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Abstract

In this note we prove that the C0-centralizer of a bidimensional Anosov diffeomorphism
having only a fixed point, f , is generated by f and a square root of the Identity, if f reverses
the orientation, or by a square root of f and a square root of the Identity, otherwise.

1 Introduction

Let f be a Cr diffeomorphism of a compact manifold M , r ∈ N ∪ {∞, ω}. For s ≤ r, the Cs-
centralizer of f is the set

Zs(f) = {g ∈ Diffs(f) : g ◦ f = f ◦ g}.

The Cs-centralizer of f is said to be trivial if it reduces to the powers of f . There are examples
of diffeomorphisms f whose centralizer is not trivial: for example in the case where f is the time
one map associated to a flow or when f is a linear contraction on R (in this case Z0(f) is not even
abelian).

In [S] Smale conjectured that there is an open and dense subset of Cr diffeomorphisms on M
whose elements have trivial centralizer. This conjecture was proved by Kopell, [K], when M is
a circle and r ≥ 2. For any compact manifold Palis and Yoccoz showed that generically, in the
open subset of C∞ stable diffeomorphisms, the C∞ centralizer is trivial ([PY1]), and that there
exists an open and dense subset of the Anosov diffeomorphisms on a torus whose elements have
trivial C∞ centralizer ([PY2]). The author transposed part of these results to the context of real
analytic stable diffeomorphisms ([R2] and [R3]), and to the C1 centralizer for stable bidimensional
C∞ diffeomorphisms ([R1]). In the non stable context, Burslem showed that there exists a C1

open and dense subset of the partially hyperbolic diffeomorphisms whose elements have discrete
centralizer ([B]).

In the opposite direction Plykin ([P]) showed that, with some conditions, the centralizer of an
Anosov automorphism on a n dimensional torus is isomorphic to Zl ⊕ F , for an appropriate l,
where F is a finite commutative group. In this note, using in a simple way ideas introduced in
[PY1] and developed in [R1] and [R2], we calculate explicitly the C0 centralizer of an open class of
bidimensinal Anosov diffeomorphisms. More precisely we prove the following result.

1



Theorem 1. If f is an Anosov diffeomorphism of the two torus having only a fixed point then
either

i) Z0(f) is the abelian group generated by f and h, where h is a homeomorphism satisfying
h2 ≡ Id, if f reverses the orientation,

or

ii) Z0(f) is the abelian group generated by g and h, where g and h are homeomorphisms satisfying
g2 ≡ f and h2 ≡ Id, if f preserves the orientation.

It is interesting to observe that this result implies some kind of (semi) rigidity on conjugations.
More precisely if f and g are two Anosov diffeomorphisms, having only a fixed point and orientation
reversing, and h1, h2 are two homeomorphisms that conjugate f and g, that is

g = h1 ◦ f ◦ h1
−1 = h2 ◦ f ◦ h2

−1,

then h2
−1 ◦ h1 ∈ Z0(f), therefore there are s ∈ {0, 1} and k ∈ Z such that h2 = h1 ◦ (hs ◦ fk

)
,

where h ∈ Z0(f) and h2 = Id. The same holds in the orientation preserving case replacing f by a
square root of f .

2 Proof of the Theorem

We consider the torus T2 as the quotient space obtained by the following equivalence relation on
R2:

(x, y) ∼ (z, t) if (x − z) ∈ Z and (y − t) ∈ Z.

We denote by Π the projection from R2 to T2 and write [(x, y)] = Π((x, y)).
An automorphism of T2, fA, is the map induced on the torus by a linear map of R2 whose

matrix, with respect to the canonic basis, is of the form

A =
(

a b
c d

)
,

where a, b, c, d ∈ Z and |det(A)| = |ad − dc| = 1. Moreover the automorphism fA is said to be
hyperbolic if the linear map A has two real eigenvalues with modulus not equal to one.

It is well known that if f is an Anosov diffeomorphism of T2 then f is conjugated to some
hyperbolic automorphism fA, (see [M]), that is there exists a homeomorphism of T2, g, such that
g ◦f = fA ◦g. If f has only a fixed point then the same holds for fA, that is [(0, 0)] is the only fixed
point of fA, and it is easy to see that the map Γ : Z0(f) → Z0(fA), defined by Γ(h) = g◦h◦g−1, is a
group automorphism. Therefore we just have to prove the Theorem for hyperbolic automorphisms
of T2 with exactly one fixed point.

Now, if h ∈ Z0(fA) and fA as only a fixed point then h([(0, 0)]) = [(0, 0)]; moreover if fA

is hyperbolic then h is an automorphism of T2 (see [PY2]). That is to determine the centralizer
of a hyperbolic automorphism fA having only a fixed point we just need to solve the equation
fB ◦ fA = fA ◦ fB, where B is a linear map.

Let fA be a hyperbolic automorphism; a straightforward calculation shows that the condition
of existence of unique fixed point is equivalent to
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- either |tr(A)| = |a + d| = 1, if det(A) = −1, or

- tr(A) = 3, if det(A) = 1.

First observe that if det(A) = 1 and tr(A) = 3 then det(A − Id) = −1, tr(A − Id) = 1, f(A−Id)

is a hyperbolic automorphism and f2
(A−Id) = fA. As f(A−Id) = fA ◦ f(−Id) and f(−Id) ∈ Z0(fB),

for all B, it follows that fB ◦ fA = fA ◦ fB implies that fB ◦ f(A−Id) = f(A−Id) ◦ fB, that is
Z0(fA) = Z0(f(A−Id)).

Second observe that if det(A) = −1 and tr(A) = −1 then det(−A) = −1, tr(A) = 1 and
Z0(fA) = Z0(f(−A)).

From these two observations it follows that to prove the Theorem we just need to prove that
the C0-centralizer of fA is generated by fA and f(−Id), where fA is a hyperbolic automorphism
with det(A) = −1 and tr(A) = 1.

Let us fix such a fA. The linear map A has two eigenvalues λu = 1+
√

5
2 and λs = 1−√

5
2 whose

eigenspaces Eu and Es are generated by vectors vu = (1, λu−a
b ) and vs = (1, λs−a

b ), respectively.
These two lines have irrational slope therefore Π(Es) and Π(Eu) are both dense on T2 and they
intersect transversally with a constant angle. Let H = Π(Es)∩Π(Eu) denote the set of homoclinic
points of fA. Each point of H has an Es-coordinate and an Eu-coordinate which can be determinated
in the following way. Let [(z, w)] be a point of H, then there are real numbers x and y such that

[(z, w)] = Π(xvs) = Π(yvu),

which is equivalent to

y

(
1,

λu − a

b

)
= x

(
1,

λs − a

b

)
+ (m, n),

for some m, n ∈ Z. From this it follows that the points of H correspond to those points of the
product space Es × Eu whose (x, y)-coordinates are of the form

x =
m(a − λu) + nb

(λu − λs)
, y =

m(a − λs) + nb

(λu − λs)
, (1)

where m, n ∈ Z. Let us denote this subset of Es × Eu by H0. As Π(Es) is dense in T2, from the
previous expression of the x − coordinate of a homoclinic point it follows that H is a dense subset
of T2 and, as Π(Es) and Π(Eu) intersect with a constant angle, we get that H0 is a closed and
discrete subset of Es × Eu.

If fB ∈ Z0(fA) then B(Es) = Es and B(Eu) = Eu thus fB(Π(Es)) = Π(Es), fB(Π(Eu)) =
Π(Eu), fB(H) = H and (Bs, Bu)(H0) = H0, where Bs = B|Es and Bu = B|Eu . The maps Bs

and Bu are one dimensional linear maps so let us denote by µs(B) and µu(B) their eigenvalues,
respectively. To each map fB ∈ Z0(fA) we can associate an element (σs(B), σu(B), αs(B), αu(B))
of Z2 × Z2 × R × R in the following way:

- σs(B) = 1 if µs(B) > 0, otherwise σs(B) = −1,

- σu(B) = 1 if µu(B) > 0, otherwise σu(B) = −1,

- αs(B) = log(|µs(B)|)
log(|λs|) ,

- αu(B) = log(|µu(B)|)
log(|λu|) ,
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thus defining a map Θ from Z0(fA) to the additive group Z2 × Z2 × R × R.
The next two lemmas contain the main properties of the map Θ and are crucial for the proof

of the Theorem.

Lemma 2.1. One has

i) Θ(fA) = (−1, 1, 1, 1), Θ(fId) = (1, 1, 0, 0), Θ(f(−Id)) = (−1,−1, 0, 0),

ii) if fB, fC ∈ Z0(fA) then, ∀n, m ∈ Z,

Θ(fn
B ◦ fm

C ) = (σs(B)n × σs(C)m, σu(B)n × σu(C)m, nαs(B) + mαs(C), nαu(B) + mαu(C)) ;

in particular

Θ(fn
B ◦ fm

A ) = (σs(B)n × (−1)m, σu(B)n, nαs(B) + m, nαu(B) + m),

iii) if fB, fC ∈ Z0(fA), σs(B) = σs(C) and αs(B) = αs(C) (or σu(B) = σu(C) and αu(B) =
αu(C)), then fB = fC ,

iv) if fB, fC ∈ Z0(fA), σs(B) 
= σs(C) and αs(B) = αs(C) (or σu(B) 
= σu(C) and αu(B) =
αu(C)), then B = −C,

v) if fB ∈ Z0(fA) then fn
B = fA iff σs(B)n = −1 and αs(B) = 1

n , in particular n is an odd
number.

Proof. Items i) and ii) follow directly from the definition of Θ.
To prove iii) observe that the hypothesis imply that Bs = Cs (or Bu = Cu), that is (fB)|Π(Es) =

(fC)|Π(Es) (or (fB)|Π(Eu) = (fC)|Π(Eu)). As Π(Es) and Π(Eu) are dense in T2, one gets fB = fC .
If fB and fC satisfy the hypothesis iv) then, by ii), Θ(fB ◦ f−1

C ) = (−1, �, 0, �), which, in view
of iii) and i), implies that fB ◦ f−1

C = f(−Id), that is B = −C.
Finally v) is a direct consequence of i), ii) and iii).

Lemma 2.2. One has

i) for every fB ∈ Z0(fA), αs(B) = αu(B) ∈ Q,

ii) there exists q0 ∈ N such that αs(B) ≥ 1
q0

, for every fB ∈ Z0(fA) such that αs(B) > 0,

iii) Z0(fA) is the (abelian) group generated by f(−Id) and fB, where fB is an automorphism that
satisfies fk

B = fA, for some k ∈ N.

Proof. To prove i) assume that there exists fB ∈ Z0(fA) such that αs(B) ∈ R \ Q. We can choose
monotone sequences nk and mk, k ∈ N, such that {(nkα

s(B) + mk)}k converges to 0 and nk < 0,
for all k ∈ N, if αs(B) ≤ αu(B), otherwise nk > 0, for all k ∈ N. As fB(H) = H it follows
that (Bs, Bu)(H0) = H0. Let us choose a point P ∈ H0 \ {(0, 0)}, then the sequence (or a proper
subsequence) of points Pk ∈ H0, Pk = (Bs, Bu)nk ◦ (As, Au)mk(P ) is injective and converges to a
point Q that, since H0 is closed, belongs to H0, which contradicts the fact that this set is discrete.

Now fix fB ∈ Z0(fA) such that αs(B) = p
q , where (p, q) = 1 and q > 0. Let m, n ∈ Z be

such that np + mq = 1; a direct computation gives αs((Bn ◦ Am))q = 1, therefore, by i) and iii) of
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Lemma 2.1, we conclude that f(Bn◦Am))q = fA or f(Bn◦Am))q = f(−A). In both cases we get that
q(nαu(B) + m) = 1, that is αu(B) = p

q .
If ii) does not hold then there exists a sequence of automorphisms fBn , n ∈ N, such that

αs(Bn) = 1
qn

is an injective sequence converging to 0. Fix a point P ∈ H0\{(0, 0)}; as (Bs
n, Bu

n)(H0) =
(H0) it follows that, taking a subsequence if necessary, Pn = (Bs

n, Bu
n)(P ) is an injective sequence

of points of H0 converging to a point of H0, which contradicts the fact that this set is discrete.
To prove iii) let k be the smallest natural number that satisfies ii) and fB ∈ Z0(fA) be an

automorphism such that αs(B) = 1
k . If fC ∈ Z0(fA) and C /∈ {Id,−Id} then αs(C) = 1

p , where
|p| ≤ k. Replacing C by C−1, if necessary, we can assume that p is positive.

Write k = rs1 and p = rs2, where r = (k, p). Now choose integers n and l such that ns1+ls2 = 1
and consider the map fBl◦Cn ∈ Z0(fA). A direct calculation shows that αs(Bl ◦Cn) = 1

ks2
, which,

by the choice of k, implies that s2 = 1, that is p divides k. Finally, from iii) of Lemma 2.1 we
conclude that fC = fBs1 or fC = f(−Id) ◦ fBs1 .

Remark 2.3. Item (iii) of previous lemma shows that Z0(fA) is isomorphic to Z ⊕ Z2 thus ob-
taining, in this context and using a different argument, the same result of Plykin ([P]).

To end the proof of the Theorem it is enough to show that the k we got at item iii) of Lemma
2.2 is equal to 1. Assume that there exists fB ∈ Z0(fA) such that αu(B) = 1

k , where k > 1 is
odd, and σu(B) = 1 (if σu(B) = −1 we take f(−B) instead of fB). Fix the point P ∈ H0 whose
coordinates, in the space Es × Eu, are ( b√

5
, b√

5
), obtained by taking n = 1 and m = 0 in equation

( 1) and observing that λu − λs =
√

5.
Now, the point (Bs, Bu)(P ) belongs to H0 and therefore, according to ( 1), its Eu coordinate

satisfies the equation

(λu)
1
k

b√
5

=
m(a − λs) + nb

(λu − λs)
, (2)

for some m, n ∈ Z. Defining r = 2ma − m + 2nb and s = m and recalling that λu = 1+
√

5
2 and

that λs = 1−√
5

2 , then the previous equation implies that the following equation is satisfied for some
r, s ∈ Z (

1 +
√

5
2

)
bk =

(
r + s

√
5

2

)k

. (3)

As Z

[
1+

√
5

2

]
is a unique factorization domain and 1+

√
5

2 is a fundamental unity it follows that
equation (3) has solutions if and only if k = 1 (in this case r = s = b, that is m = 1 and n = 1−a),
which is a contradiction, thus ending the proof of the Theorem.
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