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

A group is Markov if it admits a prefix-closed regular language
of unique representatives with respect to some generating set, and
strongly Markov if it admits such a language of unique minimal-
length representatives over every generating set. This paper con-
siders the natural generalizations of these concepts to semigroups
and monoids. Two distinct potential generalizations to monoids
are shown to be equivalent. Various interesting examples are pre-
sented, including an example of a non-Markovmonoid that never-
theless admits a regular language of unique representatives over
any generating set. It is shown that all finitely generated com-
mutative semigroups are strongly Markov, but that finitely gener-
ated subsemigroups of virtually abelian or polycyclic groups need
not be. Potential connections with word-hyperbolic semigroups
are investigated. A study is made of the interaction of the classes
of Markov and strongly Markov semigroups with direct products,
free products, andfinite-index subsemigroups and extensions. Sev-
eral questions are posed.

 

The notion of Markov groups was introduced by Gromov in his
seminal paper on hyperbolic groups [Gro, § .], and explored further by
Ghys & de la Harpe [GdlHa]. A group is Markov if it admits a language
of unique representatives, with respect to some generating set, that can be de-
scribed by aMarkov grammar. In this context, aMarkov grammar is essentially
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a finite state automaton with one initial state and every state being an accept
state. The connection with hyperbolic groups arises because every hyperbolic
group admits such a language of minimal-length unique representatives; such
groups are said be stronglyMarkov [GdlHa, Théorème ]. StronglyMarkov
groups have rational growth serieswith respect to any generating set [GdlHa,
Corollaire ].

The overarching aim of this paper is to begin to investigate the natural gen-
eralization to semigroups of this notion of Markov groups. A motivation for
this is the fruitful generalization from groups to semigroups of concepts in-
volving automata and languages, such as automatic structures (for groups, see
[ECH+], for semigroups, [CRRT]), automatic presentations (see, for exam-
ple, [OT, CORT]), and automaton semigroups (for groups, see the mono-
graph [Nek], for semigroups, see for example [Mal, SS]).

After recalling some necessary background definitions and results in § ,
the generalization of the definition to monoids and semigroups is given in §
. The generalization to monoids is immediate: a Markov monoid is a monoid
admitting a language of unique representatives described by a Markov gram-
mar (again, essentially a finite state automaton with a unique initial state and
every state being an accept state), which is equivalent to admitting a prefix-
closed regular language of unique representatives (see Proposition . below).
A monoid is strongly Markov if it admits a prefix-closed language of unique
minimal-length representatives with respect to any generating set. However,
since the empty word is not in general a valid representative for an element of
a semigroup, generalizing the definition to semigroups entails excluding the
empty word from the otherwise prefix-closed language of unique representa-
tives. Thus there are, formonoids, distinct notions of ‘Markov as amonoid’ and
‘Markov as a semigroup’; fortunately, the concepts turn out to be equivalent,
as proved in § .

Some of the basic properties of Markov semigroups are explained in § .
An example of a non-Markov monoid that nevertheless admits a regular (non-
prefix-closed) language of unique representatives with respect to any gener-
ating set is given in § . How certain rewriting systems naturally give rise to
Markov semigroups is shown in § . That finitely generated commutative semi-
groups are strongly Markov is shown in § . Next, §  shows that finitely
generated subsemigroups of polycyclic or virtually abelian groups need not
be Markov, and discusses the importance of these facts. §  exhibits some
other interesting examples of Markov semigroups and some examples of non-
Markov semigroups.

Given the intimate connection betweenhyperbolic groups andMarkovgroups
discussed above, it is natural to look for a parallel between semigroups that are
word-hyperbolic in the sense of Duncan & Gilman [DG] and Markov semi-
groups. However, as discussed in § , a word-hyperbolic semigroup need not
even admit a regular language of unique normal forms, let alone a prefix-closed
one.

§§ – examine the interaction ofMarkov semigroupswith adjoining iden-
tities and zeros, with direct products, with free products, and with finite-index
subsemigroups and extensions. Finally, the class of languages that are Markov
languages for semigroups is considered in § .

Since Markov semigroups seem to be an entirely new area, there are many
possible directions for further research. Consequently, various open questions
are scattered throughout the paper in the relevant contexts.
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We remark that the research described in this paper has involved drawing
techniques, ideas, and examples from a broad swathe of semigroup and formal
language theory.

 

. Generators, alphabets, and words

The notation used in this paper distinguishes a word from the el-
ement of the semigroup or monoid it represents. Let A be an alphabet repre-
senting a set of generators for a semigroup or monoid S. Formally, there is a
map ϕ : A → S that extends to a surjective homomorphism ϕ : A+ → S (or
ϕ : A∗ → S if S is a monoid).

While occasionally the representation map ϕ will be explicitly mentioned,
generally the following notational distinction will suffice: for a word w ∈ A∗,
denote by w the element ofM represented by w (so that w = wϕ); for a set of
wordsW ⊆ A∗, denote byW the set of all elements of S represented by at least
one word inW. Notice that the emptyword ε is a valid representative word if
and only if S is a monoid.

. Languages and automata

For background information on regular and context-free languages
and finite automata, see [HU, Ch. –].

Let L be a language over an alphabet A. Then L is prefix-closed if

(∀u ∈ A∗, v ∈ A+)(uv ∈ L =⇒ u ∈ L),

and L is closed under taking non-empty prefixes, or more succinctly +-prefix-closed,
if

(∀u ∈ A+, v ∈ A+)(uv ∈ L =⇒ u ∈ L).

Notice that if L is prefix-closed and non-empty, it contains the empty word ε.

. String-rewriting systems

This subsection contains facts about string rewriting needed later
in the paper. For further background information, see [BO].

A string rewriting system, or simply a rewriting system, is a pair (A,R), where
A is a finite alphabet andR is a set of pairs (ℓ, r), known as rewriting rules, drawn
from A∗ × A∗. The single reduction relation ⇒ is defined as follows: u ⇒ v

(where u, v ∈ A∗) if there exists a rewriting rule (ℓ, r) ∈ R and words x, y ∈ A∗

such that u = xℓy and v = xry. That is, u ⇒ v if one can obtain v from u by
substituting the word r for a subword ℓ of u, where (ℓ, r) is a rewriting rule. The
reduction relation⇒∗ is the reflexive and transitive closure of⇒. The process
of replacing a subword ℓ by a word r, where (ℓ, r) ∈ R, is called reduction, as is
the iteration of this process.

Awordw ∈ A∗ is reducible if it contains a subword ℓ that forms the left-hand
side of a rewriting rule in R; it is otherwise called irreducible.

The string rewriting system (A,R) is noetherian if there is no infinite sequence
u1, u2, . . . ∈ A∗ such that ui ⇒ ui+1 for all i ∈ N. That is, (A,R) is noetherian if
any process of reduction must eventually terminate with an irreducible word.
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The rewriting system (A,R) is confluent if, for any words u, u ′, u ′′ ∈ A∗ with
u ⇒∗ u ′ and u ⇒∗ u ′′, there exists a word v ∈ A∗ such that u ′ ⇒∗ v and
u ′′ ⇒∗ v.

The string rewriting system (A,R) is non-length-increasing if (ℓ, r) ∈ R im-
plies that |ℓ| ⩾ |r| and is length-reducing if (ℓ, r) ∈ R implies that |ℓ| > |r|. Observe
that any length-reducing rewriting system is necessarily noetherian.

The rewriting system (A,R) is monadic if it is length-reducing and the right-
hand side of each rule in R lies in A∪ {ε}; it is special if it is length-reducing and
each right-hand side is the empty word ε. Observe that every special rewriting
system is also monadic.

The string rewriting system (A,R) is finite if the set of rules R is finite. A
monadic rewriting system (A,R) is regular (respectively, context-free), if, for each
a ∈ A ∪ {ε}, the set of all left-hand sides of rules in R with right-hand side a is
regular (respectively, context-free).

Let (A,R) be a confluent noetherian string rewriting system. Then for any
word u ∈ A∗, there is a unique irreducible word v ∈ A∗ with u ⇒∗ v [BO,
Theorem ..]. The irreducible words are said to be in normal form. The
monoid presented by ⟨A | R⟩ may be identified with the set of normal form
words under the operation of ‘concatenation plus reduction to normal form’.

 

As defined byGhys& de laHarpe [GdlHa, Définition ], a group
isMarkov if it admits a language of unique representatives defined by aMarkov
grammar, which is essentially a finite state automaton where every state is an
accept state [GdlHa, Définition ]. The following result shows that the class
of languages recognized by such automata are the prefix-closed regular lan-
guages. In general, arguments in this paper work with regular expressions
rather than explicitly constructed automata, so this equivalences embodied in
this result and in the later Proposition . are important.

 .. A regular language is prefix-closed if and only if it is recognized
by a finite state automaton in which every state is an accept state.

Proof of 3.1. Suppose L is prefix-closed and let A be a trim deterministic finite
state automaton recognizing L. Let q be some state of A. Since A is trim, q lies
on a path from the initial state to an accept state. Let w be the label on such a
path, with w ′ being the label before the first visit to q. Then w ′, being a prefix
of w, also lies in L. Since A is deterministic, there is only one path starting at
the initial state labelled by w ′, and this path ends at q. Since w ′ ∈ L, it follows
that q is an accept state. Therefore, since q was arbitrary, every state of A is an
accept state.

Suppose that L is accepted by an automaton A in which every state is an
accept state. Let w ∈ L and let w ′ be some prefix of w. Then w labels a path
starting at the initial state of A and leading to an accept state. The prefix w ′

labels an initial segment of this path, ending at a state q, which, by hypothesis,
is also an accept state. Thus w ′ ∈ L. Since w ∈ L was arbitrary, L is prefix-
closed. 3.1

In light of Proposition ., a group is Markov if it admits a prefix-closed reg-
ular language of unique representatives. Now, in generalizing the notion of
being Markov from groups to semigroups, one must change from monoid to
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semigroup generating sets and modify the notion of the language of represen-
tatives appropriately. For groups, the language of representatives is taken over
an alphabet representing amonoid generating set for the group, with the empty
word being the representative of the identity. (Indeed, the empty word lies
in any non-empty prefix-closed language.) In generalizing to arbitrary semi-
groups, it is necessary to use a semigroup generating set, in which case the
empty word is no longer admissable as a representative, and the natural defi-
nition for the language of representatives requires not prefix-closure, but only
+-prefix-closure.

This raises a potential problem, in that a monoid (possibly a group) could
be Markov in two different ways: it could be Markov as a monoid (allowing,
or rather requiring, that the identity be represented by the empty word), or
Markov as a semigroup (requiring that the identity be represented by a non-
empty word). It is thus conceivable that the class of monoids that are Markov
asmonoids and the class ofmonoids that areMarkov as semigroups are distinct.
Fortunately, however, the two notions are equivalent, as will be shown in § .

The definition of ‘Markov as a monoid’ is given first, since it is the more
direct generalization from the group case:

 .. LetM be amonoid and letA be a finite alphabet representing
amonoid generating set forM. For x ∈M, let λA(x) be the length of the shortest
word over A representing x; this is called the natural length of x. (Notice that
λ(1M) = 0.)

AmonoidMarkov language forM overA is a regular language L that is prefix-
closed and contains a unique representative for every element ofM.

A robust monoid Markov language forM overA is a regular language L that is
prefix-closed and contains a unique representative for every element ofM such
that |w| = λA(w) for every w ∈ L.

The monoid M is Markov (as a monoid) if there exists a monoid Markov
language forM over an alphabet representing some monoid generating set for
M.

The monoidM is robustly Markov (as a monoid) with respect to an alphabet
A representing a generating set forM if there exists a robust monoid Markov
language forM over A.

The monoidM is strongly Markov (as a monoid) if, for every alphabetA rep-
resenting a monoid generating set forM, there exists a robust monoid Markov
language forM over A.

The reason for introducing the term ‘robustly Markov’ is because there are
manynatural examples of semigroups that admit aMarkov languages ofminimal-
length representativeswhile not being stronglyMarkov (see for example Propo-
sition .), and consequently such semigroups still enjoy certain pleasant prop-
erties.

Note that Ghys & de la Harpe [GdlHa] use different terminology: rather
than ‘Markov (respectively, strongly Markov) groups’, they use (terms that
translate as) ‘groups with the Markov (respectively, strong Markov) property’.
We prefer Gromov’s original terminology, since it does not clash with ‘Markov
property’ in the sense of anundecidable semigroup-theoretic property (see [Mar]
and [BO, Theorem ..]).

 .. Let S be a semigroup and let A be a finite alphabet repre-
senting a generating set for S. For x ∈ S, let λA(x) be the length of the shortest
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non-empty word over A representing x; this is called the natural length of x.
(Notice that if S is a monoid, λA(1S) is not zero.)

A semigroup Markov language for S over A is a regular language L that does
not contain the empty word, is +-prefix-closed, and contains a unique repre-
sentative for every element of S.

A robust semigroup Markov language for S over A is a regular language L that
does not contain the empty word, is +-prefix-closed, and contains a unique
representative for every element of S such that |w| = λA(w).

The semigroupS isMarkov (as a semigroup) if there exists a semigroupMarkov
language for S over an alphabet representing some generating set for S.

The semigroup S is robustly Markov (as a semigroup) with respect to an al-
phabet A representing a generating set for S if there exists a robust semigroup
Markov language for S over A.

The semigroup S is strongly Markov (as a semigroup) if, for every alphabet
A representing a generating set for S, there exists a robust semigroup Markov
language for S over A.

The following result is the parallel of Proposition . that applies to+-prefix-
closed languages:

 .. A regular language that does not contain the empty word is +-
prefix-closed if and only if it is recognized by a finite state automaton in which every
state except the initial state is an accept state, and in which there are no incoming edges
to the initial state.

Proof of 3.4. Suppose L is+-prefix-closed and does not contain the emptyword.
LetA be a trim deterministic finite state automaton recognizing L. Since L does
not contain the empty word, the initial state q0 is not an accept state. Let q be
some other state of A. Since A is trim, q lies on a path from the initial state
to an accept state. Let w be the label on such a path, with w ′ ̸= ε being the
label before the first visit to q. Then w ′, being a non-empty prefix of w, also
lies in L. Since A is deterministic, there is only one path starting at the initial
state labelled by w ′, and this path ends at q. Since w ′ ∈ L, it follows that q is
an accept state. Therefore, since q was arbitrary, every state of A is an accept
state. Finally, suppose, with the aim of obtaining a contradiction, that there
is an incoming edge from a state p to the initial state q0. Then, since A is trim,
there is a wordw labelling a path from q0 to an accept state, including this edge
from p to q0. Let w ′ be the prefix of w labelling the non-empty initial segment
of the path from q0 back to q0. Then, since q0 is not an accept state and A is
deterministic, w ′ /∈ L, contradicting the fact that L is +-prefix-closed. Hence
there are no edges ending at q0.

Suppose that L is accepted by an automaton A in which every state except
the initial state is an accept state, and in which the initial state has no incoming
edges. Let w ∈ L and let w ′ be some prefix of w. Then w labels a path starting
at the initial state of A and leading to an accept state. The prefix w ′ labels an
initial segment of this path, ending at a state q, which cannot be the initial state,
since it has no incoming edges, and must therefore, by hypothesis, be an accept
state. Thus w ′ ∈ L. Since w ∈ Lwas arbitrary, L is prefix-closed. 3.4
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  

As remarked in § , it is conceivable that the class of monoids that
are Markov as monoids and the class of monoids that are Markov as semi-
groups are distinct, and the same issue arises for being robustly Markov and
strongly Markov. Fortunately, for monoids the monoid and semigroup notions
are equivalent, as the following three results show:

 .. A monoid is Markov as a semigroup if and only if it is Markov
as a monoid.

Proof of 4.1. LetM be a monoid.
Suppose thatM is Markov as a monoid. LetA be an alphabet representing a

monoid generating set forM such that there is amonoidMarkov language L for
M overA. Then L is prefix-closed, regular, and contains a unique representative
for each element ofM. In particular, the identity ofM is represented by ε ∈ L.
Let 1 be a new symbol representing the identity forM. ThenK = (L−{ε})∪{1} is
+-prefix-closed, regular, and contains a unique representative for every element
ofM. Hence K is a semigroup Markov language forM and thusM is Markov
as a semigroup.

Suppose now thatM is Markov as a semigroup. LetA be an alphabet repre-
senting a semigroup generating set forM such that there is a semigroupMarkov
language L for M over A. Then L is +-prefix-closed, regular, and contains a
unique representative for every element ofM. Let w be the unique word in L
representing the identity ofM. Let

K =
(
L−wA∗) ∪ {u ∈ A∗ : wu ∈ L}.

Since L is +-prefix-closed and wA∗ is closed under concatenation on the right,
L − wA∗ is also +-prefix closed. Furthermore, {u ∈ A∗ : wu ∈ L} is prefix-
closed. (Notice that this set contains ε since w lies in L.) So K is prefix-closed.
Moreover, wu and u represent the same element ofM for any u ∈ A∗, so {u ∈
A∗ : wu ∈ L} consists of unique representatives for exactly those elements ofM
whose representatives in L havew as a prefix. Hence every element ofM has a
unique representative in K. Finally, notice that K is regular. Thus K is a monoid
Markov language forM and soM is Markov as a monoid. 4.1

 .. 1. If a monoid is robustly Markov as a monoid with respect to
some alphabetA representing a semigroup generating set, it is also robustlyMarkov
as a semigroup with respect toA. Furthermore, if a monoid is robustly Markov as a
monoid with respect to an alphabet B representing a monoid generating set that is
not also a semigroup generating set, then it is robustly Markov as a semigroup with
respect to B ∪ {1}, where 1 represents the identity.

2. If a monoid is robustly Markov as a semigroup with respect to some alphabet A
representing a (semigroup) generating set, then it is robustly Markov as a monoid
with respect toA. Furthermore, if a monoid is robustlyMarkov as a semigroup with
respect to B ∪ {1}, where B represents a monoid generating set and 1 represents the
identity, then it is robustly Markov as a monoid with respect to B.

Proof of 4.2. LetM be a monoid.

. Suppose thatM admits a robust monoid Markov language L over A. Since
A generatesM as a semigroup, one can choose a shortest non-empty word
w over A representating the identity ofM. Letw = w1 · · ·wn, withwi ∈ A.
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For each non-empty prefix w1 · · ·wi of w, let pi be the unique element of L
representing the same element ofM as this prefix. Notice that if an element
of L has a prefix representingw1 · · ·wi, that prefix must be pi by the prefix-
closure of L and the fact that itmaps bijectively ontoM. Moreover, the length
of pi must be the same as the length ofw1 · · ·wi. To find a robust semigroup
Markov language forM over A, it is necessary to replace the prefixes pi by
w1 · · ·wi and the empty word ε by w. More formally, let

K =
((
L− {ε}

)
−

n∪
i=1

piA
∗
)
∪ {w} ∪

n∪
i=1

{w1 · · ·wiu : piu ∈ L}.

Now, L − {ε} is +-prefix-closed. Since each language piA∗ is closed under
concatenation on the right,

(
L− {ε}

)
−

n∪
i=1

piA
∗

is +-prefix-closed. Furthermore,

{w} ∪
n∪

i=1

{w1 · · ·wiu : piu ∈ L}

is +-prefix-closed since L is and since every prefix of w is in this set. There-
fore K is+-prefix-closed. Furthermore, K is regular and, by definition, maps
bijectively ontoM. Finally, since |pi| = |w1 · · ·wi|, it follows that the repre-
sentative in K of an element ofM is the same length as its representative in
L, excepting that the identity is represented by the non-empty word w in K.
So K is a robust semigroup Markov language over A forM.

For the final claim, let L be a robust monoidMarkov language forM over
B. Then 1 is a shortest non-empty representative of 1M over the alphabet
B ∪ {1}. Then K = (L − {ε}) ∪ {1} is a regular, +-prefix-closed, and consists
of minimal-length unique representatives forM. So K is a robust semigroup
Markov language forM.

. Suppose thatM admits a robust semigroup Markov language L over an al-
phabet A representing a semigroup generating set forM.

Let w ∈ L be the representative of the identity of M. Since L does not
contain the empty word, |w| ⩾ 1. Suppose that some word u ∈ L contains
w as a proper subword, with u = u ′wu ′′. Then u ′u ′′ = u and |u ′u ′′| < |u|,
which contradicts the fact that representatives in L are supposed to be length-
minimal. So w is not a proper subword of any word in L. In particular,
L ′ = L− {w} is +-prefix-closed.

Notice that L ′ is +-prefix-closed, regular, and consists of unique repre-
sentatives having minimal length (over A) for non-identity elements ofM.
Thus K = L ′ ∪ {ε} is prefix-closed, regular, and consists of unique represen-
tatives for all elements ofM. So K is a robust monoidMarkov language over
A forM.

For the final claim, let A = B∪ {1} and follow the same reasoning. In this
case, 1 is the minimal-length representative for 1M and does not occur as a
subword of any other element of L. So L ′ ⊆ B+ and so K is a robust monoid
Markov language over B forM. 4.2

The following result is a consequence of Proposition .:
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 .. A monoid is strongly Markov as a semigroup if and only if it is
strongly Markov as a monoid.

Proof of 4.3. LetM be a monoid.
SupposeM is stronglyMarkov as amonoid. LetA be an alphabet represent-

ing a semigroup generating set forM. ThenM is robustly Markov as a monoid
with respect to A. By the first part of Proposition .,M is robustly Markov as
a semigroup with respect to A. Since A was an arbitrary alphabet represent-
ing a semigroup generating set forM, by definitionM is strongly Markov as a
semigroup.

SupposeM is strongly Markov as a semigroup. Let B be an alphabet repre-
senting a monoid generating set forM. ThenM is robustly Markov as a semi-
group with respect to B∪ {1}, where 1 = 1M. By the second part of Proposition
.,M is robustly Markov as a monoid with respect to B. Since B was an arbi-
trary alphabet representing a monoid generating set forM, by definitionM is
strongly Markov as a monoid. 4.3

In light of Propositions ., ., and ., there is no need for a terminological
distinction between the conditions ‘Markov as a semigroup’ and ‘Markov as a
monoid’, between ‘robustly Markov as a semigroup’ and ‘robustly Markov as a
monoid’, and between ‘stronglyMarkov as a semigroup’ and ‘stronglyMarkov
as a monoid’: the terms ‘Markov’, ‘robustly Markov’, and ‘strongly Markov’
alone will suffice.

The results in this section parallel the situation for automatic monoids: a
monoid is automatic as a semigroup if andonly if it is automatic as amonoid [DRR,
§].

  

It is important to note that a Markov language does not define a
group or semigroup up to isomorphism, unlike an automatic structure [KO,
Proposition .]. To see this, notice that if A is a finite alphabet of size n, then
A (qua language of one-letter words) is a semigroup Markov language for any
semigroup of size n, and A∪ {ε} is a monoid Markov language for any monoid
or group of size n+ 1. The language (a∗ ∪ (a−1)∗)(b∗ ∪ (b−1)∗)(c∗ ∪ (c−1)∗) is
a Markov language for both Z3 and the Heisenberg group [Ghy, § .].

The growth series of a semigroup S with respect to a finite alphabet A repre-
senting a generating set for S is

Σ(S,A) =
∑
s∈S

xλA(x),

or equivalently

Σ(S,A) =

∞∑
n=0

σA(n)xn,

where σA(n) = |{s ∈ S : λA(s) = n}|. A growth series Σ(S,A) is said to be
rational if it is a power series expansion of a rational function.

 .. If a semigroup admits a robust Markov language with respect to a
particular generating set, then its growth series with respect to that generating set is a
rational function. A stronglyMarkov semigroup has rational growth series with respect
to any generating set.





Proof of 5.1. The proof for groups generalizes directly [GdlHa, Corollaire ].
5.1

The independent importance of semigroup growth series (see, for example,
[GdlH, § ]) means that, as a consequence of Theorem ., robust Markov
semigroups are of considerably greater interest than Markov semigroups gen-
erally.

 .. It is worth observing that the growth rate of a Markov language
need not mirror the growth of the semigroup or monoid. For example, all
finitely generated polycyclic groups are Markov [GdlHa, Corollaire ]. Fur-
thermore, the language of collected words for a finitely generated polycyclic
group forms aMarkov language [Sim, p. ] and is easily seen to have poly-
nomial growth. However, a polycyclic group that is not virtually nilpotent
contains a free subsemigroup of rank 2 [Ros, Theorem .] and hence has
exponential growth.

Being Markov implies the existence of a regular language of unique normal
forms over any finite generating set:

 .. Let S be a semigroup that admits a regular language of unique
normal forms over some generating set (such as a Markov semigroup), and let A be a
finite alphabet representing a generating set for S. Then there is a regular language L
over A such that every element of S has a unique representative in L.

[Notice that even if S is a Markov semigroup, the language L need not be
prefix-closed.]

Proof of 5.3. LetK be a regular language of unique normal forms for S over some
finite alphabet B. For each b ∈ B, let ub ∈ A+ be such that ub represents b. Let
R ⊆ B+ ×A+ be the rational relation:

R = {(b1, ub1
)(b2, ub2

) · · · (bn, ubn
) : b ∈ B,n ∈ N}

Notice that if (v,w) ∈ R, then v = w.
Let

L = K ◦ R =
{
w ∈ A∗ : (∃v ∈ K)((v,w) ∈ R)

}
;

observe that L is a regular language. Notice that, by the definition of R, for each
word v inK there is exactly onewordw ∈ Lwith (v,w) ∈ R. Since for each x ∈ S
there is exactly one word v in K with v = x, it follows that there is exactly one
word w ∈ Lwith w = x. That is, the language Lmaps bijectively onto S. 5.3

  -       


This section exhibits a non-Markov monoid that nevertheless ad-
mits a regular language of unique representatives over any alphabet represent-
ing a finite generating set. (That is, regularity and uniqueness of representa-
tives is achievable over any alphabet representing a generating set, but prefix-
closure is never achievable.) This is important because it shows that the classes
of Markov semigroups and monoids are properly contained in the classes of
semigroups andmonoids admitting regular languages of unique normal forms:


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 . An outline of the graph of the action of X on T .

the requirement of prefix-closure properly restricts the classes under consider-
ation.

The example depends on the following construction from [MR, § ].

 .. For any action of a semigroup S on a set T , define a new
semigroup S[T ] as follows. The carrier set is S ∪ T ; multiplication in S remains
the same, and for s ∈ S and x, y ∈ T ,

sx = x, xs = x · s, xy = y.

It is straightforward to check that this multiplication is associative.

To construct the example, proceed as follows. Let F and F ′ be free monoids
with bases X = {x, y} and X ′ = {x ′, y ′} respectively and let

R = {w ∈ F ′ : |w|y ′ is even}.

Letw0, w1, w2, . . . be the elements ofR enumerated in length-plus-lexicographic
order. Define ψ : N∪ {0} → R by j 7→ wj, so that ψ is a bijection between N∪ {0}

and R. Notice that |jψ| < 2j for all j ∈ N ∪ {0}. Let

P = {pi : i ∈ N},
Q = {qi : i ∈ N∧ ¬(∃j ∈ N ∪ {0})(i = 2j)},

T = P ∪Q ∪ F ′ ∪ {Ω}.

Define an action of the generators x and y on the set T as follows:

pi · x = pi+1,

pi · y =

{
qi if i ̸= 2j for any j ∈ N ∪ {0},

jψ if i = 2j,

qi · x = Ω, w · x = wx ′ (for w ∈ F ′), Ω · x = Ω,
qi · y = Ω, w · y = wy ′ (for w ∈ F ′), Ω · y = Ω.

Figure  illustrates the graph of the action of X on T . Since F is free on X, this
action extends to a unique action of F on T .

The aim is to show that F[T ] is not Markov but nevertheless admits a regu-
lar language of unique representatives over any finite alphabet representing a
generating set.

Notice that in F[T ], elements of F multiply as in the free monoid and act on
T . Elements of F ′ are members of the set T and thus multiply like right zeroes.





 .. The monoid F[T ] admits a regular language of unique represen-
tatives over any finite alphabet representing a generating set.

Proof of 6.2. By Proposition ., it suffices to prove that F[T ] admits a regular
language of unique representatives over some particular finite alphabet repre-
senting a generating set.

Let A = {a, b, c, d, e, f}, where a = x, b = y, c = x ′, d = y ′, e = p1, and
f = Ω. Let ρ : F ′ → A+ be the bijection extending x ′ 7→ c and y ′ 7→ d. Let

L = {a, b}∗ ∪ ea∗ ∪ ea∗b ∪ ({c, d}+ − Rρ) ∪ {f}.

Then L maps bijectively onto F[T ]. In particular, the subset {a, b}∗ maps bijec-
tively onto F, the subset ea∗ maps bijectively onto {pi : i ∈ N}, the subset ea∗b
maps bijectively onto {qi : i ∈ N} ∪ R, and the subset {c, d}+ − Rρ maps bijec-
tively onto F ′ − R. So L ⊆ A∗ is a regular language of unique representatives
for F[T ]. [Note that L is not prefix-closed, since it does not contain words from
Rρ but does contain all words in (Ry ′)ρ = (Rρ)d.] 6.2

 .. The monoid F[T ] is not Markov.

Proof of 6.3. Suppose, with the aim of obtaining a contradiction, that F[T ] admits
a Markov language L over some alphabet A.

Informally, the strategy is to reach a contradiction by proving the following:

. Sufficiently long elements of R must have representatives in L that label
paths that run through P for most of their length (excepting a short prefix)
and enter R ⊆ F ′ on their last letter. (Lemma ..)

. Sufficiently long elements of F ′−R have representatives in L that label paths
that run through F ′ formost of their length (excepting a short prefix). (Lemma
..)

. Taking a suitable prefix of a representative of an element of F ′ − R yields a
representative of an element of R that is not of the form described in step .
(Conclusion of proof.)

As as preliminary, define several subalphabets of A and several constants
that will be used later to clarifywhat ‘sufficiently long’means in the plan above.
Let

AP = {a ∈ A : a ∈ P},
AQ = {a ∈ A : a ∈ Q},

AF ′ = {a ∈ A : a ∈ F ′},
AF = {a ∈ A : a ∈ F},
Ax = {a ∈ A : a ∈ x+},
AΩ = {a ∈ A : a = Ω};

notice that A is the disjoint union of AP, AQ, AF ′ , AF, and AΩ, and that Ax ⊆
AF. Let

m1 = |u|,where u is the unique representative in L ofΩ,

m2 = max{i : pi ∈ AP},

m3 = max{i : qi ∈ AQ},

m4 = max{|a| : a ∈ AF ′},

m = max{m1,m2,m3,m4}.
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Let k = max{|a| : a ∈ AF}.
Let A be a deterministic finite automaton recognizing L. Consider the set of

labels on simple loops in A. Let V be the set of such labels that lie in A∗
x. Let

n be a constant that is a multiple of all of the lengths of the elements of V and
that also exceeds the number of states in A.

 .. Let uav ∈ L, where a ∈ A − AF. Then |u| < n. That is, any letter
from AP ∪ AQ ∪ AF ′ ∪ AΩ in a word in L must lie in the first n letters, and hence
L ⊆ A⩽nA∗

F.

Proof of 6.4. Suppose for reductio ad absurdum thatuav ∈ L is as in the hypothesis
but that |u| > n. Then by the pumping lemma, u factorizes asu ′u ′′u ′′′ such that
u ′(u ′′)αu ′′′av ∈ L for all α ∈ N∪ {0}. Since a ∈ T , it follows from the definition
of multiplication in F[T ] that

u ′(u ′′)αu ′′′av = av,

for every α ∈ N ∪ {0}, which contradicts the uniqueness of representatives in L.
Hence |u| ⩽ n. 6.4

 .. The representative in L of everyw ∈ R ⊆ F ′ with |w| > m+n+k+kn
has the form vc, where v ∈ A∗, c ∈ AF −Ax, v ∈ P and c = xβy for some β < k.

Proof of 6.5. Let j be such that jψ = w. Since |w| > m+n+k+kn, it follows that
2j > |w| > m+ n and hence 2j − n > m. It also follows that 2j > n+ kn ⩾ 2n,
and so n < 2j−1. Hence 2j − n > 2j−1. Thus 2j − n is not a power of 2 and so
there is an element q2j−n ∈ Q.

Let t be the representative in L ofq2j−n. Since 2j−n > m, the rightmost letter
a from A−AF in the word t cannot be such that a = q2j−n by the definition of
m; therefore amust lie in AP. By Lemma ., t factorizes as uas, where |u| < n
and s ∈ A∗

F. Let s = s ′cs ′′, where s ′ ∈ A∗
x and c ∈ AF − Ax. (Such a letter c

must exist, otherwise ubs ∈ P.) Now, uas ′c ∈ Q. Since the action of F on any
element of Q leads to the sink elementΩ, it follows that s ′′ is the empty word.
Hence t = uas ′c.

Let c = xβyz, where z ∈ {x, y}∗. Then uas ′xβy ∈ Q, and so z = ε since
otherwise uas ′xβyz = Ω. Since |c| ⩽ k, it follows a fortiori that β < k.

Furthermore, since uas ′c = q2j−n, it follows that uas ′ = p2j−n−β. Hence,
since ua = a = pm ′ for somem ′ ⩽ m, it follows that

|s ′| = 2j − n− β−m ′ ⩾ 2j − n− k−m > kn.

Thus |s ′| > n since each letter of s ′ represents an element of F whose length is
at most k.

Thus by the pumping lemma s ′ factorizes as v ′v ′′v ′′′, where |v ′′| divides n
(by the definition of n) and v ′(v ′′)αv ′′′ ∈ L for all α ∈ N∪ {0}. Set α = n/|v ′′|+1.
Then uav ′(v ′′)αv ′′′ = p2j−β. Thus

uav ′(v ′′)αv ′′′c = p2j−βx
βy = p2jy = p2jψ = w.

Set v = uav ′(v ′′)αv ′′′ to see that the representative t ofw has the form vc. 6.5

 .. Letw ∈ F ′−R. Then the representative in L ofw factorizes as uvwhere
u ∈ F ′ with |u| < m+ k+ kn and v ∈ A∗

F.





Proof of 6.6. Letw be in the hypothesis and let t be its representative in L. Since t
cannot lie inA∗

F, it contains some letter fromAP∪AQ∪AF ′∪AΩ. The rightmost
such letter cannot lie in AQ ∪AΩ, since this would force t to lie in Q ∪ {Ω}. So
the rightmost such letter is either from AP or AF ′ .

If the rightmost such letter is fromAF ′ , then by Lemma ., t = u ′av, where
a ∈ AF ′ , |u ′| < n, v ∈ A∗

F. Set u = u ′a. Then u = a and so |u| < m < m + nk
and there is nothing more to prove.

So suppose the rightmost such letter is from AP. Then by Lemma ., t =
t ′bt ′′, where b ∈ AP, |t ′| < n, t ′′ ∈ A∗

F. Then w = t = bt ′′. Now, if t ′′ ∈ A∗
x,

then bt ′′ ∈ P by the definition of the action. So t ′′ contains some letter from
AF − Ax. Let t ′′ = scv, where this distinguished letter c is the leftmost letter
of t ′′ that is from AF − Ax, so that s ∈ A∗

x. Then bs ∈ P and bsc ∈ F ′ since
the alternative bsc ∈ Q ∪ {Ω} cannot happen since this set is closed under the
action of v.

Thus far t has been factorized as t ′bscv. The next step is to show that |s| < n.
Suppose for reductio ad absurdum that |s| ⩾ n. Then s factorizes as s ′s ′′s ′′′, where
t ′bs ′(s ′′)αs ′′′cv ∈ L for all α ∈ N ∪ {0}. Now, since s = s ′s ′′s ′′′ ∈ A∗

x, the
elements t ′bs ′(s ′′)αs ′′′ are a sequence of elements piα whose indices iα form a
linear progression. But the indices of the elements pi ∈ P such that pi · c ∈ F ′
are the terms of an exponential function. So there are infinitelymanyα ∈ N∪{0}
such that t ′bs ′(s ′′)αs ′′′c = qj ∈ Q ∪ {Ω}.

Reasoning as in the third paragraph of the proof of Lemma ., c = xβy.
Now, if v ̸= ε, then t ′bs ′(s ′′)αs ′′′cv = Ω for infinitely many α ∈ N ∪ {0}, which
contradicts uniqueness of representatives. If, on the other hand, v = ε, then
w = t = t ′bsc = jψ for some j since t ′bs ∈ P, c = xβy, and t ′bsc ∈ F ′. So
w = jψ ∈ R, which contradicts the hypothesis of the lemma. Hence |s| < n.

Therefore |s| < kn since each letter of s represents a word in A∗
x of length at

most k.
Now, b = pm ′ , wherem ′ < m by the definition ofm. Hence bs = pm ′s = ph

for some h < m + kn by the definition of the action of x on the pi. Suppose
c = xβyz for some and z ∈ {x, y}∗. Then β+ |z| < k. Since t ′bsc ∈ F ′, it follows
that h + β = 2j for some j ∈ N ∪ {0}. Hence t ′bsc = wz, where w ∈ R with
|w| < 2j. Now,

|t ′bsc| = |wz| = |w|+ |z| < |jψ|+ |z| < 2j+ |z| = h+β+ |z| < h+k < m+k+kn.

Let u = t ′bsc. Then t = uv with |u| < m+ k+ kn. 6.6

Choose w ∈ R with |w| > m + n + k + kn. Then |w|y ′ is even and so
|w(x ′)2ky ′|y ′ is odd, so that w(x ′)2ky ′ /∈ R. Let t be the representative in L
of w(x ′)2ky ′. Then by Lemma ., t factorizes as uv, where the v is the longest
suffix lying in A∗

F and u ∈ F ′ with |u| < m+ k+ kn
In particular, |w(x ′)2ky ′| > m + 3k + kn. Since |u| < m + k + kn, it follows

that |v| > 2k. Since each letter of v represents an element of F of length at most
k, the word v has length at least 2. So let v = v ′ab, where a, b ∈ AF. Since
|a|, |b| < k, t = uv = w(x ′)2ky ′ and u ∈ F ′, it follows from the action of F on
F ′ ⊆ T that uv ′ = w(x ′)α for some α ∈ {1, . . . , 2k}, a = xβ (so that a ∈ Ax), and
b ∈ AF −Ax.

Let t ′ = uv ′a. Then t ′ = w(x ′)α+β. By prefix-closure, t ′ ∈ L. Observe that
t ′ ends with a ∈ Ax.

Now, the word w(x ′)α+β lies in R since |w|y ′ = |w(x ′)α+β|y ′ is even. So by
Lemma ., its unique representative t ′ must factorize as sc, where c = xβy, so
that c ∈ AF −Ax. This contradicts the fact that t ′ ends with a letter from Ax.





Thus F[T ] does not admit a Markov language. 6.3

  

Confluent noetherian rewriting systems form a natural source of
examples of Markov semigroups. The following result is easily noticed, but
will prove very useful:

 .. Let (A,R) be a confluent noetherian rewriting system with the
set of left-hand sides of rewriting rules in R being regular. Then the monoid presented
by ⟨A | R⟩ is Markov, and its language of normal forms is a Markov language. Fur-
thermore, if (A,R) is non-length-increasing, then the language of normal forms is a
robust Markov language for the monoid.

Proof of 7.1. The language L = A∗ − {ℓ : (ℓ, r) ∈ R}, which is the language of
normal forms of (A,R), is regular, prefix-closed, and maps bijectively onto the
monoid presented by ⟨A | R⟩. For the final observation, notice that if (A,R) is
non-length-increasing, then the language of normal forms consists of minimal-
length representatives. 7.1

It is worth emphasizing that Proposition . says that being Markov is a
necessary condition for a semigroup to be presented by a confluent noetherian
rewriting system, although it is probably not as useful as other necessary con-
ditions such as finite derivation type [SOK], which are independent of the
choice of generating set.

However, the following example shows that a semigroup presented by a
finite confluent noetherian non-length-increasing rewriting system can admit a
robust Markov language that looks very different from its language of normal
forms:

 .. Let A = {a, b} and R = {(a2, ba), (b2, ab)}. Then (A,R) is con-
fluent and noetherian. Let L be its language of normal forms; this is a robust
Markov language by Proposition .. Then L is the language of words over A
that do contain neither two consecutive letters a nor two consecutive letters b;
thus L is the language of alternating products of letters a and b:

L = (A∗ −A∗aaA∗) −A∗bbA∗

= (ab)∗ ∪ (ab)∗a ∪ (ba)∗ ∪ (ba)∗b.

LetM be the monoid presented by ⟨A | R⟩. Let

K = ab∗ ∪ ba∗.

The aim is to show that K is also a Markov language forM. Notice first that K
is prefix-closed and regular and so it remains to show that it consists of unique
minimal-length representatives forM.

Notice that for any α ∈ N ∪ {0},

(ab)α = ab(ab)α−1 = ab(b2)α−1 = ab2α−1

and

(ab)αa = ab(ab)α−1a = bb(ab)α−1a = b(ba)α = b(a2)α = ba2α.





Parallel reasoning shows that (ba)α = ba2α−1 and (ba)αb = ab2α. Thus
every word in L represents the same element as exactly one element of K and
vice versa. Furthermore, the lengths of the corresponding words in L and K are
the same. Hence, since L is a robust Markov language forM by Proposition .,
K is also a robust Markov language forM.

 .. Is every Markov semigroup presented by a confluent noethe-
rian rewriting systemwhere the language of left-hand sides of rewriting rules is
regular? (That is, where the language of all left-hand sides is regular: Example
. below shows that the language of left-hand sides of rules with a particular
right-hand side may be irregular.)

 ,  ,   


The example in §  consists of a non-Markovmonoid that admitted
a regular language of unique representatives over any alphabet representing a
generating set. The present section gives an example of amonoid that isMarkov
but not robustly Markov (Example .) and an example of a monoid that is
robustly Markov but not strongly Markov (Example .). These three exam-
ples together show that the classes of Markov, robustly Markov, and strongly
Markov semigroups are distinct.

 .. Let

P = {pi : i ∈ N},
Q = {qi : i ∈ N∧ ¬(∃j ∈ N)(i = 2j)},
R = {ri : i ∈ N},
S = {si : i ∈ N},
T = P ∪Q ∪ R ∪ S ∪ {Ω}.

Let F be a free monoid with basis X = {x, y}. Define an action of X on T as
follows

pi · x = pi+1, pi · y =

{
qi if i ̸= 2j for any j ∈ N ∪ {0},

sj if i = 2j for some j ∈ N ∪ {0},

qi · x = Ω, qi · y = Ω,

ri · x = ri+1, ri · y = si,

si · x = Ω, si · y = Ω,

Ω · x = Ω, Ω · y = Ω.

Since F is free on X, this action extends to a unique action of F on T . Figure 
shows the graph of the action of X on T . Propositions . and . below show
that F[T ] is strongly Markov but not robustly Markov.

 .. The monoid F[T ] is Markov.

Proof of 8.2. Let A = {a, b, c, d, e} be an alphabet representing elements of F[T ]
as follows:

a = x, b = y, c = p1, d = r1, e = Ω.
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 . Part of the graph of the action of X on T . Edges which lead to Ω are
not shown

Let K = {a, b}∗ ∪ ca∗ ∪ ca∗b ∪ da∗ ∪ {e}. Then K is prefix-closed, regular, and
maps bijectively onto F[T ]. In particular, the subset {a, b}∗ maps bijectively onto
F, the subset ca∗ maps bijectively onto P, the subset ca∗bmaps bijectively onto
Q∪S, and the subset da∗ maps bijectively onto R. Thus K is a Markov language
for F[T ]. 8.2

 .. The monoid F[T ] is not robustly Markov.

Proof of 8.3. Suppose, with the aim of obtaining a contradiction, that F[T ] admits
a robust Markov language L over some alphabet A.

Define the following subalphabets of A:

AP = {a ∈ A : a ∈ P},
AQ = {a ∈ A : a ∈ Q},

AR = {a ∈ A : a ∈ R},
AS = {a ∈ A : a ∈ S},
AF = {a ∈ A : a ∈ F},
Ax = {a ∈ A : a ∈ x+},
AΩ = {a ∈ A : a = Ω};

notice that A is the disjoint union of AP, AQ, AR, AS, AF, and AΩ. Let

m1 = max{i : pi ∈ AP},

m2 = max{i : qi ∈ AQ},

m3 = max{i : ri ∈ AR},

m4 = max{i : si ∈ AS},

m = max{m1,m2,m3,m4}.

Let k = max{|a| : a ∈ AF}.
Reasoning as in the proof of Lemma ., one sees that for i sufficiently large,

si is represented by a word of the form vc, where v ∈ A∗, c ∈ AF − Ax, v ∈ P,
and c = xβy for some β < k.

Let v = v ′bv ′′, where v ′′ ∈ AF. Then b ∈ AP and so v ′b = b = pm ′ for some
m ′ < m. Now, si = vc = v ′bv ′′c = pm ′v ′′xβy, and so by the definition of the
action, p2i = pm ′v ′′xβ. Thus v ′′ = s2

i−m ′−β. So each letter of v ′′ lies in Ax.
Furthermore, since each such letter represents an element of length at most k,
it follows that |v ′′| > (2i −m− β)/k and further that |v| > (2i −m− β)/k+ 2.

Since v ′′ ∈ A∗
x, the subalphabet Ax must be non-empty. Let a ∈ Ax, with

a = xγ. Since (T − Q) · F does not contain any element of Q, the subalphabet
AQ is non-empty and contains some letter b with b = qα.





p0

x
p1

q1

r1

y

x

x
p2

q2

r2

y

x

x
p3

q3

r3

y

z

x
p4

q4

r4

y

x

x
p5

q5

r5

y

z

x
p6

q6

r6

y

z

x
p7

q7

r7

y

z

x
p8

q8

r8

y

x

x
p9

q9

r9

y

z

x
p10

q10

r10

y

z

x
p11

q11

r11

y

z

x
p12

q12

r12

y

z

 . Part of the graph of the action of X on T . Edges corresponding to
actions which fix elements of T are not shown

Then bahc = qαx
γh+βy = qα+γh+βy = sα+γh+β. By choosing h large

enough, sα+γh+β is represented inL by aword v of length greater than (2α+γh+β−
m− β)/k+ 2. Again choosing h large enough, so that

(2α+γh+β −m− β)/k+ 2 > h+ 2.

one obtains |v| > |bahc|. Thus v is not a minimal-length representative of
sα+γh+β, which contradicts L being a robust Markov language for F[T ]. 8.3

 .. Let

P = {pi : i ∈ N ∪ {0}},

Q = {qi : i ∈ N},
R = {ri : i ∈ N},
T = P ∪Q ∪ R.

Let F be a free monoid with basis X = {x, y, z}. Define an action of X on T as
follows

pi · x = pi+1, qi · x =

{
qi if i ̸= 2j for any j ∈ N ∪ {0},

ri if i = 2j for some j ∈ N ∪ {0},
ri · x = ri,

pi · y = qi, qi · y = qi, ri · y = ri,

pi · z = pi, qi · z =

{
qi if i = 2j for some j ∈ N ∪ {0},

ri if i ̸= 2j for any j ∈ N ∪ {0},
ri · z = ri.

(Notice that qi is fixed by one of x or z and sent to ri by the other, and that
which letter fixes qi and which sends it to ri depends on whether i is a power
of 2.) Since F is free on X, this action extends to a unique action of F on T . Figure
 shows the graph of the action of X on T . Propositions . and . below show
that F[T ] is robustly Markov but not strongly Markov.

 .. The monoid F[T ] is robustly Markov.

Proof of 8.5. LetA = {a, b, c, d, e, f} be an alphabet representing elements of F[T ]
as follows:

a = x, b = y, c = z, d = yx, e = yz, f = p0.

LetA ′ = A− {f}. Then (A ′, {(ba, d), (bc, e)}) is a confluent noetherian rewriting
system presenting the subsemigroup F of F[T ]. Hence its language of normal
forms K1 = A∗ −A∗(ba ∪ bc)A∗ is a robust Markov language for the subsemi-
group F of F[T ] by Proposition ..

Let K2 = fa∗ ∪ fa+d ∪ fa+e. Then K2 is +-prefix-closed and regular. The
subset fa∗ maps bijectively onto P. The subsets fa+d and fa+emap bijectively
onto Q ∪ R, since for each i ∈ N, exactly one of the following cases holds:
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§ faid = p0x
iyx = piyx = qix = ri and faie = p0x

iyz = piyz = qiz = qi
(this holds if i = 2j for some j ∈ N);

§ faid = p0x
iyx = piyx = qix = qi and faie = p0x

iyz = piyz = qiz = ri
(this holds if i ̸= 2j for any j ∈ N).

Thus K2 maps bijectively onto T .
It remains to show that every word in K2 is a minimal length representative.

Let u ∈ A∗ represent pi. Then u must contain f, since all other letters in A
represent elements of F. So let u = u ′fu ′′, where u ′′ ∈ (A − {f})∗, so that this
distinguished letter f is the rightmost such letter in u. Each symbol in A − {f}

represents an element of F that contains atmost one letter x. So, by the definition
of the action on the pi, it follows that u ′′ must contain at least i letters. Hence
|u| ⩾ i+1. Anyword overA representing qi or ri must therefore have length at
least i + 2. By the observations in the preceding paragraph, the representative
in K2 of pi has length i+ 1, and those of qi and ri both have length i+ 2.

Therefore the language K1 ∪ K2 is prefix-closed, regular, and consists of
minimal-length representatives for F[T ]. So K1 ∪ K2 is a robust Markov lan-
guage for F[T ]. 8.5

 .. The monoid F[T ] is not strongly Markov.

Proof of 8.6. Suppose, with the aimof obtaining a contradiction, that F[T ] is strongly
Markov. Let A = {a, b, c, f} represent elements of F[T ] as follows:

a = x, b = y, c = z, f = p0.

Since F[T ] is strongly Markov, it admits a robust Markov language L over the
alphabet A. Let n be greater than the number of states in an automaton recog-
nizing L. Choose k such that 2k > n.

It is easy to see that the unique shortest word over A representing r2k is
fa2

k
ba. Therefore this word lies in L. By the pumping lemma, a2

k
factorizes

as v ′v ′′v ′′′, where v ′, v ′′, v ′′′ ∈ a∗ and fv ′(v ′′)αv ′′′ba ∈ L for every α ∈ N ∪ {0}.
Choose α so that m = |v ′(v ′′)αv ′′′| is not a power of 2. Then fv ′(v ′′)αv ′′′b =
qm, and fv ′(v ′′)αv ′′′ba = qmx = qm. Hence fv ′(v ′′)αv ′′′b and fv ′(v ′′)αv ′′′ba
represent the same element of F[T ]. Since both these words lie in L by prefix-
closure, this contradicts the uniqueness of representatives in L. 8.6

  

That finitely generated commutative semigroups areMarkov could
be deduced from Proposition ., and the fact that finitely generated commuta-
tive monoids have presentations via finite confluent noetherian rewriting sys-
tems [Die], and the closure of the class of Markov semigroups under adjoin-
ing and removing an identity (Proposition . below). However, a stronger
result holds:

 .. Finitely generated commutative semigroups are stronglyMarkov.

[The first part of the following proof parallels the proof that all commutative
cancellative semigroups are automatic; see [Cai, Theorem ..].]

Proof of 9.1. Let A be a finite alphabet representing an arbitrary generating set
for some commutative semigroup S. Suppose A = {a1, . . . , an}. Consider
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elements of S using tuples: identify the tuple (α1, . . . , αn) with the element
a
α1

1 · · ·aαn
n . Define the ShortLex ordering ≺SLex of these tuples by

(α1, . . . , αn) ≺SLex (β1, . . . , βn) ⇐⇒
n∑

i=1

αi <

n∑
i=1

βi, or[ n∑
i=1

αi =

n∑
i=1

βi

and (α1, . . . , αn) ⊏Lex (β1, . . . , βn)

]
,

where⊏Lex is the lexicographical order of tuples: (α1, . . . , αn) ⊏Lex (β1, . . . , βn)
if the leftmost non-zero coördinate of (β1 − α1, . . . , βn − αn) is positive.

Rédei’s Theorem [Réd] asserts that S is finitely presented. An approach to
this theorem found in [RGS, Chapter ] (which is a modification of the proof
in [Gri]) shows that the semigroup S is isomorphic to

[(N ∪ {0})n − {(0, . . . , 0)}] /{(u1, v1), . . . , (un, vn)}
#,

where ui ≺SLex vi, and such that the ShortLex-minimal representative of w ∈
(N ∪ {0})n − {(0, . . . , 0)} can be found by repeatedly replacing w by w− vi + ui
whenever every coördinate of w − vi is non-negative. (Addition is performed
componentwise on tuples.)

Since the ShortLex order is compatible with the operation (that is, for all
x ∈ S, u ≺SLex v =⇒ u+ x ≺SLex v+ x), the set of ShortLex-minimal elements
is simply

M = {w ∈ (N ∪ {0})n − {(0, . . . , 0)} : w− vi is not in (N ∪ {0})n for any i} .

Let
K = {a

α1

1 · · ·aαn
n : (α1, . . . , αn) ∈M}.

Since the number of vi is finite, a finite state automaton can check whether a
word aα1

1 · · ·aαn
n lies in K. Therefore K is regular.

Finally, notice that if a word aα1

1 · · ·aαn
n lies in K, then one obtains its longest

proper prefix by decreasing by 1 the right-most non-zero exponent αi. (Recall
that some of the αi, but not all, can be 0.) Thus if w is the tuple in M corre-
sponding to a word in K, then the tuple w ′ corresponding to its longest proper
prefix is obtained by decreasing the right-most non-zero coördinate by 1. Hence
if w − vi /∈ (N ∪ {0})n then w ′ − vi /∈ (N ∪ {0})n. Consequently K is closed un-
der taking longest proper non-empty prefixes, and so, by iteration, is +-prefix-
closed. By the definition of the ShortLex ordering, the language K consists of
minimal-length representatives. So K is a robust Markov language for S. Since
the generating set represented by A was arbitrary, S is strongly Markov. 9.1

Finitely generated abelian groups are Markov, as a consequence of the more
general result that finitely generated polycyclic groups are Markov [GdlHa,
Corollaire ]. However, that finitely generated abelian groups are strongly
Markov (an immediate corollary of Proposition .) does not seem to have been
explicitly noted anywhere, although it is implicit in [ECH+, Chs –].
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  , ,   

It is known that nilpotent groups need not be strongly Markov,
since they may have irrational (indeed, transcendental) growth functions with
respect to some generating sets [Sto, Theorem B]. Furthermore, there exist
virtually abelian groups that do not admit any regular language of minimal
length representatives over some generating set (that is, evenwithout requiring
uniqueness) [NS]. Thus virtually abelian groups are not in general strongly
Markov.

 .. Are finitely generated semigroups that are nilpotent (in the
sense of Malcev [Mal]) Markov? In particular, are all finitely generated sub-
semigroups of nilpotent groups are Markov?

This section exhibits two examples to show that finitely generated subsemi-
groups of virtually abelian groups andof polycyclic groups neednot beMarkov.
All finitely generated subgroups of such groups are Markov, since these classes
of groups are closed under taking subgroups.

The example of a non-Markov subsemigroup of a virtually abelian group
(Example .) is particularly important: First, it shows that the class of groups
all of whose finitely generated subsemigroups are Markov is not closed under
forming finite extensions. Second, virtually abelian groups satisfy a non-trivial
semigroup identity and thus have the following property: if S is a subsemi-
group and H the subgroup it generates, then H is [isomorphic to] the universal
group of S. In general groups, this is not true: H is in general a homomorphic
image of the universal group of S. (The universal group of S is the group ob-
tained by taking a presentation for S and considering it as a group presentation;
see [CP, Ch. ] or the discussion in [Cai, § ..] for background informa-
tion.) Thus the example is a non-Markov semigroup with a Markov universal
group.

The following technical result will be used in proving both examples non-
Markov:

 .. Let S be a semigroup and A = {a, b, c, d, e, f, g, h, i, j} an alphabet
representing a finite generating set for S. Suppose that for α,β ∈ N ∪ {0} with α ̸= β
the following conditions hold:

1. The element represented by abαcdβe is represented by no other word over A.

2. The element represented by fgαhiβj is represented by no other word over A.

3. The equality abαcdαe = fgαhiαj holds, and the only words representing this
element are abαcdαe and fgαhiαj.

Then S is not Markov.

Proof of 10.2. Suppose for reductio ad absurdum that S is Markov. Then it admits
a regular language of unique representatives L over A by Proposition .. So
K = L∩(ab∗cd∗e∪fg∗hi∗j) is regular. By assumption, whenα ̸= β, the element
represented by abαcdβe is represented by no other word over A. Thus K ⊇
{abαcdβe : α ̸= β} and similarly K ⊇ {fgαhiβj : α ̸= β}. Thus ab∗cd∗e − K ⊆
{abαcdαe : α ∈ N ∪ {0}} and fg∗hi∗j− K ⊆ {fgαhiαe : α ∈ N ∪ {0}}.

Furthermore, the only representatives over A of the element abαcdαe are
abαcdαe and fgαhiαj. So at least one of the regular languages ab∗cd∗e − K
and fg∗hi∗j − K is infinite. Assume the former; the latter case is similar. Since
ab∗cd∗e − K ⊆ {abαcdαe : α ∈ N ∪ {0}} is infinite, it contains arbitrarily long
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words abαcdαe. So a string of symbols b can be pumped, which contradicts
the fact that every word in this language is of the form abαcdαe. Thus S is not
Markov. 10.2

 .. The semigroup presented by

⟨a, b, c, d, e, f, g, h, i, j | abαcdαe = fgαhiαj, α ∈ N ∪ 0⟩ ,

which is isomorphic to a subsemigroup of a polycyclic group [Cai, § ], is not
Markov by Lemma . above.

 .. Let S11 be the symmetric group on eleven elements. Let Z11

be the direct product of eleven copies of the integers under addition. View
elements of Z11 as 11-tuples of integers. Let G = S11 ⋉Z11, where S11 acts (on
the right) by permuting the components of elements ofZ11. (TheZ-components
are indexed from 1 at the left to 11 at the right.) The abelian subgroup Z11 of G
has index 11!, so G is a virtually abelian group.

LetA = {a, b, c, d, e, f, g, h, i, j} be an alphabet representing elements ofG in
the following way:

a = [(1 3), (0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0)], f = [(1 5), (0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0)],

b = [id, (0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0)], g = [id, (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1)],

c = [(1 3)(2 4), (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)], h = [(1 5)(2 6), (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)],

d = [id, (0, 0, 0, 1, 0, 0, 0, 0, 0,−1, 0)], i = [id, (0, 0, 0, 0, 0, 1, 0, 0, 0, 0,−1)],

e = [(2 4), (0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0)], j = [(2 6), (0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0)].

Let S be the subsemigroup of G generated by A. The aim is show that S is not
Markov. [We admit that the generators in A may look intimidating. However,
they interact in a fairly nice way, and the method in their madness will become
apparent.]

First of all, some preliminaries are necessary. For any α,β ∈ N ∪ {0},

abαcdβe

= [(1 3), (0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0)][id, (0, 0, α, 0, 0, 0, 0, 0, 0, α, 0)]cdβe

= [(1 3), (0, 1, α+ 1, 0, 0, 0, 1, 0, 0, α, 0)][(1 3)(2 4), (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)]dβe

= [(2 4), (α+ 2, 0, 0, 1, 0, 0, 1, 1, 0, α, 0)][id, (0, 0, 0, β, 0, 0, 0, 0, 0,−β, 0)]e
= [(2 4), (α+ 2, 0, 0, β+ 1, 0, 0, 1, 1, 0, α− β, 0)][(2 4), (0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0)]

= [id, (α+ 2, β+ 2, 0, 0, 0, 0, 1, 1, 1, α− β, 0)],

and

fgαhiβj

= [(1 5), (0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0)][id, (0, 0, 0, 0, α, 0, 0, 0, 0, 0, α)]hiβj

= [(1 5), (0, 1, 0, 0, α+ 1, 0, 1, 0, 0, 0, α)][(1 5)(2 6), (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)]iβj

= [(2 6), (α+ 2, 0, 0, 0, 0, 1, 1, 1, 0, 0, α)][id, (0, 0, 0, 0, 0, β, 0, 0, 0, 0,−β)]j
= [(2 6), (α+ 2, 0, 0, 0, 0, β+ 1, 1, 1, 0, 0, α− β)][(2 6), (0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0)]

= [id, (α+ 2, β+ 2, 0, 0, 0, 0, 1, 1, 1, 0, α− β)].

In particular, abαcdαe = fgαhiαj.
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 .. Let α,β ∈ N ∪ {0} with α ̸= β.

1. The only word over A representing abαcdβe is abαcdβe, and the only word over
A representing fgαhiβj is fgαhiβj.

2. The only words over A representing abαcdαe = fgαhiαj are abαcdαe and
fgαhiαj.

Proof of 10.5. Let α,β ∈ N∪ {0}. For the present, allow the possibility that α and
β are equal.

Let w ∈ A+ be some word representing

s = abαcdβe = [id, (α+ 2, β+ 2, 0, 0, 0, 0, 1, 1, 1, α− β, 0)]. (.)

Let A ′ = {a, c, e, f, h, j}; observe that A ′ consists of exactly those elements of A
representing elements with non-zero seventh, eighth, and ninth Z-components,
which are also exactly those that have non-identity S11-components. Let A ′′ =
A − A ′ = {b, d, g, i} observe that A ′′ consists of exactly those elements of A
representing elements with non-zero tenth and eleventh Z-components, which
are also exactly those that have identity S11-components.

First, consider which letters from A ′ can appear in w. Examining the sev-
enth, eighth, and ninth Z-components (which are unaffected by the actions of
any of the S11-components), shows that w contains one letter a or letter e, one
letter c or letter h, and one letter e or letter j, and no other letter from A ′. For
the product of the S11-components to be id, the letters from A ′ in wmust then
be a, c, e or f, h, j (in some order).

Consider these two cases separately:

. Suppose first that the letters fromA ′ inw area, c, e. Since the S11-components
of a, c, e do not affect the fifth and sixth Z-components, and since these are
both 0 in s, w cannot contain letters g or h. So w is a rearrangement of
acebγdδ for some γ, δ ∈ N ∪ {0}. Now, in w the letter a must precede the
letter c, for otherwise the third Z-component ofwwould be non-zero. Simi-
larly, cmust precede e, for otherwise the fourth Z-component ofwwould be
non-zero. The letters bmust all lie between a and c, for otherwise the third
Z-component ofwwould be non-zero, and similarly the letters dmust all lie
between c and e, for otherwise the fourth Z-component ofwwould be non-
zero. Sow = abγcdδe. Examining the first and secondZ-components forces
γ = α and δ = β. So if the letters fromA ′ inw are a, c, e, thenw = abαcdβe.

. Suppose now that the letters fromA ′ inw are f, h, j. Since the S11-components
of f, h, j do not affect the third and fourth Z-components, and since these
are both 0 in s, w cannot contain letters b or c. So w is a rearrangement of
fhjgγiδ for some γ, δ ∈ N ∪ {0}. Now, in w, the letter f must precede the
letter h, for otherwise the fifth Z-component of wwould be non-zero. Simi-
larly, hmust precede j, for otherwise the sixth Z-component of w would be
non-zero. The letters g must all lie between f and h, for otherwise the fifth
Z-component ofwwould be non-zero, and similarly the letters imust all lie
between h and j, for otherwise the sixth Z-component of w would be non-
zero. So w = fgγhiδj. Examining the first and second Z-components forces
γ = α and δ = β. So if the letters from A ′ in w are f, h, j, then w = fgαhiβj.
In this case,

w = [id, (α+ 2, β+ 2, 0, 0, 0, 0, 1, 1, 1, 0, α− β)].

By (.), this forces α = β, and w = fgαhiαj.





So if α ̸= β, only the first case holds and w = abαcdβe. If, on the other hand,
α = β, then both cases can hold and w is either abαcdαe or fgαhiαj.

Parallel reasoning shows that if α ̸= β, the element represented by fgαhiβj
is represented by no other word over A. 10.5

By Lemma ., the semigroup S satisfies the hypotheses of Lemma . and
so is not Markov.

      -


This section gathersmiscellaneous examples to illustrate particular
aspects of the class of Markov semigroups.

First, here is an example of a non-Markov semigroup:

 .. Let A = {a, b, c, d} and let

S = {(ba, ab), (bc, aca), (acc, d)} ∪ {(dx, d), (xd, d) : x ∈ A}.

The monoid presented by ⟨A | S⟩ does not admit a regular language of unique
representatives by [OKK, Example .], and thus is not Markov.

Since free groups of finite rank are Markov (either by Proposition . or as a
corollary of [GdlHa, Proposition ]) and indeed strongly Markov (since they
are hyperbolic; see [GdlHa, Théorème ]), the following example is worth
noting:

 .. The free inverse monoid of rank 1 is not Markov, because it
admits no regular language of unique normal forms over the generating set
[CS, Proof of Theorem .].

The Baumslag–Solitar groups play their customary rôle of being pleasant
and easy to understand but slightly eccentric. This is a consequence of the fol-
lowing theorem of Groves:

 . ([Gro, Corollary in § ]). There is no regular language ofminimal-
length representatives for the Baumslag–Solitar groups⟨

a, t | (t−1at, ap)
⟩
,

where p > 1 with respect to the alphabet {a, a−1, t, t−1}.

[The original statement of this result byGroves is phrases in terms ofminimal-
length (unique) normal forms. However, the property of uniqueness is not used
anywhere in the proof. Groves states the result in these terms because he places
the result in the context of calculating growth series.]

 .. The Baumslag-Solitar group
⟨
a, t | (t−1at, a2)

⟩
is presented

by the a confluent noetherian rewriting system [ECH+, p. ], and is there-
fore Markov by Proposition .. However, since it admits no regular language
of minimal-length representatives by Theorem ., it is not strongly Markov.
(However, it does admit a one-counter language ofminimal-length normal forms
[Eld, §§ –].)

This example leads on to the following question:
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 .. Is every one-relation semigroup Markov?

If every one-relation semigroup can be presented by a confluent noetherian
rewriting system (an open question, since itwould imply a solution to theworld
problem), this question would have a positive answer by Proposition ..

A robustly Markov monoid may not be residually finite:

 .. Let A = {a, b} and let R = {(ab2, b)}. Then (A,R) is a con-
fluent noetherian rewriting system and so the monoidM presented by ⟨A | R⟩
is Markov by Proposition .. This monoid M is known to be non-residually
finite [Lal].

A strongly Markov monoid may not be finitely presented:

 .. LetA = {a, b, c, d, e, f} and R = {(abnc, denf) : n ∈ N}. LetM
be the monoid presented by ⟨A | R⟩. ThenM is not finitely presented since no
relation in R can be deduced from the others. ButM is strongly Markov: since
every generators in A is indecomposable, any alphabet representing a generat-
ing set forMmust contain a subalphabet representing A; thus A∗ −A∗ab∗cA∗

is a robustMarkov language forM over any alphabet representing a generating
set.

This example suggests the following question:

 .. Does there exist a strongly Markov group that is not finitely
presented? If not, does there exists a non-finitely presentedMarkov or robustly
Markov group? [The authors conjecture that the answers to these questions are
both yes, for intuition suggests that a Markov or robust Markov language does
not impose enough structure on a group to guarantee finite presentability.]

The following easy example shows that it is possible for a robustly Markov
monoid to have unsolvable word problem:

 .. Let I be a non-recursive subset of N. Let A = {a, b, c, x, y} and

R = {(abαc, x) : α ∈ I} ∪ {(abαc, y) : α /∈ I}.

The rewriting system (A,R) is confluent because left-hand sides of rules in
R overlap only when they are identical. It is noetherian because it is length-
reducing. The language of left-hand sides of rules in R is

{abαc : α ∈ I} ∪ {abαc : α /∈ I} = ab∗c

and so is regular. By Proposition ., L is a robust Markov language for the
monoid presented by ⟨A | R⟩.

However, this monoid does not have solvable word problem, since abαc
and x represent the same element of the semigroup if and only if α ∈ I. But
membership of I is undecidable since I is non-recursive.

However, a finitely presentedMarkov semigroupwill have solublewordprob-
lem, as does any finitely presented semigroup that admits a recursively enu-
merable language of normal forms [CS, Theorem .].
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  & 

Ghys et al. proved that hyperbolic groups are Markov using a di-
rect approach [GdlHa, §]. It also follows using the machinery of automatic
groups: over any generating set, the language of geodesics is regular and forms
part of a prefix-closed automatic structure [ECH+, Theorem ..], and the
construction of an automatic structurewith uniqueness [ECH+, Theorem..]
preserves prefix-closure when applied in this particular case (although not in
the general case).

Hyperbolicity can be generalized from groups to semigroups in either a ge-
ometric or linguistic sense. The latter generalization, which is termed word-
hyperbolicity, is due to Duncan&Gilman [DG]. It informally says that a semi-
group isword-hyperbolic if it admits a regular language of representatives such
that the multiplication table in terms of these representatives is a context-free
language.

 .. Aword-hyperbolic structure for a semigroup S is a pair (A, L),
whereA is a finite alphabet representing a generating set for S and L is a regular
language over A such that L = S and the language

M(L) = {u#1v#2wrev : u, v,w ∈ L∧ uv = w}

(where #1 and #2 are new symbols not in A) is context-free.
A semigroup is word-hyperbolic if it admits a word-hyperbolic structure.

A group is word-hyperbolic in the sense of Definition . if and only if it
is hyperbolic in the sense of Gromov [DG, Corollary .]. For further back-
ground information on word-hyperbolic semigroups, see [DG, HKOT].

The following example is taken from [CM, Example .]:

 .. Let A = {a, b, c, d} and let R = {(abαcαd, ε) : α ∈ N}. Let
M be the monoid presented by ⟨A | R⟩. Since the rewriting system (A,R) is
context-free,M is word-hyperbolic by [CM, Theorem .]. The reasoning in
[CM, Example .] shows that it does not admit a regular language of unique
normal forms over any generating set, and so in particular cannot be Markov
by Proposition ..

Thus word-hyperbolic monoids are not in general Markov. Moreover if the
regularity condition on the left-hand sides of rewriting rules in Proposition .
is weakened to being context-free (or even just to being one-counter), then the
semigroups or monoids thus presented are not Markov in general.

Example . is not finitely presented, and it does not admit aword-hyperbolic
structure with uniqueness [CM, Example .]. This provokes the following
questions:

 .. Does there exist a non-Markovfinitely presentedword-hyperbolic
monoid?

 .. Does there exist a non-Markov monoid that admits a word-
hyperbolic structure with uniqueness?

Since satisfying a linear isoperimetric inequality is one of several equivalent
characterizations of hyperbolic groups (see, for example, [ABC+, Ch. ]), the
following question is of interest:
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 .. Does there exist a non-Markov semigroupwith linear isoperi-
metric inequality?

Markov groups are not in general automatic, since all polycyclic groups are
Markov [GdlHa, Corollaire ], but a nilpotent group that is not virtually
abelian cannot be automatic [ECH+, Theorem ..].

 .. Are automatic semigroups Markov? (Note that, unlike the
situation for groups, an automatic semigroup need not be word-hyperbolic.)
This question relates to the long-standing open question of whether an au-
tomatic semigroup or group admits a prefix-closed automatic structure with
uniqueness [ECH+, Open Question ..]. Admitting such an automatic
structure entails being Markov.

     

This section and those that follow examines the interaction of the
classes of Markov, robustly Markov, and strongly Markov semigroups with
various semigroup constructions. Themain questions arewhether these classes
of semigroups are closed under a particular construction, andwhether the semi-
group resulting from such a construction being Markov, robustly Markov, or
strongly Markov implies that the original semigroup is (or the original semi-
groups are) Markov, robustly Markov, or strongly Markov.

Arguably the simplest semigroup construction are the adjoining of an iden-
tity or zero, and it is reassuring that both questions have positive answers for
these constructions:

 .. Let S be a semigroup. Then:

1. S is Markov if and only if S1 is Markov.

2. S is robustly Markov if and only if S1 is robustly Markov.

3. S is strongly Markov if and only if S1 is strongly Markov.

Proof of 13.1. LetA be a finite alphabet representing a semigroup generating set
for S. Let 1 be a new symbol not in A representing the adjoined identity of S1.

Let L be a semigroup Markov language for S with respect to A. Then L is
regular, +-prefix-closed, and maps bijectively onto S. Let K = L∪ {1}. Then K is
regular, +-prefix-closed, and maps bijectively onto S1. Thus K is a semigroup
Markov language for S1.

Furthermore, if L is a robust semigroupMarkov language, then so is K, since
1 is the unique shortest word representing the adjoined identity, and the natural
lengths of elements in S over A and over A ∪ {1} are equal.

Now let L be a semigroupMarkov language for S1 over an alphabet B repre-
senting some generating set for S1. Now, Bmust be of the form A ∪ {1}, where
1 represents the adjoined identity and A represents a generating set for S, since
no product of elements of S equals the adjoined identity.

Suppose some w ∈ L contains the symbol 1. Then w = w ′1w ′′ and so w ′

andw ′1 represent the same element of S1, unlessw ′ is the empty word, which
is not a member of the semigroup Markov language L. So such a word w can
only contain a single instance of the symbol 1, and it must be the first symbol of
w. (If L is a robust semigroup Markov language, the only such word is w = 1,
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since otherwise w ′w ′′ would be a shorter word representing w, as in the proof
of Proposition ..)

Let
K =

((
L− {1}

)
− 1A∗

)
∪ {u ∈ A+ : 1u ∈ L}.

Arguing as in the proof of Proposition ., it follows that K is +-prefix-closed,
is regular, and contains a unique representative for each element of S. Thus K
is a semigroup Markov language for S over the alphabet A.

Furthermore, if L is a robust semigroup Markov language, the only word in
L containing the symbol 1 is the word 1 itself, so in this case

K = L− {1}.

From these arguments, it follows that S is Markov if and only if S1 is Markov
and that S is robustly Markov if and only if S1 is robustly Markov. From the
arbitrary choice of generating sets, and the fact that any alphabet representing a
generating set for S1must be of the formA∪{1}, where 1 represents the adjoined
identity and A represents a generating set for S, it follows that S is strongly
Markov if and only if S1 is strongly Markov. 13.1

 .. Let S be a semigroup. Then:

1. S is Markov if and only if S0 is Markov.

2. S is robustly Markov if and only if S0 is robustly Markov.

3. S is strongly Markov if and only if S0 is strongly Markov.

Proof of 13.2. By reasoning parallel to the proof Proposition ., substituting
0 for 1 and S0 for S1 as appropriate, it follows that if L is a [robust] Markov
language for S, then L ∪ {0} is a [robust] Markov language for L.

Now let L be aMarkov language for S0 over an alphabetB representing some
generating set for S0. Now, B must be of the form A ∪ {0}, where 0 represents
the adjoined zero and A represents a generating set for S, since no product of
elements of S equals the adjoined zero.

Suppose somew ∈ L contains the symbol 0, withw = w ′0w ′′. Thenw ′0 and
w both represent the zero of the semigroup, which contradicts the uniqueness
of representatives in L unless w ′′ is the empty word. So such a word w can
contain only a single symbol 0, and this must be the last letter of the word. (If
L is a robust Markov language, the only such word is w = 0 since this is the
unique shortest word over A ∪ {0} representing the adjoined zero.) Notice that
there can only be one such word, since any other word containing the symbol 0
would also represent the adjoined zero. So L contains a unique word w = w ′0
containing the symbol 0, and this word is not the prefix of any other word in L.

Let K = L− {w ′0}. Then K is +-prefix-closed (sincew ′0 is not a prefix of any
other word in L), is regular, and contains a unique representative for each ele-
ment of S. Finally, K ⊆ A+ by the observation at the end of the last paragraph.
Thus K is a Markov language for S over the alphabet A.

From these arguments, it follows that S is Markov if and only if S0 is Markov
and that S is robustly Markov if and only if S0 is robustly Markov. From the
arbitrary choice of generating sets, and the fact that any alphabet representing
a generating set for S0 must be of the form A ∪ {0}, it follows that S is strongly
Markov if and only if S1 is strongly Markov. 13.2
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  

The class of Markov groups is closed under direct products, as a
special case of the fact that an extension of oneMarkov group by another is also
Markov [GdlHa, Proposition ]. For monoids, the result is also positive:

 .. 1. If M and N are Markov monoids, then M × N is a Markov
monoid.

2. IfM and N are robust Markov monoids, thenM×N is a robust Markov monoid.

Proof of 14.1. . Let A and B be finite alphabets representing monoid generat-
ing sets forM and N with representation maps ϕA : A →M and ϕB : B →
N, respectively, and let K and L be monoid Markov languages over A and B
forM and N, respectively. Then H = KL is prefix-closed, regular, and maps
bijectively ontoM × N under the representation map ϕ : A ∪ B → M × N
defined by a 7→ (aϕA, 1N) and b 7→ (1M, bϕB).

. Proceed as in the previous part, but with K and L being robust Markov lan-
guages. Then KL is a robust Markov language forM×N since (with respect
to the representation map ϕ) λA∪B(uv) = λA(u) + λB(v) for all u ∈ K and
v ∈ L. 14.1

However, for semigroups, the situation is obscure. First of all, a direct prod-
uct of finitely generated semigroups is not necessarily finitely generated. For
example, the direct product of two copies of the natural numbers N (excluding
0) is not finitely generated. (Notice that N is strongly Markov.) Even when the
direct product is finitely generated, the relationship of a finite generating set to
the finite generating sets of the direct factors is complex; see the discussion in
[RRW, § ]. It is possible to prove that a direct product of aMarkov semigroup
and a finite semigroup isMarkov if it is finitely generated (Theorem. below).
The general idea of the proof is similar to that used by Campbell et al. to prove
the analogous result for automatic semigroups [CRRT, Theorem .(ii)], but
more sophisticated reasoning is required here to ensure that prefix-closure and
uniqueness are preserved. However, the issue of prefix-closure seems to make
it impossible to adapt and strengthen the idea used by Campbell et al. for direct
products of infinite semigroups. An entirely new approach may be required in
this case.

 .. Let S be a Markov semigroup and let T be finite. Then S × T is a
Markov semigroup if and only if it is finitely generated.

Proof of 14.2. Onedirection of the result is trivial: if S×T is aMarkov semigroup,
then by definition it is finitely generated.

Suppose that S× T is finitely generated. Then by [RRW, Lemma .], the
finite semigroup T is such that T2 = T .

Since S is a Markov semigroup, it admits a Markov language L over some
finite alphabet A representing a generating set for S.

Let B be a finite alphabet in bijection with T . Since T2 = T , it follows that,
Tn = T for all n ∈ N and so for any t ∈ T and n ∈ N, there is word of length n
over B representing t. Let

R =
{
(u, v) : u, v ∈ B+, |u| = |v|, u = v

}
;

notice that R is a synchronous rational relation. Let ⊏Lex be the lexicographic
ordering on B+ based on some total ordering of B. Then

R ′ =
{
u : (∀v ∈ A∗)((u, v) ∈ R =⇒ u ⊏Lex v)

}
.
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The language R ′ contains exactly one (lexicographically minimal) representa-
tive of each length for each element of T . Furthermore, the language R ′ is +-
prefix-closed, for if u is not ⊏Lex-minimal amongst words of length |u| repre-
senting u, then for any a ∈ A, the word ua is not⊏Lex-minimal amongst words
of length |ua| representing ua.

Define

δ :

∞∪
n=0

(
An × Bn

)
→ (A× B)∗

(so that (u, v)δ is defined when u ∈ A∗ and v ∈ B∗ have equal length) by

(a1a2 · · ·an, b1b2 · · ·bn) 7→ (a1, b1)(a2, b2) · · · (an, bn),

where ai ∈ A, bi ∈ B.
Let K = {(w,u) : w ∈ L, u ∈ R ′, |w| = |u|}. Then Kδ is a regular language

over A× B. Since both L and R ′ are +-prefix-closed, so is Kδ.
Now let (s, t) ∈ S× T . Then since Lmaps onto S, there is a wordw ∈ Lwith

w = s. There is a word u ′ of length |w| over B such that u ′ = t. Let u be the
⊏Lex-minimal such word. Then |u| = |w| and so (w,u) ∈ K and so (w,u)δ ∈ Kδ
represents (s, t). So Kδmaps onto S× T .

Now suppose (w,u)δ, (w ′, u ′)δ ∈ Kδ represent the same element of S × T .
Thenw = w ′ andu = u ′. Since L is aMarkov language for S, it maps bijectively
onto S and sow = w ′. In particular, |w| = |w ′|, and so |u| = |u ′| by the definition
of K. Since u = u ′ and |u| = |u ′|, and R ′ contains exactly one representative of
u of length |u|, it follows that u = u ′. Hence (w,u)δ = (w ′, u ′). Therefore Kδ
maps bijectively onto S× T .

Thus Kδ is a Markov language for S×T and so S×T is a Markov semigroup.
14.2

 .. Let S be a robustly Markov semigroup and let T be finite. Then
S× T is a robustly Markov semigroup if and only if it is finitely generated.

Proof of 14.3. Proceed as in the proof of Theorem ., with L being a robust
Markov language forS. Since λB(t) = 1 for all t ∈ T , it follows that λ(A×B)δ(s, t) =
λA(s). So, by its construction, Kδ is a robust Markov language for S× T . 14.3

The corresponding result for being strongly Markov is still open:

 .. Let S be strong Markov and T finite. If S × T is finitely gen-
erated, is it strongly Markov?

We conjecture that the answer to this question is ‘yes’, but probably requires
more complex reasoning than in the proofs of Theorems . and ., because
the generating set for S× T may not project onto T , which complicates the rela-
tionship between minimal lengths of representatives of elements of S × T and
T .

As remarked above, the following question is open:

 .. Let S and T be Markov. If S × T is finitely generated, is it
Markov?

The following question also arises:

 .. Is it true that whenever S× T is Markov, then both factors S
and T are Markov?
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The answer to this question may shed light on the long-standing open ques-
tion of whether direct factors of automatic groups, monoids, or semigroups
must themselves be automatic (see [ECH+, OpenQuestion ..] and [CRRT,
Question .]).

  

 .. The class of Markov monoids is closed under forming (monoid) free
products.

Proof of 15.1. Theproof for groups generalizes directly [GdlHa, Proposition ].
15.1

 .. The class of Markov semigroups, the class of robustly Markov semi-
groups, and the class of stronglyMarkov semigroups are all closed under forming (semi-
group) free products.

Proof of 15.2. Let S and T be Markov semigroups. Let K ⊆ A+ and L ⊆ B+ be
semigroup Markov languages for S and T , respectively. Let

M = (KL)+ ∪ (KL)∗K ∪ (LK)+ ∪ (LK)∗K.

Since the languages K and L are prefix-closed and regular, so is the language
M. Any element of the free product S ∗ T has a unique representation as an
alternating product of elements of S and T . That is S ∗ T is the disjoint union of

X1 = {s1t1 · · · sntn : si ∈ S, ti ∈ T, n ∈ N},
X2 = {s1t1 · · · sntnsn+1 : si ∈ S, ti ∈ T, n ∈ N ∪ {0}},

X3 = {t1s1 · · · tnsn : si ∈ S, ti ∈ T, n ∈ N},
X4 = {t1s1 · · · tnsntn+1 : si ∈ S, ti ∈ T, n ∈ N ∪ {0}}.

Since the languages K and L do not contain the empty word, every element of
X1 (respectively X2, X3, X4) has a unique representative in (KL)+ (respectively
(KL)∗K, (LK)+, (LK∗K). So every element of S∗T has a unique representative in
M. SoM is a Markov language for S ∗ T .

Following the same reasoning with S and T being robustly Markov semi-
groups and K and L being robust Markov languages shows thatM is a robust
Markov language for S ∗ T , since,

λA∪B(s1t1 · · · sntn) =
n∑

i=1

(
λA(si) + λB(ti)

)
,

and similarly for alternating products in X2 ∪ X3 ∪ X4.
Finally, suppose that S and T are strongly Markov semigroups. Let C be a

finite alphabet representing a generating set for S ∗ T . Since S ∗ T is a semigroup
free product, C contains subalphabets A and B representing generating sets for
S and T respectively. Since S and T are stronglyMarkov semigroups, there exist
robust Markov languages K ⊆ A+ and L ⊆ B+ for S and T respectively. Thus,
by the preceding paragraph,M ⊆ (A∪B)+ ⊆ C+ is a robust Markov language
for S ∗ T . Since C was arbitrary, S ∗ T is strongly Markov. 15.2
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 -   

Many properties of groups are known to be preserved under pass-
ing from groups to finite-index extensions and subgroups; for example, finite
generation and presentability. For semigroups, the most well-known notion of
index is the Rees index: if T is subsemigroup of a semigroup S, then T has finite
index in S if S − T is finite. Many properties of semigroups are known to be
preserved on passing to finite Rees index extensions and subsemigroups; for
example, finite generation [Ruš, Theorem .], finite presentability [Ruš,
Theorem .], and automaticity [HTR, Theorem .]. The following result
fits this pattern:

 .. The class of Markov semigroups is closed under forming finite Rees
index extensions and subsemigroups.

Proof of 16.1. Let S be a semigroup and let T be a finite Rees index subsemigroup
of S.

Suppose that T is Markov and that L is a Markov language for T over some
finite alphabet A representing a generating set for T . Let B be an alphabet in
bijection with S − T ; then B is finite since T has finite Rees index in S. Without
loss of generality, assume that B and A are disjoint. Then L ∪ B is a Markov
language for S.

Now suppose that S admits a Markov language L over an alphabet A.
Define

L(A, T) = {w ∈ A+ : w ∈ T }.

Let C be an alphabet of unique representatives for S − T . For any word w ∈
A∗ − L(A, T), let w be the unique element of C ∪ {ε} representing w, or ε if
w = ε.

Define the alphabet

D = {dρ,a,σ : ρ, σ ∈ C ∪ {ε}, a ∈ A,aσ ∈ L(A, T)∧ ρaσ ∈ L(A, T)},

and let it represent elements of T as follows:

dρ,a,σ = ρaσ.

Notice that if A is finite, D too must be finite.
Let R ⊆ A+ ×D+ be the relation consisting of pairs(

wn+1anwnan−1wn−1 · · ·a2w2a1w1, dwn+1,a,wn
dε,a,wn−1

· · ·dε,a,w2
dε,a,w1

)
where the left-hand side lies in L(A, T) and the factorization of the left-hand
side is obtained in the following way: start by letting the left-hand side be w ′

0;
a partial factorization

w ′
i+1aiwi · · ·a1w1

is complete ifw ′
i+1 /∈ L(A, T); if on the other handw ′

i+1 ∈ L(A, T) set ai+1wi+1

to be the shortest suffix of w ′
i+1 lying in L(A, T) and let w

′
i+2 be the remainder

of w ′
i+1.
Notice that if (w,u) ∈ R then w = u by the definition of how the alphabet

D represents element of T , and that each word w determines a unique word u
such that (w,u) ∈ R.

 .. The relation R is rational.
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Proof of 16.2. It is easier to explain a howa two-tape finite state automatonA can
recognizeRwhen reading from right-to-left; since the class of rational relations
is closed under reversal, it will then follow that R is rational.

By the dual of [RT, Theorem .], S admits a left congruence Λ of finite
index (that is, having finitely many equivalence classes) contained within (T ×
T) ∪ ∆S−T , where ∆S−T is the diagonal relation on S − T (that is, {(s, s) : s ∈
S− T }).

Imagine the automatonA reading letters fromA from its left-hand input tape
and outputting symbols fromD on its right-hand tape. Suppose the content of
its left-hand tape is w. As it reads symbols from w (moving from right to left
along the tape), it keeps track of the Λ-class of the element represented by the
suffix ofw read so far. (This is possible becauseΛ is a left congruence with only
finitely many equivalence classes.) In particular,A knows whether the element
represented by the suffix read so far lies in T (or equivalently, whether the suffix
read so far lies in L(A, T)), or, if the element so represented lies in S− T , which
letter of C∪ {ε} represents it. WhenA reads a symbol a such that the suffix read
so far — say aw ′ — lies in L(A, T), it non-deterministically chooses one of two
actions:

. It outputs dε,a,w ′ , resets its store of the suffix read so far to ε, and continues
to read from its left-hand tape.

. It outputs dc,a,w ′ , where c is a non-deterministically chosen element of C ∪
{ε}, then reads the remainder v of its left-hand tape and accepts if and only
if v = c. (Notice that this is the only way that A can accept.)

By induction on the subscripts of the letters ai, the automatonA can accept only
by outputting letters dε,a,wi

immediately after reading the suffix aiwi · · ·a1w1

and the letter dwn+1,an,wn
immediately after reading anwn · · ·a1w1, and can

accept only when wn+1 /∈ L(A, T). So A recognizes R, reading from left-to-
right. 16.2

By Lemma .,

K = L ◦ R =
{
u ∈ D∗ : (∃v ∈ L)

(
(u, v) ∈ R

)}
.

is regular. Since the set of left-hand sides of elements of R is L(A, T), the lan-
guage Kmaps onto T .

Suppose u1, u2 ∈ K are such that u1 = u2. Let w1, w2 ∈ L be such that
(w1, u1), (w2, u2) ∈ R. Since L maps bijectively onto S and w1 = u1 = u2 =
w2, thewordsw1 andw2must be identical. Since everyw ∈ L(A, T)determines
a unique u ∈ D+ with (w,u) ∈ R, it follows that u1 and u2 are identical. So K
maps bijectively onto T .

Finally, let u ∈ K with |u| ⩾ 2. Then u = dcn+1,an,cn
· · ·dε,a2,c2

dε,a1,c1
,

with n ⩾ 2. Then there is some word w ∈ L with (w,u) ∈ R. By the definition
of R, the wordw factorizes aswn+1anwn · · ·a2w2a1w1 ∈ Lwithwi = ci, and
a1w1, a2w2, . . . , wn+1anwn ∈ L(A, T).

SinceL is prefix-closed,wn+1anwn · · ·a2w2 ∈ L. Sincea2w2, . . . , wn+1anwn ∈
L(A, T), it follows that wn+1anwn · · ·a2w2 ∈ L(A, T). So, by the definition of
R, it follows that dcn+1,an,cn

· · ·dε,a2,c2
∈ K.

This shows that K is closed under taking longest proper non-empty prefixes.
By induction, K is +-prefix-closed. Hence K is a Markov language for T . 16.1
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However, the Rees index has the disadvantage that is does not generalize
the group index. This motivated Gray & Ruškuc [GR] to develop the notion
of Green index, which does generalize the group index. The definition and only
the necessary properties of the Green index and related topics are given here;
the reader is referred to [GR, § ] for further details.

 .. Let S be a semigroup and let T be a subsemigroup of S.
The T -relative Green’s relations RT , LT , and HT are defined on S as follows:
for x, y ∈ S,

x RT y ⇐⇒ xT1 = yT1

x LT y ⇐⇒ T1x = T1y

x HT y ⇐⇒ x RT y∧ x LT y;

these are equivalence relations [GR, § ]. The T -relative RT -, LT -, and HT -
classes (that is, the equivalence classes of these relations) respect T , in the sense
that each such class lies either wholly in T or wholly in S− T .

The Green index of T in S is defined to be one more than the number of HT -
classes in S− T .

Several properties are known to be preserved under passing to finite Green
index extensions and subsemigroups, such as finite generation [CGR, The-
orems . & .], others are known to hold on passing to finite Green index
subsemigroups and not on passing to finite Green index extensions, such as
automaticity [CGR, Theorem . & Example .]. The following example
shows that neither the class of Markov semigroups nor the class of strongly
Markov semigroups is not closed under finite Green index extensions. Indeed,
a finite Green index extension of a strongly Markov semigroup need not be
Markov:

 .. Let G a finitely generated infinite torsion group. Let B be an
alphabet representing a generating set for G. Let A be a finite alphabet in bi-
jection with B. Let F be the free group with basis A. The bijection from A to B
naturally extends to a surjective homomorphism ϕ : F→ G. Let S be the strong
semilattice of groups S(F,G,ϕ). (See [How, §§ .–.] for background on
strong semilattices of groups.)

The free group is hyperbolic and therefore strongly Markov. Moreover, F
is a finite Green index subsemigroup of S, with S − F consisting of the single
HF-class G.

Suppose that S is Markov. Then by Proposition ., S admits a regular lan-
guage of unique normal forms L over the alphabet A ∪ B. By the definition of
multiplication in a strong semilattice of monoids, the words in L representing
elements of G are precisely those that include at least one letter B. That is, the
language of words in L representing elements of G is K = L − A∗. Since L is
regular, K is also. Since L maps bijectively onto S and K ⊆ L, it follows that
K maps bijectively onto G. So if each letter a ∈ A is interpreted as represent-
ing the element aϕ of G, then K is a regular language of unique normal forms
for G. However, G, as a finitely generated infinite torsion group, does not ad-
mit a regular language of unique normal forms by the reasoning in [ECH+,
Example ..]. This is a contradiction, and so S cannot be Markov.

This example is similar in spirit to examples showing that neither the class
of finitely presented semigroups nor the class of automatic semigroups is not





closedunder formingfiniteGreen index extensions [CGR, Examples .& .].
However, with an extra condition on the Schützenberger groups of the T -relative
H-classes in the complement, a positive result does hold. First of all, recall the
definitions of Schützenberger groups:

 .. Retain notation from Definition .. Let H be an HT . Let
Stab(H) = {t ∈ T1 : Ht = H} (the stabilizer of H in T ), and define an equiva-
lence σ(H) on Stab(H) by (x, y) ∈ σ(H) if and only if hx = hy for all h ∈ H.
Then σ(H) is a congruence on Stab(H) and Stab(H)/σ(H) is a group, called the
Schützenberger group of theHT -class H and denoted Γ(H).

 .. Let S be a semigroup and T a subsemigroup of S of finite Green
index. Suppose that T is Markov and that the Schützenberger group of every T -relative
H-class in S− T is Markov. Then S is Markov.

Proof of 16.6. Let L be a semigroup Markov language for T over some finite
alphabet A representing a generating set for T under the map ϕ : A → T .
Since T has finite Green index in S, there are finitely many T -relative H-classes
H1, . . . , Hn in S− T . By hypothesis, every Schützenberger group Γ(Hi) admits
a semigroup Markov language Li over some finite alphabet Ai representing
a generating set for Γ(Hi) under the map ϕi : Ai → Γ(Hi). For brevity, let
σi = σ(Hi).

For each i = 1, . . . , n, fix an element hi ∈ Hi. For each i = 1, . . . , n and
a ∈ Ai, fix elements si,a ∈ Stab(Hi) such that aϕi = [si,a]σi

.
Let A ′

i be a new alphabet in bijection with Ai under the map αi : Ai →
A ′

i. (Without loss of generality, assume that the alphabet A and the various
alphabets Ai and A ′

i are pairwise disjoint.) Define a map ψi : Ai ∪ A ′
i → S as

follows:

aψi =

{
si,a if a ∈ Ai,
hisa,i if a ∈ A ′

i.
(.)

Let
L ′i =

{
(aαi)u ∈ A ′

iA
∗
i : au ∈ Li, a ∈ Ai

}
.

(So L ′i is the language obtained from Li by taking each word in Li ⊆ A+
i and

replacing its first letter with the corresponding letter fromA ′
i.) Notice that since

Li is regular and +-prefix-closed, so is L ′i.
Since Γ(Hi) acts regularly on Hi via

x · [s]σi
= xs,

it follows that for every y ∈ Hi there is a unique element [s]σi
∈ Γ(Hi) such

that hi · [s]σi
= y. Thus it follows from (.) and the fact that Li is a Markov

language for Γ(H) that for every y ∈ Hi there is a unique w ∈ Li such that
hi(wϕi) = y. Hence, by (.) and the definition of L ′i, for every y ∈ Hi there
is a unique word v ∈ L ′i with vψi = y. Thus L ′i maps bijectively onto Hi.

Finally, let

K = L ∪
n∪

i=1

L ′i.

Then K is +-prefix-closed and regular. Define

ψ : A ∪
n∪

i=1

(
Ai ∪A ′

i

)
→ S, aψ =

{
aϕ if w ∈ A,
aψi if w ∈ Ai ∪A ′

i.

Then ϕ maps K bijectively onto S. Hence K is a semigroup Markov language
for L . 16.6
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Proposition . parallels [CGR, Theorem .], which shows that if T is a
finite Green index subsemigroup of S, and T and all the Schützenberger groups
of the T -relativeH-classes in S − T are finitely presented, then S is finitely pre-
sented. (As remarked above, without the condition on the finite presentability,
this result does not hold.) This is in marked contrast to the situation for auto-
matic groups: even if T and all the Schützenberger groups are automatic, Smay
not be automatic; see [CGR, Example .].

 .. Let T be a subsemigroup of finite Green index in a semigroup
S. Let also S be Markov. Is T Markov?

 .. Is the property of being Markov preserved under passing to
subsemigroups and extensions of finite Grigorchuk index for finitely generated
cancellative semigroups (so that both of the semigroups are finitely generated)?

     

This final section examines the class of languages that are Markov
languages for some semigroup or monoid. First, notice that not every regular
language is a Markov language:

 .. Let L = a+ ∪ a+b. Suppose L is a Markov language for a
semigroup S. Then b lies in S and so must be represented by an element of L. If
b = ak for some k then ab = aak = ak+1. Since both ab and ak+1 lie in L, this
contradicts the uniqueness of representives in L. If, on the other hand, b = akb

for some k, then ab = aakb = ak+1b, again contradicting the uniqueness of
representives in L. So L is not a semigroup Markov language.

Indeed, if instead L ′ = L∪{ε} = a∗∪a+b, then the same contradictions show
that L ′ is not a monoid Markov language.

Starting from aMarkov language and adding or removing a finite number of
words can yield a prefix-closed regular language that is not aMarkov language,
as the following two examples show:

 .. Let K = L ′ ∪ {b} = a∗ ∪ a∗b, where L ′ is the language from
Example .. Then K is a Markov language for the semigroup presented by⟨
a, b | (b2, b), (ba, b)

⟩
. To see this, notice that ({a, b}, {(b2, b), (ba, b)}) is a con-

fluent noetherian rewriting system and its language of normal forms is K, and
apply Proposition .. Thus removing the single word b from the Markov lan-
guage K yields the non-Markov language L ′.

 .. Let L = a∗ ∪ {a2c, a4c}. Suppose L is a Markov language for a
semigroup S. Then ac lies in S and so must be represented by an element of L.
Now, if ac = aα, then a2c = aα+1, contradicting the uniqueness of represen-
tatives in L. If ac = a2c, then ac = a2c = a3c = a4c, again contradicting the
uniqueness of representatives in L. So ac = a4c.

Now, a3c must also be represented by an element of L. If a3c = aα, then
a4c = aα+1, contradicting the uniqueness of representatives in L. If a3c = a2c,
then a2c = a3c = a4c, again contradicting the uniqueness of representatives in
L. So a3c = a4c, which, by the preceding paragraph, implies ac = a3c, which
in turn implies a2c = a4c. This contradicts the uniqueness of representatives
in L, and so L cannot be a Markov language.
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Thus adding the two words a2c and a4c to the Markov language a∗ yields
the non-Markov language L.

There are two main questions about the class of Markov languages:

 .. Is there an algorithm that takes a regular language that is
prefix-closed or +-prefix-closed and decides whether it is a Markov language
for some monoid or semigroup?

 .. Is every finite language that is prefix-closed or+-prefix-closed
a Markov language for a (necessarily finite) monoid or semigroup?
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