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Abstract

In this note we consider a separable Hilbert space and family of
infinite dimensional compact and invertible cocycles over a dynami-
cal system defined in a compact and Hausdorff space X and which
preserves a Borel regular measure. We prove that C0-generically we
have, for almost every x ∈ X, a trivial spectrum or else an uniformly
hyperbolicity in the projective space.
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1 Introduction, basic definitions and state-

ment of the results

In this paper we establish the typical spectrum of random products of linear
operators defined in Hilbert spaces. For this purpose we use the Oseledets-
like theory for the separable Hilbert spaces setting which was constructed
in the early eighties by Ruelle [5]; and also a recent result of Bochi and
Viana [2]. In this last-mentioned result it is proved that for a C0-residual
subset inside a very general family of finite dimensional linear cocycles based
in a homeomorphism which preserves a Borel regular invariant measure, we
have, for almost every point, uniform hyperbolicity in the projective space
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or else one-point spectrum. Here we show that the Bochi-Viana theorem is
true also for infinite dimensional cocycles in Hilbert spaces. We hope that
our results may be applied to the theory of functional differential equations
(see [4]).

Let H be a separable Hilbert space, C(H) the set of linear continuous
operators, compact and invertible, in H, f : X → X a homeomorphism in
the compact Hausdorff space X and µ an f -invariant Borel regular measure.
Given E := X × H, let π : E → X be a continuous vector bundle over X.
Consider a continuous map A : X → C(H) and define

An(x) = A(fn−1(x)) · ... · A(f(x)) · A(x),

with A0(x) = Id. In this context we define the associated cocycle over f : it
is a continuous transformation F (A) : E → E such that π ◦ F = f ◦ π and
Fx(A) : Hx → Hf(x) is linear on the fiber Hx := π−1(x). We then have a
morphism of vector bundles covering f given by

F (A) : X ×H −→ X ×H
(x, v) 7−→ (f(x), A(x) · v).

For simplicity of notation we call the map A a cocycle. Given a nonperiodic
orbit {fn(x)}n∈N the product An(x) for n ∈ N is what we call a random
product of operators.

We denote by C0
I (X, C(H)) the set of all continuous infinite dimensional

cocycles such that any element A ∈ C0
I (X, C(H)) satisfies the integrability

condition
∫

X
log+ ‖A(x)‖dµ(x) < ∞, where log+(y) = max{0, log(y)}.

Given an f -invariant set Λ we say it has an m-dominated splitting if
there exists a decomposition of the fiber Hx = E1

x ⊕ E2
x (for x ∈ Λ) varying

continuously with the point x and A-invariant and such that we may find an
uniform m ∈ N such that the following inequality holds:

∆(p, m) =
‖Am(x)|E1

x‖

m(Am(x)|E2
x)
‖ ≤

1

2
. (1)

Where m(L) = ‖L−1‖−1 is the co-norm of the operator L. We say that the
spectrum Σ is trivial or a one-point spectrum if Σ = {s} for a unique s ∈ R.

In Sections 4 and 5 we will prove that:

Theorem 1.1 There exists a C0-residual subset R ⊂ C0
I (X, C(H)) such

that, if A ∈ R, then for µ-a.e. x ∈ X we have trivial spectrum or else
m-dominated splitting for some m ∈ N.
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2 A dichotomy for finite dimensional cocycles

Let S denotes any subgroup of finite d-dimensional cocycles which acts tran-
sitively in the projective space RP d−1(see [2] Example 4).

Theorem 2.1 (Bochi-Viana [2]) There exists a residual R ⊂ S (in the C0-
topology) such that for any A ∈ R we have for µ-a.e. point x ∈ X that the
Oseledets’s splitting is m-dominated or else is trivial.

We note that the linear groups of matrices GL(d, R) and SL(d, R) act
transitively in RP d−1. Our interest is centered on the correspondent infinite
dimensional set of invertible operators. As a first approach we may consider
a C0-approximation of our original system by other with finite rank. Then
applying Theorem 2.1 we obtain a system satisfying the stated dichotomy.
However, for this new system the dichotomy would not be so precise: for
example, we could have for µ-generic orbits the existence of a two-point
spectrum with −∞ as another element of the spectrum; moreover the dom-
inated splitting might not be extended to {Hx}x∈Λ; and finally this result
only gives a C0-dense instead of a C0-residual.

As we will see in the next section it is essential to consider compactness
and one gives an integrability condition to guarantee Ruelle’s version of the
multiplicative ergodic theorem. The m-dominated splitting for some m ∈
N allows us to conclude that we have uniform hyperbolic structure in the
projective space. The notion of hyperbolicity in our setting will be over the
infinite real projective space RP∞, which is built by applying the telescoping
construction, where through the natural inclusions we glue together the real
projective spaces of finite dimension (see [3]).

3 The multiplicative ergodic theorem for com-

pact operators

The following result gives us a spectral decomposition for random products
of compact operators.

Theorem 3.1 (Ruelle [5]) Let µ and f : X → X be as above. If A ∈
C0

I (X, C(H)), then for µ-a.e x ∈ X we have the following properties:

(a) The limit lim
n→∞

(A(x)n∗A(x)n)
1

2n exists and is a compact operator L(x).

(b) Let eλ1(x) > eλ2(x) > ... be the nonzero eigenvalues of L(x) and U1(x),
U2(x),... be the associated eigenspaces whose dimensions are denoted by
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ni(x). The real functions λi(x) are called Lyapunov exponents. The
sequence possibly terminates at λj(x), otherwise we write j = ∞. Then
j = j(x), λi(x) and ni(x) are f -invariant functions and depend in a measu-
rable way on x.
(c) Let Vi(x) be the orthogonal complement of U1(x) ⊕ U2(x) ⊕ ... ⊕ Ui−1(x)
for i < j(x) + 1. Let Vj(x)+1(x) = Ker(L(x)). Then

(i) lim
n→∞

1
n

log ‖An(x) · u‖ = λi(x) if u ∈ Vi(x) \ Vi+1(x) for i < j(x) + 1;

(ii) lim
n→∞

1
n

log ‖An(x) · u‖ = −∞ if u ∈ Vj(x)+1(x).

We denote by O(A) the full measure set of points given by Theorem 3.1.

4 Upper semi-continuity of the entropy func-

tion

Given a bounded linear operator A : H → H we can induce an operator on
the space ∧p(H) of the pth exterior power of H by

∧p(A)(e1 ∧ e2 ∧ ... ∧ ep) = A(e1) ∧ A(e2) ∧ ... ∧ A(ep).

For details see [6], chapter V.

Lemma 4.1 If A is compact, then ∧p(A) is also compact.

Proof: Given any bounded sequence (yn)n of elements of ∧pH we will prove
that there exists a subsequence (ynk

)k such that (∧p(A)(ynk
))k converges. Let

yn = van
1
∧ ... ∧ van

p
for each n ∈ N where van

j
∈ H for j = 1, ..., p. Hence

∧p(A)(yn) = A(van
1
) ∧ ... ∧ A(van

p
) for each n ∈ N. So, by applying the hy-

pothesis p-times we conclude that van
j

admits a subsequence va
nk
j

converging

to uj ∈ H, for j = 1, ..., p. Therefore there exists a subsequence (ynk
)k such

that (∧p(A)(ynk
))k converges and so the operator ∧p(A) is compact. ⊔⊓

Since ∧p(A) is compact we can apply Theorem 3.1 and conclude that for
µ-a.e. x the following limit exists:

lim
n→+∞

1

n
log ‖ ∧p A(x)n‖ = λ∧p

1 (x).

This limit is the largest Lyapunov exponent given by the dynamics of the
operator ∧p(A) at x. Moreover for µ-a.e. x we have

∑p

i=1 λi(x) = λ∧p
1 (x)

(see [1]).
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Given any p ∈ N and Γ ⊆ X an f -invariant set, we define the p-entropy
function at Γ by:

LEp(Γ) : C0
I (X, C(H)) −→ R

+
0

A 7−→
∫

Γ

∑p

i=1 λi(A, x)dµ(x).

Note that as the Lyapunov exponents vary in a measurable fashion, there
is no reason to believe that the function LEp is continuous. Therefore, it is
interesting to see that previous observations allows us to conclude that the
function LEp is at least upper-semicontinuous.

If we denote an(A) =
∫

Γ
log ‖ ∧p A(x)n‖dµ(x), then

LEp(Γ)(A) =

∫

Γ

p
∑

i=1

λi(A, x)dµ(x) =

∫

Γ

λ∧p
1 (x) = lim

n→+∞

an

n
.

Since an is sub-additive (see [2] Section 2.1.3.) we obtain LEp(Γ)(A) = inf
n∈N

an

n
.

Finally, since ∧p(A) is a continuous operator, we have that the function
defined by 1

n

∫

Γ
log ‖∧pA(x)n‖dµ(x) is continuous; therefore LEp(Γ)(A) is the

infimum of a sequence of continuous functions, hence upper-semicontinuous.
The next proposition will be crucial to prove Theorem 1.1.

Proposition 4.2 If A is a point of continuity of LEp for all p ∈ N, then for
µ-a.e. x ∈ X we have that the splitting given by Theorem 3.1 is trivial or
else is m-dominated.

5 Proof of Proposition 4.2

Let us consider the following simple lemma which allows us to perform useful
measurable C0-perturbations of our original system.

Lemma 5.1 Let A ∈ C0
I (X, C(H)), x ∈ X and ǫ > 0. For any 2-dimensional

subspace E ⊂ Hx, there exists an angle ξ (not depending on x) and a mea-
surable integrable cocycle B such that:

(a) B(x) · u = A(x) · u, ∀u ∈ E⊥;

(b) B(x) · u = A(x) · Rξ · u, ∀u ∈ E, where Rξ is the rotation of angle ξ in
E;

(c) ‖A − B‖ ≤ ǫ.
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Proof: For any v ∈ Hx we can write v = v1+v2 where v1 ∈ E⊥ and v2 ∈ E.
Denote by

Rθ =

(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)

,

the matrix of the rotation of angle θ in an orthonormal basis of E.
Take ξ > 0 such that ‖Id − Rξ‖ ≤ ǫ

‖A‖
(note that ‖A‖ 6= 0) and define the

perturbation cocycle by:

B(y) =

{

A(y), if y 6= x
B(x) · v = A(x) · v1 + A(x) · Rξ · v2, if y = x

Clearly this cocycle verifies the properties (a), (b) and (c) and the lemma is
proved. ⊔⊓

The following lemma allows us to interchange directions and to prove it
we use Lemma 5.1 jointly with Proposition 7.1 of [2]. The main idea is to use
the absence of hyperbolic behavior to concatenate several small rotations of
the form given by Lemma 5.1 in order to mix different directions.

Lemma 5.2 Given A, ǫ > 0 and m(ǫ) = m ∈ N large enough, then the
following holds: let y ∈ X be a nonperiodic point and suppose it is en-
dowed a nontrivial splitting Hy = E ⊕ F such that ‖Am(y)|F ‖

m(Am(y)|E)
≥ 1/2. Then

there exist operators Lj : Hfj(y) → Hfj+1(y), for each j = 0, ..., m − 1, with
‖Lj −A(f j(y))‖ < ǫ such that Lm−1 · ... ·L0 · v = w for some nonzero vectors
v ∈ E and w ∈ Am(y)(F ).

Let Λp(A, m) be the set of points x such that there exists an m-dominated
splitting (of index p) along the orbit of x and Γp(A, m) = X \Λp(A, m). Let
us consider Γ∗

p(A, m) defined by the points x ∈ O(A) ∩ Γp(A, m), which are
nonperiodic and also such that λp(A, x) > λp+1(A, x). Then we get a local
result:

Lemma 5.3 Given A, ǫ, δ > 0 and p ∈ N, if m ∈ N is large enough, then
there exists a measurable function N : Γ∗

p(A, m) → N such that, for µ-a.e.
x ∈ Γ∗

p(A, m) (with all λi(A, x)′s for i ≤ p+1 different from −∞) and every
n ≥ N(x), there exist operators L0, ..., Lm−1 as in Lemma 5.2 satisfying

1

n
log+ ‖ ∧p (Ln−1 · ... · L0)‖ ≤

p−1
∑

i=1

λi(A, x) +
λp(A, x) + λp+1(A, x)

2
+ δ. (2)
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Proof: We use Lemma 5.2 and follow the arguments of Proposition 4.2
of [2]. ⊔⊓

Remark 5.1 Suppose that for some p ∈ N we have,

λp(A, x) 6= λp+1(A, x) = −∞.

Therefore if we swap λp+1(A, x) by κp+1(A, x) ∈ R
− (with κp+1(A, x) << 0)

and κp+1(A, x) < λp(A, x), then the left hand of the inequality (2) can easily
be made as small as we want. For this reason, in the sequel, we assume that
λp(A, x) 6= −∞, ∀p ∈ N.

Finally we consider the global case.

Proposition 5.4 Let A be a compact operator, ǫ, δ > 0 and p ∈ N. Then
there exists m ∈ N and a continuous operator B, with ‖B − A‖∞ < ǫ, that
equals A outside the open set Γp(A, m) and is such that

∫

Γp(A,m)

λ∧p
1 (B, x)dµ(x) <

∫

Γp(A,m)

p−1
∑

i=1

λi(A, x)+
λp(A, x) + λp+1(A, x)

2
dµ(x)+δ.

Proof: Like in [2] we use Lemma 5.3 and a Kakutani tower argument and
prove an easier result for a measurable and essentially bounded operator;
then, using Lusin’s theorem we approximate the measurable operator by a
continuous one. See Proposition 7.3 and Lemma 7.4 of [2] for all details. ⊔⊓

Once we have settled Proposition 5.4 we define for each p ∈ N and for
Γp(A,∞) :=

⋂

m Γp(A, m), the jump function at A by

Jp(A) =

∫

Γp(A,∞)

λp(A, x) − λp+1(A, x)dµ(x).

By using Lemma 4.17 of [2] jointly with Proposition 5.4 we obtain that, given
a continuous cocycle A, any p ∈ N, ǫ > 0 and δ > 0, there exists a continuous
cocycle B, ǫ-close to A and such that:

∫

X

λ∧p
1 (B, x)dµ(x) < δ +

∫

X

λ∧p
1 (A, x)dµ(x) − 2Jp(A).

Now to end the proof of Proposition 4.2 we note that if A is a point of con-
tinuity of LEp(X) for all p ∈ N, then Jp(A) = 0 for every p. Therefore for
every p and µ-a.e. z ∈ Γp(A,∞) we have λp(A, z) = λp+1(A, z). Now if
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x is inside the full measure set given by Theorem 3.1 and its spectrum is
trivial, then our result is proved. If the spectrum of x is not trivial, hence
λp(A, x) > λp+1(A, x) for some p and so x /∈ Γp(A, m). Therefore, for some
m, we have x ∈ Λp(A, m). Hence we have an m-dominated splitting of index
p; Hfn(x) = En ⊕ Fn along the orbit of x with En = U1(x) ⊕ ... ⊕ Up(x) and
Fn = Up+1(x) ⊕ .... Moreover, we obtain that the splitting given by Theo-
rem 3.1 is dominated and the Proposition 4.2 is proved.
By Proposition 4.2, for each p, there exists a residual Rp of points of continu-
ity of LEp. Take R =

⋂

p∈N
Rp and this is the residual where the statement

of Theorem 1.1 holds.
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