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Abstract

In this paper we study a generalization of an index integral involving the product
of modified Bessel functions and associated Legendre functions. It is applied to
a convolution construction associated with this integral, which is related to the
classical Kontorovich-Lebedev and generalized Mehler-Fock transforms. Mapping
properties and norm estimates in weighted Lp−spaces, 1 ≤ p ≤ 2 are investigated.
An application to a class of convolution integral equations is considered. Necessary
and sufficient conditions are found for the solvability of these equations in L2.
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1 Introduction and preliminary results

In this paper we consider the following generalization of the index integral from [2] (see
also [9, 10])

e−yzJm(yR) =

√
2

πy

∫
R+

τ tanh(πτ)

Zmτ
Kiτ (y) Pm− 1

2
+iτ

(µ) Pm− 1
2

+iτ
(η) dτ, m ∈ N0, (1)

where y > 0, R =
√

(η2 − 1)(1− µ2), z = µη, µ ∈ [0, 1], η ∈ [1,+∞[. It involves the
product of the modified Bessel functions and associated Legendre functions. Formula
(1) seems to be new and interesting from the pure mathematical point of view. In (1)
we denote by

Zmτ =
Γ
(

1
2 +m+ iτ

)
Γ
(

1
2 −m+ iτ

) ,
Jm(ω),Kiτ (y) are Bessel’s and modified Bessel’s functions, respectively, Pm− 1

2
+iτ

(ω),

Re(ω) > 0, m ∈ N0 is the associated Legendre function and P 0
− 1

2
+iτ

(ω) ≡ P− 1
2

+iτ (ω) is

the Legendre or conical function.
As it is known (see [1]-Vol. II, [8]) the modified Bessel function Kiτ (x) can be

represented by the Fourier integral

Kiτ (x) =

∫
R+

e−x cosh(u) cos(xu) du, x > 0.

Hence, when τ ∈ R, it is real-valued and even with respect to the pure imaginary index
iτ . Furthermore, this integral can be extended to the strip δ ∈ [0, π2 [ in the upper
half-plane, i.e.,

Kiτ (x) =
1

2

∫ iδ+∞

iδ−∞
e−t cosh(z)+iτz dz,

and leads for each x > 0 to the uniform estimate [14]

|Kiτ (x)| ≤
√

π

2x cos(δ)
e−δτ−x cos(δ), 0 ≤ δ < π

2
. (2)

Moreover, we have∫
R+

τ tanh(πτ)Kiτ (y) dτ =

√
πy

2
e−y, y > 0, (3)

which is the limit case of relation (2.16.48.15) in [6] (see [10]).
We note also its asymptotic behavior at infinity [1]

Kν(z) =
( π

2z

) 1
2
e−z

[
1 +O

(
1

z

)]
, z → +∞,
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and near the origin

zν Kν(z) = 2ν−1Γ(ν) + o(1), z → 0,

K0(z) = − log(z) +O(1), z → 0.

When x is fixed we have the following behavior of the modified Bessel function Kiτ (x)
with respect to the index τ → +∞ [14]

Kiτ (x) =

√
2π

τ
e−

πτ
2

[
sin
(
τ ln(τ)− τ − τ ln

(x
2

)
+
π

4

)
+O

(
τ−1

)]
. (4)

By Lp(Ω;w(x) dx), 1 < p < +∞ we denote the weighted Lp−space with the norm

||f ||Lp(Ω);w(x) dx =

(∫
Ω
|f(x)|p w(x) dx

) 1
p

||f ||Lp(Ω);w(x) dx = ess supx∈Ω|f(x)|.

The modified Bessel function Kiτ (x) is the kernel of the Kontorovich-Lebedev trans-
form (see [8, 14])

Kiτ [f ] = lim
N→0

∫ +∞

1
N

Kiτ (x) f(x)
dx√
x
, (5)

which is an isometric isomorphism [12]

Kiτ : L2(R+; dx)→ L2(R+; τ sinh(πτ) dτ), (6)

and the convergence of integral (5) is in the mean-square sense with respect to the norm
of the space L2(R+; τ sinh(πτ) dτ). Moreover, the Parseval identity

2

π2

∫ +∞

0
τ sinh(πτ)|Kiτ [f ]|2 dτ =

∫ +∞

0
|f(x)|2 dx (7)

holds and the inverse operator is defined by the formula

f(x) = lim
N→+∞

2

π2

∫ N

0
τ sinh(πτ)

Kiτ (x)√
x
Kiτ [f ] dτ, (8)

where the convergence is in mean-square with respect to the norm of L2(R+; dx).
We will also employ the modified Bessel function Im(ω), m ∈ N0, which is related

to the special function Jm(ω) by the formula

Im(ω) = i−m/2Jm (i ω) , m ∈ N0. (9)

We recall here a Fourier type expansion (see [5]) for the generating function of the
modified Bessel functions Im(ω), which will be used below

eω cosϕ = I0(ω) + 2
∞∑
m=1

Im(ω) cosmϕ, −π < ϕ < π. (10)
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Formula (1) involves the product of associated Legendre functions of different parameters
(see [3] and [1]-Vol.I). Function Pν(z) is the associated Legendre function of the first
kind, which is analytic in the half-plane Re(z) > −1 and entire with respect to ν. The
following representations and relations will be useful in sequel (see [1, 3, 6])

Pm− 1
2

+iτ
(cos(β)) =

√
2

π

(−1)mZmτ
Γ
(
m+ 1

2

)
sinm(β)

∫ β

0

cosh(τθ) dθ

(cos(θ)− cos(β))
1
2
−m

, (11)

0 < β < π, q > 0, m ∈ N0.

Pm− 1
2

+iτ
(cosh(α)) =

√
2

π

sinh−m(α)

Γ
(

1
2 +m

) ∫ α

0

cos(ξτ)

(cosh(α)− cosh(ξ))
1
2
−m

dξ, (12)

α > 0, m ∈ N0.

P− 1
2

+iτ (cosh(α)) =

√
2

π

cosh(πτ)

π

∫
R+

e−y cosh(α)Kiτ (y)
dy
√
y
, α ≥ 0. (13)

Pm− 1
2

+iτ
(η) = (η2 − 1)

m
2

dmP− 1
2

+iτ (η)

dηm
, m ∈ N. (14)

Pm− 1
2

+iτ
(x) = (−1)m(1− x2)

m
2

dmP− 1
2

+iτ (x)

dxm
, −1 < x < 1. (15)∣∣∣Pm− 1

2
+iτ

(x)
∣∣∣ ≤ (√

x2 + 1

x+ 1

)m
Γ
(
m+ 1

2

)
√
π

cosh(πτ) P 0
− 1

2

(x). (16)

The proof of (1) will be based on the following addition theorem for the associated
Legendre functions (see [1]-Vol.I)

P− 1
2

+iτ

(
z1z2 −

[
(z2

1 − 1)(z2
2 − 1)

] 1
2 cosϕ

)
= P− 1

2
+iτ (z1) P− 1

2
+iτ (z2) + 2

∞∑
m=1

(−1)m
Pm− 1

2
+iτ

(z1) Pm− 1
2

+iτ
(z2)

Zmτ
cos(mϕ), (17)

for any ϕ ∈ (−π, π), Re(zi) > 0, i = 1, 2. It has the relation [1]-Vol. I

P−m− 1
2

+iτ
(x) =

Pm− 1
2

+iτ
(x)

Zmτ
, (18)

and the following uniform asymptotic expansion by the index τ at infinity

Pm− 1
2

+iτ
(cos(θ)) =

Γ
(

1
2 +m+ iτ

)
Γ(1 + iτ)

(π
2

sin(θ)
)− 1

2
(

cos
(
iτθ − π

4
+
mπ

2

)
+O(τ−1)

)
, (19)

τ →∞.

The associated Legendre function of second kind is denoted byQν(z) and it is analytic
in the half-plane Re(z) > 1. It has the following uniform asymptotic behavior at infinity
(see [1]-Vol.I)

Qν(z) = O

( √
2

2ν+1

Γ(1 + ν)

Γ
(
ν + 3

2

) z−ν−1

)
, z →∞,
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which can be easily obtained from its representation in terms of the Gauss hypergeo-
metric function (see [3]). We will appeal to the following integral representation

Qν− 1
2
(cosh(α)) =

√
π

2

∫
R+

e−y cosh(α)Iν(y)
dy
√
y

; Re(ν) > −1

2
, α > 0, (20)

where Iν(z) is the modified Bessel function of the third kind (see [1]-Vol.I).
The generalized Mehler-Fock transform (see [11, 13, 14]) is defined by

MFµ[f ](t) =

∫ +∞

1
Pµ− 1

2
+iτ

(x)f(x) dx, (21)

where t = σ + iτ, τ ∈ R, |σ| < 1
2 − µ, µ < 1. Its inverse operator has the form

f(x) =
1

π

∫
R+

τ sinh(πτ)

∣∣∣∣Γ(1

2
− µ− iτ

)∣∣∣∣2 Pµ− 1
2

+iτ
(x) MFµ[f ](t) dt, (22)

where t, σ and τ satisfy the same conditions as (21).

2 Convergence properties and validity of the index integral
(1)

The aim of this section is to study the convergence properties of the index integral (1).
We start with the following

Lemma 2.1 Let y > 0, R̂ =
√

(η2 − 1)(µ2 − 1), z = µη, µ, η ∈ [1,+∞[, m ∈ N0. Then

e−yzIm(yR̂) = (−1)m
√

2

πy

∫
R+

τ tanh(πτ)

Zmτ
Kiτ (y) Pm− 1

2
+iτ

(µ) Pm− 1
2

+iτ
(η) dτ, (23)

where the integral converges absolutely and uniformly by µ, η ∈ [1,∞).

Proof. Since µ, η ≥ 1 we correspond µ = cosh(α1), η = cosh(α2), αi > 0, i = 1, 2.
Hence substituting these values in (23) and taking into account relation (18), we denote
by Fm(y, α1, α2) its right-hand side to have

Fm(y, α1, α2)

= (−1)m
√

2

πy

∫
R+

τ tanh(πτ) Zmτ Kiτ (y) P−m− 1
2

+iτ
(cosh(α1)) P−m− 1

2
+iτ

(cosh(α2)) dτ.

(24)
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Meanwhile, representation (12) gives the following straightforward uniform estimate
by α ≥ 0 for the modulus of the associated Legendre function P−m− 1

2
+iτ

(cosh(α))∣∣∣∣P−m− 1
2

+iτ
(cosh(α))

∣∣∣∣ ≤ 2
√
π Γ

(
1
2 +m

) (cosh(α)− 1

sinh(α)

)m ∫ α

0

dξ

(cosh(α)− cosh(ξ))
1
2

≤
2 tanhm

(
α
2

)
√
π Γ

(
1
2 +m

) ∫ α

0

dξ

(α2 − ξ2)
1
2

=

√
π tanhm

(
α
2

)
Γ
(

1
2 +m

)
≤

√
π

Γ
(

1
2 +m

) . (25)

Since via Stirling’s asymptotic formula for gamma-functions we have Zmτ = O(τ2m),
τ →∞, we find the uniform estimate of the product∣∣∣∣Zmτ P−m− 1

2
+iτ

(cosh(α1)) P−m− 1
2

+iτ
(cosh(α2))

∣∣∣∣ ≤ C τ2m

Γ2
(

1
2 +m

) , (26)

where C > 0 is an absolute constant.
Next, we call equalities (10), (9) adjusting it to our notations, then multiply both

sides on τ tanh(πτ) Kiτ (y) and integrate with respect to τ . Hence, appealing to relation
(3) we come out after simple manipulations with the result

eyR̂ cos(ϕ)

= I0(yR̂) + eyz
√

2πy

∫
R+

τ tanh(πτ) Kiτ (y)
∞∑
m=1

(−1)m
Pm− 1

2
+iτ

(µ) Pm− 1
2

+iτ
(η)

Zmτ
cos(mϕ) dτ.

(27)

The change of the order of integration and summation in (27) is guaranteed by inequality
(2), inequality (25) and the estimate for sufficiently big positive A and each y > 0∫ +∞

A
τ tanh(πτ)|Kiτ (y)|

∞∑
m=1

∣∣∣∣∣P
m
− 1

2
+iτ

(µ) Pm− 1
2

+iτ
(η)

Zmτ

∣∣∣∣∣ dτ
≤ C1(y)

+∞∑
m=1

1

Γ2
(

1
2 +m

) ∫ +∞

A
τ2m+1e−δτ dτ

< C2(y)

+∞∑
m=1

δ−2(m+1) Γ(2(m+ 1))

Γ2
(

1
2 +m

) < +∞,

where Ci(y) > 0, i = 1, 2 are constants and 1 < δ < π
2 . Consequently, inverting in (26)

the order of integration and summation we use notation (24) to obtain the equality

eyR̂ cos(ϕ) = I0(yR̂) + 2eyz
∞∑
m=1

Fm(y, arccosh(µ), arccosh(η)) cos(mϕ). (28)
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Hence comparing with (10) we use the uniqueness of this expansion and get immediately
the relation

eyzFm(y, arccosh(µ), arccosh(η)) = Im(yR̂),

which yields (23) and completes the proof.

�

Letting µ ∈ [0, 1] and using relations (14), (9), R̂ = ± iR, together with formula
(15), we substitute it in (23) to obtain formally

e−yzJm(yR)

= (−1)m(1− µ)
m
2

√
2

πy

∫
R+

τ tanh(πτ)

Zmτ
Kiτ (y)

dmP− 1
2

+iτ (µ)

dµm
Pm− 1

2
+iτ

(η) dτ

=

√
2

πy

∫
R+

τ tanh(πτ)

Zmτ
Kiτ (y) Pm− 1

2
+iτ

(µ) Pm− 1
2

+iτ
(η) dτ, 0 < µ ≤ 1, η ≥ 1.

This yields (1). Now we will prove that this procedure is indeed possible, i.e. integral
(1) converges absolutely for any (µ, η) ∈ (0, 1]× [1,+∞[ and uniformly by µ ∈ [0, 1] for
any η ≥ 1.

The absolute convergence can be proved as follows. Taking (11) we have the inequal-
ity for β ∈

[
0, π2

[
∣∣∣Pm− 1

2
+iτ

(cos(β))
∣∣∣

Zmτ
≤

√
2

π
eβτ

(1− cos(β))m

Γ
(
m+ 1

2

)
sinm(β)

∫ β

0

dθ

(cos(θ)− cos(β))
1
2

=

√
2

π
eβτ

tanm
(
β
2

)
Γ
(
m+ 1

2

) ∫ β

0

dθ

(cos(θ)− cos(β))
1
2

≤ Cβ eβτ ,

where Cβ > 0 is a constant. Hence, corresponding µ = cos(β), β ∈
[
0, π2

[
, we estimate

the rest of the integral in the right-hand side of (1). Precisely, invoking (18), (25) and
asymptotic formula (4), we obtain for sufficiently big A > 0∫ +∞

A

τ tanh(πτ)

Zmτ

∣∣∣Kiτ (y) Pm− 1
2

+iτ
(cos(β)) Pm− 1

2
+iτ

(η)
∣∣∣ dτ

≤ C
∫ +∞

A
τ2m+1eβτ |Kiτ (y)| dτ <∞, C > 0.

This proves the absolute convergence of (1). Moreover, it gives the uniform convergence
by µ ∈ [ε, 1], ε > 0. Finally we will prove the uniform convergence by µ ∈ [0, ε]. This
means that for µ = cos(β) we consider β ∈

[
π
2 − δ,

π
2

]
for a small positive δ. To do this

7



we appeal to the Stirling asymptotic formula for gamma-functions, asymptotic formulas
(4) and (19). Thus we find∫ +∞

A

τ tanh(πτ)

Zmτ
Kiτ (y) Pm− 1

2
+iτ

(cos(β)) Pm− 1
2

+iτ
(η) dτ

= O

(∫ +∞

A
τme(β−

π
2 )τP−m− 1

2
+iτ

(η) sin

(
τ ln

(
2τ

y

)
− τ +

π

4

)
dτ

)
, β ∈

[π
2
− δ, π

2

]
.

In order to finish the proof we should verify the uniform convergence by β of the latter
integral for any y > 0, η ≥ η0 > 1, m ∈ N. In fact, it will follow from the Abel test if we
prove the convergence of the integral∫ +∞

A
sin

(
τ ln

(
2y

τ

)
− τ +

π

4

)
τm P−m− 1

2
+iτ

(η) dτ. (29)

In order to do this we first call representation (12) and put η = cosh(α), α ≥ α0 =
arccosh(η0) > 0. Hence, for m ∈ N, we deduce

τmP−m− 1
2

+iτ
(cosh(α)) = τm

√
1

2π

sinh−m(α)

Γ
(

1
2 +m

) ∫ α

−α

eiξτ

(cosh(α)− cosh(ξ))
1
2
−m

dξ

= im
√

1

2π

sinh−m(α)

Γ
(

1
2 +m

) ∫ α

−α

(
eiξτ
)(m)

(cosh(α)− cosh(ξ))
1
2
−m

dξ

= i−m
√

1

2π

sinh−m(α)

Γ
(

1
2 +m

) ∫ α

−α
eiξτ

[
(cosh(α)− cosh(ξ))m−

1
2

](m)
dξ.

(30)

Then, using representation (30) in (29), we prove its convergence. Thus we have proved
the uniform convergence by µ ∈ [0, 1] for each k > 0 and η > 1. Using this fact we may
put in (1) µ = 0 to get its important particular case

Jm

(
y
√
η2 − 1

)
=

√
2

πy

∫
R+

τ tanh(πτ)

Zmτ
Kiτ (y) Pm− 1

2
+iτ

(0) Pm− 1
2

+iτ
(η) dτ.

3 A convolution operator and its mapping properties

We begin with

Definition 3.1 Let f , g be functions from ]1,+∞[ into C. Then the function f ∗ g
defined on R+ by

(f ∗ g)(x) =

√
2

π
√
π

∫ +∞

1

∫ +∞

1
e−xuvIm

(
x
√

(u2 − 1)(v2 − 1)
)
f(u)g(v) du dv, m ∈ N0,(31)

is called the convolution related to the Kontorovich-Lebedev and the generalized Mehler-
Fock transforms (6) and (21), respectively (provided that it exists).
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Theorem 3.2 Let f, g ∈ Lp(]1,+∞[; dx), 1 < p < 2. Then the convolution (f ∗ g)(x)
exists for almost all x > 0 and belongs to L2(R+; dx). The convolution is commutative
and

||f ∗ g||L2(R+;dx) ≤ C ||f ||L2(]1,+∞[;dx) ||g||L2(]1,+∞[;dx) , (32)

where C > 0 is an absolute constant.

Proof. From Definition 3.1 it follows that f ∗ g is a commutative operation. Further,
by virtue of Fubini’s theorem with the use of the generalized Minkowski inequality there
exists

||f ∗ g||L2(R+;dx)

≤
√

2

π
√
π

∫ +∞

1

∫ +∞

1


∫
R+

e−2xuvI2
m

(
x
√

(u2 − 1)(v2 − 1)
)
dx︸ ︷︷ ︸

I


1
2

|f(u)g(v)| du dv.

(33)

The interior integral I is calculated by relation (2.15.20.1) in [6]. Consequently, we
obtain

I =
1

π
√

(u2 − 1)(v2 − 1)
Qm− 1

2

(
2u2v2

(u2 − 1)(v2 − 1)
− 1

)
.

Substituting this value in (33) and using the Hölder inequality for double integrals it
becomes

||f ∗ g||L2(R+;dx)

≤
√

2

π2

(∫ +∞

1

∫ +∞

1

(
(u2 − 1)(v2 − 1)

)− q
4 Q

1
2

m− 1
2

(
2u2v2

(u2 − 1)(v2 − 1)
− 1

)
du dv

) 1
q

× ||f ||Lp(]1,+∞[;dx) ||g||Lp(]1,+∞[;dx) , q =
p

p− 1
. (34)

Meanwhile, calling representation (20) of the Legendre function Qν− 1
2
(cosh(α)), and

using relation (8.4.22.3) in [7]

e−xIm(x) =
1

2πi
√
π

∫ γ+i∞

γ−i∞

Γ(s+m)Γ
(

1
2 − s

)
Γ(1 +m− s)

(2x)−s ds, 0 < γ <
1

2
,

where the latter integral is evidently convergent for q ∈
]

1
γ ,

2
γ

[
⊂]2,+∞[ because 0 <

γ < 1
2 . Since γ is arbitrary from this interval, inequality (34) is true for any 2 < q = p

p−1 .

9



Hence appealing to relation (2.4.4.7) in [5] and putting

C =

(
Γ
(
1− qγ

2

)
Γ
(
qγ−1

2

)) 2
q

2
4+q
2q π

2+5q
2q

(∫ γ+i∞

γ−i∞

∣∣∣∣∣Γ(s+m)Γ
(

1
2 − s

)
Γ(1 +m− s)

∣∣∣∣∣ ds
) 1

2

, 0 < γ <
1

2

we get (32), which completes the proof.

�

Theorem 3.3 Let f, g ∈ Lp(]1,+∞[; dx), 1 ≤ p < 2. Then for all x > 0 the following
generalized Parseval equality takes place

(f ∗ g)(x) =
2 e−

mπi
4

π2

∫
R+

τ tanh(πτ)

Zmτ

Kiτ (x)√
x

MFm[f ](τ) MFm[g](τ) dτ, (35)

where the integral is absolutely convergent.

Proof. In fact, we employ integral (1) and substitute it in (31). The change of the
order of integration is guaranteed by Theorem 3.2 and Fubini’s theorem. Finally, the
definition of the generalized Mehler-Fock transform (21) leads to (35).

�

Corollary 3.4 Under the conditions of Theorem 3.2 the product

MFm[f ](τ) MFm[g](τ) ∈ L2

(
R+;

τ tanh(πτ)

Zmτ cosh(πτ)
dτ

)
.

Moreover, the factorization identity (see (5))

Kiτ [f ∗ g] =
e−

mπi
4

Zmτ cosh(πτ)
MFm[f ](τ) MFm[g](τ) (36)

and the Parseval equality hold∫
R+

|(f ∗ g)(x)|2 dx =
2

π2

∫
R+

τ tanh(πτ)

(Zmτ )2 cosh(πτ)
|MFm[f ](τ) MFm[g](τ)|2 dτ.

Proof. Via Theorem 3.2 f ∗g ∈ L2(R+; dx) the statement is an immediate consequence
of the L2−theory for the Kontorovich-Lebedev transform (5) by virtue os equalities (7),
(8).

�
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Theorem 3.5 Let f ∈ Lp(]1,+∞[; dx), 1 ≤ p < 2. The generalized Mehler-Fock trans-
form (21) is the composition of the Kontorovich-Lebedev transform (5) and the following
Laplace transform

(Lf)(x) =

∫ +∞

1
e−xtf(t) dt, x > 0. (37)

Namely, we have the equality

MFm[f ](τ) =
1

π

√
2

π
e−

mπi
4 Zmτ cosh(πτ) Kiτ [Lf ](τ), (38)

where all involved integrals are absolutely convergent.

Proof. In fact, (38) takes place due to (5), (14), (13), (21) and Fubini’s theorem. The
latter fact can be verified employing the following estimate.∫ +∞

1

∣∣∣Pm− 1
2

+iτ
(x) f(x)

∣∣∣ dx
≤
(∫ +∞

1

∣∣∣Pm− 1
2

+iτ
(x)
∣∣∣q dx) 1

q
(∫ +∞

1
|f(x)|p dx

) 1
p

≤
Γ
(
m+ 1

2

)
√
π

cosh(πτ)

(∫ +∞

1

∣∣∣P− 1
2
(x)
∣∣∣q dx) 1

q

||f ||Lp(]1,+∞[;dx)

≤
√

2 Γ
(
m+ 1

2

)
π2

cosh(πτ)

∫
R+

(∫ +∞

1
e−qxy dx

) 1
q

K0(y)
dy
√
y
||f ||Lp(]1,+∞[;dx)

=

√
2 Γ

(
m+ 1

2

)
π2

cosh(πτ)q
− 1
q

∫
R+

e−y K0(y) y
−
(

1
q

+ 1
2

)
dy < +∞; q =

p

p− 1

�

4 Convolution integral equations

This section will be devoted to the class of integral equations of the first kind related with
the convolution operator (31). Namely, we will examine a solvability of the following
integral equations ∫ +∞

1
K(x, y)f(y) dy = g(x), x > 0 (39)∫ +∞

1

[
λe−xy +K(x, y)

]
f(y) dy = g(x), λ ∈ C, x > 0, (40)

where the kernel K(x, y) is defined by the integral

K(x, y) ≡ Kh(x, y) =

√
2

π
√
π

∫ +∞

1
e−xyu Im(x

√
(y2 − 1)(u2 − 1)) h(u) du; m ∈ N0,

h, g are given functions and f is to be determined.

11



Definition 4.1 Let 1 < p < 2. We call by

MFp,2 ≡ {ψ(τ) ∈ L2(R+; τ tanh(πτ) dτ) : ψ(τ) = MFm[f ](τ),

f ∈ L2(]1,+∞[; dx) ∩ Lp(]1,+∞[; dx)}

a class of images of f ∈ L2(]1,+∞[; dx)∩Lp(]1,+∞[; dx) under the generalized Mehler-
Fock transform (21), considering the restriction of this map to

MFm : L2(]1,+∞[; dx) ∩ Lp(]1,+∞[; dx)→MFp,2.

We note that MFp,2 is a subspace of L2(R+; τ tanh(πτ) dτ).

Theorem 4.2 Let 1 < p < 2, g ∈ L2(R+; dx) and h(x) ∈ Lp(]1,+∞[). Then for
the solvability of equation (39) in L2(]1,+∞[; dx) ∩ Lp(]1,+∞[; dx) it is necessary and
sufficient that

Zmτ cosh(πτ)

e−
mπi
4 MFm[h](τ)

∈MFp,2.

Moreover, the corresponding solution f(x) is unique and given by the formula

f(x) =
1

π

∫
R+

τ sinh(πτ)

∣∣∣∣Γ(1

2
−m− iτ

)∣∣∣∣2 Pm− 1
2

+iτ
(x)

Zmτ cosh(πτ)

e−
mπi
4 MFm[h](τ)

Kiτ [g](τ) dτ,(41)

where the convergence is with respect to the norm in L2(]1,+∞[; dx).

Proof. Necessity. Under conditions of the theorem equation (39) is satisfied, then the
convolution (31) exists and by (36)

Kiτ [g](τ) =
e−

mπi
4

Zmτ cosh(πτ)
MFm[f ](τ) MFm[h](τ).

However, MFm[f ] ∈MFp,2. Hence

Zmτ cosh(πτ)

e−
mπi
4 MFm[h](τ)

∈MFp,2 (42)

and the corresponding solution in L2(R+; dx) is given by (41) via inversion formula (22)
for the generalized Mehler-Fock transform (21).

Sufficiency. Now assuming

Zmτ cosh(πτ) Kiτ [g](τ)

e−
mπi
4 MFm[h](τ)

∈Mp,2 (43)

we get correspondingly via (41) and Definition 4.1 that f ∈ L2(]1,+∞[; dx)∩Lp(]1,+∞[;
dx). Further, owing to conditions of the theorem the left hand-side of (39) is the convolu-
tion like (31) (f ∗h)(x), which belongs to L2(R+; dx). Therefore, due to the factorization
identity (31) we obtain

Kiτ [f ∗ h] =
e−

mπi
4

Zmτ cosh(πτ)
MFm[f ](τ) MFm[h](τ). (44)

12



But, by 22 and (41),

MFm[f ](τ) =
Zmτ cosh(πτ)

e−
mπi
4 MFm[h](τ)

Kiτ [g](τ).

Substituting this expression into (40) we find

Kiτ [f ∗ g] =
e−

mπi
4

Zmτ cosh(πτ)
MFm[h](τ)

Zmτ cosh(πτ)

e−
mπi
4 MFm[h](τ)

Kiτ [g](τ) = Kiτ [g](τ).

So by the uniqueness property for the Kontorovich-Lebedev transform equation (39) is
satisfied and (41) is the unique solution from the class L2(]1,+∞[; dx)∩Lp(]1,+∞[; dx).

�

Equation (40) can be treated similarly by using the composition representation (36).
Indeed, under conditions of Theorem 4.2 after applying the Kontorovich-Lebedev trans-
form to both sides of (40) and taking into account the factorization identity (44) we get
the following algebraic equality

λ

π

√
2

π
MFm[f ](τ) +MFm[f ](τ) e−

mπi
4 MFm[h](τ) = Zmτ cosh(πτ) Kiτ [g](τ), (45)

which can be solved with respect to MFm[f ](τ) if

λ

π

√
2

π
+ e−

mπi
4 MFm[h](τ) 6= 0, τ ∈ R+.

Hence

MFm[f ](τ) = Zmτ cosh(πτ) Kiτ [g](τ)

[
λ

π

√
2

π
+ e−

mπi
4 MFm[h](τ)

]−1

, (46)

and we come out with the following result.

Theorem 4.3 Under conditions of Theorem 4.2 for the solvability of equation (40) in
L2(]1,+∞[; dx)∩Lp(]1,+∞[; dx), 1 < p < 2 it is necessary and sufficient that the right-
hand side of (46) belongs to MFp,2. Then the corresponding solution f(x) is unique and
given by the formula

f(x) =
1

π

∫
R+

τ sinh(πτ)

∣∣∣∣Γ(1

2
−m+ iτ

)∣∣∣∣2 Pm− 1
2

+iτ
(x)

×Zmτ cosh(πτ) Kiτ [g](τ)

[
λ

π

√
2

π
+ e−

mπi
4 MFm[h](τ)

]−1

dτ, x > 1,(47)

where the convergence is with respect to the norm in L2(]1,+∞[; dx).

13



Let us now indicate the special case of the equation (40) when its solution (39) can be
represented in the resolvent form. Suppose that g(x) is the modified Laplace transform
(37) of some function ϕ(t) ∈ L2(]1,+∞[; dx) ∩ Lp(]1,+∞[; dx), 1 < p < 2, i.e.,

g(x) =

∫ +∞

1
e−xtϕ(t) dt.

A class of such functions g belongs to L2(R+; dx). In fact, by virtue of the generalized
Minkowski and Hölder inequalities we have the estimate

||g||L2(R+;dx) =

(∫
R+

|g(x)|2 dx
) 1

2

≤
∫ +∞

1

(∫
R+

e−2xt dx

) 1
2

|ϕ(t)| dt

≤ 1√
2
||ϕ||Lp(]1,∞[;dt)

(∫
R+

dt

t
q
2

) 1
q

=
2

1
q
− 1

2

(q − 2)
1
q

||ϕ||Lp(]1,+∞[;dt) < +∞, q =
p

p− 1
.

Therefore, by composition representation (38) and inversion formula (22) for the gener-
alized Mehler-Fock transform solution (47) becomes in the form

f(x) =

√
π

2
e−

mπi
4

∫
R+

τ sinh(πτ)

∣∣∣∣Γ(1

2
−m+ iτ

)∣∣∣∣2
× Pm− 1

2
+iτ

(x) MFm[ϕ](τ)

[
λ

π

√
2

π
+ e−

mπi
4 MFm[h](τ)

]−1

dτ

=
π2

2λ
e−

mπi
4

∫
R+

τ sinh(πτ)

∣∣∣∣Γ(1

2
−m+ iτ

)∣∣∣∣2 Pm− 1
2

+iτ
(x) MFm[ϕ](τ) dτ

− π2

2λ
e−

mπi
4

∫
R+

τ sinh(πτ)

∣∣∣∣Γ(1

2
−m+ iτ

)∣∣∣∣2 Pm− 1
2

+iτ
(x) MFm[ϕ](τ)

×MFm[h](τ)

[
λ

π

√
2

π
+ e−

mπi
4 MFm[h](τ)

]−1

dτ

=
π2

2λ
e−

mπi
4

[
ϕ(x)−

∫
R+

τ sinh(πτ)

∣∣∣∣Γ(1

2
−m+ iτ

)∣∣∣∣2

× Pm− 1
2

+iτ
(x) MFm[ϕ](τ)MFm[h](τ)

[
λ

π

√
2

π
+ e−

mπi
4 MFm[h](τ)

]−1

dτ

 ,
14



with λ 6= 0.
Finally, let us consider an example of equation (40), letting

MFm[h](τ) =

∣∣∣∣Γ(1

2
−m+ iτ

)∣∣∣∣2 .
In order to find an original we use the inversion formula (22) to obtain

h(x) ≡ hm(x) =
1

π

∫
R+

τ sinh(πτ)

∣∣∣∣Γ(1

2
−m+ iτ

)∣∣∣∣4 Pm− 1
2

+iτ
(x) dτ. (48)

As far as we know integral (48) is absent in classical references on integrals and special
functions (see [1, 7]). However, one can treat integral (48) involving negative integers
−m. Taking into account relations (18), (14), representation (13) and inverting the
order of integration and differentiation via absolute and uniform convergence of the
correspondent integrals, we get

h−m(x) =

√
2 (−1)m

π
√
π

(x2 − 1)
m
2
dm

dxm

∫
R+

e−yx
√
y

×
∫
R+

τ sinh(πτ)

∣∣∣∣Γ(1

2
+m+ iτ

)∣∣∣∣2 Kiτ (y) dτ dy. (49)

Hence by the definition of the Kontorovich-Lebedev transform (5) and its inversion
formula (7) together with relation (2.16.6.4) in [7], the inner integral with respect to τ
has the value∫

R+

τ sinh(πτ)

∣∣∣∣Γ(1

2
+m+ iτ

)∣∣∣∣2 Kiτ (y) dτ = π
√
π m! 2m−

1
2 ym+ 1

2 e−y.

Therefore, we derive the value of the index integral∫
R+

τ sinh(πτ)

∣∣∣∣Γ(1

2
+m+ iτ

)∣∣∣∣4 P−m− 1
2

+iτ
(x) dτ

= π2m (m!)2 (x2 − 1)
m
2

(1 + x)2m+1

m∏
k=1

(m+ k).
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