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Abstract

We prove that there exists a residual set R (with respect to the c’ topology) of
all d-dimensional linear differential systems based in a p-invariant flow and with
transition matrix evolving in GL(d,R) such that if A € R, then, for p-a.e. point,
the Oseledets splitting along the orbit is dominated (uniform projective hyper-
bolicity) or else the Lyapunov spectrum is trivial. Moreover, in the conservative
setting, we obtain the dichotomy: dominated splitting versus zero Lyapunov ex-

ponents.
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1 Introduction

Let ¢! : X — X be a continuous flow defined in a compact Hausdorff space X and
A: X — sl(d,R) be a continuous map, where sl(d, R) is the Lie algebra of all d x d
matrices with trace equal to zero. Given any p € X, the solution ®(p) of the non-
autonomous linear differential equation u(t)’ = A(p*(+))-u(t), with initial condition
@Y% (p) = 1Id, is a linear flow which lies in the special linear group SL(d,R). As a
typical example we have the linear Poincaré flow (see [9] B.3) of a divergence-free
(zero divergence) vector field F' : X — TX such that | F(p)|| = 1 for all regular point
p € X and dim(X) = d+1. However, the linear Poincaré flow of any divergence-free
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vector field F' in general does not evolve in SL(d,R). Nevertheless, it still has a
restriction which is invariant as we will see in Section 2.1 when we define the linear
differential systems, which mimic the volume-preserving flows.

Moreover, beyond the conservative setting, we will consider general linear differ-
ential systems with solutions in the linear group GL(d, R), which might be induced
by a flow in manifolds with dimension d + 1.

Given a linear differential system A, the Lyapunov exponents measure the a-
symptotic exponential growth rate of [|®%(p) - v|| for v € RY. These real numbers
play a central role in ergodic theory and the absence of zero exponents yield valuable
description of the dynamics of A. Therefore, it is very important to detect zero
Lyapunov exponents. If A(t) = A is constant (e.g. the flow is over a fixed point),
then the Lyapunov exponents are exactly the real parts of the eigenvalues of A. In
general, the eigenvalues of the matrix A(t) are meaningless if one aims to study
the asymptotic solutions. If we assume that ¢ leaves invariant a Borel regular
probability measure p, then, due to the multiplicative ergodic theorem (see for
example [16]), we have that the Lyapunov exponents are well defined for almost
every orbit.

Throughout this work we use a weak form of hyperbolicity, called dominated
splitting which, broadly speaking, means that we have an invariant splitting along
the orbit into two subspaces such that one is most expanding (or less contracted)
than the other, by uniform rates.

The main target of this paper is to understand in detail the Lyapunov exponents
for typical continuous-time general families of linear differential systems in any
dimension. By using a much more careful and elaborate technique, we obtain, in
particular, the higher dimensional generalization of the theorems in [4]. Let us start
with our main result.

Theorem 1.1 There exists a C°-residual subset R of d-dimensional linear differ-
ential systems with fundamental matriz evolving in GL(d,R) such that if A € R,
then for p-a.e. point x € X we have dominated splitting or else the Lyapunov
exponents are all equal.

Since we are going to make conservative perturbations and, in conservative set-
ting, having equal Lyapunov exponents is tantamount to all exponents being zero,
we derive the following Corollary.

Corollary 1.1 There exists a C°-residual subset R of d-dimensional conservative
linear differential systems such that if A € R, then for p-a.e. point x € X we have
dominated splitting or else the Lyapunov exponents are zero.

We point out that the first manifestation of these kind of dichotomies appeared
in the breakthrough approach of Mafé (see [20]). In [21] Mané gave an outline of
what could be the proof for area-preserving diffeomorphisms in surfaces. Follow-
ingly, Bochi presented the complete proof (see [7]). In the groundbreaking paper
of Bochi and Viana (see [8]), it is proved the generalization of the dichotomy for



any dimension and also a version for simplectomorphisms and also for discrete co-
cycles. Afterwards we start the approach of Marié-Bochi-Viana’s results for the
continuous-time systems by proving the 2-dimensional linear differential systems
version (see [4]) and also by proving the 3-dimensional volume-preserving flows case
(see [5]).

Let us mention now some results in the opposite direction to ours: in [6]
we prove that, in the setting of dynamical linear differential systems, ergodicity
and dominated splitting assure that zero Lyapunov can be removed by small -
perturbations, at least when the central direction is 1-dimensional. We also mention
the early work of Millionshchikov (see [22] and [23]) where it is proved abundance
(dense and open set with respect to C°-topology) of simple spectrum (all Lya-
punov exponents are different) for a class of linear differential systems. Fabbri,
in [12], proved the C-genericity (open and dense) of hyperbolicity on the torus
for two-dimensional linear differential systems (see also Fabbri-Johnson [14]). For
determining the positivity of Lyapunov exponents we mention that Knill (see [18])
proved that for a C°-dense set of two-dimensional bounded and measurable conser-
vative discrete cocycles we have positive exponents. We remark that Fabbri’s result
is the continuous-time counterpart of Knill’s theorem on tori. Subsequently, in [3],
Arnold and Cong used a different strategy and generalized Knill’s result to GL(d, R)
valued discrete cocycles. A very interesting recent result of Cong (see [10]) says that
a generic bounded cocycle has simple spectrum, moreover the Oseledets splitting
is dominated. As a consequence of this result, in the conservative 2-dimensional
discrete and bounded case we have abundance of uniform hyperbolicity. Going
back to linear differential systems we also recall the results of Fabbri [13], Fabbri-
Johnson [15] and the early paper of Kotani [17]. Furthermore, Nerurkar (see [24])
proved the positivity of Lyapunov exponents for a dense set in a class of conservative
linear differential systems.

It is possible to prove the dichotomy of Theorem 1.1 for systems with solutions
evolving in more general subgroups of GL(d,R). Actually, in order to obtain similar
results these systems must satisfy the accessibility condition (see [4] Definition 5.1)
which guarantees that we can mix directions and so the strategy of the proof still
works. Note that in [24] Nerurkar also used a definition of accessibility. Notwith-
standing the fact that most common subgroups are accessible, we must prove it
or construct the perturbations in order to interchange directions, like for example,
linear differential systems with transition matrix evolving in the symplectic group.

2 Preliminaries

2.1 Linear Differential Systems

We consider a non-atomic probability space (X, ;1) where X is a compact and Haus-
dorff space and p is a Borel measure. Let ¢f : X — X be a flow continuous in the
space parameter and C'! in the time parameter and assume that p is ¢f-invariant.
For d e Nlet A: X — GL(d,R) be a continuous map. For each p € X we consider



the non-autonomous linear differential equation:

—u(s)]s=t = A(@'(p)) - u(t), (2.1)

called linear variational equation. The solution of (2.1) we call the fundamental
matriz of the system A. This solution is a linear flow ®%(p) : ]Rg — Rit ) which
may be seen as the skew-product flow,

o X xR — X xR%,
(p,U) — ((pt(p)7q)54(p) ' U)'

Since for all p € X we have A(p) = 4 ®Y (p)|;—o, P is also called the infinitesimal
generator of A. We recall a basic relation which says that for all p € X and t € R
we have ®47°(p) = @5 (¢(p)) o D% (p).

We will be interested in two of the most common systems; the traceless ones,
where Tr(A) = 0 and the systems where ®!, € GL(d,R), say where ®', evolves
in the linear group of matrices with non-zero determinant. We denote the last-
mentioned systems by G and the traceless systems by 7. Another kind of systems
with deserve a special interest are the modified volume-preserving systems which
simulate the volume-preserving vector fields in manifolds with dimension d + 1. To
define formally these systems we consider a continuous nonnegative subexponential
function a : X — R such that a(X \ Fix(¢")) # 0 where Fix(¢") denotes the set of
fixed points of . We say that A is modified volume-preserving, denoting by 7, if:

1, if p € Fix(¢")
det®? = . .
a(p) { n i p ¢ Fix(p").

We note that the function a(-) plays the part of the norm of the vector field.

Let A € T, then any conservative perturbation of A, say A + H, must satisfy
<I>f4+H € SL(d,R), otherwise we jump out of 7 which we not interested. It is
immediate to see that if H € 7, then A + H € 7. Using the Liouville formula,

det®’y (p) = exp (/Ot TrA(cps(p))> ds,

it is straightforward to see that if A € 7,, respectively A € G, and H € 7, then
A+ H €7, respectively A+ H € G.

To compute the distance between linear differential systems we will basically
work with two norms; the uniform convergence norm (or the C°-norm) which is
given by

1A = Bl| = max|[A(p) — B(p)|
peEX

and the L°°-norm, which is given by

|A = Blloc = esssup||A(p) — B(p)]|-



2.2 Multiplicative ergodic theorem

In our setting the Oseledets theorem [25] guarantees that for p-a.e. point p € X,
there exists an ®!;-invariant splitting called Oseledets’s splitting of the fiber Rg =

El® ...E,I.f(p) and real numbers called Lyapunov exponents \i(p) > ... > S\k(p) (p),
with k(p) < d, such that:

. 1 i N
Jim - log [[@% (p) - o'l = Xi(p),

for any v* € E} \ {0} and i = 1, ..., k(p). If we do not count the multiplicities, then
we have g (p) > Aa(p) > ... > Xa(p). Moreover, given any of these subspaces E'
and F7, the angle between them along the orbit is subexponential, say

Ej

1
lim - logsin(£L(E ot (p)))

Jm 3 b Elay) =0 22
If the flow ! is ergodic, then the Lyapunov exponents and the dimensions of the
associated subbundles are p-a.e. constant. For a simplified proof of this theorem for
linear differential systems see [16]. We denote by O(A) the u-generic points given
by the multiplicative ergodic theorem.

2.3 Multilinear Operators algebra

Let ‘H be a Hilbert space and n € N. The n** exterior product of H, denoted by
A"(H), is also a vector space. If dim(H) = d, then dim(A"(H)) = (¢). Given an
orthonormal basis of H, {e;};cs, then the family of exterior products e;, Aej;, A
.. Nej, for j1 < .. < j, with j, € J constitutes an orthonormal basis of A"(H).
Given two Hilbert spaces H1 and Hsy and a linear operator L : H; — H1 we define
the operator A™(L) by

ALY AM(HY) —— A (Hs)

Note that given a linear differential system A over ¢!, and since for the operators
Ly : Hp — Hwt(p) and Ly : Hwt(p) — H¢t+s(p) we have /\n(LSLt) = /\n(LS) A" (Lt),
we obtain that A™(®Y) is also a linear differential system over ' which we also
denote by A™(A). For details on multilinear algebra of operators in Hilbert spaces
see [26] chapter V.

This operator, in the particular case of dim(H) = d, will be very useful to
prove our results since we can recover the spectrum and splitting information of the
dynamics of A" (®Y) from the one obtained by applying Oseledets’s theorem to ®,.
This information will be over the same full measure set and with this approach we
deduce our results. Next we present the multiplicative ergodic theorem for exterior
power (for a proof see [2] Theorem 5.3.1).



Lemma 2.1 The Lyapunov exponents \\"(p) for i € {1,...,(¢)} (repeated with
multiplicity) of the n'" exterior product operator A"(A) at p are the numbers:

Zx\ij(p), where 1 <141 < ... <14, <d.
j=1

This nondecreasing sequence starts with \{™(p) = A1(p) + Aa(p) + ... + A\n(p) and
ends with A% (p) = Adt1-n(P) + Adr2-n(p) + ... + Aa(p). Moreover the splitting of
/\"(Rg(i)) for 0 <i < q(n) (of N"(A)) associated to N (p) can be obtained from the
splitting RE(i) (of A) as follows; take an Oseledets’s basis {e1(p),...,ea(p)} of RY
such that e;(p) € Ef for dim(E}) + ...+ dim(EF ') < i < dim(E}) 4 ... + dim(EF).
Then the Oseledets space is generated by the n-vectors:

ei, N...Ne;, such that 1 <i; < .. <i, <d and Z)‘if (p) = A2 (p).
j=1

2.4 Dominated splitting

Let ¢ : X — X be a flow and A C X a compact and @'-invariant set. Let A
be a linear differential system. Given any linear map L we denote by m(L) the
co-norm which is defined by ||[L~=}|| 7! = inf,_g||L - v[. We say that RE=U®oS is
an m-dominated splitting for A if ®Y(p) - Uy = Uge(p) and @Y (p) - Sp = Sye(p for
p € A, the dimensions of U, and S, are constant on A and there exists o € (0,1)
such that for every x € A the following inequality holds:

197 (@)ls, |

m(@g @), ~ =

From now on we fix @ = 1/2. For details on dominated structures see [9]. We note
that dominated splitting is a weak form of uniform hyperbolicity (or exponential
dichotomy, see [11]). The dimension of U is called index of the splitting.

Given A as above, n € {1,...,d—1} and m € N we denote by A, (A,m) C X the
sit of points p such that exists a splitting Rit(p) = Uyt(p) © Syi(p) for t € R such
that:

° (I)g(p) . Uapt(p) = U¢r+f,(p) and (I)Zl(p) . Ssﬂt(p) = Swr+t(p) for all r,t € R;
o dim(U,t(p)) = n for all t € R;

m t
127 (e Dls 0.,

I
m@F N,

° S%foraﬂtER.

)

In other words the points in A, (A, m) are the points with m-dominated splitting
of index n. In the d-dimensional case, a dominated splitting induces an uni-
form hyperbolicity in the projective space RP?~1. We define also the open set
I'(A,m) := X\ A,(4,m). Note that all the points in this set have iterates such



that (2.3) is false. Since we will be interested in perturbing systems with index
n and with lack of hyperbolicity (in order to prove that for the perturbed sys-
tem B its Lyapunov exponents are equal, say A,(B,p) = An4+1(B,p)), it will be
useful to define the “bad set” I'% (A, m) of points p € T',(A4,m) N O(A) such that
M (A, p) > Ant1(A,p). Let T%(A,m) be the set of nonperiodic points of T'% (A, m).
Finally, let T',,(A,00) = () [',(A,m) and T¥,(A4,00) = () T'%(A,m).
meN meN

In [8] Lemma 4.1 is proved that for every system A and n € N, the set I'¥, (4, o)
contains no periodic points. Hence for any small given § > 0, we can increase m € N
in order to obtain that u(T'% (A, m)\T% (A, m)) < §. Since our perturbations will be
performed along large segments of an orbit, it follows that the presence of periodic
points, and consequently overlapping, may difficult our aim. Nevertheless, previous
remark says that we can avoid periodic points because they are negligible from the
measure y point of view.

2.5 Entropy functions

Let us consider the following function where £ is one of the sets 7, 7, or G:

En: L — [0, +00)

A [oMAA), p)du(p). (24)

With this function we compute the integrated largest Lyapunov exponent of the
nt" exterior power operator. We consider also the function &,(A4,T") where I' C X
is a pl-invariant set defined by:

E.(AT) = / A (A" (A), p)dp(p).

Let us denote £, (A4, p) := A\ (4,p)+...+ (4, p). By using Lemma 2.1 we conclude
that for n = 1,...,d — 1 we have 3, (A,p) = A\ (A"(A),p) and therefore we obtain
En(AT) =& (A"(A),T). By using Proposition 2.2 of [8] we get that:

£.(AT) = jutr [ log]| A" (@) (), (25)

and so the entropy function (2.4) is upper semi-continuous for all n € {1,...,d — 1}.
Let us consider now the function:

E: L — Rd¢-1
A — (E1(A),E(A), ..., q-1(A)).

In section 5 we derive Theorem 1.1 from the following proposition.

Proposition 2.1 If A is a continuity point of £, then for u-a.e. point p € X, the
Oseledets splitting of A at p is either dominated or trivial.



3 Perturbations of linear differential systems

We begin by proving a basic perturbation lemma which will be the main tool for
proving our results.

Lemma 3.1 Given A€ T (1, or G) and € > 0, there exists an angle & > 0, such
that for all p € X (non-periodic or with period larger than 1) and a 2-dimensional
vector space V, C Rg, there exists a measurable traceless system H such that:

1. ||H| <€
2. H is supported in o' (p) fort € [0,1];
3. @Yy (p) = Y (p) in W, (the orthogonal complement of V,, in RZ);
4. <I>}4+H(p) v = ®L(p)o Re -v, Vv € V), where R¢ is the rotation of angle & on
Vs
Proof. Take K := g)ng?H(I)f(p)H for t € [0,1]. We claim that it is sufficient to take

the angle £ > 0 such that:
€

£< 553
Let n : R — [0,1] be any C* function such that n(¢) = 0 for ¢ < 0, n(t) = 1 for
t>1,and 0 <n/(t) <2, for all t. We define the 1-parameter family of linear maps
i(p) : RY — RY for ¢ € [0,1] as follows; we fix two orthonormal basis {u1,us} of
Vp and {us, ua, ..., uq} of W,. For 6 € [0,2n], we consider the rotation of angle 6
whose matrix relative to the basis {u1,us} is

= (col0) )

Since V, ® W), = Rg, given any u € Rg we decompose u = uy +uw, where uy € V),
and uw € W,. For t € R we define

R u= Rn(t)E(UV) + uw .

Now we consider the 1-parameter family of linear maps ¥¥(p) : Rg — Ri‘(p) where
Ut(p) := ®% (p) o R. We take time derivatives and we obtain:

(T'(p)) = (24(p))R'+ @4(p)(R") =
= Al'()PU(P)R" + 4 (p)(R") =
= A" ()Y (p) + P (p)(R") (¥ (p) ¥ (p) =

= [A(@'(p)) + H(¢'(p)] - ¥'(p).

Hence we define the perturbation by,

H(g'(p)) = 4 (p)(R") (R) ™1 (@ (p)) ",



where (R?)" and (R?)~! are respectively (R?)’ and (R?)~! but written in the canon-
ical base of R instead. Since

N e (S8 —eos(n(nE))
®) —’7(’”5( cos(n(1)€) —sin(n(t)£)> v

and also

-1 cos(n(t)§)  sin(n(t)§)
(RY) ™ ruy = an(t)ﬁ(uv) = (_ Sin(;}(t)f) COS(Z(t)f)) suy,
(d—2)x

——
we obtain that if uy = (¢1,2,0,0,...,0) (in the coordinate system {uq,...,uq})

then,
(d—2)x

(Rt)/(Rt)_l U= gn/(t)(_w27wla 07 0) reey O)

Clearly we have Tr((R?)'(R?)~!) = 0 and since the Trace is invariant by any change
of coordinates we obtain Tr((R?)'(R?)~!) = 0 and consequently

Tr(® (p)(R)'(R) (@4 (p) ™) = 0.

v Q
p o'(p)

Figure 1: The action of the perturbation H(¢!(p)), t € [0,1].

Therefore we define the linear differential system B = A+ H which is measurable
and clearly conservative. In fact, as we mention previously, if A € 7, (respectively
Ae@)and Tr(H) =0, then A+ H € T, (respectively A € G). In Figure 1 we give
the geometric idea of how H acts. Now to prove 1. we compute the norm of H:

IH (" DI = 124 (p) (R (R) (@4 (p) '] <

IN

K2R (R < 2K% <.

Moreover, by choice of 7, we have that Supp(H) is ¢'(p) for t € [0,1] and 2. is
proved. Note that the perturbed system B generates the linear flow & 4+ (p) which
is the same as U’ hence given u € W, we have:

Dh(p) - u =V (p) u= Y (p)[Rywe(uv) +uw] = ®4(p) - uw = 4 (p) - u,



and 3. follows. Finally to prove 4. taking u € V), we obtain,

Pp(p)-u = Vp)-u=d4(p)oR" -u=0L(p)[R,a)e(uy) +uw] =
D) (p)Re(uy) = ®4(p) o Re - u,

and Lemma 3.1 is proved.

Lemma 3.2 Given A € T (T, or G) and € > 0, there exists an angle & > 0, such
that for all p € X (non-periodic or with period larger than 1) and a 2-dimensional
vector space Vi) C Ril(p)’ there exists a measurable traceless system H such that:

1. ||H|| <€
2. H is supported in o' (p) fort € [0,1];

8. @Y y(p) = ®Y(p) in W, (the orthogonal complement of V,, in R%);

4. <I>h+H(p) ‘v = ]:25 o ®L(p) - v, Yo € V,,, where Rg is the elliptical rotation of
angle & on Vi (p);

Proof. We keep the same notation of Lemma 3.1 and we define the following 1-

parameter linear map acting on ]Rit(p):

R =04 (p) - R (@4 (e ()] "

We denote U! = R* - &%, and we take derivatives (in order to t) and obtain,

(T = (R' @) = (@) R =
= [A(e'(p) + H(¢' (p)] - (@Y - RY) =
= [A(@"(p) + H(¢' (p))] - (DY - RY - (®y) - DY) =
= [A('(p) + H(' ()] - (R" - @) =
= [A(¢'(p) + H(¢' (p))] - ¥,

now it is analogous to the proof of Lemma 3.1. The lemma is proved.

In the next lemma we use the almost conformal property to produce a small
perturbation which allows us to perform rotations of large angle.

Lemma 3.3 Given A€ T (1, or G) and €,¢,€ > 0. There exists m € N such that:
Given any non-periodic point p € X, a 2-dimensional vector space V,, C Rg and
Sp,Up C V,, with Sp # U,. Suppose that for all t,r € [0,m] with 0 <t+r < m we
have:

(i) £(Spt(p): Upt(p)) > &5

19T (ot ()l
(i) @@ Nl < ¢

e mls,ll o 1
(1)) s@mm,) = 2

10



Then, there exists a measurable traceless system H, such that, for all a € [0, 27] we
have:

1| H[ <€
2. H is supported in ©*(p) for t € [0,m];
8. @Y y(p) = ®4(p) in W, (the orthogonal complement of V,, in R%);
4. O y(p)-v=2>2%(p)oRy-v, Vv eV,
Proof. Once again we use the ideas of the proof of Lemma 3.1. We take:
esin®(€)
16c

We claim that taking m = «/6 (and assume this number is an integer) will allows
us to prove the lemma.

This time we take a C*° function 7 : R — [0, m] such that n(t) = 0 for ¢t < 0,
n(t) = m for t > m, and 0 < 7/(t) < 2, for all t. We define R, ;) like in Lemma 3.1.
The main difficulty is to control the size of the perturbation,

H(p'(p) = @4 (p)(R") (R) (@4 (p) ™" for t € [0,m].

Let @ (p)/W, : RE/W, — Rdwt(p)/ég(p)(wp) be the induced linear map from the
quotient space RY /W, into the quotient space Rd@t(p) /@4 (p)(W,). Tt follows directly

0 <

from Lemma 3.8 of [8] that (i), (#) and (%) implies the following inequality for all
t € [0,m],

9, (0) /Wl _ S

m(®Y (p)/Wy) ~ sin®(€)

Since for v € W, and t € R we have H(p(p)) - v = 0 we obtain that,

1H (2" (p)] 125 () (RY) (R) =1 (@44 (p) /W) 'l
20|12 (p) /Wl (@ (p) /W) | =
t
MCADTLAR
m(®% (p)/Wp)
29%
sin® (&)
Therefore 1. follows. The conclusions 2. and 3. are immediate. Finally to prove 4.
we note that in time-m we rotate n(m)f = mf = « and the lemma is proved.

IA

< €.

The following lemma will be crucial in the sequel.

Lemma 3.4 Given a system A € T (1, or G) and € > 0, there exists m € N with
the following property: For all non-periodic point p with a splitting Rg =Up,® 95,
satisfying
o7y 1
25wl 1 56
m(®% (p)lu,) ~ 2

11



there exists a measurable traceless system H supported in @0 (p) and such that
there exist vectors uw € Uy \ {0} and s € ®1(S,) \ {0} satisfying @74, 1 (p)(u) =s.

Proof. Let € > 0 be given by Lemma 3.1 and Lemma 3.2 depending on ¢ > 0. Let
also ¢ > 0 be such that:

C> ——5—
sin”“ & peX

124 @)l
and ¢ > max {m(‘l’}q(p)) } . (3.7

Take m € N given by Lemma 3.3 and depending on €, c and &.
Small angle: Let us denote S; = ®%,(S,) and U; = ®%(U,) for t € [0,m]. First we
assume that

3t € [0,m] such that £(S;,U;) < €. (3.8)

Then we take unit vectors s; € Sy and uy € U with £(sg,u) < & If t € [0,m — 1],
then we use Lemma 3.1 with Vi¢(,) = (s¢,us) (where (e1,e2) denotes the vector
space spanned by e; and es) and define H(¢"(p)) for r € [0, 1] and zero otherwise.
On the other hand, if t € (m — 1,m], then we use Lemma 3.2 and define H (" (p))
for 7 € [t — 1,t] and zero otherwise. In both cases we obtain vectors u € U, \ {0}
and s € ®™(S,) \ {0} such that PR m(P)(u) =s.

Now we assume that exist r,t € R with 0 < r + ¢ < m such that:

197, (o)),
(@ (2 () o) = (3.9)

We choose unit vectors s; € S; and u; € U; which realizes both norms, say

9% (2" () - sell = 195 (2" (p)]s. || and [ (¢! (p)) - we]l = m(P (" (P))|v,). We
define also the unit vectors,

P t . o t .
Upir = A" (p) ur Uy and sy, — a(@'(p)) - st

197 (" (p)) - uel €% (" (p)) - i

The vector @; := uy + sin(€)s; satisfy £L(ag,us) < € so a e-small perturbation By
given by Lemma 3.1 with V() = (s¢, us) will send u; into @4 (¢ (p)) - (Riy).

Let v = [|®7 (¢ (p)) - ue||(sin &[] D7 (¢ (p)) - s¢[|)~ we define a vector in Ryer(p)
by S¢4r := YUty + St4r. We have that,

U(e'(p) e = PU(P'(P)) - ur +sin(E) D% (" (p)) - s =

OO [ (10) R [P
= )t O )
= TR B)) - well- (s + se4r) =

’7_1 ||‘I’;1(90t(p)) |84

€ Seir.

Hence the vectors ®7, (¢'(p)) - @y and 8, are co-linear. Moreover, by (3.7), (3.9)
and definition of v, u; and s;, we have

v = wsm—lf < (csinf)fl < siné.

1% (" (P))ls. |
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Therefore we obtain that £(s¢1,, §t4r) < & and using Lemma 3.2 we are able to
produce a time-1 e-perturbation By based at o'*"~!(p) such that @ (o'~ (p)) =
Re o @ ("t 1(p)), where R¢ acts in Vietr(p) = (St4r, S4,) and sends §;1, into
St+r- We note that choosing ¢ > 0 sufficiently large, see (3.7), guarantees disjoint
perturbations. We concatenate as follows:

By (' (0))

[ r—1, t+1
Ru, o2, 2 (0" (p)

Paw R[@Y (' (p) -]+ = " R®T (0! (p)) - ).

RUO I
We go back by time-1 and then we perform our second perturbation Bs:

_ - ) Pl (@t+T—1(p)) qJm,ftfr( t+r( ))
R[(bAl(q)A((pt(p))'ut)] 72— Rs;, * LA Rs,,.

Large angle: Finally we treat the case when we do not have (3.8) and also (3.9).
Then, the condition

Vr,t e R:0<t+7r<m we have

1% (" (0))ls. |l _
m(®% (' (P)lv,) ~

the angles bounded away from £ and the hypothesis (3.6) will allows us to obtain
almost conformality. Hence we can use Lemma 3.3 and rotate by a large angle
keeping the size of the perturbation controlled.

Now for o = £ (0, ug) we are able to use Lemma 3.3 and obtain a system B = A+ H
with H supported in ¢! (p) for ¢ € [0, m], such that there exists nonzero vectors u € R
and 5 € RO (s0) such that ', ,(p)(u) = s and Lemma 3.4 is proved.

4 On the decay of the entropy function

Next lemma gives us a local strategy to use the nondominance and different Lya-
punov exponents in order to cause a decay of the largest Lyapunov exponent of the
n'h exterior power system. We follow Proposition 4.2 of [8] adapting it to the flow
setting. We only give the main steps of the proof, for all the details see [8].

Lemma 4.1 Let A€ T (T, or G), ¢,6 > 0 and n € {1,....d — 1}. There exist
m € N and a measurable function T : T'%(A,m) — R such that for u-a.e. point
q € TE(A,m) and every t > T(q) there exists H € T supported on the segment
©'(q) fort € [0,m] such that

1 |[H| <€

2. %log | A" ((1)54+H(q))” < Enfl(A:‘J);ZnJrl(A:‘J) +6.

Proof. Fix A and n € {1,...,d — 1} we have,

Anlq) + Ant1(g) .

; (4.10)

3 Z0m(4.0) + Bt (A0 = X (@) + o+ huca (@) +
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Let R%;( Am) = U ® S, where U correspond to the vector space spanned by the
Lyapunov exponents A1 (q),...,An(¢) and S correspond to the vector space spanned by
Ant1(9)y-,Ad(q). We note that by definition of I'Y (4, m) we have A, (q) > Any1(q).
By a recurrence result (see Lemma 3.12 of [7]) for p-generic point g € I} (A4, m),
there exists T'(g) such that p = ¢°(q) € Ap(A,m), where s = T(q)/2.

Let E, be the vector space associated to A1 (¢) (the largest Lyapunov exponent
of the n*" exterior power system) and I, be the vector space associated to the other
Lyapunov exponents. We obtain a splitting A"(R%) = E @ F. Since both \;(q)’s
and A\}"(g)'s are written in nonincreasing order it follows that,

n

A(q) =Y Xilg) and A" (q Z Ai(q) + Ang1(q)- (4.11)

i=1

Since A, (q) > Ay1(q) we get A1™(q) > A5™(q) and also that dim(E,) = 1. By using
Lemma 4.4 of [8] and Lemma 3.4 we get that, A™(®7¢, 5 (p)) : A"(RE) — A™(RE o (p))
satisfies the property,

AN (@41 (P))(Ep) C Foom - (4.12)

We decompose the action of the map A™(®'}, ;;(p)) in three steps (see Figure 2);
the first (between ¢ and p) and the third (between ©™(p) and ¢'(q)), with matrix
in the basis given by Oseledets’s directions denoted respectively by:

_ (A0 _(Ay 0
Al = ( 0 A§S> and A2 = ( 0 A§S> .

The second step (between p and ¢™(p)), with matrix in the basis given by the
Oseledets directions is denoted by:

Buu Bus
B = <Bsu Bss> .
The outcome of the inclusion (4.12) is that B** = 0. Therefore we obtain:

0 As"B usAfs> (4.13)

n t _
A ((I)AJrH(q)) - (AgsBsuAllLu A;sBssATs

Since t >> m the entries of B are small compared with ¢t. As p = ¢®(q) with s =
T(q)/2, we obtain that A5 < exp(t(A\5"(q)/2)+6/4)) and A¥™ < exp(¢(A\)"(q)/2+
0/4)) for i = 1,2, because once again t(depending on ¢) is very large and Oseledets’s
theorem guarantees these estimates.

Therefore we obtain that all entries in (4.13) are bounded say,

gl A" (@' (@) < ¢ (FHDEHEND 1 2.
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o'(p)

po
X

Supp(H)

Figure 2: The Als for i = 1,2 goes approximately ¢/2 where t >> m.

Now using (4.10) and (4.11) we obtain,

%log(H A (@ @)l) < % <ZAi(q) + iAi(q) 4 Anti(q) +5> _
= /\1(Q)+...+/\n_1(q)+M
1

= é(zn—l(A; Q) + En+1(A7 Q)) =+ 57

+6=

and the lemma is proved.

In the next lemma we make the previous lemma global.

Lemma 4.2 Let A€ T (T, or G), ¢,6 > 0 and n € {1,....d — 1}. There exist
m € N and a continuous system B = A+ H (with Tr(A) = Tr(B)) such that,

1. H(-) = [0] outside the open set 'y (A, m);

2. [[Hlloo <€

Yn-1(A, Yn A,
3 Jro amy S (B @)d(@) < S+ Jo am) (A Bn (A0) g ().

Proof. First by Lemma 4.1 and by Ambrose-Kakutani Theorem (see [1]) we can
developed a Kakutani tower argument (completely described in Proposition 4.2 and
Lemma 7.4 of [8]) to construct the measurable system B such that | A—B||s < €/2.
Then, since Luzin’s theorem asserts that measurable functions are almost continuous
we produce the continuous system. For complete details see Proposition 7.3 of [8].

Now we define the discontinuity “jump” of the function &, defined in section 2.5
by:

J(A) = / oy M) s (A D)),

In the next lemma we follow [8] (Proposition 4.17):
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Lemma 4.3 Given A € T (1T, or G), ¢,6 > 0 and n € {1,...,d — 1}, there exists
B e T (respectively in T, or G) e-close to A such that

/En(B,-)du</ S (A, Vgt — 20 (A) + 6.
X X

Proof. By Lemma 4.2 we obtain B such that A = B outside I';,(A, m) such that,

S 1 (A, + i (A, -
/ En(B,')d,u<5+/ —1(A, ) + B ( )dﬂ-
T, (A,m) T (A,m) 2

Clearly X =T, (A,m)U (X \I',(A4,m)) so we split the integral:

S 1(A,) 4 S (A, -
/ En(B,~)du<6+/ 1A ) + B )du+/ (A, ).
X T (A,m) 2 X\ (A,m)

Now since ¥, (4, ) := M (4,-) + ... + Ay (A, ) we note that,

2J,,(A) = /Fn(Am) (En(A, ) - Zno1(4,) ‘; Znt1(4, ')) du.

Moreover, since I';, (4, m) D T’y (A, 00), we obtain,

_ LS4 )+ (4, B
/FMA,m) (En(A, ) 5 > dp < —2J,(A).

Or equivalently

/ (En1(A,~) + 2n+1(A7')> i < —27,(A) +/ Sn(A, )dy,
Fn(Avm) 2 Fn(Avm)

and the lemma is proved.

5 End of the proof of the results

Now we will prove Proposition 2.1; We take A € G and assume that A is a continuity
point for the function &,(+) (see section 2.5) for all n € {1,...,d —1}. If follows that
Jn(A) = 0 for each n, which is the same that \,(A,p) = Ap+1(A,p) for p-generic
points in T';, (A, 00) and each n. Now we take p € O(A), if the spectrum if trivial
we are done, otherwise for p such that A\, (A,p) > An11(A4,p), and since the jump
is zero, p can not be in I';,(A4,00). So if p ¢ T',,(A,0), then there exists m € N
such that p € A, (4, m) and this m-dominated splitting has index n. Therefore we
conclude that the Oseledets splitting is dominated and the prove of Proposition 2.1
is over.

Now, to prove Theorem 1.1, we note that the continuity points of an upper
semi-continuous function is a residual set (see [19]), hence by Proposition 2.1 and
the fact that £ is upper semi-continuous we obtain the conclusion of Theorem 1.1.
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The proof of Corollary 1.1 now follows easily, because if we start we A € 7 (or
7.) all perturbations we did remains inside the conservative setting. Take A € R
(the residual given by Theorem 1.1) and p € O(A) with trivial spectrum. It is a
consequence of Oseledets’s Theorem that:

k(p)
: t _ i
tllm log | det(®%4(p))| = Z)\ ).dim(Ey). (5.14)

So if A € T, then det(®%(p)) = 1, and we obtain > (p) Ai(p).dim(E}) = 0. Since
all Lyapunov exponents are equal, they must all be zero If A e 7,, then

det (@Y (p)) = a(:;(t]Z})?)) '

We use again (5.14) and we obtain
1 a(p)
lim 71 det(®’ = lim -1 =
tJ +o0 og | det (@4 (p))] tJj:oo t i) <a(<pt(p))>

1 1 .

= lim —loga(p) — lim < loga(e'(p)) =
1 .

= — lim Zloga(e'(p) =

= 0.

The last equality follows by the fact that a(-) is subexponential. Therefore all
Lyapunov exponents are zero. Corollary 1.1 is now proved.

Remark 5.1 Given A € T (or 1,), then if for p-a.e. point p € X, the Oseledets
splitting of A is dominated or trivial at p, then A is a continuity point of £. This
follows from semi-continuity and also from the fact that if we perturb the system A
a little bit we still have a dominated splitting. We leave the details to the reader.
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