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Abstract

In this note we prove that the C°-centralizer of a bidimensional Anosov diffeomorphism
having only a fixed point, f, is generated by f and a square root of the Identity, if f reverses
the orientation, or by a square root of f and a square root of the Identity, otherwise.

1 Introduction

Let f be a C" diffeomorphism of a compact manifold M, r € NU {co,w}. For s < r, the C*-
centralizer of f is the set

Z5(f)={g € Diff*(f): gof=fog}

The C®-centralizer of f is said to be trivial if it reduces to the powers of f. There are examples
of diffeomorphisms f whose centralizer is not trivial: for example in the case where f is the time
one map associated to a flow or when f is a linear contraction on R (in this case Z°(f) is not even
abelian).

In [S] Smale conjectured that there is an open and dense subset of C” diffeomorphisms on M
whose elements have trivial centralizer. This conjecture was proved by Kopell, [K]|, when M is
a circle and r > 2. For any compact manifold Palis and Yoccoz showed that generically, in the
open subset of C* stable diffeomorphisms, the C*° centralizer is trivial ([PY1]), and that there
exists an open and dense subset of the Anosov diffeomorphisms on a torus whose elements have
trivial C* centralizer ([PY2]). The author transposed part of these results to the context of real
analytic stable diffeomorphisms ([R2] and [R3]), and to the C* centralizer for stable bidimensional
C* diffeomorphisms ([R1]). In the non stable context, Burslem showed that there exists a C*
open and dense subset of the partially hyperbolic diffeomorphisms whose elements have discrete
centralizer ([B]).

In the opposite direction Plykin ([P]) showed that, with some conditions, the centralizer of an
Anosov automorphism on a n dimensional torus is isomorphic to Z! & F, for an appropriate [,
where F' is a finite commutative group. In this note, using in a simple way ideas introduced in
[PY1] and developed in [R1] and [R2], we calculate explicitly the CY centralizer of an open class of
bidimensinal Anosov diffeomorphisms. More precisely we prove the following result.



Theorem 1. If f is an Anosov diffeomorphism of the two torus having only a fixed point then
either

i) Z9(f) is the abelian group generated by f and h, where h is a homeomorphism satisfying
h? = Id, if f reverses the orientation,

or

ii) ZO(f) is the abelian group generated by g and h, where g and h are homeomorphisms satisfying
¢°> = f and h? = Id, if f preserves the orientation.

It is interesting to observe that this result implies some kind of (semi) rigidity on conjugations.
More precisely if f and g are two Anosov diffeomorphisms, having only a fixed point and orientation
reversing, and hi, hy are two homeomorphisms that conjugate f and g, that is

g:hlofohfl:hgofohgfl,

then ho~' o hy € ZO(f), therefore there are s € {0,1} and k € Z such that hy = hj o (hs o fk),
where h € Z°(f) and h? = Id. The same holds in the orientation preserving case replacing f by a
square root of f.

2 Proof of the Theorem

We consider the torus T? as the quotient space obtained by the following equivalence relation on
R2:
(x,y) ~ (2,t) if (x—2)€Zand (y—1t) €.

We denote by II the projection from R? to T? and write [(z,y)] = H((x,v)).
An automorphism of T2, f4, is the map induced on the torus by a linear map of R? whose
matrix, with respect to the canonic basis, is of the form

a b
A= < c d ) ’
where a,b,c,d € Z and |det(A)| = |ad — dc| = 1. Moreover the automorphism f4 is said to be
hyperbolic if the linear map A has two real eigenvalues with modulus not equal to one.

It is well known that if f is an Anosov diffeomorphism of T? then f is conjugated to some
hyperbolic automorphism f4, (see [M]), that is there exists a homeomorphism of T2, g, such that
gof = faog. If f has only a fixed point then the same holds for f4, that is [(0,0)] is the only fixed
point of f4, and it is easy to see that the map I' : Z(f) — Z°(f4), defined by I'(h) = gohog™!,isa
group automorphism. Therefore we just have to prove the Theorem for hyperbolic automorphisms
of T? with exactly one fixed point.

Now, if h € Z°(f4) and fa as only a fixed point then h([(0,0)]) = [(0,0)]; moreover if fa
is hyperbolic then h is an automorphism of T? (see [PY2]). That is to determine the centralizer
of a hyperbolic automorphism f4 having only a fixed point we just need to solve the equation
fBo fa= fao fg, where B is a linear map.

Let f4 be a hyperbolic automorphism; a straightforward calculation shows that the condition
of existence of unique fixed point is equivalent to



- either [tr(A)| = |a +d| =1, if det(A) = —1, or
~tr(A) = 3, if det(A) = 1.

First observe that if det(A) = 1 and tr(A) = 3 then det(A — Id) = —1, tr(A — Id) = 1, fa_1q)
is a hyperbolic automorphism and f(QAild) = fa. As fia_ray = fao f—1q) and f(_1q) € Z%(fB),
for all B, it follows that fg o fa = fa o fp implies that fp o fia_rs) = fla—1q) © fB, that is
Z°(fa) = Z°(fia-1a))-

Second observe that if det(A) = —1 and tr(A) = —1 then det(—A) = —1, tr(A) = 1 and
29(£4) = Z9(F_a).

From these two observations it follows that to prove the Theorem we just need to prove that
the CO-centralizer of f4 is generated by f4 and f(=14), Where f4 is a hyperbolic automorphism
with det(A) = —1 and tr(A) = 1.

Let us fix such a f4. The linear map A has two eigenvalues A% = # and \* = % whose

eigenspaces E* and E*® are generated by vectors v* = (1, )‘ub_ 4) and v® = (1, ’\Sb_ @), respectively.
These two lines have irrational slope therefore II(E*) and II(E%) are both dense on T? and they
intersect transversally with a constant angle. Let H = II(E®) NII(E") denote the set of homoclinic
points of f4. Each point of H has an E*-coordinate and an E*“-coordinate which can be determinated
in the following way. Let [(z,w)] be a point of H, then there are real numbers x and y such that

[(z,w)] = T(z0%) = T(yo"),

AU — 2\ —
Yy (17 ba) =T <17 ba> =+ (man)v

for some m,n € Z. From this it follows that the points of H correspond to those points of the
product space E* x E" whose (x,y)-coordinates are of the form

which is equivalent to

_ m(a—A")+nb ~ mfa— ) +nb
TS O R N U O M

where m,n € Z. Let us denote this subset of £ x E* by Hy. As II(E®) is dense in T2, from the
previous expression of the z — coordinate of a homoclinic point it follows that H is a dense subset
of T? and, as II(E*) and II(E%) intersect with a constant angle, we get that Hp is a closed and
discrete subset of £® x E“.

If f5 € Z°(f4) then B(E®) = E* and B(EY) = E* thus fz(II(E®)) = II(E?), fz(II(EY)) =
(E"), fp(H) = H and (B*, B*)(Hp) = Ho, where B* = Bjgs and B* = Bjgu. The maps B*
and B" are one dimensional linear maps so let us denote by p*(B) and p*(B) their eigenvalues,
respectively. To each map fp € Z°(f4) we can associate an element (0°(B), c%(B), a*(B), a%(B))
of Zo x Zo x R x R in the following way:

- 0%(B) = 11if p*(B) > 0, otherwise 0*(B) = —1,
- 0%(B) = 1if p*(B) > 0, otherwise 0“(B) = —1,

s 1 5(B
- *(B) = “fn

” _ log(|lu*(B
- a*(B) = Sy



thus defining a map © from Z%(f4) to the additive group Zs x Zo x R x R.
The next two lemmas contain the main properties of the map © and are crucial for the proof
of the Theorem.

Lemma 2.1. One has
7’) G(fA) = (_1? L1, 1); @(ffd) = (11 11070)7 @(f(—ld)) = (_11 _1)070);
i) if fB, fo € Z°(fa) then, Vn,m € Z,
O(ff o ) = (0*(B)" x 0*(C)™, 0" (B)" x 0"(C)™,na(B) + ma*(C), na"(B) + ma(C)) ;

i particular

O(fg o fi') = (0°(B)" x (=1)",0"(B)", na*(B) + m,na"(B) + m),

i) if fg, fo € Z°%(fa), o°(B) = 0%(C) and o*(B) = a*(C) (or o“(B) = o%“(C) and a*(B) =
a"(C)), then f = fc,

w) if f, fo € Z°(fa), 0%(B) # o°(C) and o*(B) = o*(C) (or 0*(B) # o*(C) and o*(B) =
a*(C)), then B = —C,

v) if fg € Z%(fa) then f& = fa iff o°(B)" = —1 and o*(B) = %, in particular n is an odd
number.

Proof. Ttems i) and ii) follow directly from the definition of ©.

To prove iii) observe that the hypothesis imply that B* = C* (or B* = C"), that is (fB)|m(gs) =
(fo)mesy (or (fB)ne+) = (fo)new))- As IL(E®) and II(E*) are dense in T2, one gets fp = fc.

If fp and fo satisfy the hypothesis iv) then, by ii), O(fp o fal) = (=1, %,0,x), which, in view
of iii) and i), implies that fp o fCTl = f(~14), that is B = —C.

Finally v) is a direct consequence of i), ii) and iii).

Lemma 2.2. One has
i) for every fp € Z°(fa), o*(B) = a*(B) € Q,

it) there exists qo € N such that o®*(B) > q%’ for every fg € Z(fa) such that o®*(B) > 0,

iii) Z°(fa) is the (abelian) group generated by f(=1ay and fB, where fp is an automorphism that
satisfies f,’; = fa, for some k € N.

Proof. To prove i) assume that there exists fp € Z°(f4) such that o*(B) € R\ Q. We can choose
monotone sequences ny and my, k € N, such that {(nga®(B) + my)}r converges to 0 and ng < 0,
for all £ € N, if o*(B) < o"(B), otherwise n; > 0, for all k € N. As fp(H) = H it follows
that (B*, B*)(Hy) = Hp. Let us choose a point P € Hj \ {(0,0)}, then the sequence (or a proper
subsequence) of points Py € Hy, P, = (B®, B*)" o (A%, A“)™*(P) is injective and converges to a
point @ that, since Hy is closed, belongs to Hy, which contradicts the fact that this set is discrete.

Now fix fg € Z%(fa) such that o(B) = g, where (p,q) = 1 and ¢ > 0. Let m,n € Z be
such that np +mgq = 1; a direct computation gives a((B™ o A™))? = 1, therefore, by i) and iii) of



Lemma 2.1, we conclude that f(gnoamys = fa or fignoam)ys = f(—a). In both cases we get that
g(na*(B) +m) = 1, that is o*(B) = L.

If ii) does not hold then there exists a sequence of automorphisms fp,, n € N, such that
a’(By) = qin is an injective sequence converging to 0. Fix a point P € Hy\{(0,0)}; as (B}, By)(Hy) =
(Hp) it follows that, taking a subsequence if necessary, P,, = (B, BY)(P) is an injective sequence
of points of Hy converging to a point of Hy, which contradicts the fact that this set is discrete.

To prove iii) let k be the smallest natural number that satisfies ii) and fg € Z°(fa) be an
automorphism such that o®(B) = 1. If fo € Z%(fa) and C ¢ {Id,—Id} then o*(C) = %, where
Ip| < k. Replacing C' by C~!, if necessary, we can assume that p is positive.

Write k = rs; and p = rsa, where r = (k, p). Now choose integers n and [ such that ns;+Ilse =1
and consider the map fpiocm € Z°(f4). A direct calculation shows that a®(B! o C™) = %, which,

by the choice of k, implies that so = 1, that is p divides k. Finally, from iii) of Lemma 2.1 we

conclude that fo = fps1 or fo = f(—[d) o fBsi.
O

Remark 2.3. Item (iii) of previous lemma shows that Z°(fa) is isomorphic to 7 & Zs thus ob-
taining, in this context and using a different argument, the same result of Plykin ([P]).

To end the proof of the Theorem it is enough to show that the k we got at item iii) of Lemma
2.2 is equal to 1. Assume that there exists fz € Z°(f4) such that a*(B) = 4, where k > 1 is
odd, and o"(B) = 1 (if 0*(B) = —1 we take f_p) instead of fp). Fix the point P € Hy whose
coordinates, in the space E® x EY, are (%, %), obtained by taking n = 1 and m = 0 in equation
(1) and observing that A\* — \* = /5.

Now, the point (B*, B*)(P) belongs to Hy and therefore, according to ( 1), its E" coordinate
satisfies the equation

1b m(a— A°) +nb
A\E — = 2

for some m,n € Z. Defining r = 2ma — m + 2nb and s = m and recalling that \* =

1+v5
—5 and

that \* = 1;2\/5, then the previous equation implies that the following equation is satisfied for some

r,s €L i
<1 +2\/5) o (r —1—28\/5> ' @)

1+V5
2

As Z [H—Q‘/B} is a unique factorization domain and is a fundamental unity it follows that

equation (3) has solutions if and only if £ = 1 (in this case r = s = b, that ism = 1 and n = 1 —a),
which is a contradiction, thus ending the proof of the Theorem.
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