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Campus Sur, E-15782 Santiago, Spain

e-mail: ladra@usc.es

and Pedro V. Silva
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ABSTRACT

The generalized conjugacy problem (has g a conjugate in K for K rational?) is
solved for [f.g. free]-by-finite groups with constraints that go beyond the context-free
level, a new result for the free group itself. Moldavanskii’s theorem on simultaneous
conjugacy of f.g. subgroups of a free group is also generalized for [f.g. free]-by-
finite groups and this wider class of constraints. The solution set of the equation
x−1gϕ(x) ∈ K in the free group (ϕ a virtually inner automorphism, K rational)
is shown to be rational and effectively constructible, and a similar result is proved
for the equation xgx−1 ∈ K in a [f.g. free]-by-finite group. The twisted conjugacy
problem with context-free constraints is also proved to be decidable for the free
group.

1 Introduction

Given a group G, the conjugacy problem for G is said to be decidable if there exists an
algorithm that decides, for arbitrary g, h ∈ G, whether or not they are conjugate. The
terminology generalized word problem arises in combinatorial group theory when we replace
the identity element in the equation g = 1 by an arbitrary finitely generated subgroup H
through g ∈ H. What could be the analogous generalization for an arbitrary element h?

The standard notion of a finitely generated subset of a monoid/group is that of a ratio-
nal subset, finite sets and finitely generated submonoids/subgroups constituting particular
cases. Rational sets/languages play a most important role in language theory, automata
theory and combinatorics on words (see [2] and [22]). We denote by RatG the set of all
rational subsets of G.
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The generalized conjugacy problem for G is said to be decidable if there exists an algo-
rithm that decides, for arbitrary g ∈ G and K ∈ RatG, whether or not

∃x ∈ G : xgx−1 ∈ K.

Further generalization is obtained through the use of constraints. Let C denote a collec-
tion of subsets of G. The generalized conjugacy problem for G with constraints in C is said
to be decidable if there exists an algorithm that decides, for arbitrary g ∈ G, K ∈ RatG
and C ∈ C, whether or not

∃x ∈ C : xgx−1 ∈ K.

A groupG is said to be virtually free if it has a free normal subgroup F of finite index. We
consider in this paper the fundamental subcase of [finitely generated free]-by-finite groups,
when F is assumed to be finitely generated as well. Clearly, every [f.g. free]-by-finite group
is f.g., but the converse does not hold, most surface groups constituting counterexamples
[4].

The conjugacy problem for [f.g. free]-by-finite groups is known to be decidable. This
follows for instance from the fact they are hyperbolic, and hyperbolic groups have decidable
conjugacy problem [12, 17]. The conjugacy problem has also been solved for [f.g. free]-by-
cyclic groups by Bogopolski, Martino, Maslakova and Ventura [4].

On the other hand, Diekert, Gutiérrez and Hagenah proved in [7] a very strong gener-
alization of the celebrated result of Makanin on free group equations [18]. They prove that
the existential theory of equations with rational constraints in a free group FA is decidable
(PSPACE-complete, actually). As a consequence, the generalized conjugacy problem with
rational constraints is decidable for FA. Also, the problem of determining, for arbitrary
H1, . . . ,Hn,K1, . . . ,Kn ≤f.g. FA and L ∈ RatFA, whether or not

∃x ∈ L : ∀i ∈ {1, . . . , n} xHix
−1 ⊆ Ki

turns out to be decidable as well, generalizing the classical result of Moldavanskii [20] (see
also [16, Prop. I.2.23]), where no rational constraints are considered.

We concentrate our efforts on the one-variable equation

xgx−1 ∈ K

for a [f.g. free]-by-finite group G, g ∈ G and K ∈ RatG. We prove that its solution set
is rational and effectively constructible. It follows that the generalized conjugacy problem
for G with context-free constraints and many other types of constraints beyond rational
is decidable. This seems to be a new result for the free group itself. We also obtain a
generalization of the results of Moldavanskii for [f.g. free]-by-finite groups with context-
free constraints. Example 5.1 shows that these results cannot be generalized to arbitrary
one-variable equations, even for free groups.

On doing so, we are led to investigate the solution set of the equation x−1gϕ(x) ∈ K
for g ∈ FA, K ∈ RatFA and a virtually inner automorphism ϕ of FA. An automorphism
is said to be virtually inner if some of its powers is an inner automorphism. These are the
type of automorphisms of FA induced by inner automorphisms of [f.g. free]-by-finite groups.
Bogopolski, Martino, Maslakova and Ventura proved in [4] that the equation x−1gϕ(x) = h
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is solvable for arbitrary g, h ∈ FA and ϕ ∈ AutFA (twisted conjugacy problem). We
prove that the solution set of x−1gϕ(x) ∈ K is rational and effectively constructible if ϕ
is virtually inner. We also show (considering arbitrary automorphisms) that the twisted
conjugacy problem for FA with context-free constraints (and others) is decidable.

Example 5.2 shows that these results cannot be generalized to arbitrary automorphisms.
The problem of determining the existence of solutions for arbitrary ϕ and K remains open.

The techniques used in this paper are essentially automata-theoretic, and various com-
binatorial aspects of finite and infinite words are explored. Topological and dynamical
arguments play also an important role, namely when we need to involve the border of a free
group and extensions of automorphisms to its end completion. Our results depend strongly
on the following important theorems regarding ϕ ∈ AutFA: (1) the fixed point subgroup
Fixϕ is f.g. (Cooper [6] and Gersten [11]); (2) Fixϕ is effectively constructible (Maslakova
[19]); (3) every fixed point of the end extension ϕ̂ is either singular, an attractor or a repeller
(Gaboriau, Jaeger, Levitt and Lustig [10]).

We describe now the structure of the paper.
In Section 2, all preliminary concepts and results needed for the main proofs are pre-

sented. This section is organized in four subsections (Languages and automata, Free groups,
Automorphisms, Virtually free groups) and is intended to be fairly self-contained to make
the paper readable for both group-theorists and automata-theorists.

Section 3 is devoted to the discussion of the equation x−1gϕ(x) ∈ K in a free group FA,
for g ∈ FA, ϕ ∈ AutFA virtually inner and K ∈ RatFA. The main proofs of the paper can
be found here.

Section 4 applies the results of Section 3 to [f.g. free]-by-finite groups, providing so-
lutions for the generalized conjugacy problem with constraints, simultaneous conjugacy of
subgroups and other problems.

Finally, we present in Section 5 several counterexamples that show that the most obvious
generalizations of our results fail. We suggest also open problems that arise naturally from
this work.

2 Preliminaries

2.1 Languages and automata

Given a finite alphabet A, we denote by A∗ the free monoid on A, with 1 denoting the
empty word. A subset of A∗ is said to be an A-language.

We say that A = (Q, q0, T, E) is a (finite) A-automaton if:

• Q is a (finite) set;

• q0 ∈ Q and T ⊆ Q;

• E ⊆ Q×A×Q.

A nontrivial path in A is a sequence

p0
a1−→p1

a2−→ . . .
an−→pn
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with (pi−1, ai, pi) ∈ E for i = 1, . . . , n. Its label is the word a1 . . . an ∈ A∗. It is said to be
a successful path if p0 = q0 and pn ∈ T . We consider also the trivial path p 1−→p for p ∈ Q.
It is successful if p = p0 ∈ T . The language L(A) recognized by A is the set of all labels of
successful paths in A. A path of minimal length between two vertices is called a geodesic,
and so does its label by extension.

The automaton A = (Q, q0, T, E) is said to be deterministic if, for all p ∈ Q and a ∈ A,
there is at most one edge of the form (p, a, q). We write then q = pa. We say that A is trim
if every q ∈ Q lies in some successful path.

The star operator on A-languages is defined by

L∗ =
⋃
n≥0

Ln,

where L0 = {1}. An A-language L is said to be rational if L can be obtained from finite
languages using finitely many times the operators union, product and star. Alternatively,
L is rational if and only if it is recognized by a finite (deterministic) A-automaton A =
(Q, q0, T, E). The set of all rational A-languages is denoted by RatA.

Given a finitely generated monoid M , we say that K ⊆ M is a rational subset of M if
K can be obtained from finite subsets of M using finitely many times the operators union,
product and star. Alternatively, if we fix a surjective homomorphism ϕ : A∗ → M , K is
rational if and only if K = ϕ(L) for some L ∈ RatA. The set of all rational subsets of M
is denoted by RatM.

In the statement of a result, we shall say that K ∈ RatM is effectively constructible
if there exists an algorithm to produce from the data implicit in the statement a finite
A-automaton A such that K = ϕ(L(A)).

2.2 Free groups

Let A denote a finite alphabet and let A−1 denote a set of formal inverses of A. The free
group on A is the quotient

FA = (A ∪A−1)∗/η,

where η denotes the congruence on (A ∪A−1)∗ generated by the relation

{(aa−1, 1) | a ∈ A ∪A−1}.

We denote the canonical projection (A ∪A−1)∗ → FA by π.
Let

RA = (A ∪A−1)∗ \ (
⋃

a∈A∪A−1

(A ∪A−1)∗aa−1(A ∪A−1)∗)

denote the set of all reduced words in (A ∪ A−1)∗ and let ι : (A ∪ A−1)∗ → RA denote
the reduction map. Since η = Kerι, we abuse notation and denote also by ι the induced
bijection FA → RA. The length of g ∈ FA is defined by |g| = |ι(g)|. To simplify notation, we
shall usually write u = ι(u). We consider also sometimes the natural actions of (A ∪A−1)∗

on FA defined by

(A ∪A−1)∗ × FA → FA FA × (A ∪A−1)∗→ FA

(u, g) 7→ ug = π(u)g (g, u) 7→ gu = gπ(u).

4



Basically, when we have a product of words and free group elements, we assume that the
result is a free group element.

Let u, v ∈ RA. If u = vx for some x ∈ RA, we say that v is a prefix of u and write u ≤ v.
This partial order on RA induces the prefix partial order on FA.

If A = (Q, q0, T, E) is an (A∪A−1)-automaton, the dual of an edge (p, a, q) is (q, a−1, p).
Then A is said to be dual if E contains the duals of all edges. It is said to be inverse if it
is dual, deterministic, trim and |T | = 1.

Given a finitely generated subgroup H of FA, we denote by R(H) the finite automaton
associated to H by the construction often referred to by Stallings foldings. This construc-
tion, that can be traced back to the early part of the twentieth century [23, Chap. 11], was
made explicit by Serre [24] and Stallings [26] (see also [14]).

We can describe it briefly as follows.

1. We take a finite generating set X = {x1, . . . , xn} for H in reduced form.

2. We build the flower automaton

// •oo

x1

�� ...
...

xn

PP

where the petals are paths labelled by the generators and their dual edges.

3. We successively fold all edges of the form

•

•

a
??~~~~~~~

a
// •

(a ∈ A ∪A−1) until no further folding applies.

The following proposition summarizes some of the relevant properties of R(H) (see [14]):
Proposition 2.1 Let H ≤f.g. FA. Then:

(i) R(H) is a finite inverse automaton;

(ii) if p u−→q is a path in R(H), so is p u−→q;

(iii) R(H) does not depend on the finite reduced generating set chosen;

(iv) for every u ∈ RA, u ∈ L(R(H)) if and only if π(u) ∈ H;

(v) L(R(H)) ⊆ π−1(H).

We present now the important Benois Theorem, that establishes bridges between RatFA

and Rat(A ∪A−1):
Theorem 2.2 [1]
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(i) If L ∈ Rat(A ∪A−1), then L ∈ Rat(A ∪A−1) and is effectively constructible.

(ii) If K ⊆ FA, then K ∈ RatFA if and only if K ∈ Rat(A ∪A−1).

It is convenient to summarize some of the properties of Rat(A ∪ A−1) in the following
result (see [2] e.g.):
Proposition 2.3 Let A be a finite alphabet. Then:

(i) Rat(A ∪A−1) is closed for Boolean operations;

(ii) if L ∈ Rat(A ∪A−1), then L−1 ∈ Rat(A ∪A−1).

Moreover, all the constructions are effective.

2.3 Automorphisms

Let AutFA denote the group of all automorphisms of FA. If ϕ ∈ AutFA and no confusion
arises, we shall denote also by ϕ the corresponding bijection of RA.

The following result is immediate:
Proposition 2.4 Let L ⊆ RA and ϕ ∈ AutFA. If L ∈ Rat(A ∪ A−1), then ϕ(L) ∈
Rat(A ∪A−1) and the construction is effective.

Indeed, it follows from the equality ϕ(L) = ψ(L), where ψ : (A ∪ A−1)∗ → (A ∪ A−1)∗

is the monoid homomorphism defined by ψ(a) = ϕ(a) (a ∈ A ∪A−1).
Note that an endomorphism of FA is an automorphism if and only if it is onto, due to

FA being hopfian [16, Prop. I.3.5]. The inner automorphisms of FA are of the form

λg : FA → FA (g ∈ FA).
x 7→ gxg−1

It is well known that the inner automorphisms of FA constitute a normal subgroup of
AutFA.

We say that ϕ ∈ AutFA is virtually inner if ϕn is inner for some n ≥ 1. We shall denote
the subset of all virtually inner automorphisms of FA by ViaFA.
Proposition 2.5 Let ϕ ∈ ViaFA and g ∈ FA. Then ϕ−1, λgϕ,ϕλg ∈ ViaFA.

Proof. Assume that ϕn = λz. Then (ϕ−1)n = (ϕn)−1 = (λz)−1 = λz−1 and so ϕ−1 ∈
ViaFA.

It is immediate that
ϕλh = λϕ(h)ϕ (1)

holds for every h ∈ FA, hence

(λgϕ)n = λgλϕ(g) . . . λϕn−1(g)ϕ
n = λgϕ(g)...ϕn−1(g)z

and so λgϕ ∈ ViaFA. Similarly,

(ϕλg)n = λϕ(g)...ϕn−1(g)zg

and ϕλg ∈ ViaFA. �
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A most important feature of automorphisms of FA is the bounded reduction property:
Proposition 2.6 [10] Let ϕ ∈ AutFA. Then there exists some M ∈ N such that, whenever
u, v ∈ RA with uv reduced,

|ϕ(u)ϕ(v)| ≥ |ϕ(u)|+ |ϕ(v)| − 2M.

In other words, at most M letters of ϕ(u) (or ϕ(v)) can be cancelled in the reduction
of ϕ(u)ϕ(v).

Given ϕ ∈ AutFA, we write

Fixϕ = {x ∈ FA | ϕ(x) = x}.

Cooper [6] and Gersten [11] proved that Fixϕ is a finitely generated subgroup of FA, which
implies that Fixϕ ∈ RatFA. Bestvina and Handel improved this result in their celebrated
paper on train tracks:
Theorem 2.7 [3] For every ϕ ∈ AutFA, Fixϕ is a finitely generated subgroup of FA of
rank at most |A|.

The following result from Maslakova implies that Fixϕ is effectively constructible from
ϕ.
Theorem 2.8 [19] For every ϕ ∈ AutFA, it is possible to compute a finite generating set
for Fixϕ.

An infinite word α = a1a2 . . . (ai ∈ A ∪ A−1) is said to be irreducible if aiai+1 is
irreducible for every i ∈ N. Let ∂FA denote the set of all infinite irreducible words a1a2 . . .
(ai ∈ A ∪A−1). Write

F̂A = FA ∪ ∂FA.

Given α ∈ F̂A (irreducible) and n ∈ N, we denote by α(n) the n-th letter of α (if α ∈ FA

and n > |α|, we set α(n) = 1). We also write

α[n] = α(1)α(2) . . . α(n).

For all α, β ∈ F̂A, we define

r(α, β) =
{

min{n ∈ N | α(n) 6= β(n)} if α 6= β
∞ if α = β

and we write
d(α, β) = 2−r(α,β),

using the convention 2−∞ = 0. It follows easily from the definition that d is an ultrametric
on F̂A, satisfying in particular the axiom

d(α, β) ≤ max{d(α, γ), d(γ, β)}.

It is well known that the metric space F̂A is compact (and therefore complete) (see [5] for
a more general situation), in fact is the completion of its subspace FA. We say that F̂A
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is the end completion of FA and ∂FA its border. Note that limn→∞ αn = α if and only if
limn→∞ r(αn, α) = ∞ if and only if

∀k ∈ N ∃m ∈ N ∀n ∈ N (n ≥ m⇒ α[k]
n = α[k]).

Furthermore, since F̂A is complete, a sequence u1, u2, . . . ∈ FA converges if and only if
it is a Cauchy sequence, i.e., if the condition

∀k ∈ N ∃m ∈ N ∀n, n′ ∈ N (n, n′ ≥ m⇒ u[k]
n = u

[k]
n′ )

holds.
We also note that the product

FA × FA → FA

(u, v) 7→ uv

and the mixed product
FA × ∂FA → ∂FA

(u, α) 7→ uα

are continuous operations for the product topology.
If u ∈ RA is a nonempty cyclically reduced word, we denote by uω the infinite reduced

word uuu . . . These words constitute important examples of elements in the border of FA.
The following result is well known (see [5] for a more general discussion):

Proposition 2.9 Let ϕ be an injective endomorphism of FA. Then ϕ admits a unique
continuous extension ϕ̂ : F̂A → F̂A. This extension is given by

ϕ̂(α) = lim
n→∞

ϕ(α[n]).

We shall refer to ϕ̂ as the end extension of ϕ.
Let ϕ ∈ AutFA and α ∈ Fixϕ̂. We say that α is singular if α is an adherence value of

Fixϕ. Otherwise, we say that α is regular.
It is common knowledge that Fixϕ = Fixϕ−1 yields Fixϕ̂ = Fixϕ̂−1: indeed, α = ϕ̂(α) =

limn→∞ ϕ(α[n]) yields

ϕ̂−1(α) = ϕ̂−1( lim
n→∞

ϕ(α[n])) = lim
n→∞

ϕ−1ϕ(α[n])) = lim
n→∞

α[n] = α

since continuous mappings commute with limits. Therefore we can define α ∈ Fixϕ̂ regular
to be

• an attractor if

∃ε > 0 ∀β ∈ F̂A (d(α, β) < ε ⇒ lim
n→∞

ϕ̂n(β) = α);

• a repeller if
∃ε > 0 ∀β ∈ F̂A (d(α, β) < ε ⇒ lim

n→∞
ϕ̂−1

n
(β) = α).

Therefore α is a repeller for ϕ̂ if and only if it is an attractor for ϕ̂−1.
The following result of Gaboriau, Jaeger, Levitt and Lustig is essential for the classifi-

cation of the fixed points of the end extension:
Theorem 2.10 [10] Let ϕ ∈ AutFA and α ∈ Fixϕ̂. Then α is either singular, an attractor
or a repeller.
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2.4 Virtually free groups

We say that a group G is virtually free if G has a free (normal) subgroup F of finite index.
Clearly, if F is finitely generated, so is G. However, the converse need not to be true. We
shall be considering the case of F being f.g. Such groups are said to be [f.g. free]-by-finite.

Assume that F = FA is a f.g. free normal subgroup of finite index of the [f.g. free]-by-
finite group G. We may decompose G as a disjoint union of cosets

G = Fb0 ∪ . . . ∪ Fbm (2)

with b0 = 1. For i = 1, . . . ,m, and since F EG, we can define ϕi ∈ AutF by ϕi(u) = biub
−1
i .

Since |G/F | = m + 1, we have bm+1
i ∈ F and so ϕi ∈ ViaF. Taking in mind the normal

form (2), it follows easily that for i, j ∈ {1, . . . ,m} there exist ϕi ∈ ViaFA, ri, sij ∈ RA and
mappings α : {1, . . . ,m} → {1, . . . ,m}, β : {1, . . . ,m}2 → {0, . . . ,m} such that G admits a
(finite) presentation of the form

〈A, b1, . . . , bm | biab−1
i = ϕi(a), b−1

i = ribα(i), bibj = sijbβ(i,j) (i, j = 1, . . . ,m)〉, (3)

which we shall fix as the standard presentation for G.
The following result is a particular case of [25, Proposition 4.1]:

Proposition 2.11 Let G = Fb0∪ . . .∪Fbm be a [f.g. free]-by-finite group with FA = F EG
f.g. Then RatG consists of all subsets of the form

m⋃
i=0

Libi (Li ∈ RatFA).

Moreover, it follows from the proof of [25, Proposition 4.1] that, given a standard presen-
tation for G and L ∈ RatG, the components Li can be effectively computed from L. Thus
it is fair to assume that a rational subset of G is supposedly given in this form. Therefore
all questions regarding effectiveness of computations or constructions will be discussed at
the component level.

3 The equation x−1gϕ(x) ∈ K in the free group

We consider now the equation x−1gϕ(x) ∈ K for g ∈ FA, ϕ ∈ AutFA and K ∈ RatFA. We
shall use the notation

Sol(g, ϕ,K) = {x ∈ FA | x−1gϕ(x) ∈ K}.

Lemma 3.1 Let H ≤f.g. FA and R(H) = (Q, q0, q0, E). For every q ∈ Q, fix a geodesic
q0

gq−→q in R(H). Write

J = {(q, a) ∈ Q× (A ∪A−1) | qa is not defined }. (4)

Then RA decomposes as a union of rational (A ∪A−1)-languages through

RA = (
⋃
q∈Q

Hgq)
⋃

(
⋃

(q,a)∈J

HgqaRA ∩RA). (5)
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Proof. Let x ∈ RA, and assume that x /∈
⋃

q∈QHgq. Suppose that q0
x−→q is a path in

R(H). Then xg−1
q ∈ L(R(H)) and so xg−1

q ∈ L(R(H)). By Lemma 2.1(ii) and (iv), we

obtain xg−1
q ∈ L(R(H)) and π(xg−1

q ) ∈ H. Thus π(x) ∈ Hgq and so x = x ∈ Hgq, hence
a contradiction. Thus x labels no path q0

x−→q in R(H) and so we may factor x = x′ax′′

where q0
x′−→q is a path in R(H) and (q, a) ∈ J . By the argument above, we have x′ ∈ Hgq

and so x ∈ HgqaRA ∩RA. Therefore (5) holds.
Since H is finitely generated, we have H ∈ RatFA. By Theorem 2.2(ii), Hgq ∈ Rat(A∪

A−1). Since RA = (A ∪A−1)∗ ∈ Rat(A ∪ A−1) by Theorem 2.2(i) and Rat(A ∪ A−1) is
closed for intersection by Proposition 2.3(i), we conclude that

HgqaRA ∩RA ∈ Rat(A ∪A−1)

as well. �

For the remaining part of this section, we fix ϕ ∈ ViaFA such that ϕn = λz, H = Fixϕ
and R(H) = (Q, q0, q0, E). For every q ∈ Q, we fix a geodesic q0

gq−→q in R(H) and take J
as in (4).

Recall that u ∈ FA is primitive if it is not a positive power of a different word.
Lemma 3.2 For every (q, a) ∈ J , let

Y = {v ∈ RA | gqa ≤ v ≤ ϕ(v)}

and write z = rdkr−1 with l ≥ 1 and d primitive cyclically reduced. Then there exist finite
subsets X1, X2, X3 of RA such that

Y = X1 ∪ rd∗X2 ∪ r(d−1)∗X3. (6)

Proof. We start with an auxiliary lemma that does most of the job:
Lemma 3.3 Suppose that (vi) is an infinite sequence of distinct elements of Y . Then:

(i) z 6= 1;

(ii) (vi)i must have rdω or r(d−1)ω as an adherence value;

(iii) ϕ(d) = td2d1t
−1 for some t ∈ RA and some factorization d = d1d2;

(iv) there exist i0, j0 ∈ N such that

ϕ(rdi0) = rdj0d1t
−1, ϕ(rd−(j0+1)) = rd−i0d−1

2 t−1;

(v) there exists M ′ ∈ N such that, for all f ∈ RA and k ∈ N,

rdM ′+kf ∈ Y ⇔ rdM ′
f ∈ Y,

rd−M ′−kf ∈ Y ⇔ rd−M ′
f ∈ Y.

10



Proof. Suppose that (vi) is an infinite sequence of distinct elements of Y . Since F̂A is
compact, (vi) has an adherence value α ∈ ∂FA. Since d induces the discrete topology on
FA, we must have α ∈ ∂FA. Refining the sequence (vi), we may assume that limi→∞ vi = α.
Since ϕ̂ is continuous, we get

ϕ̂(α) = ϕ̂( lim
i→∞

vi) = lim
i→∞

ϕ(vi).

Since vi ≤ ϕ(vi) for every i and limi→∞ |vi| = +∞ due to the vi being distinct, it follows
easily that limi→∞ vi = limi→∞ ϕ(vi). Hence

ϕ̂(α) = lim
i→∞

vi = α

and so α ∈ Fixϕ̂.
By Theorem 2.10, α is either singular, an attractor or a repeller. Suppose that α is

singular. Then there exists a sequence (hi) in H = Fixϕ such that α = limi→∞ hi. In
particular, there exists some hj ∈ H such that r(hj , α) ≥ |gq|+ 2. Since α = limi→∞ vi, it
follows that gqa ≤ α. Thus gqa ≤ hj and so gqa labels a path in R(H) out of the initial
vertex, contradicting (q, a) ∈ J . Therefore α is either an attractor or a repeller.

Recall we are assuming ϕn = λz. Suppose that z = 1. Then the orbit

{ϕi(u); i ∈ Z}

is finite for every u ∈ FA. However, if α is an attractor (respectively, a repeller), there
exists some u ∈ FA such that limi→∞ ϕi(u) = α (respectively, limi→∞ ϕ−i(u) = α), hence
a contradiction since an infinite word cannot be the limit of finitely many finite words.
Therefore z 6= 1 and (i) holds.

We have
lim
i→∞

zi = rddd . . . = rdω

and limi→∞ z−i = r(d−1)ω. We show next that

α ∈ {rdω, r(d−1)ω}. (7)

Assume first that α is an attractor. Then there exists some m ∈ N such that

∀β ∈ F̂A (r(β, α) > m ⇒ lim
i→∞

ϕ̂i(β) = α).

Since the sequence (vi) is infinite and α = limi→∞ vi, there exists some j ∈ N such that
r(α, vj) > m. Thus α = limi→∞ ϕi(vj). In particular, since ϕn = λz,

α = lim
i→∞

ϕni(vj) = lim
i→∞

zivjz
−i = lim

i→∞
rsir−1vjrs

−ir−1.

Hence |skr−1vjrs
−k| > |r−1vjr| for some k and so neither the first nor the last letter

of skr−1vjrs
−k are cancelled in its reduction. Hence, for every i ≥ k,

zivjz−i = rsi−kskr−1vjrs−ksk−ir−1

11



and so α = rsω = rdω as claimed.
Assume now that α is a repeller. Then there exists some m ∈ N such that

∀β ∈ F̂A (r(β, α) > m ⇒ lim
i→∞

ϕ̂−1
i
(β) = α).

Similarly to the attractor case, we get

α = lim
i→∞

ϕ−ni(vj) = lim
i→∞

z−ivjz
i

for some j, and finally α = r(d−1)ω. Therefore (7) holds and so does (ii).
To prove (iii), we show that it follows from the equality ϕ̂(rdω) = rdω. So, even if α =

r(d−1)ω, we may derive that ϕ(d−1) = td−1
1 d−1

2 t−1 for some t ∈ RA and some factorization
d−1 = d−1

2 d−1
1 , that yields (iii) as well after inversion.

Recall that β ∈ ∂FA has period p if β(i+p) = β(i) for every i ∈ N. Write ϕ(d) = tct−1

with c cyclically reduced. Then rdω = ϕ̂(rdω) = xcω for some x ∈ RA and so dω has period
|c|. Since dω has period |d| trivially, it follows from the classical Fine and Wilf’s Theorem
[8] that gcd(|d|, |c|) is a period of dω as well. Since d is not a proper power, this implies
that |d| must divide |c| and so c = (d2d1)k for some cyclic conjugate d2d1 of d = d1d2 and
some k ≥ 1. Now

ϕ(d) = tct−1 = t(d2d1)kt−1 = (td2d1t
−1)k.

Since d is primitive, so must be ϕ(d), hence k = 1 and so (iii) holds.
To prove (iv), assume first that α = rdω. Then

rdω = ϕ̂(rdω) = ϕ(r)t(d2d1)ω = ϕ(r)td2dω,

hence ϕ(r)td2di = rdj for some i, j ∈ N. Thus

ϕ(rdi+1) = ϕ(r)t(d′)i+1t−1 = ϕ(r)td2did1t−1 = rdjd1t
−1.

Thus there exist i0, j0 ∈ N such that ϕ(rdi0) = rdj0d1t
−1. Now in FA we have

ϕ(rd−(j0+1)) = ϕ(rdi0)ϕ(d−(i0+j0+1)) = rdj0d1t
−1(td2d1t

−1)−(i0+j0+1)

= rdj0d1(d−1
1 d−1

2 )i0+j0+1t−1 = rdj0(d−1
2 d−1

1 )i0+j0d−1
2 t−1

= rd−i0d−1
2 t−1.

On the other hand, if α = r(d−1)ω, we use a similar argument to show that there
exist i0, j0 ∈ N such that ϕ(rd−(j0+1)) = rd−i0d−1

2 t−1. Then we proceed to get ϕ(rdi0) =
rdj0d1t

−1 and so (iv) holds.
Let M be the constant from Proposition 2.6. Let M ′ ≥ i0 +M, j0 + 1 +M be such that

|rdM ′ | > |gq|.
Since |rdM ′ | > |gq|, we have rdM ′+kf ∈ gqaRA∩RA if and only if rdM ′

f ∈ gqaRA∩RA.
For every i ≥ i0, we have

ϕ(rdi) = rdj0d1t
−1(td2d1t

−1)i−i0 = rdj0+i−i0d1t
−1.

In particular,

ϕ(rdM ′+k) = rdj0+M ′+k−i0d1t
−1, ϕ(rdM ′

) = rdj0+M ′−i0d1t
−1. (8)
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By Proposition 2.6, the reduction between ϕ(rdM ′+k) and ϕ(f) affects at most M letters in
each word. Since M ′ ≥ i0 +M , it follows that the reduced factor between ϕ(rdM ′+k) and
ϕ(f) is the same as between ϕ(rdM ′

) and ϕ(f). Now rdM ′+kf can be obtained from rdM ′
f

by inserting dk after r, and it follows from (8) and our comment on the type of reduction
that also ϕ(rdM ′+kf) can be obtained from ϕ(rdM ′

f) by inserting dk after the prefix r.
Thus

rdM ′+kf ≤ ϕ(rdM ′+kf) ⇔ rdM ′
f ≤ ϕ(rdM ′

f).

Since |gqa| ≤ |rdM ′ |, it follows that rdM ′+kf ∈ Y ⇔ rdM ′
f ∈ Y .

The proof for the equivalence with d−1 is absolutely similar and can therefore be omitted.
Thus (v) holds. �

Back to the proof of Lemma 3.2, we assume that Y is infinite. By Lemma 3.3(i), z 6= 1.
We take M ′ from Lemma 3.3(v) and define

X1 = {v ∈ Y | (rdM ′ 6≤ v) ∧ (rd−M ′ 6≤ v)},

X2 = dM ′{f ∈ RA \ dRA | rdM ′
f ∈ Y },

X3 = d−M ′{f ∈ RA \ d−1RA | rd−M ′
f ∈ Y }.

Suppose that X1 is infinite. By Lemma 3.3(ii), X1 must have rdω or r(d−1)ω as an
adherence value, a contradiction since no word of X1 has rdM ′

or rd−M ′
as a prefix. Thus

X1 is finite.
Suppose next that X2 is infinite. By Lemma 3.3(ii), rX2 must have rdω or r(d−1)ω as

an adherence value, a contradiction since d 6≤ f . Thus X2 is finite. Similarly, we show that
X3 is finite.

We show now that (6) holds. We have X1 ⊆ Y by definition. Since rX2 ⊆ Y , we get
rd∗X2 ⊆ Y by Lemma 3.3(v). Similarly, r(d−1)∗X3 ⊆ Y .

Conversely, let v ∈ Y . If v /∈ X1, then rdM ′ ≤ v or r(d−1)M ′ ≤ v. Assume that
rdM ′ ≤ v. Then we may write v = rdM ′+kf with d 6≤ f . By Lemma 3.3(v), we get
rdM ′

f ∈ Y and so dM ′
f ∈ X2. Thus v = rdkdM ′

f ∈ rd∗X2. Similarly, if r(d−1)M ′ ≤ v, we
get v ∈ r(d−1)∗X3. Therefore (6) holds as required. �

Theorem 3.4 For every ϕ ∈ ViaFA,

Uϕ = {u ∈ RA | ϕ(x) = xu for some x ∈ RA}

is finite.

Proof. Consider H = Fixϕ, R(H) = (Q, q0, q0, E) and geodesics gq as before. By Lemma
3.1 and Theorem 2.2, it is enough to show that, for all q ∈ Q and (q, a) ∈ J ,

Uq = {u ∈ RA | ϕ(x) = xu for some x ∈ Hgq}

and
U(q,a) = {u ∈ RA | ϕ(x) = xu for some x ∈ HgqaRA ∩RA}

are finite.
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The claim is obvious for Uq since

(hgq)−1ϕ(hgq) = g−1
q h−1ϕ(h)ϕ(gq) = g−1

q h−1ϕ(h)ϕ(gq)

holds for every h ∈ H.
Let (q, a) ∈ J . We show that

U ′ = {u ∈ RA | ϕ(x) = xu for some x ∈ gqaRA ∩RA}

is finite. Indeed, by Lemma 3.2, and using its notation, we must have x ∈ Y = X1∪rd∗X2∪
r(d−1)∗X3 for some finite X1, X2, X3 ⊆ RA. Without loss of generality, we may assume that
Y is infinite. By Lemma 3.3(iii), there exists some m ∈ N such that |ϕ(dk)| = m+ |dk| for
every k ∈ Z \ {0}. Hence |ϕ(x)| − |x| is bounded for all x ∈ Y and so U ′ is finite.

Now, every x ∈ HgqaRA ∩ RA is equivalent in FA to a product hy with h ∈ H and
y ∈ gqaRA ∩ RA: indeed, if x = hgqav, then y = gqav is reduced (and so is yu) since
(gq, a) ∈ J and av is irreducible by assumption. Moreover,

ϕ(x) = xu⇒ ϕ(hgqav) = hgqavu⇒ ϕ(h−1)ϕ(hgqav) = h−1hgqavu
⇒ ϕ(gqav) = gqavu⇒ ϕ(y) = yu.

Thus U(q,a) = U ′ is finite as required. �

Corollary 3.5 For every ϕ ∈ ViaFA,

Vϕ = {v ∈ RA | x = ϕ(x)v for some x ∈ RA}

is finite.

Proof. By Proposition 2.6, we can take M to be a bounded reduction constant for ϕ−1.
By Theorem 3.4, we can define N = max{|u|; u ∈ Uϕ−1}. Let also

M ′ = max{|ϕ−1(u)|; |u| ≤M}.

Suppose that Vϕ is infinite. Then there exist x, v ∈ RA such that x = ϕ(x)v and |ϕ−1(v)| >
N + M + M ′. It follows that ϕ−1(x) = xϕ−1(v). By choice of M , and since ϕ(x)v is
irreducible, there exists a factorization x = x1x2 such that xϕ−1(v) = x1x2ϕ−1(v) and
|x2| ≤M . Thus

ϕ−1(x1) = x1x2ϕ−1(v)ϕ−1(x−1
2 ) = x1x2ϕ−1(v)ϕ−1(x−1

2 )

since |ϕ−1(v)| > N+M+M ′ ensures that the reduction taking place between x2ϕ−1(v) and
ϕ−1(x−1

2 ) does not cancel the first letter of x2ϕ−1(v). Thus w = x2ϕ−1(v)ϕ−1(x−1
2 ) ∈ Uϕ−1 .

Since |x2| ≤ M , |ϕ−1(v)| > N + M + M ′ and |ϕ−1(x−1
2 )| ≤ M ′, we get |w| > N ,

contradicting the definition of N . Therefore Vϕ is finite. �
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Given u, v ∈ RA, we denote by u ∧ v the longest common prefix of u and v. Given
u ∈ RA and k ∈ N, we define Sk(u) to be the suffix of u of length k if |u| > k and u
otherwise. We write u ≤s v if u is a suffix of v. Given u ∈ RA, we define

σ(u) = u ∧ ϕ(u).

We define also τ(u), ρ(u) ∈ RA through

u = σ(u)τ(u), ϕ(u) = σ(u)ρ(u).

We fix now M − 1 to be a bounded reduction constant for ϕ. We define σ′ : RA → RA

inductively through σ′(1) = 1 and

σ′(ua) = SM (σ′(u)τ(u)a ∧ σ′(u)ρ(u)ϕ(a))

for a ∈ A ∪A−1 and ua irreducible.
Intuitively, the purpose of σ′ is to encode the suffix of σ(u) that is relevant to establish

the profile of u as far as u−1ϕ(u) is concerned. In view of bounded reduction, we need at
most M letters, but often less (if reduction in the ϕ part shortened the word).
Lemma 3.6 (i) If |σ(v)| < M for every v < u, then σ′(u) = SM (σ(u)).

(ii) σ′(u) ≤s σ(u).

(iii) If σ′(u) = 1, then |σ′(v)| < M for every v < u.

(iv) If σ′(u) = 1, then σ(u) = 1.

(v) σ′(u)τ(u)a = (σ′(u)τ(u)a ∧ σ′(u)ρ(u)ϕ(a))τ(ua) for a ∈ A∪A−1 and ua irreducible.

(vi) σ′(u)ρ(u)ϕ(a) = (σ′(u)τ(u)a ∧ σ′(u)ρ(u)ϕ(a))ρ(ua) for a ∈ A ∪ A−1 and ua irre-
ducible.

Proof. (i) We use induction. The claim holds trivially for u = 1. Assume that u = u′a
(a ∈ A ∪ A−1), |σ(v)| < M for every v < u and the claim holds for u′. Then σ′(u′) =
SM (σ(u′)) = σ(u′). Hence

σ′(u) = SM (σ′(u′)τ(u′)a ∧ σ′(u′)ρ(u′)ϕ(a))
= SM (σ(u′)τ(u′)a ∧ σ(u′)ρ(u′)ϕ(a))
= SM (u′a ∧ ϕ(u′)ϕ(a)) = SM (u ∧ ϕ(u)) = SM (σ(u))

as required.
(ii) We use induction again. The claim holds trivially for u = 1 and all he cases when

σ′(u) = 1. Assume that u = va (a ∈ A ∪ A−1), σ′(u) 6= 1 and the claim holds for v. Write
σ(v) = xσ′(v). Then

σ′(u) ≤s σ
′(v)τ(v)a ∧ σ′(v)ρ(v)ϕ(a) ≤s xσ

′(v)τ(u′)a ∧ xσ′(v)ρ(v)ϕ(a)

since σ′(u) 6= 1 implies that xσ′(v)ρ(v)ϕ(a) is irreducible. Thus

σ′(u) ≤s σ(v)τ(v)a ∧ σ(v)ρ(v)ϕ(a) = va ∧ ϕ(va) = σ(u)
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as required.
(iii) Suppose that σ′(u) < M but |σ′(v)| = M for some v ≤ u. Assume that v is

the longest such prefix of u and u = va1 . . . ak (ai ∈ A ∪ A−1). By (ii), we may write
σ(v) = xσ′(v) for some x ∈ RA. Hence ϕ(v) = xσ′(v)ρ(v). Write σ′(v) = w1w2 with
w1 ∈ A ∪A−1. Since M − 1 is a bounded reduction constant for ϕ, we have

ϕ(va1 . . . ai) = xw1w2ρ(v)ϕ(a1 . . . ai) (9)

for every i ∈ {0, . . . , k}. We show now that

σ(va1 . . . ai) = xσ′(va1 . . . ai), w1 ≤ σ′(va1 . . . ai) (10)

holds for i = 0, . . . , k by induction. This is clear for i = 0, so assume that i > 0 and (10)
holds for i− 1. Since |σ(va1 . . . ai)| < M by maximality of v, we have

σ′(va1 . . . ai) = σ′(va1 . . . ai−1)τ(va1 . . . ai−1)ai ∧ σ′(va1 . . . ai−1)ρ(va1 . . . ai−1)ϕ(ai). (11)

By the induction hypothesis, w1 is the first letter of σ′(va1 . . . ai−1) and σ(va1 . . . ai−1) =
xσ′(va1 . . . ai−1). Suppose that w1 is cancelled in the reduction
σ′(va1 . . . ai−1)ρ(va1 . . . ai−1)ϕ(ai). Since

ϕ(va1 . . . ai) = ϕ(va1 . . . ai−1)ϕ(ai) = σ(va1 . . . ai−1)ρ(va1 . . . ai−1)ϕ(ai)
= xσ′(va1 . . . ai−1)ρ(va1 . . . ai−1)ϕ(ai),

this implies that w1 is cancelled in the reduction ϕ(v)ϕ(a1 . . . ai), contradicting (9). Thus
w1 ≤ σ′(va1 . . . ai) by (11). Since xw1 is irreducible, (11) yields

xσ′(va1 . . . ai) = xσ′(va1 . . . ai−1)τ(va1 . . . ai−1)ai ∧ xσ′(va1 . . . ai−1)ρ(va1 . . . ai−1)ϕ(ai)
= σ(va1 . . . ai−1)τ(va1 . . . ai−1)ai ∧ xσ′(va1 . . . ai−1)ρ(va1 . . . ai−1)ϕ(ai)
= va1 . . . ai ∧ σ(va1 . . . ai−1)ρ(va1 . . . ai−1)ϕ(ai) = va1 . . . ai ∧ ϕ(va1 . . . ai)
= σ(va1 . . . ai)

and so (10) holds. In particular, w1 ≤ σ′(va1 . . . ak) = σ′(u) and so σ′(u) 6= 1. Therefore
(iii) holds.

(iv) Suppose that σ′(u) = 1. Then |σ′(v)| < M for every v < u by (iii) and so
1 = σ′(u) = SM (σ(u)) by (i). Therefore σ(u) = 1.

(v) Write y = σ′(u)τ(u)a ∧ σ′(u)ρ(u)ϕ(a). We start by showing that

σ′(u)τ(u)a ∧ σ′(u)ρ(u)ϕ(a) = 1 ⇒ σ′(u) = σ(u). (12)

Indeed, assume that σ′(u) 6= σ(u). It follows from (i) that |σ(z)| ≥M for some z ≤ u. Let
z have minimal length. Still by (i), we must have σ′(z) = SM (σ(z)) and so |σ′(z)| = M .
Let v be the longest prefix of u satisfying |σ′(v)| = M . Since σ′(ua) ≤s y, we only have
to worry about the possibility σ′(ua) = 1. However, by the proof of (10), this case cannot
occur. Indeed, write ua = va1 . . . ak. If σ′(ua) < M , then we have |σ′(va1 . . . ai)| < M for
i = 1, . . . , k by maximality of v and so the conditions of (10) are satisfied. It follows that
σ′(ua) = σ′(va1 . . . ak) 6= 1 and so (12) holds.
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Suppose first that σ(u) = σ′(u). Then

σ′(u)τ(u)a = yτ(ua)⇔ σ(u)τ(u)a = (σ(u)τ(u)a ∧ σ(u)ρ(u)ϕ(a))τ(ua)
⇔ ua = (ua ∧ ϕ(ua))τ(ua) ⇔ ua = σ(ua)τ(ua).

Assume now that σ(u) 6= σ′(u). By (ii), σ(u) = xσ′(u) for some x ∈ RA. Thus xy ∈ RA

and so
xy = (xσ′(u)τ(u)a ∧ xσ′(u)ρ(u)ϕ(a))

= (σ(u)τ(u)a ∧ σ(u)ρ(u)ϕ(a)) = (ua ∧ ϕ(ua))
= σ(ua).

Hence
σ′(u)τ(u)a = yτ(ua)⇔ xσ′(u)τ(u)a = xyτ(ua)

⇔ σ(u)τ(u)a = σ(ua)τ(ua).

Therefore (v) holds.
(vi) Assume that σ(u) 6= σ′(u). Let σ(u) = xσ′(u). Thus xy ∈ RA and we saw in the

proof of (v) that xy = σ(ua). On the other hand, y 6= 1 implies that xσ′(u)ρ(u)ϕ(a)) ∈ RA

and so
σ′(u)ρ(u)ϕ(a) = yρ(ua)⇔ xσ′(u)ρ(u)ϕ(a) = xyρ(ua)

⇔ xσ′(u)ρ(u)ϕ(a) = σ(ua)ρ(ua)
⇔ ϕ(u)ϕ(a) = ϕ(ua),

proving the claim.
The proof for the case σ(u) = σ′(u) is analogous to the corresponding case in (v) and

can be omitted. �

Let θ : RA → RA ×RA ×RA be the mapping defined by

θ(u) = (σ(u), τ(u), ρ(u)).

Let K ∈ RatFA. We define an (A ∪A−1)-automaton C = (P, p0, T,D) by

• P = θ(RA).

• p0 = (1, 1, 1);

• T = {θ(u) ∈ P | π((τ(u))−1ρ(u)) ∈ K};

• given u ∈ RA and a ∈ A,
θ(u) a−→θ(ua)

is an edge of D if and only if ua ∈ RA and (τ(u) = 1 or |ρ(u)| ≤ N).

Let C′ = (P ′, p0, T
′, D′) denote the subautomaton of C obtained by removing all vertices

and edges that do NOT lie in some path starting at the initial vertex.
Lemma 3.7 (i) Let u, v ∈ RA and a ∈ A ∪ A−1 be such that ua ∈ RA and θ(u) = θ(v).

Then va ∈ RA and θ(ua) = θ(va).

(ii) C is deterministic.

(iii) if p0
u−→p is a path in C, then u ∈ RA and p = θ(u).

(iv) C′ is finite and effectively constructible.
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Proof. (i) Suppose that σ′(u) = σ′(v) = 1. By Lemma 3.6(iv), we get σ(u) = σ(v) = 1 and
so u = τ(u) = τ(v) = v. Hence we may assume that σ′(u) = σ′(v) 6= 1. Since θ(u) = θ(v),
Lemma 3.6(ii) yields

u = σ(u)τ(u) ≥s σ
′(u)τ(u) = σ′(v)τ(v) ≤s σ(v)τ(v) = v

and so ua ∈ RA implies va ∈ RA.
It follows from θ(u) = θ(v) and the definition of σ′ that σ′(ua) = σ′(va). By Lemma

3.6(v) and (vi), we get τ(ua) = τ(va) and ρ(ua) = ρ(va) as well. Thus θ(ua) = θ(va).
(ii) Immediate from (i).
(iii) We use induction. The case u = 1 being trivial, assume that u = va with a ∈ A∪A−1

and the claim holds for v. Let
p0

v−→p′
a−→p

be a path in C. By the induction hypothesis, we have v ∈ RA and p′ = θ(v). Since p′ a−→p is
an edge, we have p′ = θ(w) and p = θ(wa) for some w ∈ RA with wa ∈ RA and (τ(w) = 1
or |ρ(w)| ≤ N). By (i), it follows from θ(v) = θ(w) and wa ∈ RA that u = va ∈ RA and
p = θ(wa) = θ(va) = θ(u) as claimed.

(iv) For every k ∈ N, let Ck denote the subautomaton of C induced by all paths p0
u−→p

with |u| ≤ k. In view of (iii), each Ck is a finite effectively constructible (A∪A−1)-automaton.
To complete the proof, it suffices to show that Ck = Ck+1 for some k ∈ N.

By Theorem 3.4 and Corollary 3.5, we may define

N = max{|u|; u ∈ Uϕ ∪ Vϕ}.

Let also
N1 = max{|ϕ−1(x)|; x ∈ RA, |x| ≤M}.

We show that if p0
u−→p is a path in C and u = va (a ∈ A ∪A−1), then

|τ(v)|, |ρ(v)| ≤ max{N +N1,M}. (13)

By (iii), our path decomposes as

p0
v−→θ(v) a−→θ(u) = p.

Since θ(v) a−→θ(u) is an edge, we have either τ(v) = 1 or |ρ(v)| ≤M .
Assume first that τ(v) = 1. Then v = σ(v) ≤ σ(v)ρ(v) = ϕ(v) and so ρ(v) ∈ Uϕ. Hence

|ρ(v)| ≤ N and the claim holds.
Assume now that |ρ(v)| ≤M . Suppose that |τ(v)| > N +N1 and let z = ϕ−1((ρ(v))−1).

Then |z| ≤ N1 and
ϕ(vz) = σ(v) ≤ σ(v)τ(v)z = vz

since z cannot erase the whole of τ(v) in the reduction process. Thus τ(v)z ∈ Vϕ and so
|τ(v)z| ≤ N . Since |z| ≤ N1, it follows that |τ(v)| ≤ N + N1, a contradiction. Therefore
|τ(v)| ≤ N +N1 and so (13) holds in any case.

It follows from (13) that there exist only finitely many vertices of C′ that can be prolonged
by edges. Since C is deterministic, it follows that C′ is finite and so we can indeed reach
some k ∈ N such that Ck = Ck+1. �
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Let C′′ = (P ′, p0, T
′′, D′) denote the (A ∪A−1)-automaton obtained from C′ by taking

T ′′ = {θ(u) ∈ P ′ | τ(u) 6= 1 and |ρ(u)| > M}.

Given p ∈ T ′′, we denote by Lp the set of all labels of paths p0 → p in C′′.
Lemma 3.8 For every p = (p1, p2, p3) ∈ T ′′, let

Wp = {w ∈ RA | π(w−1p−1
2 p3ϕ(w)) ∈ K, p2w ∈ RA}.

Then
Sol(1, ϕ,K) = L(C′) ∪ (

⋃
p∈T ′′

LpWp ∩ RA). (14)

Proof. Let u ∈ L(C′). By Lemma 3.7(iii), we have u ∈ RA and a path p0
u−→θ(u) in C′.

Moreover, θ(u) ∈ T ′ = T ∩ P ′ and so π((τ(u))−1ρ(u)) ∈ K. Hence

π(u−1ϕ(u)) = π((τ(u))−1(σ(u))−1σ(u)ρ(u)) = π((τ(u))−1ρ(u)) ∈ K.

Thus π(u) ∈ Sol(1, ϕ,K) and so u = π(u) ∈ Sol(1, ϕ,K).
Assume now that p = (p1, p2, p3) ∈ T ′′, u ∈ Lp and w ∈ Wp with uw ∈ RA. Since

w ∈ Wp, we have π(w−1p−1
2 p3ϕ(w)) ∈ K and p2w ∈ RA. Since u ∈ Lp yields p = θ(u) by

Lemma 3.7(iii) and so (τ(u))−1ρ(u) = p−1
2 p3, we obtain

π(w−1u−1ϕ(uw)) = π(w−1(τ(u))−1(σ(u))−1σ(u)ρ(u)ϕ(w)) = π(w−1p−1
2 p3ϕ(w)) ∈ K.

Hence π(uw) ∈ Sol(1, ϕ,K) and so uw = π(uw) ∈ Sol(1, ϕ,K). Thus

L(C′) ∪ (
⋃

p∈T ′′

LpWp ∩ RA) ⊆ Sol(1, ϕ,K).

Conversely, let u ∈ Sol(1, ϕ,K). Suppose that there exists some path p0
u−→p in C′. Then

p = θ(u) by Lemma 3.7(iii) and

π((τ(u))−1ρ(u)) = π(u−1ϕ(u)) ∈ K

since π(u) ∈ Sol(1, ϕ,K). Thus p ∈ T ′ and so u ∈ L(C′).
Hence we may assume that there exists no path p0

u−→p in C′. Write u = vw where
v is the longest prefix of u labelling a path in C′ from the initial vertex. Let a denote
the first letter of w. We have a path ϕ0

v−→p = θ(v) but no edge θ(v) a−→θ(va). Since
va ≤ vw = u ∈ RA, this can only happen due to both τ(v) 6= 1 and |ρ(v)| > M . Hence
p ∈ T ′′ and v ∈ Lp. Since vw = u ∈ RA, it remains to show that w ∈Wp. Indeed,

π(w−1(τ(v))−1ρ(v)ϕ(w)) = π(w−1v−1ϕ(v)ϕ(w)) = π(u−1ϕ(u)) ∈ K

since π(u) ∈ Sol(1, ϕ,K) and τ(v)w ≤s vw = u ∈ RA yields τ(v)w ∈ RA. Thus w ∈ Wp as
required. �
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Theorem 3.9 Let ϕ ∈ ViaFA and K ∈ RatFA. Then Sol(1, ϕ,K) ∈ RatFA and is effec-
tively constructible.

Proof. By Theorem 2.2, it suffices to show that Sol(1, ϕ,K) ∈ Rat(A ∪ A−1) and is effec-
tively constructible. By Lemma 3.7(iv), the languages L(C′) and Lp (p ∈ T ′′) are rational
and effectively constructible. So is RA. By Lemma 3.8 and Proposition 2.3(i), we only need
to show that Wp is rational and effectively constructible for every p ∈ T ′′.

Fix p = (p1, p2, p3) = θ(u) ∈ T ′′. In view of Theorem 2.2, we may assume to have a
finite (A ∪A−1)-automaton A0 = (Q0, i0, T0, E0) such that L(A0) = K. Moreover, we may
assume A0 to be deterministic and trim. For all j, k ∈ Q0, we write

Yj = L(Q0, j, T0, E0), Yjk = L(Q0, j, k, E0).

Given u ∈ RA, let
ξ(u) = {(j, k) ∈ Q0 ×Q0 | u ∈ Ljk}.

Note that p−1
2 p3 = (τ(u))−1ρ(u) ∈ RA by maximality of σ(u). We show that

Wp =
⋃

rs=p3

⋃
(j,k)∈ξ(p−1

2 r)

Y −1
i0j ∩ ϕ

−1(s−1Yk). (15)

Note that, since r ≤ p3 and p−1
2 p3 ∈ RA, we have p−1

2 r ∈ RA as well.
Let p3 = rs and (j, k) ∈ ξ(p−1

2 r). Take w ∈ Y −1
i0j ∩ ϕ−1(s−1Yk). Then sϕ(w) ∈ Yk and

so we have a path
i0

w−1

−→j
p−1
2 r
−−→k

sϕ(w)−−−→t ∈ T0

in A0. Hence
π(w−1p−1

2 p3ϕ(w)) = π(w−1p−1
2 rsϕ(w)) ∈ π(K) = K.

On the other hand, w−1p−1
2 labels a path in A0. Since A0 is trim and L(A0) ⊆ RA, it

follows that w−1p−1
2 ∈ RA and so p2w ∈ RA as well. Thus w ∈Wp.

Conversely, let w ∈ Wp. Then w−1p−1
2 ∈ RA. We have already noted that p−1

2 p3 ∈ RA.
Since p ∈ T ′′, we have p2 = τ(u) 6= 1 and so w−1p−1

2 p3 ∈ RA as well and also

uw = σ(u)τ(u)w = σ(u)p2w ∈ RA.

Now, since M is a bounded reduction constant for ϕ, no more than M letters of ϕ(u) are
reduced in ϕ(u)ϕ(w). Since p3 = ρ(u) ≤s ϕ(u) and |p3| > M , it follows that

w−1p−1
2 p3ϕ(w) = w−1p−1

2 p3ϕ(w)

and so w−1p−1
2 p3ϕ(w) ∈ K = L(A0). Write p3 = rs, ϕ(w) = s−1z so that p3ϕ(w) = rz.

Thus we have a path in A0 of the form

i0
w−1

−→j
p−1
2 r
−−→k

z−→t ∈ T0.

Hence (j, k) ∈ ξ(p−1
2 r). Clearly, w ∈ Y −1

i0j . On the other hand, sϕ(w) = z ∈ Yk so that
w ∈ ϕ−1(s−1Yk). Therefore (15) holds.

By Theorem 2.2 and Propositions 2.3 and 2.4, it follows that Wp is rational and effec-
tively constructible, and so is Sol(1, ϕ,K). �

20



Corollary 3.10 Let g ∈ FA, ϕ ∈ ViaFA and K ∈ RatFA. Then Sol(g, ϕ,K) ∈ RatFA and
is effectively constructible.

Proof. Given x ∈ FA, we have

x−1gϕ(x) ∈ K ⇔ x−1gϕ(x)g−1 ∈ Kg−1 ⇔ x−1(λgϕ)(x) ∈ Kg−1,

hence Sol(g, ϕ,K) = Sol(1, λgϕ,Kg−1). By Proposition 2.5, we have λgϕ ∈ ViaFA. Since
Kg−1 ∈ ratFA, we may apply Theorem 3.9. Hence Sol(g, ϕ,K) = Sol(1, λgϕ,Kg−1) is
rational and effectively constructible. �

We end this section by showing that being virtually inner is a decidable property.
Theorem 3.11 It is decidable, given ϕ ∈ AutFA, whether or not ϕ ∈ ViaFA.

Proof. Assume that A = {a1, . . . , am}. Given u ∈ (A∪A−1)∗, denote by |u|i the sum of all
exponents (positive and negative) of occurrences of ai in u. Given ϕ ∈ AutFA, it is known
(see [16, Prop. I.4.4]) that ϕ induces ϕ̃ ∈ AutZm defined by

ϕ̃(i1, . . . , im) = (|ϕ(ai1
1 . . . a

im
m )|1, . . . , |ϕ(ai1

1 . . . a
im
m )|m).

Moreover,
AutFA →AutZn

ϕ 7→ ϕ̃

is a group homomorphism. Clearly, AutZm is, up to isomorphism, the (multiplicative) group
GLn(Z).

It is decidable, givenM ∈ GLm(Z), whether or notMk = id for some k ≥ 1. Indeed,Mk =
id for some k ≥ 1 holds if and only if Mk = M−1 for some k ≥ 0, and this is a decidable
condition by [13].

Let ϕ ∈ AutFA. If ϕ ∈ ViaFA, say with ϕn = λz (n ≥ 1), then

ϕ̃n = ϕ̃n = λ̃z = id.

By the preceding comment, we can decide whether or not ϕ̃k = id holds for some k ≥ 1.
Thus we may assume that the necessary condition ϕ̃k = id is satisfied for some k and k can
therefore be effectively computed. We show that ϕ ∈ ViaFA if and only if ϕk is inner.

Assume that ϕ ∈ ViaFA. Then ϕn is inner for some n ≥ 1, and so is ϕnk. Since ϕ̃k = id,
it follows from [16, Prop. I.4.11] that ϕnk inner implies ϕk inner.

The converse implication being trivial, we conclude that ϕ ∈ ViaFA if and only if ϕk is
inner. Since it is clearly decidable whether or not a given automorphism is inner, decidability
is proven. �

4 Conjugacy in [f.g. free]-by-finite groups

Let G be a [f.g. free]-by-finite group. Throughout the section, we assume that G is given
by the standard presentation (3) and has consequently (2) as a set of normal forms. In

21



particular, every X ⊆ G admits a unique decomposition X = ∪m
i=0Xibi. We shall refer to

the Xi as the components of X.
We consider now the equation xgx−1 ∈ K for g ∈ FA and K ∈ RatG. We shall use the

notation
Sol(g,K) = {x ∈ FA | xgx−1 ∈ K}.

Theorem 4.1 Let G be a [f.g. free]-by-finite group, g ∈ G and K ∈ RatG. Then
Sol(g,K) ∈ RatG and is effectively constructible.

Proof. Assume that G is given by the standard presentation (3). In view of Proposition
2.11, we assume that K has components K0, . . . ,Km ∈ RatFA.

Decompose Sol(g,K) = ∪m
i=0Sibi in its components. Let i ∈ {0, . . . ,m}. Then bigb

−1
i =

ubj for some u ∈ FA and j ∈ {0, . . . ,m}. Given x ∈ FA, we have

x ∈ Si ⇔ xbi ∈ Sol(g,K) ⇔ xbigb−1
i x−1 ∈ K

⇔ xubjx
−1 ∈ K ⇔ xuϕj(x−1)bj ∈ K

⇔ xuϕj(x−1)bj ∈ Kjbj ⇔ xuϕj(x−1) ∈ Kj

⇔ x−1 ∈ Sol(u, ϕj,Kj) ⇔ x ∈ (Sol(u, ϕj,Kj))−1.

Thus Si = (Sol(u, ϕj,Kj))−1. Since ϕj ∈ ViaFA and Kj ∈ RatFA are given, it follows from
Corollary 3.10 that Sol(u, ϕj,Kj) ∈ RatFA and is effectively constructible. By Theorem 2.2
and Proposition 2.3(ii), so is Si. Therefore Sol(g,K) ∈ RatG and is effectively constructible.
�

Given a finitely generated monoid M , and X ⊆M , we say that X has the DIRL property
(decidable if it intersects a rational language) if it is decidable whether or not X ∩K = ∅
for an arbitrary K ∈ RatM.
Lemma 4.2 (i) Let K ⊆ FA. Then K has the DIRL property if and only if K has the

DIRL property as an (A ∪A−1)-language.

(ii) Let G = ∪m
i=0Fbi be a [f.g. free]-by-finite group with F EG. Let K ⊆ G. Then K has

the DIRL property if and only if each of its components Ki has the DIRL property.

Proof. (i) Assume that K has the DIRL property. Let L ∈ Rat(A∪A−1). By Proposition
2.3(i), L ∩RA ∈ Rat(A ∪A−1) and is effectively constructible. It is immediate that

K ∩ L = ∅ ⇔ K ∩ (L ∩RA) = ∅ ⇔ K ∩ π(L ∩RA) = ∅.

Since π(L ∩RA) ∈ RatFA, it follows that K has the DIRL property.
Conversely, assume that K has the DIRL property. Let X ∈ RatFA. Then

K ∩X = ∅ ⇔ K ∩X = ∅

and so K has the DIRL property.
(ii) Assume that K has the DIRL property. Let i ∈ {0, . . . ,m} and let Xi ∈ RatFA.

Then Xibi ∈ RatG and
Ki ∩Xi = ∅ ⇔ K ∩Xibi = ∅

shows that Ki has the DIRL property.

22



Conversely, assume that all Ki have the DIRL property. Let X = ∪m
i=0Xibi ∈ RatG

with Xi ⊆ FA. Then

K ∩X = ∅ ⇔ ∀i ∈ {0, . . . ,m}Ki ∩Xi = ∅.

Since Xi ∈ RatFA for every i by Proposition 2.11, it follows that K ∩X = ∅ is decidable
and so K has the DIRL property. �

A very important class of languages with the DIRL property is the class of context-free
languages (see [2] for details), a proper extension of the class of rational languages. We
say that K ⊆ FA is context-free if K is a context-free (A ∪ A−1)-language. This is NOT
equivalent to say that K = π(L) for some L ⊆ (A ∪ A−1)∗ context-free. Indeed, Frougny,
Sakarovitch and Schupp proved that the Benois Theorem cannot be generalized to the
context-free level: L does not have to be recursive [9].

Let G be [f.g. free]-by-finite and K ⊆ G. We say that K = ∪m
i=0Kibi (Ki ⊆ FA) is

context-free if each Ki is context-free.
Theorem 4.3 Let G be a [f.g. free]-by-finite group, g ∈ G and K ∈ RatG. Let X ⊆ G
have the DIRL property. Then it is decidable whether or not xgx−1 ∈ K for some x ∈ X.

Proof. Indeed, xgx−1 ∈ K for some x ∈ X if and only if X ∩ Sol(g,K) = ∅. By Theorem
4.1, Sol(g,K) ∈ RatG and is effectively constructible. Since X has the DIRL property, we
can decide whether or not X ∩ Sol(g,K) = ∅. �

Corollary 4.4 Let G be a [f.g. free]-by-finite group, g ∈ G and K ∈ RatG. Let X ⊆ G be
context-free. Then it is decidable whether or not xgx−1 ∈ K for some x ∈ X.

As far as we are aware, this result is new even for the free group itself. It follows from
the results of [7] that the equation xgx−1 ∈ K in the free group with rational constraints
for x is decidable, but we know no results on context-free constraints.
Lemma 4.5 Let G be a [f.g. free]-by-finite group. Then RatG is closed for Boolean oper-
ations and inversion, and the constructions are effective.

Proof. We know that RatFA is closed for Boolean operations and inversion by Theorem 2.2
and Proposition 2.3 with effective constructions. It follows immediately from Proposition
2.11 that RatG is closed for Boolean operations. Finally, if L ∈ RatG, then

L−1 = (∪m
i=0Libi)−1 = ∪m

i=0b
−1
i L−1

i ∈ RatG

follows from L−1
i ∈ RatFA. All constructions are effective. �

We consider now (simultaneous) conjugacy of finitely generated subgroups with DIRL
constraints, obtaining new generalizations of the classical theorem of Moldavanskii [20] [16,
Prop. I.2.23].
Corollary 4.6 Let G be a [f.g. free]-by-finite group and Hi,Ki ≤f.g. G (i = 1, . . . , n).
Then:

(i) X = {x ∈ G | xHix
−1 ⊆ Ki ∀i ∈ {1, . . . , n}} is rational and effectively constructible;

(ii) Y = {x ∈ G | xHix
−1 = Ki ∀i ∈ {1, . . . , n}} is rational and effectively constructible.
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Proof. Every f.g. subgroup is of course rational. In both (i) and (ii), the condition consid-
ered is equivalent to finitely many conditions of type xgx−1 ∈ K, x−1gx ∈ K and so both
X and Y are finite intersections of sets of the form Sol(g,K) and (Sol(g,K))−1. Each set
Sol(g,K) is rational and effectively constructible by Theorem 4.1. By Lemma 4.5, X and
Y are rational and effectively constructible. �

Similarly to the proof of Theorem 4.3, we get:
Corollary 4.7 Let G be a [f.g. free]-by-finite group and Hi,Ki ≤f.g. G (i = 1, . . . , n). Let
X ⊆ G have the DIRL property. Then it is decidable whether or not there exists some
x ∈ X such that:

(i) xHix
−1 ⊆ Ki for i = 1, . . . , n;

(ii) xHix
−1 = Ki for i = 1, . . . , n.

Corollary 4.8 Let G be a [f.g. free]-by-finite group and Hi,Ki ≤f.g. G (i = 1, . . . , n). Let
X ⊆ G be context-free. Then it is decidable whether or not there exists some x ∈ X such
that:

(i) xHix
−1 ⊆ Ki for i = 1, . . . , n;

(ii) xHix
−1 = Ki for i = 1, . . . , n.

5 Counterexamples and open problems

Theorem 4.1 cannot be generalized to other one-variable equations, even in the free group
case:
Example 5.1 Let A = {a, b} and

X = {x ∈ FA | x2 ∈ (a−1)∗b2a∗}.

Then X /∈ RatFA.

Proof. We show that
X = {a−kbak | k ∈ N}. (16)

Clearly, a−kbak ∈ X for every k ≥ 0. Conversely, let x ∈ X. Write x = uvu−1 with
v cyclically reduced. Then uvvu−1 = x2 = a−mbban for some m,n ∈ N. It follows that b
must occur in v and so v = b. Thus u = a−m, m = n and so x = a−mbam. Thus (16) holds.

In view of Theorem 2.2(ii), it suffices to note that X cannot be rational as a subset of
RA, since it clearly fails the Pumping Lemma test (see [2] for details). �

Now we show that Theorem 3.9 cannot be generalized to arbitrary automorphisms:
Example 5.2 Let A = {a, b} and let ϕ ∈ AutFA be defined by ϕ(a) = ab, ϕ(b) = a. Then
Sol(1, ϕ,A∗) /∈ RatFA.
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Proof. First of all, note that ϕ is onto. Since free groups of finite rank are hopfian, it
follows that ϕ ∈ AutFA.

Suppose that Sol(1, ϕ,A∗) ∈ RatFA. Then Theorem 2.2(ii) and Proposition 2.3(i) yield

L = Sol(1, ϕ,A∗) ∩A∗ ∈ Rat(A ∪A−1). (17)

We show that
L = {u ∈ A∗ | u ≤ ϕ(u)}. (18)

Since ϕ(A∗) ⊆ A∗, it follows that, given u ∈ A∗,

u ≤ ϕ(u) ⇒ u−1ϕ(u) = ρ(u) ∈ A∗ ⇒ u ∈ L.

Conversely, let u ∈ L. Then u ∈ RA and (τ(u))−1ρ(u) = u−1ϕ(u) ∈ A∗, hence τ(u) = 1.
Thus u ≤ ϕ(u) and (18) holds.

Since a < ϕ(a), it is immediate that a < ϕ(a) < ϕ2(a) < . . . Let α = limi→∞ ϕi(a).
Then α is the famous Fibonacci infinite word (see [15] for details). We show that

L = {u ∈ A∗ | u < α}. (19)

Let u < α. Since 1 ∈ L, we may assume that u 6= 1. Since a < α, it follows that a < u
and so |u| < |ϕ(u)|. Now α = limi→∞ ϕi(a) yields by continuity (recall Proposition 2.9)

ϕ̂(α) = ϕ̂( lim
i→∞

ϕi(a)) = lim
i→∞

ϕi+1(a) = α

and so α ∈ Fixϕ̂. Hence u, ϕ(u) < α and so u < ϕ(u). Thus u ∈ L.
Conversely, let u ∈ L and write v = u ∧ α. Suppose that v = 1. Since b ≤ u would

imply a ≤ ϕ(u), contradicting u ≤ ϕ(u), it follows that b 6≤ u. On the other hand, a ≤ u
would contradict the definition of v, hence u = 1 and so u < α.

Assume now that v 6= 1. Since v < α, we have already proved that v ∈ L. Since a < α,
it follows that a < v and so v < ϕ(v). Write ϕ(v) = vcw with c ∈ A. Suppose that v < u.
Since u, ϕ(v) ≤ ϕ(u) and ϕ(v) = vcw, it follows that vc ≤ u. On the other hand, v < α
yields ϕ(v) < α since α ∈ Fixϕ̂, hence vc < α and the maximality of v is contradicted.
Thus v = u and so u < α. Therefore (19) holds.

Now, by (17), it follows that {u ∈ A∗ | u < α} = L ∈ RatA. Let A be a finite
deterministic trim automaton recognizing L. Since L is the set of prefixes of an infinite
word, there exists exactly one edge leaving each vertex, and α would be an ultimately
periodic word of the form α = vwω. However, α is a classical example of a Sturmian word,
notoriously non ultimately periodic [15]. Therefore Sol(1, ϕ,A∗) /∈ RA. �

Next we show that the proof of Theorem 4.1 cannot be generalized to [f.g free]-by-cyclic
groups. We say that G is [f.g free]-by-cyclic if G has a f.g. free normal subgroup F such
that G/F is cyclic.
Example 5.3 Let G be the group defined by the presentation

〈a, b, c | cac−1 = ab, cbc−1 = a〉.

Write A = {a, b}. Then:
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(i) G is [f.g free]-by-cyclic and FA CG;

(ii) Sol(c,A∗c) ∩ FA /∈ RatFA.

Proof. Write A = {a, b}. First of all, we note that ϕ : FA → FA defined by ϕ(a) = ab,
ϕ(b) = a is the Fibonacci automorphism of Example 5.2. It is easy to see (see e.g. [4]) that
G is indeed [f.g free]-by-cyclic with FA CG, having RA(c∗∪ (c−1)∗) as a set of normal forms
and satisfying cuc−1 = ϕ(u) for every u ∈ FA.

Let
Sol(1, ϕ,A∗) = {x ∈ FA | x−1ϕ(x) ∈ A∗}.

We show that
Sol(c,A∗c) ∩ FA = (Sol(1, ϕ,A∗))−1. (20)

Let x ∈ FA. We have

x ∈ Sol(c,A∗c)⇔ xcx−1 ∈ A∗c⇔ xcx−1c−1 ∈ A∗
⇔ xϕ(x−1) ∈ A∗ ⇔ x−1 ∈ Sol(1, ϕ,A∗)
⇔ x ∈ (Sol(1, ϕ,A∗))−1

and so (20) holds.
We saw in Example 5.2 that Sol(1, ϕ,A∗) /∈ RatFA. By Theorem 2.2 and Proposition

2.3(ii), it follows that

Sol(c,A∗c) ∩ FA = (Sol(1, ϕ,A∗))−1 /∈ RatFA

either. �

We say that ϕ ∈ AutFA is a letter permutation if ϕ is induced by some permutation of
A∪A−1. Letter permutations and inner automorphisms constitute the simplest examples of
virtually inner automorphisms. These two classes are clearly closed for composition. In view
of (1) and Proposition 1, any composition of letter permutations and inner automorphisms
is still virtually inner. These compositions are called simple automorphisms by Myasnikov
and Shpilrain in [21]. We produce next a nice example of a virtually inner automorphism
that is not simple.
Example 5.4 Let A = {a, b} and define ϕ ∈ AutFA by ϕ(a) = b, ϕ(b) = a−1b−1. Then
ϕ ∈ ViaFA but ϕ is not simple.

Proof. Since ϕ is clearly onto, it is an automorphism by the hopfian property. Since ϕ3 is
the identity, ϕ is virtually inner. To show that ϕ is not simple, it suffices to note that

∀u ∈ RA (|u| odd ⇒ |ψ(u)| odd )

holds whenever ψ is a letter permutation or an inner automorphism of FA. This is clear
for letter permutations since they are length-preserving. On the other hand, if |u| is odd,
then vuv−1 has odd length as a word of (A∪A−1)∗. Since reduction erases pairs of letters,
|vuv−1| must be odd as well.

Since |ϕ(b)| = 2, it follows that ϕ is not simple. �
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We consider now some open problems that arise naturally from our results.
The first one concerns a weaker generalization of Corollary 3.10, replacing virtually inner

automorphisms by arbitrary automorphisms:
Problem 5.5 Is it decidable, given g ∈ FA, ϕ ∈ AutFA and K ∈ RatFA, whether or not
Sol(g, ϕ,K) 6= ∅?

The problem is of course decidable for ϕ ∈ ViaFA in view of Corollary 3.10, since we
can always test emptiness for an effectively constructible rational language.

A partial answer can be given for finite K:
Lemma 5.6 Let g ∈ FA, ϕ ∈ AutFA and K ∈ RatFA. Write B = A ∪ {b} and let
Φ ∈ AutFB be the extension of ϕ defined by Φ(b) = bg. Then

Sol(g, ϕ,K) = b−1Sol(1,Φ,K) ∩ FA.

Proof. First of all, we show that Φ is a well-defined automorphism. Indeed, b = bgg−1 =
Φ(bϕ−1(g−1)) and so Φ is onto. Since free groups of finite rank are hopfian, it follows that
Φ ∈ AutFB. Let x ∈ FA. Then

x ∈ b−1Sol(1,Φ,K) ⇔ x−1b−1Φ(bx) ∈ K ⇔ x−1gϕ(x) ∈ K ⇔ x ∈ Sol(g, ϕ,K)

as claimed. �

Proposition 5.7 Let g ∈ FA, ϕ ∈ AutFA and K ⊆ FA finite. Then Sol(g, ϕ,K) ∈ RatFA

and is effectively constructible.

Proof. Without loss of generality, we may assume that K = {h}. For every x ∈ FA, we
have

x−1gϕ(x) = h⇔ x−1gh−1hϕ(x)h−1 = 1 ⇔ x−1gh−1(λhϕ)(x) = 1,

hence Sol(g, ϕ,h) = Sol(gh−1, λhϕ, 1). Let B = A ∪ {b}. By Lemma 5.6, we can construct
an extension Φ ∈ AutFB such that

Sol(gh−1, λhϕ, 1) = b−1Sol(1,Φ, 1) ∩ FA = b−1FixΦ ∩ FA.

By Theorem 2.8, FixΦ is an effectively constructible rational subset of FA and so is Sol(g, ϕ,h)
since, by Theorem 2.2 and Proposition 2.3(i), RatFA is closed for intersection and the con-
struction is effective. �

As a consequence, we obtain a generalization of the result of Bogopolski, Martino,
Maslakova and Ventura:
Corollary 5.8 The twisted conjugacy problem is decidable in the free group with context-
free constraints.

Proof. Given g, h ∈ FA, ϕ ∈ AutFA and C ⊆ RA context-free, we must decide if Sol(g, ϕ,h)∩
C 6= ∅. By Proposition 5.7 and Theorem 2.2(ii), Sol(g, ϕ,h) ∈ Rat(A∪A−1) and is effectively
constructible. Since context-free languages have the DIRL property, the result follows. �

The above result holds of course for constraints in any language with the DIRL property.
The second open problem concerns the wilder class of [f.g free]-by-cyclic groups:

Problem 5.9 Is the generalized conjugacy problem for a [f.g free]-by-cyclic group decidable?
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