sin xt

}
dt, (8)

and Parseval’s equalities

||F{ c
s
}f ||L2(R+;dt) = ||f ||L2(R+;dt). (9)

The Kontorovich-Lebedev operator (2), in turn, is an isometric isomorphism (see [5]) Kix : L2(R+; tdt) →
L2(R+; x sinh πxdx), where integral (2) in general, does not exist in Lebesgue’s sense and we understand
it in the form

Kix[f ] = l.i.m.
N→∞

∞∫

1/N

Kix(t)f(t)dt, (10)

where the limit is taken in the mean-square sense with respect to the norm of the space L2(R+; x sinh πxdx).
Moreover, the Parseval identity

2

π2

∞∫

0

x sinh πx|Kix[f ]|2dx =

∞∫

0

|f(t)|2tdt (11)

holds and the inverse operator is defined by the formula

f(t) = l.i.m.
N→∞

2

π2

N∫

0

x sinh πx
Kix(t)

t
Kix[f ]dx, (12)

where the convergence is in mean-square with respect to the norm of L2(R+; tdt).
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As it is known [3], the modified Bessel function Kix(t) can be represented by the Fourier integral

Kix(t) =

∞∫

0

e−t cosh u cos xudu, t > 0. (13)

Hence, when x ∈ R, it is real-valued and even with respect to the pure imaginary index ix. Furthermore,
this integral can be extended to the strip δ ∈ [0, π/2) in the upper half-plane, i.e.

Kix(t) =
1

2

iδ+∞∫

iδ−∞

e−t cosh z+ixzdz

and leads for each t > 0 to a uniform estimate

|Kix(t)| ≤ e−|x| arccos βK0(βt), 0 < β ≤ 1, (14)

which will be used in the sequel. We note also its asymptotic behaviour [1] at infinity

Kν(z) =
( π

2z

)1/2

e−z[1 + O(1/z)], z →∞, (15)

and hear the origin

zνKν(z) = 2ν−1Γ(ν) + o(1), z → 0, (16)
K0(z) = − log z + O(1), z → 0.

Concerning the properties of spaces Lα,β
p (5), various embeddings were established in [6]. In particular, for

p = 1, 2, we have

||f ||Lα,1
1

≤ Cα||f ||L2(R+; dt), (17)

Cα =
π1/4 Γ3/2(α + 1/2)

2 Γ1/2(α + 1)
, α > −1/2,

||f ||Lα,1
1

≤ Cα,β||f ||L2(R+;tβ dt), (18)

Cα,β =
2α−1−β/2Γ2(α + 1−β

2
)

Γ1/2(2α− β + 1)
, β < 2α + 1,

||f ||Lα,1
1

≤ Cα||f ||L0,1
2

, (19)

Cα = 2α−1/2Γ(α + 1/2), α > −1/2,

where Γ(z) is Euler’s gamma-function [1], Vol. 1. Since tαK0(βt) is bounded when
α > 0, 0 < β ≤ 1 we arrive at the embedding Lp(R+; dt) ⊂ Lα,β

p , 1 ≤ p < ∞.
This paper is devoted to commutative convolutions of the form

(f ∗ g){ 1
2
}(x) =

1

2πx

∫

R2
+

f(τ)g(θ)
[
e−x cosh(τ−θ) ± e−x cosh(τ+θ)

]
dτdθ, x > 0, (20)

and to the noncommutative convolutions

(f ∗ g){ 3
4
}(x) =

1

2πx

∫

R2
+

f(τ)g(θ)
[
e−θ cosh(τ−x) ± e−θ cosh(τ+x)

]
dτdθ, x > 0. (21)
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In particular we will get mapping properties of (20), (21) in spaces (5), and we will establish the following
factorization equalities (see (1), (3), (2))

Kix[(f ∗ g){ 1
2
}] =

π

2

(F{ c
s
}f)(x)(F{ c

s
}g)(x)

x sinh πx
, x > 0, (22)

(F{ c
s
}(f ∗ g){ 3

4
})(x) = (F{ c

s
}f)(x)Kix[g], x > 0. (23)

Finally, we will apply these results to consider a solvability of the first and second kind convolution integral
equations related to operators (20).

2 Mapping properties of convolutions (20)

Denoting by C0(R+) the space of bounded continuous functions vanishing at infinity we start this section
considering the Kontorovich-Lebedev transformation (2) Kix : Lα,β

p → C0(R+), 1 < p < ∞. The
following theorem is proved in [6].

Theorem 1 The Kontorovich-Lebedev transformation (2) Kix : Lα,β
p → C0(R+), 1 < p < ∞, α <

p− 1, 0 < β ≤ 1 is well-defined continuous, linear map with the norm at most Cα,β,p, i.e.

||Kix|| ≤ Cα,β,p = (2β)
1−p

p

(
β

2

)α
p

Γ
2(p−1)

p

(
p− α− 1

2(p− 1)

)
. (24)

In particular, for the map Kix : L0,β
p → C0(R+) we have ||Kix|| ≤

(
2β
π

) 1−p
p . Finally, when β = 1 it has the

exact value ||Kix|| =
(

π
2

) p−1
p .

For convolutions (20) we have

Theorem 2 Let f(τ), g(τ) ∈ L1(R+; dτ). Convolutions (20) are well-defined for all t > 0 as continuous
functions and belong to Lα,β

p with α > p− 1, 0 < β ≤ 1, 1 ≤ p < ∞. Moreover,

||(f∗g){ 1
2
}||Lα,β

p
≤ Aα,p,β||f ||L1(R+;dt)||g||L1(R+;dt), (25)

where (see relation (2.16.6.3) in [2])

Aα,p,β =
1

π




∞∫

0

tα−pe−ptK0(βt)dt




1/p

= π1/(2p)−1(2p)1−α+1
p

(
Γ2(α− p + 1)

Γ(α− p + 3/2)

)1/p

×
[

2F1

(
α− p + 1

2
,

α− p

2
+ 1; α− p + 3/2; 1− β2

p2

)]1/p

. (26)

In particular, when β = 1, p = 1 it has

||(f∗g){ 1
2
}||Lα,1

1
≤ Cα||f ||L1(R+;dt)||g||L1(R+;dt), (27)
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with

Cα =
1

2α
√

π

Γ2(α)

Γ(α + 1/2)
. (28)

Besides, generalized Parseval type equalities hold

(f∗g){ 1
2
}(t) =

1

πt

∞∫

0

(F{ c
s
}f)(x)(F{ c

s
}g)(x)Kix(t)dx, t > 0, (29)

and finally, assuming that x−1(F{ c
s
}g)(x) ∈ L2((0, 1); dx), factorization equalities (22) take place, where

the Kontorovich-Lebedev operator in its left-hand side is understood by (10).

Proof. A straightforward estimation of convolutions (20) for all t > 0 gives

|(f∗g){ 1
2
}(t)| ≤ e−t

πt

∫

R2
+

|f(τ)||g(θ)|dτdθ

or

|(f∗g){ 1
2
}(t)| ≤

e−t

πt
||f ||L1(R+;dt)||g||L1(R+;dt). (30)

Hence integral (20) exists for all t > 0 and represents a continuous function via its absolute and uniform
convergence when t ≥ t0 > 0. Furthermore, taking the norm (6) through the latter inequality (30) we
immediately obtain (25), where integral (26) is convergent under conditions α > p − 1, 1 ≤ p < ∞, 0 <
β ≤ 1 and the result is written in terms of the Gauss hypergeometric function 2F1(a, b, c; z) (see [1], Vol.
1). Letting p = 1, β = 1 it gives (25), (28). Employing again integral representation (4) and appealing to
Fubini’s theorem we write convolutions (20) in the form

(f∗g){ 1
2
}(t) =

2

π2t

∫

R3
+

f(τ)g(θ)

{
cos xτ cos xθ

sin xτ sin xθ

}
Kix(t)dτdθdx

=
2

π2t

∞∫

0




∞∫

0

f(τ)
{cos xτ

sin xτ

}
dτ







∞∫

0

g(θ)

{
cos xθ

sin xθ

}
dθ


 Kix(t)dx

=
1

πt

∞∫

0

(F{ c
s
}f)(x)(F{ c

s
}g)(x)Kix(t)dx,

(31)

which proves the generalized Parseval equalities (29). In order to prove (22) we assume first that

x−1(F{ c
s
}g)(x) ∈ L2((0, 1); dx).

Hence it is not difficult to verify that the right-hand side of (22) belongs to L2(R+; x sinh πxdx). Therefore
by virtue of the Parseval identity (11) and reciprocities (10), (12) (see also (29)) we get (22), where the
integral in the left-hand side is convergent generally in L2-sense as in (10). Theorem 2 is proved.

Remark 1 It is not difficult to show by using an elementary inequality | sin x| ≤ x, x > 0 that condition
x−1(Fsg)(x) ∈ L2((0, 1); dx) is satisfied when, for instance, g(τ) ∈ L1(R+; τdτ).
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Remark 2 Analogously (see (30)) we can obtain the following estimation for the norm of convolutions (20)
∣∣∣
∣∣∣(f∗g){ 1

2
}

∣∣∣
∣∣∣
L1(R+;tαdt)

≤ Γ(α)

π
||f ||L1(R+;dt)||g||L1(R+;dt), α > 0. (32)

In particular,
∣∣∣
∣∣∣(f∗g){ 1

2
}

∣∣∣
∣∣∣
L1(R+;tdt)

≤ 1

π
||f ||L1(R+;dt)||g||L1(R+;dt).

Similar to Theorem 2 we prove

Theorem 3 Let f(τ) ∈ L2(R+; dτ) and g(θ) ∈ L1(R+; dθ) and x−1(F{ c
s
}g)(x) = O(1), x → 0. Then

convolutions (20) are well-defined as continuous functions on R+. Moreover,
∣∣∣
∣∣∣(f∗g){ 1

2
}

∣∣∣
∣∣∣
L2(R+;tαdt)

≤ Cα||f ||L2(R+;dτ)||g||L1(R+;dτ), (33)

where

Cα =
Γ(α− 1)

2
α−1

2 π3/4Γ1/2(α− 1/2)
, α > 1. (34)

Finally, Parseval’s type equalities (29) and factorization properties (22) are valid.

Proof. Integration with respect to θ (see (13)) yields

1

2

∞∫

0

[
e−x cosh(τ−θ) ± e−x cosh(τ+θ)

]
dθ <

1

2

∞∫

τ

e−x cosh ydy +
1

2

∞∫

−τ

e−x cosh ydy

=
1

2

∞∫

τ

e−x cosh ydy +
1

2

τ∫

−∞

e−x cosh ydy

=
1

2

∞∫

−∞

e−x cosh ydy =

∞∫

0

e−x cosh ydy = K0(x). (35)

Calling Schwarz’s inequality for double integrals we deduce
∣∣∣(f∗g){ 1

2
}(t)

∣∣∣ ≤ 1

2πt

∫

R2
+

|f(τ)||g(θ)| [e−x cosh(τ−θ) ± e−x cosh(τ+θ)
]
dτdθ

≤ 1

2πt




∫

R2
+

|g(θ)| [e−x cosh(τ−θ) ± e−x cosh(τ+θ)
]
dτdθ




1/2

×




∫

R2
+

|g(θ)||f(τ)|2 [
e−x cosh(τ−θ) ± e−x cosh(τ+θ)

]
dτdθ




1/2

≤ 1

πt


K0(t)

∞∫

0

|g(θ)|dθ




1/2

e−t

∫

R2
+

|g(θ)||f(τ)|2dτdθ




1/2

=
e−t/2K

1/2
0 (t)

πt
||f ||L2(R+;τ)||g||L1(R+;dτ).
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Thus convolutions (20) exist for all t > 0 and are continuous via the absolute and uniform convergence of
the corresponding integrals. Estimates (33) follow directly due to the definition of the norm in L2(R+; tαdt)
and relation (2.16.6.4) in [2]. Parseval’s type equalities (29) can be proved in the same manner as in
Theorem 2.

Since g ∈ L1(R+; dt) and x−1(F{ c
s
}g)(x) = O(1), x → 0, it means that

|(F{ c
s
}g)(x)|2

x sinh πx
is bounded and

(F{ c
s
}f)(x)(F{ c

s
}g)(x)

x sinh πx
∈ L2(R+; x sinh πxdx).

Consequently, with reciprocities (10), (12) for the Kontorovich- Lebedev transformation we come again to
factorization properties (22) and complete the proof of Theorem 3.

As a consequence of (33) and (18) we easily derive
∣∣∣
∣∣∣(f∗g){ 1

2
}

∣∣∣
∣∣∣
Lα,1

1

≤ Cα||f ||L2(R+;dτ)||g||L1(R+;dτ), (36)

where the constant Cα is given accordingly

Cα =
Γ2((α + 1)/2)Γ(α− 1)√

2π3/4Γ1/2(α + 1)Γ1/2(α− 1/2)
, α > 1. (37)

Corollary 1 Under conditions of Theorems 2 or 3 convolutions (f∗g){ 1
2
}(t) belong to the space L2(R+; tdt)

and the following identities hold
∞∫

0

∣∣∣(f∗g){ 1
2
}(t)

∣∣∣
2

tdt =
1

2

∞∫

0

∣∣∣(F{ c
s
}f)(x)(F{ c

s
}g)(x)

∣∣∣
2 dx

x sinh πx
.

In fact, this is a direct consequence of factorization properties (22) and Parseval’s equality (11).

Theorem 4 Let f, g ∈ L2(R+; dτ). Then convolutions (20) are well-defined as continuous functions on
R+. Moreover,

||(f∗g){ 1
2
}||L2(R+;tαdt) ≤ Cα||f ||L2(R+;dt)||g||L2(R+;dt), (38)

where

Cα =
2α/2−2Γ2((α− 1)/2)

Γ1/2(α− 1)
, α > 1. (39)

Finally, Parseval’s type equalities (29) are valid.

Proof. Indeed, calling again Schwarz’s inequality and using (35) we find

∣∣∣(f∗g){ 1
2
}(t)

∣∣∣
2

≤ K2
0(t)

π2t2

∞∫

0

|f(τ)|2dτ

∞∫

0

|g(θ)|2dθ

=
K2

0(t)

π2t2
||f ||2L2(R+;dt)||g||2L2(R+;dt).

Hence

∣∣∣
∣∣∣(f∗g){ 1

2
}

∣∣∣
∣∣∣
L2(R+;tαdt)

≤ 1

π
||f ||L2(R+;dt)||g||L2(R+;dt)




∞∫

0

tα−2K2
0(t)dt




1/2

.

Applying (2.16.33.2) from [2] we obtain the estimation (38) for the norm of convolutions (20). Employing
again integral representation (4) and appealing to Fubini’s theorem we represent convolutions (20) by the
latter equality in (31) and we establish (29) completing the proof of Theorem 4.
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3 On the noncommutative convolutions (21)

In this section we will prove similar results of the norm estimations, Parseval type equalities and factor-
ization identities, which are associated with the noncommutative convolutions (21). We start with the
boundedness of these convolutions on the space L1(R+; dt).

Theorem 5 Let f ∈ L1(R+; dt) and g ∈ L0,β
1 , 0 < β ≤ 1. Then convolutions (21) exist for almost all

t > 0, belong to L1(R+; dt) and
∣∣∣
∣∣∣(f∗g){ 3

4
}

∣∣∣
∣∣∣
L1(R+; dt)

≤ ||f ||L1(R+; dt)||g||L0,β
1

. (40)

Moreover, factorization identities (23) hold true. Further, when β ∈ (0, 1), then (f∗g){ 3
4
}(t) ∈ C0(R+) and

for all t > 0 the Parseval type equalities take place

(f∗g){ 3
4
}(t) =

√
2

π

∞∫

0

(F{ c
s
}f)(x)Kix[g]

{
cos xt

sin xt

}
dx. (41)

Proof. With Fubini’s theorem via the estimate (see (35)) we derive
∫ ∞

0

∣∣∣(f ∗ g){ 3
4
}(t)

∣∣∣ dt ≤
∫

R2
+

|f(τ)g(θ)|K0(θ)dτdθ

≤
∫

R2
+

|f(τ)g(θ)|K0(βθ)dτdθ = ||f ||L1(R+; dt)||g||L0,β
1

< ∞. (42)

Hence it proves (40) and the existence of convolutions for almost all t > 0. Again with Fubini’s theorem
we prove factorization identities (23), taking the cosine and the sine Fourier transforms (1), (3) of convolu-
tions (21), respectively. Hence we change the order of integration by virtue of (42) and appealing to (13).
Supposing now that β ∈ (0, 1), we employ representation (4) to substitute in (21), and inequality (14) in
order to justify the absolute convergence of the corresponding iterated integrals. Thus via Fubini’s theorem
we come out with the following chain of equalities

(f∗g){ 3
4
}(t) =

2

π

∫

R3
+

f(τ)g(θ)

{
cos xt cos xτ

sin xt sin xτ

}
Kix(θ) dτdθdx

=
2

π

∞∫

0




∞∫

0

f(τ)

{
cos xt cos xτ

sin xt sin xτ

}
dτ







∞∫

0

g(θ)Kix(θ)dθ




{
cos xt

sin xt

}
dx

=

√
2

π

∞∫

0

(F{ c
s
}f)(x)Kix[g]

{
cos xt

sin xt

}
dx,

which proves (41). Meanwhile, latter integrals with respect to x are absolutely and uniformly convergent
and vanish when t → ∞ due to the Riemann-Lebesgue lemma. Consequently, (f∗g){ 3

4
}(t) ∈ C0(R+).

Theorem 5 is proved.
Extensions of Theorem 5 on spaces L0,β

p , 1 < p < ∞, 0 < β ≤ 1 and Lp(R+; dt) are given by
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Theorem 6 Let f ∈ Lp(R+; dt), g ∈ L0,β
p′ , 1 < p < ∞, p−1 + p′−1 = 1, 0 < β ≤ 1. Then convolutions

(21) exist for all t > 0 as bounded continuous functions. Moreover, (f∗g){ 3
4
} ∈ Lα,γ

r , 1 ≤ r < ∞, α >

−1, 0 < γ ≤ 1, where r and p, β and γ have no dependence and
∣∣∣
∣∣∣(f∗g){ 3

4
}

∣∣∣
∣∣∣
Lα,γ

r

≤ C1/r
α,γ ||f ||Lp(R+;dt)||g||L0,β

p′
, (43)

where

Cα,γ = (2γ)−1

(
2

γ

)α

Γ2

(
α + 1

2

)
. (44)

If we assume f ∈ L1(R+; dt) ∩ Lp(R+; dt), 1 < p < ∞, then convolutions (21) satisfy factorization
identities (23). Further, when β ∈ (0, 1), then (f∗g){ 3

4
}(t) ∈ C0(R+) and for all t > 0 Parseval’s type

equalities (41) hold.

Proof. With the Hölder inequality we easily have

∣∣∣(f ∗ g){ 3
4
}(t)

∣∣∣ ≤




∫

R2
+

|f(τ)|pe−θdτdθ




1/p 


∞∫

0

|g(θ)|p′K0(θ)dθ




1/p′

≤



∞∫

0

|f(τ)|pdτ




1/p 


∞∫

0

|g(θ)|p′K0(βθ)dθ




1/p′

= ||f ||Lp(R+;dt)||g||L0,β

p′
. (45)

Therefore double integrals (21) converge absolutely and uniformly and convolutions (f ∗ g){ 3
4
}(t) are

bounded continuous on R+. Hence (see relation (2.16.2.2) in [2])

∣∣∣
∣∣∣(f∗g){ 3

4
}

∣∣∣
∣∣∣
Lα,γ

r

≤



∞∫

0

xαK0(γx)dx




1/r

||f ||Lp(R+;dt)||g||L0,β

p′

= (2γ)−1/r
(γ

2

)−α/r

Γ2/r

(
α + 1

2

)
||f ||Lp(R+;dt)||g||L0,β

p′
, α > −1,

and this yields (43).
If f ∈ L1(R+; dt) then from the imbedding L0,β

p ⊂ L0,β
1 with the use of Theorem 5 we easily get

(f∗g){ 3
4
}(t) ∈ L1(R; dt). Consequently, in the same manner we establish factorization identities (23) and

Parseval’s type equalities (41), if β ∈ (0, 1). Finally, we see that (f∗g){ 3
4
}(t) ∈ C0(R+). Theorem 6 is

proved.

Corollary 2 Under conditions of Theorem 6 convolutions (21) exist for all t > 0, are continuous and
belong to Lp(R+; dt). Besides, the inequality

∣∣∣
∣∣∣(f∗g){ 3

4
}

∣∣∣
∣∣∣
Lp(R+; dt)

≤
(

π

2β

)1/p

||f ||Lp(R+; dt)||g||L0,β

p′
(46)

takes place. In the Hilbert case p = 2 Fourier type Parseval’s identities hold true

∞∫

0

∣∣∣(f∗g){ 3
4
}(t)

∣∣∣
2

dt =

∞∫

0

∣∣∣(F{ c
s
}f)(x)Kix[g]

∣∣∣
2

dx. (47)

9



Proof. Returning again to estimates (45) and using (35), we find
∞∫

0

|(f ∗ g){ 3
4
}(t)|pdt ≤

∫

R2
+

|f(τ)|pK0(βθ)dτdθ

×



∞∫

0

|g(θ)|p′K0(βθ)dθ




p/p′

=
π

2β

[
||f ||Lp(R+; dt)||g||L0,β

p′

]p

.

This implies (46). Fourier type Parseval’s identities (47) are direct consequences of factorization identities
(23) and the Parseval equality for the Fourier transform (9). Corollary 2 is proved.

Remark 3 One can provide other estimates of convolutions (21) in the spaces above. However, in some
cases we are unable to guarantee neither factorization identities (23) nor Parseval’s type equalities (41).
Let, for instance, f ∈ L1(R+; dt), g ∈ L2(R+; dt) ⊂ Lδ,β

2 , δ > 0, 0 < β ≤ 1. Then it is not difficult
to establish the existence, boundedness and continuity of the convolution (f ∗ g)2(t) and the following
inequality

||(f ∗ g){ 3
4
}||Lα,γ

r
≤ C1/r

α,γ ||f ||L1(R+; dτ)||g||L2(R+; dτ),

where the constant Cα,γ is given by formula (44), α > −1, 0 < γ ≤ 1. But if we suppose f ∈ L1(R+; dτ)∩
L2(R+; dτ), g ∈ L0,β

2 , 0 < β < 1, then we can appeal to previous discussions in order to prove (23) and
(41).

Similarly, under conditions f, g ∈ L1(R+; dt) we derive estimates
∣∣∣
∣∣∣(f ∗ g){ 3

4
}

∣∣∣
∣∣∣
Lα,γ

r

≤ C1/r
α,γ ||f ||L1(R+; dτ)||g||L1(R+; dτ),

where the constant is again given by formula (44).

4 Convolution integral equations
This section will be devoted to a class of the first and second kind convolution integral equations related to
(20) and (21). We begin to examine a solvability of the following integral equations of the first kind

(f∗µ){ 1
2
}(t) = g(t), t ∈ R+, (48)

(f∗µ){ 3
4
}(t) = g(t), t ∈ R+, (49)

(µ∗f){ 3
4
}(t) = g(t), t ∈ R+. (50)

Functions g, µ are given and f is to be determined. We will establish conditions, which will guarantee the
existence and uniqueness of solutions in a closed form for these equations. Similar questions for different
convolutions were considered in [4], [5] and [6]. Taking into account symmetric properties of convolution
kernels and Parseval equalities (29), (41), equations (48), (49) and (50) can be written, correspondingly, in
integral form as

∞∫

0

K{ 1
2
}(t, τ)f(τ)dτ = g(t), (51)

10



where

K{ 1
2
}(t, τ) =

√
2

π
√

πt

∞∫

0

Kix(t)(F{ c
s
}µ)(x)

{cos xτ

sin xτ

}
dx, (52)

∞∫

0

K{ 3
4
}(t, τ)f(τ)dτ = g(t), (53)

where

K{ 3
4
}(t, τ) =

2

π

∞∫

0

Kix[µ]

{
cos xt cos xτ

sin xt sin xτ

}
dx, (54)

∞∫

0

K{ 5
6
}(t, τ)f(τ)dτ = g(t), (55)

where

K{ 5
6
}(t, τ) = πτK{ 1

2
}(τ, t). (56)

Let us give a few examples of the kernels (52), (54), (56). Letting in (54) µ(θ) = θα−1, α > 0 we get
the kernel

K{ 1
2
}(t, τ) =

Γ(α)

2

[
1

coshα(t− τ)
± 1

coshα(t + τ)

]
.

When we put µ(θ) = exp(−θ cos ν), 0 < ν < π in (54), the same way drives us at the kernel

K3(t, τ) =
cos ν + cosh t cosh τ

(cos ν + cosh(t + τ))(cos ν + cosh(t− τ))
.

Similarly some examples of kernels (54) can be obtained, for instance, taking µ(θ) = θα−1e−θ, µ(θ) =
θ−1/2

θ+p
e−θ, µ(θ) = e−αθ2 , µ(θ) = θ−3/2e−θ−b/θ, µ(θ) = sinh θb, µ(θ) = cosh θb.

Particular cases of kernels (52) can be found calculating the Kontorovich-Lebedev integrals. Let (Fcµ)(x) =
[cosh πx]−1. Then with relation (2.16.48.12) [2] we obtain

K1(t, τ) =
et cosh τ

√
2πt

erfc
(√

2t cosh
τ

2

)
,

where erfc(z) is the error function [1]. The reciprocal function µ(θ), which corresponds to this kernel can
be calculated by inversion formula (8) for the cosine Fourier transform. Hence with simple manipulations
we find the value µ(θ) as the integral

µ(θ) =

√
2

π

∞∫

0

cos xθ

cosh πx
dx =

1√
2π cosh(θ/2)

.

Further, let (Fcµ)(x) =
x

sinh πx
. Then with an elementary integral we get µ(θ) =

1

2
√

2π cosh2(θ/2)
.

We use this µ to calculate K1(t, τ), expressing it in terms of the integral of elementary functions. Indeed,

11



employing the generalized Parseval equality for Fourier transform [3] and relation (2.16.6.4) in [2] we
deduce

K1(t, τ) =
1

tπ
√

2π

∞∫

−∞

x

sinh πx
Kix(t)e

ixτ dx

=
1

tπ
√

2π

∞∫

−∞

e−t cosh(τ−u)

∞∫

0

x cos xu

sinh πx
dxdu =

1

2tπ
√

2π

∞∫

−∞

e−t cosh(τ−u)

1 + cosh u
du.

Necessary and sufficient solvability conditions for convolution integral equations (51), (53), (55) are
presented by the following theorems.

Theorem 7 Let g ∈ L2(R+; tdt), µ ∈ L1(R+; dθ) and x−1(F{ c
s
}µ)(x) = O(1), x → 0. Then for the solv-

ability of equations (51) in L2(R+; dτ) it is necessary and sufficient that
x sinh πxKix[g]

(F{ c
s
}µ)(x)

∈ L2 (R+; dx).

Moreover, the corresponding solution f(τ) is unique and given by the formula

f(τ) =
2
√

2

π
√

π
l.i.m.
N→∞

N∫

1/N

x sinh πxKix[g]

(F{ c
s
}µ)(x)

{cos xτ

sin xτ

}
dx, (57)

where the convergence is with respect to the norm in L2(R+; dτ).

Proof. Necessity. Indeed, if we assume that g, µ, f belong to the corresponding L-classes and equa-
tions (51) are satisfied, then via Corollary 1 we have the equalities

Kix[g] =
π

2

(F{ c
s
}f)(x)(F{ c

s
}µ)(x)

x sinh πx
. (58)

Further, since (F{ c
s
}f)(x) ∈ L2 (R+; dx) we get that

x sinh πxKix[g]

(F{ c
s
}µ)(x)

∈ L2 (R+; dx) and L2-solutions are

given reciprocally by formula (57) (see (8)).

Sufficiency. If conversely,
x sinh πxKix[g]

(F{ c
s
}µ)(x)

∈ L2 (R+; dx), then f(τ) is from the space L2 (R+; dτ)

via formula (57). Furthermore, by virtue of Corollary 1 the left-hand side of (51), which corresponds to
convolutions (f∗µ){ 1

2
}(t) (see (48)), belongs to L2 (R+; tdt). In fact, by the same arguments as in Theorem

3 we observe that functions
|(F{ c

s
}µ)(x)|2

x sinh πx
are bounded, and therefore,

∞∫

0

∣∣∣(F{ c
s
}f)(x)(F{ c

s
}µ)(x)

∣∣∣
2 dx

x sinh πx
< ∞.

So, the Kontorovich-Lebedev transform (10) of the left-hand side of (51) is equal to

π

2

(F{ c
s
}µ)(x)(F{ c

s
}f)(x)

x sinh πx
=

(F{ c
s
}µ)(x)

x sinh πx

x sinh πxKix[g]

(F{ c
s
}µ)(x)

= Kix[g].

Hence with the reciprocal inversion (12) and the generalized Parseval equality (29) we find that equa-
tions (51) are satisfied, and (57) is a corresponding unique L2(R+; dτ)-solution. Theorem 7 is proved.
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In order to examine a solvability of integral equations (53) we will seek possible solutions f in the class
L1(R+; dτ) ∩ L2(R+; dτ). Denoting by F1,2 ≡ {h ∈ L2 (R+; dx) ; h = (Fcf)(x)} a set of images of this
class under Fourier transforms (7), which is a subspace of L2 (R+; dx), we will consider a restriction of this
map to F{ c

s
} : L1(R+; dτ) ∩ L2(R+; dτ) → F1,2, F1,2 ⊂ C0(R+).

Theorem 8 Let g ∈ L2(R+; dt), µ ∈ L0,1
2 and Kix[µ] = O(1), x → 0. Then for the solvability of equa-

tions (53) in L1(R+; dτ))∩L2(R+; dτ) it is necessary and sufficient that
(F{ c

s
}g)(x)

Kix[µ]
∈ F1,2. Moreover, the

corresponding solution f(τ) is unique and given by the formula

f(τ) =

√
2

π
l.i.m.
N→∞

N∫

1/N

(F{ c
s
}g)(x)

Kix[µ]

{cos xτ

sin xτ

}
dx, (59)

where the convergence is with respect to the norm in L2(R+; dτ).

Proof. Necessity. Indeed, if under conditions of the theorem equations (53) are satisfied, then convolu-
tions (49) exist and an analog of equalities (58) holds

(F{ c
s
}g)(x) = (F{ c

s
}f)(x)Kix[µ]. (60)

But (F{ c
s
}f)(x) ∈ F1,2. Hence

(F{ c
s
}g)(x)

Kix[µ]
∈ F1,2 and solutions in L2(R+; dτ) are given reciprocally by

the formula (59).

Sufficiency. Now assuming
(F{ c

s
}g)(x)

Kix[µ]
∈ F1,2, we get correspondingly f(τ) ∈ L1(R+; dτ)∩L2(R+; dτ)

via conditions of the theorem. Furthermore, the left-hand side of (53), which is convolutions (f∗µ){ 3
4
}(t),

belongs to L2 (R+; dt). This is because µ ∈ L0,1
2 , Kix[µ] = O(1), x → 0 and therefore, Kix[µ] is bounded.

Then the right-hand side of (47) being written for convolutions (f∗µ){ 3
4
}(t), is finite. So, Fourier transforms

of the left-hand side of (53) are equal to

(F{ c
s
}f)(x)Kix[µ] = Kix[µ]

(F{ c
s
}g)(x)

Kix[µ]
= (F{ c

s
}g)(x).

Hence with inversion formulas (8) and generalized Parseval equalities (41) we find that equations (53)
are satisfied, and (59) is the corresponding unique solution from L1(R+; dτ)) ∩ L2(R+; dτ). Theorem 8 is
proved.

Equations (55) with noncommutative convolutions will be treated in the class L0,1
2 ∩ L2(R+; τdτ) ⊂

L0,1
1 ∩ L2(R+; τdτ). Denoting by KL2

ix ≡ {h ∈ L2 (R+; x sinh πx dx) ; h = Kix[f ]} a set of images
of this class under the Kontorovich-Lebedev transform (10) we will consider a restriction of this map to
Kix : L0,1

2 ∩ L2(R+; τdτ) → KL2
ix.

Theorem 9 Let g ∈ L2(R+; dt), µ ∈ L1(R+; dt) ∩ L2(R+; dt) and x−1(F{ c
s
}µ)(x) = O(1), x → 0.

Assuming that

(F{ c
s
}g)(x)

(F{ c
s
}µ)(x)

∈ L1 (R+; sinh πxdx) (61)

and the following conditions are fulfilled

∞∫

0

√
u eu/2

∣∣∣∣∣∣

∞∫

0

sinh πx(F{ c
s
}g)(x)

(F{ c
s
}µ)(x)

sin xu dx

∣∣∣∣∣∣
du < ∞,
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the solvability of equations (55) in the class L0,1
2 ∩ L2(R+; τdτ) is guaranteed if and only if

(F{ c
s
}g)(x)

(F{ c
s
}µ)(x)

∈ KL2
ix.

The corresponding solution is unique and given by the formula

f(τ) =
2

π2τ

∞∫

0

x sinh πx(F{ c
s
}g)(x)

(F{ c
s
}µ)(x)

Kix(τ)dx, (62)

where latter integrals exist in the Lebesgue sense.

Proof. Necessity. Indeed, if under conditions of the theorem equation (55) takes place, then the convo-
lutions (50) exist by Corollary 2 and satisfy the equalities (see (23))

(F{ c
s
}g)(x) = Kix[f ](F{ c

s
}µ)(x).

However, Kix[f ] ∈ KL2
ix. Hence

(F{ c
s
}g)(x)

(F{ c
s
}µ)(x)

∈ KL2
ix and a solution in L2(R+; τdτ) is given reciprocally

by the formula

f(τ) = l.i.m.
N→∞

2

π2τ

N∫

0

x sinh πx(F{ c
s
}g)(x)

(F{ c
s
}µ)(x)

Kix(τ)dx. (63)

But the latter integral is absolutely convergent due to conditions (61) and the boundedness for all τ > 0 of
the product xKix(τ), which can be verified by using the integral representation

xKix(τ) = τ

∞∫

0

e−τ cosh u sinh u sin xu du. (64)

We note, that integral (64) can be easily obtained integrating by parts in (13). Consequently, a unique
solution (63) of the corresponding equation (55) can be represented by (62). Further, appealing to the
generalized Minkowski inequality and relation (2.16.6.2) from [2] we obtain

||f ||L0,1
2

=




∞∫

0

K0(τ)|f(τ)|2dτ




1/2

=
2

π2




∞∫

0

K0(τ)

∣∣∣∣∣∣

∞∫

0

e−τ cosh u sinh u

×
∞∫

0

sinh πx(F{ c
s
}g)(x)

(F{ c
s
}µ)(x)

sin xu dx du

∣∣∣∣∣∣

2

dτ




1/2

≤ 2

π2

∞∫

0

sinh u

×



∞∫

0

K0(τ)e−2τ cosh udτ




1/2 ∣∣∣∣∣∣

∞∫

0

sinh πx(F{ c
s
}g)(x)

(F{ c
s
}µ)(x)

sin xu dx

∣∣∣∣∣∣
du

<
2

π2

∞∫

0

√
u eu/2

∣∣∣∣∣∣

∞∫

0

sinh πx(F{ c
s
}g)(x)

(F{ c
s
}µ)(x)

sin xu dx

∣∣∣∣∣∣
du < ∞.
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Therefore f ∈ L0,1
2 ∩ L2(R+; τdτ).

Sufficiency. Now assuming
(F{ c

s
}g)(x)

(F{ c
s
}µ)(x)

∈ KL2
ix, we get correspondingly f(τ) ∈ L0,1

2 ∩ L2 (R+; τdτ)

via (63), (62) and conditions of the theorem. Furthermore, the left-hand side of (55), which is convolutions
(µ∗f){ 3

4
}(t), belongs to L2 (R+; dt). This is because µ ∈ L1(R+; dt) ∩ L2(R+; dt) and x−1(F{ c

s
}µ)(x) =

O(1), x → 0 and therefore, [x sinh πx]−1/2(F{ c
s
}µ)(x) is bounded. Then since Kix[f ] ∈ L2 (R+; x sinh πx dx),

we have (see (47))

∞∫

0

∣∣∣(f∗µ){ 3
4
}(t)

∣∣∣
2

dt =

∞∫

0

x sinh πx

∣∣∣∣Kix[f ]
(F{ c

s
}µ)(x)√

x sinh πx

∣∣∣∣
2

dx < ∞.

Hence Fourier transforms (7) of the left-hand side of (55) are equal to
√

2

π
Kix[f ](F{ c

s
}µ)(x) =

(F{ c
s
}g)(x)

(F{ c
s
}µ)(x)

(F{ c
s
}µ)(x) = (F{ c

s
}g)(x).

Therefore equations (55) are satisfied, and (62) is the corresponding unique solution from L0,1
2 ∩L2(R+; τdτ).

Theorem 9 is proved.
Let us consider briefly other classes of convolution integral equations related to (48), (49), (50).
We start with second kind integral equations involving convolutions (49)

f(t) + (f∗µ){ 3
4
}(t) = g(t), t ∈ R+. (65)

Theorem 10 Let g ∈ L1(R+; dt) ∩ L2(R+; dt), µ ∈ L0,1
2 and Kix[µ] = O(1), x → 0. Moreover, assuming

that

1 + Kix[µ] 6= 0, x ∈ R+, (66)

Then for the solvability of equations (53) in L1(R+; dτ) ∩ L2(R+; dτ) it is necessary and sufficient that
(F{ c

s
}g)(x)

1 + Kix[µ]
∈ F1,2. Moreover, the corresponding solution f(τ) is unique and given by the formula

f(τ) =

√
2

π
l.i.m.
N→∞

N∫

1/N

(F{ c
s
}g)(x)

Kix[µ]

{cos xτ

sin xτ

}
dx, (67)

where the convergence is with respect to the norm in L2(R+; dτ).

Proof. Necessity. Indeed, if under conditions of the theorem equations (65) are satisfied, then convolu-
tions 21 exist and analogously to (60) it has

(F{ c
s
}g)(x) = (F{ c

s
}f)(x) + (F{ c

s
}f)(x)Kix[µ].

But (F{ c
s
}f)(x) ∈ F1,2. Hence

(F{ c
s
}g)(x)

1 + Kix[µ]
∈ F1,2 and solution in L2(R+; dτ) is given reciprocally by the

formula (67).

Sufficiency. Now assuming
(F{ c

s
}g)(x)

1 + Kix[µ]
∈ F1,2, we get correspondingly f(τ) ∈ L1(R+; dτ)∩L2(R+; dτ)

via conditions of the theorem. Furthermore, the left-hand side of (65) belongs to L2 (R+; dt). This is be-
cause µ ∈ L0,1

2 and Kix[µ] = O(1), x → 0 and therefore, Kix[µ] is bounded. Then the right-hand side of
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(47) being written for convolutions (f∗µ){ 3
4
}(t), is finite. So, the Fourier transform of the left-hand side

of (65) is equal to

(F{ c
s
}f)(x) + (F{ c

s
}f)(x)Kix[µ] =

(F{ c
s
}g)(x)

1 + Kix[µ]
+ Kix[µ]

(F{ c
s
}g)(x)

1 + Kix[µ]
= (F{ c

s
}g)(x).

Hence with inversions (8) and generalized Parseval equalities (41) we find that equations (65) are satisfied,
and (67) is correspondingly a unique solution from L1(R+; dτ)) ∩ L2(R+; dτ). Theorem 10 is proved.

Next, we will consider integral equation with two kernels, which corresponds to convolution (µ∗f)3(t)

(µ∗f)3(t) +

∞∫

0

e−u cosh tf(u)du = g(t), t ∈ R+. (68)

Taking into account factorization properties (23) we prove the following result.

Theorem 11 Let g ∈ L2(R+; dt), µ ∈ L1(R+; dt) ∩ L2(R+; dt) and x−1(Fcµ)(x) = O(1), x → 0. If

(Fcµ)(x) +

√
2

π
6= 0, x ∈ R+, (69)

(Fcg)(x) ∈ L1((1,∞); sinh πxdx) ∩ L2((1,∞); x sinh πxdx) (70)

and the following condition holds

∞∫

0

√
u eu/2

∣∣∣∣∣∣

∞∫

0

sinh πx(Fcg)(x)

(Fcµ)(x) +
√

2
π

sin xu dx

∣∣∣∣∣∣
du < ∞, (71)

then there exists a unique solution of equation (68) in the class L0,1
2 ∩ L2(R+; τdτ) given by the formula

f(τ) =
2

π2τ

∞∫

0

x sinh πx(Fcg)(x)

(Fcµ)(x) +
√

2
π

Kix(τ)dx, (72)

where the latter integral exists in the Lebesgue sense.

Proof. In fact, from conditions of the theorem it follows that convolution (µ∗f)3(t) ∈ L2(R+; dt).
Moreover, by virtue of the generalized Minkowski and Schwarz inequalities and after calculation of the
inner integral, we find (see (15), (16))




∞∫

0

∣∣∣∣∣∣

∞∫

0

e−u cosh tf(u)du

∣∣∣∣∣∣

2

dt




1/2

≤
∞∫

0

|f(u)|K1/2
0 (2u)du

≤



∞∫

0

K0(u)|f(u)|2du




1/2 


∞∫

0

K0(2u)

K0(u)
du




1/2

< ∞.
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Therefore one can consider the left-hand side of equation (68) from L2(R+; dt). Taking the cosine Fourier
transform (7) from its both sides, accounting (13) and the Fubini theorem we come out with the equality

Kix[f ]

[
(Fcµ)(x) +

√
2

π

]
= (Fcg)(x).

Hence via (69), (70) and since (Fcg)(x) ∈ L2(R+; dx), we obtain

Kix[f ] =
(Fcg)(x)

(Fcµ)(x) +
√

2
π

∈ L2(R+; x sinh πxdx) ∩ L1(R+; sinh πxdx)

and

f(τ) = l.i.m.
N→∞

2

π2τ

N∫

0

x sinh πx(Fcg)(x)

(Fcµ)(x) +
√

2
π

Kix(τ)dx.

Now in the same manner as in Theorem 9 we show using (70) and (71) that the latter solution belongs to
L0,1

2 ∩ L2(R+; tdt) and can be written in the form (72). Theorem 11 is proved.
Our final result is about a solvability of the following systems of convolution integral equations

{
h(t) + (f∗µ1){ 1

2
}(t) = g1(t),

f(t) + (µ2∗h){ 3
4
}(t) = g2(t),

(73)

where µi, gi, i = 1, 2 are given functions and a pair of solutions (f, h) is seeking in (L2(R+; dt), L2(R+; tdt)).
This means that f ∈ L2(R+; dt) and h ∈ L2(R+; tdt), respectively.

Theorem 12 Let g1 ∈ L2(R+; tdt), µ1 ∈ L1(R+; dt), g2 ∈ L2(R+; dt), µ2 ∈ L1(R+; dt)∩L2(R+; dt) and
x−1Kix[µi] = O(1), x → 0, i = 1, 2. If

∆(x) = 1− π

2

(F{ c
s
}µ1)(x)(F{ c

s
}µ2)(x)

x sinh πx
6= 0, x ∈ R+, (74)

Kix[g1] ∈ L2((0, 1); dx), (75)

(F{ c
s
}g2)(x) ∈ L2((1,∞); x sinh πx dx), (76)

then there exists a unique solution (f, h) of systems (73) in the class (L2(R+; dt),
L2(R+; tdt)) given by formulas

f(t) = l.i.m.
N→∞

√
2

π

N∫

0

{cos xτ

sin xτ

} ∣∣∣∣∣
Kix[g1]

π
2

(F{ c
s }

µ1)(x)

x sinh πx

(F{ c
s
}g2)(x) 1

∣∣∣∣∣
dx

∆(x)
, (77)

h(t) = l.i.m.
N→∞

2

π2

N∫

0

x sinh πx Kix(t)

∣∣∣∣
1 Kix[g1]

(F{ c
s
}µ2)(x) (F{ c

s
}g2)(x)

∣∣∣∣
dx

∆(x)
. (78)
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Proof. Indeed, by using Corollaries 1, 2 systems (73) can be written in equivalent forms as linear
algebraic systems in terms of the Fourier and Kontorovich-Lebedev transforms with respect to unknown
pair ((F{ c

s
}f)(x), Kix[h]). Its nonzero determinant ∆(x) is given by (74). Precisely, in a matrix form it

becomes
(

1 π
2

(F{ c
s }

µ1)(x)

x sinh πx

(F{ c
s
}µ2)(x) 1

)
·
(

Kix[h]
(F{ c

s
}f)(x)

)
=

(
Kix[g1]

(F{ c
s
}g2)(x)

)
.

Therefore Cramer’s rule and inversion formulas (8), (12) lead us to the unique pair of solutions (f, h)
represented by (77), (78), where

(F{ c
s
}f)(x) =

1

∆(x)

∣∣∣∣∣
Kix[g1]

π
2

(F{ c
s }

µ1)(x)

x sinh πx

(F{ c
s
}g2)(x) 1

∣∣∣∣∣ ,

Kix[h] =
1

∆(x)

∣∣∣∣
1 Kix[g1]

(F{ c
s
}µ2)(x) (F{ c

s
}g2)(x)

∣∣∣∣

belong to L2(R+; dx), L2(R+; x sinh πxdx), respectively. The latter fact is guaranteed by conditions (74),
(75), (76) and Corollaries 1, 2. Theorem 12 is proved.
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