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Abstract. We obtain a C1-generic subset of the incompressible flows in a
closed three-dimensional manifold where Pesin’s entropy formula holds
thus establishing the continuous-time version of [23]. Moreover, in any
compact manifold of dimension larger or equal to three we obtain that
the metric entropy function and the integrated upper Lyapunov exponent
function are not continuous with respect to the C1 Whitney topology.
Finally, we establish the C2-genericity of Pesin’s entropy formula in the
context of Hamiltonian four-dimensional flows.
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1. Introduction: basic definitions and some results

1.1. Notation and basic definitions

We consider a three-dimensional closed and connected C∞ Riemannian man-
ifold M endowed with a volume-form. Let µ denote the measure associated
to it that we call Lebesgue measure. We say that a vector field X : M → TM
is divergence-free if ∇·X = 0 or equivalently if the measure µ is invariant for
the associated flow, Xt : M →M , t ∈ R. In this case we say that the flow is
incompressible or volume-preserving. We denote by Xrµ(M) (r ≥ 1) the space
of Cr divergence-free vector fields on M and we endow this set with the
usual Cr Whitney topology. Denote by dist(·, ·) the distance in M inherited
by the Riemannian structure. Given X ∈ X1

µ(M) let Sing(X) denote the set
of singularities of X and R := M \ Sing(X) the set of regular points.

A vector field is said to be Anosov if the tangent bundle TM splits into
three continuous DXt-invariant nontrivial subbundles E0 ⊕ E1 ⊕ E2 where
E0 is the flow direction, the sub-bundle E2 is uniformly contracted by DXt

and the sub-bundle E1 is uniformly contracted by DX−t for all t > 0. Of
course that, for an Anosov flow, we have Sing(X) = ∅ which follows from
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the fact that the dimensions of the subbundles are constant on the entire
manifold.

1.2. Lyapunov exponents, Oseledets’ theorem and the integrated exponent
function

Since Xt is incompressible we can apply Oseledets’ multiplicative ergodic
theorem [18] to the volume-preserving diffeomorphism f = X1 and obtain for
µ-a.e. point x ∈ M , a splitting TxM = E1

x ⊕ ...⊕ E
k(x)
x (Oseledets splitting)

and real numbers λ1(x) > ... > λk(x)(p) (Lyapunov exponents) such that
Dfx(Eix) = Eif(x) and

lim
n→±∞

1
n

log ‖Dfnx · vi‖ = λi(x),

for any vi ∈ Eix \ {~0} and i = 1, ..., k(x). Using the three-dimension and the
conservativeness assumptions we observe that k(x) = 1 or k(x) = 3 (see the
paragraph after (1.2) below). If k(x) = 1 then the spectrum is trivial, that
is, all the Lyapunov exponents vanish.

We denote the µ-a.e. points given by this theorem by O(X1) = O(X).
It is clear that, fixing t ∈ R, any g = Xt is such that O(g) = O(X1).

We can obtain a proof of Oseledets’ theorem for the flow dynamics
using its discrete version, let us see briefly how: Since it is an asymptotic
result and DXr

x, for fixed r and x varying in a compact set, is a uniformly
bounded operator we may replace the tangent map DXt

x = DXr
Xn(x) ◦DX

n
x

by the least integer time-n map, DXn
x , and compute the limit as before. The

Oseledets splitting associated to the flow Xt on any point along the orbit
of x ∈ O(X1) is the saturation, by the tangent flow DXt, of the directions
given by TxM = E1

x ⊕ ... ⊕ E
k(x)
x . This theorem allows us to conclude also

that

lim
t→±∞

1
t

log |det(DXt
x)| =

k(x)∑
i=1

λi(x) dim(Eix), (1.1)

which is related to the sub-exponential decrease of the angles between any
subspaces of the Oseledets splitting along µ-a.e. orbit. Since we have the
invariance DXt

x(X(x)) = X(Xt(x)), we conclude that one of Oseledets’ sub-
spaces is E0(x), and that its associated Lyapunov exponent is zero.

By the Liouvile formula

detDXτ
x = e

R τ
0 ∇·X(Xt(x))dt,

we get that whenever ∇ ·X = 0 then

|det(DXt
x)| = 1, ∀t ∈ R. (1.2)

Since we are in a three-dimensional setting, then using (1.1) and (1.2),
we have λ1(x) + λ3(x) = 0. Hence either λ1(x) = −λ3(x) > 0 or both
Lyapunov exponents are equal to zero. In the former case there exists a
decomposition of the tangent space TxM as direct sum of two subspaces E+

x



On the entropy of conservative flows 3

and E−x associated to the positive Lyapunov exponent λ1(x) = λ+(x) and
the negative one λ3(x) = λ−(x), respectively.

We usually reduce the study of hyperbolicity to the orbit normal bun-
dle. Given x ∈ R we consider its normal bundle Nx = X(x)⊥ ⊂ TxM and
define the linear Poincaré flow by P tX(x) := ΠXt(x) ◦ DXt

x where ΠXt(x) :
TXt(x)M → NXt(x) is the projection along the direction of X(Xt(x)).

Due to the aforementioned property of sub-exponential decrease of the
angles between any Oseledets subspaces, it is not hard to check that if Eσx
(σ = +/−) is associated to the Lyapunov exponent λσ(x), then Nσ

x := ΠxE
σ
x

is an Oseledets invariant subspace of Nσ
x . Furthermore, the Lyapunov expo-

nents are given by

lim
t→±∞

1
t

log ‖P tX(x)|Nσx ‖ = lim
t→±∞

1
t

log ‖DXt
x|Eσx ‖ = λσ(x).

Let us consider the following integrated upper Lyapunov exponent func-
tion:

Λ: X1
µ(M) −→ R
X 7−→

∫
M
λ+(X,x)dµ(x).

The next simple equality was proved in [7, Proposition 2.1]:

Λ(X) = inf
n≥1

1
n

∫
M

log ‖PnX(x)‖dµ(x). (1.3)

Notice that the function Λ is the infimum of continuous functions, hence
upper semicontinuous. In particular, the continuity points of Λ is a residual
subset of X1

µ(M) (dense Gδ in the C1 topology).
The following result was proved by the first author for the case of in-

compressible flows on three-dimensional closed manifolds without singulari-
ties (see [4, Proposition 3.2]) and then generalized for the context admitting
singularities in [3, Proposition 2.2]. Recall that X is said to be an aperiodic
vector field if the Lebesgue measure of the set of periodic points and singular-
ities is zero. Moreover, given ` ∈ N we say that the splitting N = N− ⊕N+

of the normal bundle over an invariant set Λ is an `-dominated splitting for
the linear Poincaré flow if there exists an ` ∈ N such that for all x ∈ Λ we
have:

‖P `X(x)|N−x ‖.‖P
−`
X (X`(x))|N+

X`(x)
‖ ≤ 1

2
.

For simplicity reasons we refer to Λ as an `-dominated invariant set.

Theorem 1.1. Let X ∈ X2
µ(M) be an aperiodic vector field and assume that

every `-dominated invariant subset has zero volume. For every given ε, δ > 0
there exists a vector field Y ∈ X1

µ(M) such that Y is ε-C1-close to X and
Λ(Y ) < δ.

As a consequence we obtain the following result:

Theorem 1.2. There exists a residual subset R of X1
µ(M), such that if X ∈ R

is not an Anosov flow, then Lebesgue a.e. point in M has zero Lyapunov
exponents.
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1.3. Measure-theoretic entropy for flows, Margulis-Ruelle inequality and Pesin’s
formula

Given X ∈ X1
µ(M), we say that the associated flow Xt : M →M is expansive

if given any ε > 0, there exists δ > 0 such that, if dist(Xt(x), Xτ(t)(y)) < δ
for all t ∈ R, for all x, y ∈ M and for all continuous maps τ : R → R, then
y = Xt(x) where |t| < ε. This definition, introduced by Bowen and Walters
in [11] roughly means that any two points whose orbits by the flow remain
indistinguishable up to any continuous time displacement lie in the same
orbit. Moreover, expansiveness is a topological invariant and any expansive
flow admits at most countably many periodic orbits.

Remark 1.1. The Anosov flows are expansive (see [2]).

We give a brief description of the key concept of entropy, introduced
in the theory of dynamical systems by Kolmogorov more than fifty years
ago. In fact, topological entropy is one of the most important invariants
in dynamics and describes the topological complexity of the system mea-
suring how the dynamics separates and spread under iteration. In compact
metric spaces topological entropy coincides with the limiting of the measure
theoretical entropies described below, related with many other fundamental
concepts in dynamics as the Lyapunov exponents or Hausdorff dimension.
We refer the reader to [15] for a very complete exposition on entropy. In
our volume-preserving setting, to understand the underlying dynamics it be-
comes relevant to study the measure theoretical entropy with respect to the
Lebesgue measure and its relation with Lyapunov exponents, which gave us
the starting point for our study. First we recall some definitions.

Given a vector field X ∈ X1
µ(M) we define its measure-theoretic en-

tropy, hµ(X), by hµ(X1) where X1 is the time-one of its associated flow.
The following result is due to Abramov [1], for a proof see [14, Theorem 3
pp. 255].

Theorem 1.3. The metric entropy of the time-t map Xt is |t|hµ(X1) for any
t ∈ R.

It is worth to point out that Sun and Vargas [22] defined a differ-
ent concept of flow entropy which is well behaved when we consider a re-
parametrization of the flow.

Given a measure space Σ, a map R : Σ→ Σ, an R-invariant probability
measure µ̃ defined in Σ and a ceiling function h : Σ → R+ satisfying h(x) ≥
α > 0 for all x ∈ Σ and the integrability condition

∫
Σ
h(x)dµ̃(x) < ∞,

consider the space Mh ⊆ Σ× R+ defined by

Mh = {(x, t) ∈ Σ× R+ : 0 ≤ t ≤ h(x)}

with the identification between the pairs (x, h(x)) and (R(x), 0). The semiflow
defined on Mh by Ss(x, r) = (Rn(x), r + s−

∑n−1
i=0 h(Ri(x))), where n ∈ N0
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is uniquely defined by

n−1∑
i=0

h(Ri(x)) ≤ r + s <

n∑
i=0

h(Ri(x))

is called a suspension semiflow. If R is invertible then (St)t is indeed a flow.
Furthermore, if Leb1 denotes the one dimensional Lebesgue measure it is not
hard to check that the measure µ = (µ̃× Leb1)/

∫
h dµ̃ defined on Mh by∫

g dµ =
1∫
h dµ̃

∫ (∫ h(x)

0

g(x, t)dt

)
dµ̃(x), ∀g ∈ C0(Mh)

is a probability measure and it is invariant by the suspension semiflow (St)t.
In fact, if h is bounded then

η 7→ η × Leb1∫
hdη

(1.4)

is a one-to-one correspondence between R-invariant probability measures and
St-invariant probability measures (see e.g. [12]). In addition, it follows from
the previous integrability condition and Abramov’s formula (AF) that

hµ(St)
(AF )
=

hµ̃(R)∫
Σ
hdµ̃

. (1.5)

By abuse of notation, given a vector field X ∈ X1
µ we let hµ(X) denote the

entropy with respect to the volume µ of the flow Xt associated to X. The
following result, due to Bowen and Walters [11, Theorem 6], will be useful in
the sequel.

Theorem 1.4. Let Xt be a flow and St the suspension flow representation
of Xt with section Σ, ceiling function h and return map R. The flow Xt is
expansive if and only if R is expansive.

Theorem 1.5. (Pesin’s entropy formula for flows) If X ∈ X1+α
µ (M) with

α > 0, then hµ(X) = Λ(X).

Proof. The proof is straightforward. Since X1 is a C1+α volume-preserving
diffeomorphism we apply Pesin’s entropy formula (see [19, 17]) and obtain
hµ(X1) =

∫
M
λ+(X1, x)dµ(x). By the definition of entropy for the flow we

have hµ(X1) = hµ(X). Finally, the result follows from the fact that the upper
Lyapunov exponent of the flow is equal to the one associated to the time-one
map. �

Using Margulis-Ruelle’s inequality for discrete time systems [21] we ob-
tain analogously:

Theorem 1.6. If X ∈ X1
µ(M), then hµ(X) ≤

∫
M
λ+(X,x) dµ(x).
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2. Statements and proof of the results

In the next proposition we cannot use directly [23, Proposition 1.5] because
the time-one of an Anosov flow is not an Anosov diffeomorphism. Actually, it
is a partially hyperbolic diffeomorphism (see [9] for the definition). Moreover,
it is still unknown (Verjovski conjecture) whether every volume-preserving
Anosov flow is the suspension of an Anosov diffeomorphism. Nevertheless, we
could prove the semicontinuity of the metric entropy for the three-dimensional
Anosov incompressible flows.

Proposition 2.1. The set of continuity points of hµ when restricted to the
Anosov incompressible flows is C1-residual within three-dimensional Anosov
incompressible flows.

Proof. It follows from [10, 20] that any Anosov flow Xt admits a finite Markov
partition of arbitrary small size. Moreover, there exists a subshift of finite
type σ : Σ→ Σ and a ceiling function h with summable variation so that Xt

is semiconjugated to the symbolic suspension flow St as above with R = σ
and M = Σ, and a bounded continuous roof function h . More precisely,
following [10], there exists a finite-to-one continuous surjection φ : Σh → M
satisfying φ◦St = Xt ◦φ for every t ∈ R. Indeed, φ is a bijection on the com-
plement of the set φ−1(∪t∈R∂P), where P are the rectangles of the Markov
partition in Σ. For completeness reasons let us point out that the construc-
tion of the Markov partitions use a finite number of two-dimensional cross
sections Σ0 transverse to the vector field X, that can be taken uniform for
every C1-close vector field. Finally, since we deal with two-dimensional cross-
sections, the boundaries of the Markov partition are formed by a finite union
of one dimensional smooth curves obtained as intersection of two-dimensional
W cs and W cu manifolds with the sections Σ0 which form a zero Lebesgue
measure set.

In particular, µΣh = φ∗µ is a well defined St-invariant probability mea-
sure on Σh and φ is a measure theoretical isomorphism between (Xt, µ) and
(St, µΣh). Hence, using (1.4) and (1.5) one deduces that there exists a σ-
invariant probability measure µΣ such that

hµ(Xt) = hµΣh
(St) =

hµΣ(σ)∫
h dµΣ

.

Recall that every Anosov flow is expansive (see Remark 1.1) and the ex-
pansiveness constant varies continuously within Anosov flows. Hence, there
exists a uniform ε > 0 for which all Y ∈ X1

µ(M) that are C1-close to X
are ε-expansive and, by Theorem 1.4, the base maps σY are also (uniformly)
expansive. So, let P be a partition on Σ0 that is generating for all σY . It
follows from Kolmogorov-Sinai’s theorem and sub-additivity that

hµΣ(σ,P) = lim
n→+∞

1
n
HµΣ(P(n)) = inf

n≥1

1
n
HµΣ(P(n)),

where P(n) = P∨σ−1(P)∨ ...∨σ−n+1(P) is the dynamically refined partition
on Σ and HµΣ(Q) =

∑
Q∈Q−µΣ(Q) logµΣ(Q) for every partition Q on Σ.
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Notice that the function

X 7→ 1
n
HµXΣh

(P(n))

is continuous. As a consequence, the function X 7→ inf
n∈N

1
nHµ̃X (P(n)

X ) is upper

semi-continuous because it is the infimum of continuous functions. Hence,
there exists a residual subset such that the previous function is continuous.

�

Proposition 2.2. Let R be the residual given by Theorem 1.2 and let Z stands
for the set R except the C1 closure of the Anosov flows. Then, any X ∈ Z is
a continuity point of the metric entropy function hµ.

Proof. Let be given ε > 0. Is is sufficient to prove that exists δ > 0, such that
any divergence-free vector field Y δ-C1-close to X satisfies hµ(Y ) ≤ ε. By
Theorem 1.6 we have hµ(Y ) ≤

∫
M
λ+(Y, x)dµ(x) = Λ(Y ). Since Λ is upper

semicontinuous we have Λ(Y ) ≤ Λ(X)+ε for some ε > 0 small. But Λ(X) = 0
because X ∈ Z and so hµ(Y ) ≤ ε. �

Using Proposition 2.1 and Proposition 2.2 we obtain the following result.

Corollary 2.3. The set of continuity points of hµ is a C1-residual in X1
µ(M).

The following result is the continuous-time counterpart of Tahzibi’s the-
orem [23].

Theorem 1. The Pesin entropy formula holds for a C1-residual subset of
X1
µ(M).

Proof. Recalling the paragraph after (1.3) and using Corollary 2.3 we con-
clude that there exists a residual R ⊂ X1

µ(M) such that any X ∈ R is a
continuity point of both hµ and Λ. By Zuppa’s theorem [24] we know that
X2
µ(M) is C1 dense in X1

µ(M) and so we can take a sequence of C2 divergence-
free vector fields {Xn}n∈N such that Xn converge in the C1 topology to X.

By Theorem 1.5 since Xn ∈ X2
µ(M), then hµ(Xn) = Λ(Xn) for every

n ∈ N. Finally, given any X ∈ R we use the continuity of hµ and Λ at X to
conclude that hµ(X) = Λ(X), and the theorem is proved.

�

There are several results on the continuity of the metric and topologi-
cal entropies over hyperbolic flows (see e.g. [13] and the references therein).
However, the next result shows that we cannot expect the continuity of the
metric entropy in general.

Theorem 2. Let M be any compact manifold of dimension larger or equal to
three. Then the functions hµ : (X1

µ(M), C1) → R and Λ: (X1
µ(M), C1) → R

are not continuous.

Proof. By Hu, Pesin and Talitskaya theorem (see [16]) we know that every
compact manifold carries a C∞ volume-preserving flow Xt associated to a
divergence-free vector field X : M → TM with a nonuniformly hyperbolic
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Bernoulli ergodic component µ. Moreover, although Sing(X) 6= ∅ the singu-
larities have zero Lebesgue measure and, by nonuniform hyperbolicity and
Pesin’s formula, hµ(X) = Λ(X) > 0. We claim that X is a discontinuity point
for both functions hµ and Λ. Indeed, using that Xt is not Anosov it follows
from Theorem 1.2 and the fact that (X1

µ(M), C1) is a Baire space that there
exists a C1-residual subset in R ⊂ X1

µ(M), such that any Y ∈ R is such that
hµ(Y ) ≤ Λ(Y ) = 0. This proves that X is not a continuity point for hµ or Λ
and finishes the proof of the theorem. �

An interesting question is to characterize the continuity points of the
metric entropy and Lyapunov exponent functions.

Question 1: Does the discontinuity points form a dense set?

3. Hamiltonians in symplectic 4-manifolds

It is worth mention that Theorem 1 has a counterpart for four-dimensional
C2-Hamiltonian systems. In fact, the arguments used in the proof of the
Theorem 1 lie the dichotomy of hyperbolicity versus almost everywhere zero
Lyapunov exponents which was extended to the setting of four-dimensional
C2-Hamiltonian systems in [5].

Let us recall some elementary facts about Hamiltonians. Let M be a
compact symplectic four-dimensional manifold endowed with the symplectic
two-form ω. We will be interested on Hamiltonians on M , i.e., real functions
on M endowed with the C2-topology. Given a Hamiltonian H : M → R,
any scalar e ∈ H(M) ⊂ R is called an energy of H and any connected
component of H−1(e) = {x ∈ M : H(x) = e} the corresponding invariant
energy level set. It is regular if it does not contain critical points. For any
C2 Hamiltonian function H : M → R there is a corresponding Hamiltonian
vector field XH : M → TM determined by ω(XH , ·) = DH(·). Observe that
H is C2 if and only if XH is C1. The Hamiltonian vector field generates the
Hamiltonian flow, a smooth 1-parameter group of symplectomorphisms ϕtH
on M .

The volume form ω2 gives a measure µ on M that is preserved by the
Hamiltonian flow. On each regular energy surface E ⊂M (of dimension three)
there is a natural finite invariant volume measure which we denote by µE . We
define hyperbolicity and also compute the Lyapunov exponents associated to
the linear Poincaré flow of the Hamiltonian flow restricted to each E . Thus
this transversal linear Poincaré flow has dimension two and so let λ+(H,x)
denotes the largest (or the nonnegative) Lyapunov exponent associated to the
flow ϕtH (we refer to [5, §2] for the full details on these structures). Consider
also hµE (XH) denote the measure theoretical entropy of the flow ϕtH on the
level set Ep(H), and set

hµ(XH) =
∫
hµE (XH)dH.
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Since the dynamics when restricted to each regular energy surface is
a three-dimensional flow we can recover an analog of Proposition 2.1 for
four-dimensional C2-Hamiltonians. It is worth to observe that the uniform
hyperbolicity (Anosov property) holds in some connected component of the
energy surface (cf. [6, Definition 2.4]).

Now we recall the following useful result.

Theorem 3.1. [5, Theorem 1] Let (M,ω) be a 4-dimensional compact symplec-
tic manifold. For a C2-generic Hamiltonian H ∈ C2(M,R), the union of the
regular energy surfaces E that are either Anosov or have zero Lyapunov ex-
ponents µE -a.e. for the Hamiltonian flow, forms an open µ-mod 0 and dense
subset of M .

Consider the product space M = M × C2(M,R) and the set

A = {(p,H) ∈M : Ep(H) is an Anosov regular level} ,

where Ep(H) ⊂ H−1(H(p)) denotes the level set in M containing the point
p. When no confusion is possible we write E for simplicity. By [6, Theorem 2]
A is open in M ×C2(M,R). The next proposition is the Hamiltonian version
of Proposition 2.2 and its proof is analogous.

Proposition 3.2. The set of continuity points of the function

A → R
(p,H) 7→ hµE (XH)

contains a residual subset R1 ⊂ A.

Now we proceed to prove semicontinuity of the measure theoretical en-
tropy among C2-Hamiltonians. The following results are collected from [5].
Set B =M\A where A stands for the C2 closure of the set A. Then there
exists a continuous function ρ : B → R+ such that the connected component
Vp,H ⊂M of {x ∈M : |H(x)−H(p)| < ρ(p,H)} satisfies the following: given
ε, δ > 0 and (p,H) ∈ B there exists a Hamiltonian H̃ that is C2-ε-close to H
and ∫

Vp,H̃
λ+(H̃, x) dµ(x) < δ. (3.1)

Hence, the set {
(p,H) :

∫
Vp,H

λ+(H,x) dµ(x) = 0

}
contains a residual subset of B. Hence, proceeding as in the proof of Propo-
sition 2.2 to bound the metric entropy by the integrated Lyapunov exponent
we obtain the following:

Proposition 3.3. There exists a residual R2 ⊂ B so that R2 3 (p,H) 7→
hµE (XH) is continuous.
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Moreover, following [8, Proposition A.7] there exists a residual R ⊂
C2(M,R) and for every H ∈ R a residual subset RH ⊂M such that

R1 ∪R2 =
⋃
H∈R

RH × {H}

and, for every H ∈ R and p ∈ RH either Ep(H) is Anosov or H has zero
Lyapunov exponent in the following sense:∫ ∫

λ+(H,x) dµE(x)dH = 0. (3.2)

Observe that if H ∈ C3(M,R) is Morse then XH is of class C2 and it follows
from Pesin’s formula that

hµE (XH) =
∫
λ+(H,x) dµE(x)

for every regular level set E and we deduce

hµ(XH) =
∫ ∫

λ+(H,x) dµE(x) dH.

Corollary 3.4. The set of continuity points of hµ is a C2-residual in the set
of C2 Hamiltonians in M .

Recalling that Cr Morse Hamiltonians (r ≥ 3) are C2-dense in our set
of C2-Hamiltonians we can obtain similarly the Hamiltonian counterpart of
Theorem 1 above.

Theorem 3. The Pesin entropy formula holds for a C2-residual subset of the
set of C2 Hamiltonians in M .

An interesting question is to know if the measure theoretical entropy and
the integrated Lyapunov exponent functions are continuous for Hamiltonians
as in Theorem 2. This would be true if the following question has a positive
answer.

Question 2: In any symplectic manifold M of dimension 2n + 2 (n ∈ N) is
there any Hamiltonian H : M → R such that H has n positive Lyapunov
exponents?
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