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Abstract

This work clarifies the relation between network circuit (topology)
and behavior (information transmission and synchronization) in active
networks, e.g. neural networks. As an application, we show how one
can find network topologies that are able to transmit a large amount
of information, possess a large number of communication channels,
and are robust under large variations of the network coupling config-
uration. This theoretical approach is general and does not depend on
the particular dynamic of the elements forming the network, since the
network topology can be determined by finding a Laplacian matrix
(the matrix that describes the connections and the coupling strengths
among the elements) whose eigenvalues satisfy some special condi-
tions. To illustrate our ideas and theoretical approaches, we use neural
networks of electrically connected chaotic Hindmarsh-Rose neurons.
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1 Introduction

Given an arbitrary time dependent stimulus that externally excites an active
network formed by systems that have some intrinsic dynamics (e.g. neurons
and oscillators), how much information from such stimulus can be realized
by measuring the time evolution of one of the elements of the network ?
Determining how and how much information flows along anatomical brain
paths is an important requirement for the understanding of how animals
perceive their environment, learn and behave [1, 2, 3].

Even though the approaches of Ref. [1, 2, 3, 4, 5, 6] have brought consid-
erable understanding on how and how much information from a stimulus is
transmitted in a neural network, the relation between network circuits (topol-
ogy) and information transmission in a neural as well as an active network
is still awaiting a more quantitative description [7]. And that is the main
thrust of the present manuscript, namely, to present a quantitative way to
relate network topology with information in active networks. Since informa-
tion might not always be easy to be measured or quantified in experiments,
we endevour to clarify the relation between information and synchronization,
a phenomenom which is often not only possible to observe but also relatively
easy to characterize.

We initially proceed along the same line as in Refs. [8, 9], and study the
information transfer in autonomous systems. However, instead of treating
the information transfer between dynamical systems components, we treat
the transfer of information per unit time exchanged between two elements
in an autonomous chaotic active network. Thus, we neglect the complex
relation between external stimulus and the network and show how to calculate
an upper bound value for the mutual information rate (MIR) exchanged
between two elements (a communication channel) in an autonomous network.
Ultimately, we discuss how to extend this formula to non-chaotic networks
suffering the influence of a time-dependent stimulus.

Most of this work is directed to ensure the plausibility and validity of
the proposed formula for the upper bound of MIR (Sec. 2.1) and also to
study its applications in order to clarify the relation among network topology,
information, and synchronization. We do not rely only on results provided
by this formula, but we also calculate the MIR by the methods in Refs.
[10, 11] and by symbolic encoding the trajectory of the elements forming
the network and then measuring the mutual information provided by this
discrete sequence of symbols.

To illustrate the power of the proposed formula, we applied it to study
the exchange of information in networks of coupled chaotic maps (Sec. 4.3)
and in Hindmarsh-Rose neural networks bidirectionally electrically coupled
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(Sec.2.2). Our formula can be used to a larger class of active networks than
the ones here considered. As the networks formed by elements coupled both
electrically and chemically (see [12]). Still, the studied network topologies
are much simpler than the ones found in the brain [13, 14]. Nevertheless, we
do believe our approaches can be used to better understand how information
is transfered in more realistic networks as the scale-free networks [15], the
small-world networks [16], or power-law networks [17].

The analyses are carried out using quantities that we believe to be rel-
evant to the treatment of information transmission in active networks: a
communication channel, the channel capacity, and the network capacity (see
definitions in Sec. 4.2).

A communication channel represents a pathway through which informa-
tion is exchanged. In this work, a communication channel is considered to
be formed by a pair of elements. One element represents a transmiter and
the other a receiver, where the information about the transmiter can be
measured.

The channel capacity is defined in terms of the proposed upper bound
for the MIR. It measures the local maximal rate of information that two
elements in a given network are able to exchange, a point-to-point measure of
information exchange. As we shall see, there are two network configurations
for which the value of the upper bound can be considered to be maximal
with respect to the coupling strength.

The network capacity is the maximum of the KS-entropy, for many pos-
sible network configurations with a given number of elements. It gives the
amount of independent information that can be simultaneously transmitted
within the whole network, and naturally bounds the value of the MIR in the
channels, which concerns only the transmission of information between two
elements.

While the channel capacity is bounded and does not depend on the num-
ber of elements forming the network, the network capacity depends on the
number of elements forming the network.

As a direct application of the formula for the upper bound value of the
MIR, we show that an active network can operate with a large amount of MIR
and KS-entropy and at the same time it is robustly resistant to alterations
in the coupling strengths, if the eigenvalues of the Laplacian matrix satisfy
some specified conditions (Sec. 2.3). The Laplacian matrix describes the
connections among the elements of the network.

The conditions on the eigenvalues depend on whether the network is con-
structed in order to possess communication channels that are either self-
excitable or non-self-excitable (see definition in Sec. 4.1). Active networks
that possess non-self-excitable channels (formed by oscillators as the Rössler,
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or the Chua’s circuit) have channels that achieve their capacity whenever
their elements are in complete synchrony. Therefore, if a large amount of in-
formation is desired to be transmitted point-to-point in a non-self-excitable
network, easily synchronizable networks are required. On the other hand,
networks that possess self-excitable channels (as the ones formed by neu-
rons), achieve simultaneously its channel and network capacities when there
is at least one unstable mode of oscillation (time-scale) that is out of syn-
chrony.

While non-self-excitable channels permit the exchanging of a moderate
amount of information in a reliable fashion, due to the low level of desyn-
chronization in the channel, self-excitable channels permit the exchange of
surprisingly large amounts of information, not necessary reliable, due to the
higher level of desynchronization in the channel.

We do not intend to find the best network topology among all possible
ones. But rather, we aim at finding classes of network topologies that can
not only transmit large amounts of information but are also robust under
alterations in the coupling strengths. We arrive at two relevant eigenvalues
conditions which provide networks that satisfy all these requirements. Either
the network has elements that remain completely desynchronous for large
variations of the coupling strength, forming the self-excitable channels, or
the network has elements almost completely synchronous, forming the non-
self-excitable channels. In fact, the studied network, a network formed by
electrically connected Hindmarsh-Rose neurons [18], can have simultaneously
self-excitable and non-self-excitable channels.

Self-excitable networks, namely those that have a majority number of
self-excitable channels, have the topology of a perturbed star, i.e., they are
composed of a central neuron connected to most of the other outer neurons,
and some outer neurons sparsely connected among themselves. The net-
works that have non-self-excitable channels have the topology of a perturbed
fully connected network, i.e., a network whose elements are almost all-to-
all connected. The self-excitable network has thus a topology which can
be considered to be a model for mini-columnar structure of the mammalian
neocortex [19].

In order to find good network topologies, we have used (Sec. 2.4) a
Monte Carlo evolution technique [20], assuming equal bidirectional coupling
strengths. This evolving technique simulates the rewiring of a neuron network
that maximizes or minimizes some cost function, in this case a cost function
which produces good networks to transmit information.

Finally, we discuss how to extend these results to networks formed by
elements that are non-chaotic (Sec. 2.5), and to non-autonomous networks,
that are being perturbed by some time-dependent stimuli (Secs. 2.5 and 2.6).
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2 Results

2.1 Upper bound for the Mutual Information Rate
(MIR) in an Active Network

In a recent publication [10], we have argued that the mutual information
rate (MIR) between two elements in an active chaotic network, namely, the
amount of information per unit time that can be realized in one element,
k, by measuring another element, l, regarded as IC , is given by the sum
of the conditional Lyapunov exponents associated with the synchronization
manifold (regarded as λ‖) minus the positive conditional Lyapunov exponents
associated with the transversal manifold (regarded as λ⊥). So, IC = λ‖−λ⊥.

As shown in [11], if one has N=2 coupled chaotic systems, which produce
at most two positive Lyapunov exponents λ1, λ2 with λ1 > λ2, then λ‖ = λ1

and λ⊥ = λ2. Denote the trajectory of the element k in the network by
xk. For larger number of elements, N , the approaches proposed in [10]
remain valid whenever the coordinate transformation Xkl‖ = xk + xl (which
defines the synchronization manifold) and Xkl⊥ = xk −xl (which defines the
transversal manifold) successfully separates the two systems k and l from the
whole network. Such a situation arises in networks of chaotic maps of the
interval connected by a diffusively (also known as electrically or linear) all-
to-all topology, where every element is connected to all the other elements.
These approaches were also shown to be approximately valid for chaotic
networks of oscillators connected by a diffusively all-to-all topology. The
purpose of the present work is to extend these approaches and ideas to active
networks with arbitrary topologies.

Consider an active network formed by N equal elements, xi (i = 1, . . . , N),
where every D-dimensional element has a different set of initial conditions,
i.e., x1 6= x2 6= . . . 6= xN . The network is described by

ẋi = F(xi) − σ
∑

j

GijH(xj), (1)

where Gij is the ij element of the coupling matrix. Since we choose
∑

j Gij = 0
in order for a synchronization manifold to exist by the subspace η = x1 =
x2 = x3 = . . . = xN , we can call this matrix the Laplacian matrix.

The way small perturbations propagate in the network [21] is described
by the i (i = 1, . . . , N) variational equations of Eqs. (1), namely writing
xi = η + δxi and expanding Eq. (1) in δxi,

δẋi = [∇F(xi) − σ
N∑

j=1

GijDH(xi)]δxi (2)
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obtained by linearly expanding Eq. (1).
Making xi = ξ, which can be easily numerically done by setting the

elements with equal initial conditions and taking H(xi) = xi, Eq. (2) can be
made block diagonal resulting in

ξ̇i = [∇F(xi) − σγi]ξi. (3)

where γi are the eigenvalues (positive defined) of the Laplacian matrix or-
dered such that γi+1 ≥ γi. Note that γ1 = 0.

Notice that the network dynamics is described by Eq. (1), which assumes
that every element has different initial conditions and therefore different tra-
jectories (except when the elements are completely synchronized). On the
other hand, Eq. (3) that provides the conditional exponents considers that
all the initial conditions are equal. While Eq. (2) provides the set of Lya-
punov exponents of an attractor, Eq. (3) provides the Lyapunov exponents
of the synchronization manifold and its transversal directions. Notice also
that when dealing with linear dynamics, the Lyapunov exponents [obtained
from Eq. (2)] are equal to the conditional exponents [obtained from Eq. (3)]
independently on the initial conditions.

Then, the upper bound of the MIR that can be measured from an element
xk by observing another element xl, i.e. the upper bound of the MIR in the
communication channel ci−1 is

I i−1
P ≤ |λ1 − λi| (4)

with i ∈ (2, . . . , N), and λi representing the sum of all the positive Lyapunov
exponents of the equation for the mode ξi, in Eq. (3). So, λ1 is the sum of
the positive conditional exponents obtained from the separated variational
equations, using the smallest eigenvalue associated with the exponential di-
vergence between nearby trajectories around ξ, the synchronous state, and
λi (i > 1) are the sum of the positive conditional exponents of one of the
possible desynchronous oscillation modes. Each eigenvalue γi produces a set
of conditional exponents λi

m, with m = 1, . . . , D.
Although Eq. (4) gives the upper bound for the amount of information

between modes of oscillation, for some simple network geometries, as the ones
studied here, we can relate the amount of information exchanged between two
vibrational modes to the amount of information between two elements of the
network, and therefore, Eq. (4) can be used to calculate an upper bound
for the MIR exchanged between pairs of elements in the network. For larger
and complex networks, this association is non-trivial, and we rely on the
reasonable argument that a pair of elements in an active network cannot
transmit more information than some of the i − 1 values of I i−1

P .
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The inequality in Eq. (4) can be interpreted in the following way. The
right hand side of Eq. (4) calculates the amount of information that one could
transmit if the whole network were completely synchronous with the state ξ,
which is only true when complete synchronization takes place and when all
the nodes have equal dynamics. Typically, we expect that the elements of
the network will not be completely synchronous to ξ and in relistic networks,
the nodes will not be equal. Thus, the amount of information provided
by the right part of Eq. (4) overestimates the exact MIR which, due to
desynchronization in the network, should be smaller than the calculated one.

Equation (5) allows one to calculate the MIR between oscillation modes
of larger networks with arbitrary topology rescaling the MIR curve (I1

P vs.
σ) obtained from two coupled elements. Denoting σ∗(N = 2) as the strength
value for which the curve for λ2 reaches a relevant value, say, its maximum
value, then the coupling strength for which this same maximum is reached
for λi in a network composed by N elements is given by

σi∗(N) =
2σ∗(N = 2)

γi(N)
(5)

where γi(N) represents the ith largest eigenvalue of the N -elements network.
If the network has an all-to-all topology, thus, σ∗(N = 2) represents the
strength value for which the curve of I1

P reaches a relevant value, and σ∗(N)
the strength value that this same value for I i

P is reached.
Notice that symmetries in the connecting network topology leads to the

presence of degenerate eigenvalues (=equal eigenvalues) in the Laplacian ma-
trix, which means that there are less independent channels of communication
along which information flows. Calling Q the number of degenerate eigen-
values of the Laplacian matrix, Eq. (4) will provide N − Q different values.

As the coupling strength σ is varied, the quantities that measure infor-
mation change correspondingly. For practical reasons, it is important that
we can link the way these quantities (see Sec. 4.2) change with the way the
different types of synchronization show up in the network. In short, there
are three main types of synchronization observed in our examples (see [11]):
burst phase synchronization (BPS), when at least one pair of neurons are
synchronous in the slow time-scale but desynchronous in the fast time-scale,
phase synchronization (PS), when all pairs of neurons are phase synchronous,
and complete synchronization (CS), when all pairs of neurons are completely
synchronous. The coupling strength for which these synchronous phenomena
appear are denoted by σBPS , σPS, and σCS (with no superscript index).

Finally, there are a few more relevant coupling strengths, which charac-
terize each communication channel. First, σi

min, for which the sum of the
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ith conditional exponents λi equals the value of λ1. For σ < σi
min, the com-

munication channel i (whose upper rate of information transmission depends
on the two oscillation modes ξ1 and ξi) behaves in a self-excitable way, i.e.,
λ1 < λi. For σ ≥ σi

min, λ1 ≥ λi. Secondly, σi∗ indicates the coupling strength
at which I i−1

P is maximal. Thirdly, σi
CS indicates the coupling strength for

which the communication channel ci−1 becomes ”stable”, i.e., λi < 0. At
σ = σi∗ the self-excitable channel capacity of the channel ci−1 is reached and
at σ = σi

CS, the non-self-excitable channel capacity is reached. Finally, σC is
the coupling for which the network capacity is reached, and then, when the
KS-entropy of the network is maximal.

2.2 The MIR in networks of coupled Hindmarsh-Rose
neurons

We investigate how information is transmitted in self-excitable networks com-
posed of N bidirectionally coupled Hindmarsh-Rose neurons [18]:

ẋi = yi + 3x2
i − x3

i − zi + Ii + σ
∑

j

Gij(xj)

ẏi = 1 − 5x2
i − yi (6)

żi = −rzi + 4r(xi + 1.6)

The parameter r modulates the slow dynamics and is set equal to 0.005, such
that each neuron is chaotic. The index i 6= j assumes values within the set
[1, . . . , N ]. Sk represents the subsystem formed by the variables (xk, yk, zk)
and Sl represents the subsystem formed by the variables (xl, yl, zl), where
k=[1, . . . , N − 1] and l=[k + 1, . . . , N ]. The Laplacian matrix is symmetric,
so Gji = Gij , and σGji is the strength of the electrical coupling between the
neurons, and we take for Ii the value Ii = 3.25.

In order to simulate the neuron network and to calculate the Lyapunov
exponents through Eq. (2), we use the initial conditions x=-1.3078+η, y=-
7.3218+η, and z=3.3530+η, where η is an uniform random number within
[0,0.02]. To calculate the conditional Lyapunov exponents, we use the equal
initial conditions, x=-1.3078, y=-7.3218, and z=3.3530.

All-to-all coupling: Here, we analyze the case where N neurons are
fully connected to every other neuron. The Laplacian matrix has N eigen-
values, γ1=0, and N − 1 degenerate ones γi=N , i = 2, . . . , N . Every pair of
neurons exchange an equal amount of MIR. Although, there are N×(N−1)/2
pairs of neurons, there is actually only one independent channel of commu-
nication, i.e., a perturbation applied at some point of the network should
be equally propagated to all other points in the network. In Fig. 1(A), we
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show the MIR, IC , calculated using the approaches in Refs. [10, 11], IP ,
calculated using the right hand-side of Eq. (4), and IS, calculated encoding
the trajectory between pair of neurons, and the Kolmogorov-Sinai entropy,
HKS, for a network composed by N=2 neurons. In (B), we show these same
quantities for a network formed by N=4 neurons.

While for σ ∼= 0 and σ ≥ σCS, we have that IC
∼= IP

∼= IS, for σ ∼= σ2∗

(when the self-excitable channel capacity is reached) it is clear that IP should
be an upper bound for the MIR, since not only IP > IC but also IP > IS.
Notice the good agreement between IC and IS, except for σ ∼= σ2

min, when
IS > HKS, which violates Eq. (11).

The star symbol indicates the value of the coupling, σBPS , for which
burst phase synchronization (BPS) appears while the spikes are highly desyn-
chronous. The appearance of BPS coincides with the moment where all the
quantifiers for the MIR are large, and close to a coupling strength, σC , for
which the network capacity is reached (when HKS is maximal).

At this point, the network is sufficiently desynchronous to generate a
large amount of entropy, which implies a large λi, for i ≥ 2. This is an ideal
configuration for the maximization of the MIR. There exists phase synchrony
in the subspace of the slow time-scale z variables (which is responsible for the
bursting-spiking behavior), but there is no synchrony in the (x, y) subspace.
This supports the binding hypothesis, a fundamental concept of neurobiology
[19] which sustains that neural networks coding the same feature or object
are functionally bounded. It also simultaneously supports the works of [22],
which show that desynchronization seems to play an important role in the
perception of objects as well. Whenever λ2 approaches zero, at σ = σCS,
there is a drastic reduction in the value of HKS as well as IP , since the
network is in complete synchronization (CS), when all the variables of one
neuron equals the variables of the other neurons.

Therefore, for coupling strengths larger than the one indicated by the
star symbol, and smaller than the one where CS takes place, there is still one
time-scale, the fast time-scale, which is out of synchrony.

For σ > σ2
min, the only independent communication channel is of the

non-self-excitable type. That means λi ≤ λ1 (i ≥ 2), and as the coupling
strength increases, HKS decreases and IP increases.

Note that the curve for IP shown in Fig. 1(B) can be obtained by rescaling
the curve shown in Fig. 1(A), applying Eq. (5).

Star coupling: We consider N=4. There is a central neuron, denoted
by S1, bidirectionally connected to the other three (Sk, k = 2, 3, 4), but
none of the others are connected among themselves. The eigenvalues of the
Laplacian matrix are γ1=0,γ2,3=1,γ4 = N .

To treat general types of networks, it is useful to define two quantities
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related to the excitability of the communication channels. The here called
non-self-excitable (NSE) robustness parameter of the channel ci (i ≥ 1) as
∆σi

NSE = σCS − σi
min and the self-excitable (SE) robustness parameter for

the communication channel ci−1 as ∆σi
SE = σi

min (i ≥ 2). It is also useful
to define a quantity that measures the distance between the eigenvalues, the
normalized spectral distance (NED) between the two eigenvalues.

Having a large NED between the ith largest and the first largest eigenval-
ues results in a non-self-excitable channel, ci−1, with a large NSE robustness
parameter that implies that the channel preserves its NSE character under
large alterations of the coupling strength. On the other hand, having a large
NED between the largest and the ith largest eigenvalues (γN −γi)/N , results
in a self-excitable channel, ci−1, with a large self-excitable robustness pa-
rameter that implies that the channel preserves its SE character under large
alterations of the coupling strength.

So, for the star topology network, not only the NED between γN and γN−1

is large but also between γN and γN−2, and therefore, ∆σN−1
SE and ∆σN−2

SE are
large. This provides a network whose channels c1 and c2 have a large MIR for
a large coupling strength alteration. Note that if γN−1 is far away from γN

that implies that γN−2 is also far away from γN . Thus, a reasonable spectral
distance between γN−1 and γN is a “biological requirement” for the proper
function of the network, since even for larger coupling strengths there will
be at least one oscillation mode which is desynchronous, a configuration that
enables perturbation (meaning external stimuli) to be propagated within the
network [23].

The largest eigenvalue is related to an oscillation mode where all the
outer neurons are in synchrony with each other but desynchronous with the
central neuron. So, here it is clear the association between |λ1 − λ4| and the
MIR between the central neuron with an outer neuron, since λ1 represents the
amount of information of the synchronous trajectories among all the neurons,
while λ4 is the amount of information of the desynchronous trajectories be-
tween the central neuron and any outer neuron. The other eigenvalues (γ2,γ3)
represent directions transverse to the synchronization manifold in which the
outer neurons become desynchronous with the central neuron in waves wrap-
ping commensurately around the central neuron [21]. Thus, λ2 and λ3 are
related to the error in the transmission between two outer neurons, k and l,
with k, l 6= 1.

Note that the MIR between S1 and an outer neuron (upper bound rep-
resented by I3

P = |λ1 − λ4| and IS represented by IS(1, k), in Fig. 2) is
larger (smaller) than the MIR between two outer neurons (upper bound rep-
resented by I1

P = |λ1 − λ2| and IS is represented by IS(k, l), in Fig. 2), for
small coupling (for when the channel c3 is self-excitable, and σ ≥ σ4

min). Sim-
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ilar to what happens to nearest-neighbor networks, the self-excitable and the
non-self-excitable channel capacities of the channel associated with the trans-
mission of information between closer elements (the channel c3) are achieved
for a smaller value of the coupling strength than the one necessary to make
the channels associated with the transmission of information between more
distant elements (the channel c1) to achieve its two channel capacities. That
property permits this network, for σ ∼= σ4

min, to transmits simultaneously
reliable information using the channel c3 and with a higher rate using the
channel c1.

Notice, in Fig. 2, that σ2∗ ∼= σ4
min

∼= σBPS
∼= σC . So, when the channel

capacity of the channel c1 is reached, also HKS of the network is maximal,
and the network operates with its capacity.

Another point that we want to emphasize in this network is that while a
large NED between γN and γN−1 provides a network whose channel c1 is self-
excitable and can transmit information at a large rate for a large coupling
strength interval, a large NED between γ3 and γ2 leads to a non-self-excitable
channel c3 even for small values of the coupling amplitudes, and it remains
non-self-excitable for a large variation of the coupling strength. Thus, while
a large NED between the second and the first largest eigenvalues leads to a
network whose channels are predominantly of the self-excitable types, a large
NED between the second largest and the third largest eigenvalues provide a
network whose communication channels are predominantly of the non-self-
excitable types.

2.3 Eigenvalues conditions

Finding network topologies and coupling strengths in order to have a network
that operates in a desired fashion is not a trivial task (see Sec. 4.4). An
ideal way to proceed would be to evolve the network topology in order to
achieve some desired behavior. In this paper, we are interested in maximizing
simultaneously IP , the KS-entropy, and the average 〈IP 〉, for a large range of
the coupling strength, characteristics of a good network. However, evolving
a network in order to find a good one would require the calculation of the
MIR in every communication channel and HKS for every evolution step. For
a typical evolution, which requires 106 evolution steps, such an approach is
impractical.

Based on our previous discussions, however, a good network topology
can be realized by only selecting an appropriate set of eigenvalues which
have some specific NED. Evolving a network by the method of Sec. 4.4 using
a cost function which is a function of only the eigenvalues of the Laplacian
matrix is a practical and physible task.
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The present section is dedicated to describe the derivation of this cost
function.

We can think of two most relevant sets of eigenvalues which create good
networks, and they are represented in Fig. 3. Either it is desired eigenval-
ues that produce a network predominantly self-excitable [SE, in Fig. 3] or
predominantly non-self-excitable [NSE, in Fig. 3].

In a network whose communication channels are predominantly self-excitable,
it is required that the NED (γN − γN−1)/N is maximal and (γN−1)/N mini-
mal. Therefore, we want a network for which the cost function

B1 ≡
γN − γN−1

γN−1
(7)

is maximal.
A network whose eigenvalues maximize B1 has self-excitable channels for

a large variation of the coupling strength. As a consequence, 〈IP 〉 as well as
HKS is large for σ ∈ [σN

min, σ2
min].

In a network whose communication channels are predominantly non-self-
excitable, it is required that the NED (γ3 − γ2)/N is maximal and (γ2)/N
minimal. Therefore, we want a network for which the cost function

B2 ≡
γ3 − γ2

γ2
(8)

is maximal.
A network whose eigenvalues maximize the condition in Eq. (8) have

non-self-excitable channels for a large variation of the coupling strength. As
a consequence, 〈IP 〉 is large for σ ∈ [σN

min, σ3
min], which is a small coupling

range, but since there is still one oscillation mode that is unstable (the mode
ξ2), HKS is still large for a large range of the coupling strength (σ < σ2

min).
Most of the channels will transmit information in a reliable way, since the
error in the transmission, provided by λi (i ≥ 2), of most of the channels will
be zero, once λi < 0.

Since degenerate eigenvalues produce networks with less vibrational modes,
we assume in the following the absence of such degenerate eigenvalues. In
addition, we assume that there is a finite distance between eigenvalues so
that the network becomes robust under rewiring, and therefore, perturbing
Gij will not easily create degenerate eigenvalues.

A network that is completely synchronous and has no unstable modes
does not provide an appropriate environment for the transmission of infor-
mation about an external stimulus, because they prevent the propagation
of perturbations. Networks that can be easily completely synchronized (for
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small coupling strengths) requires the minimization of γN − γ2, or in terms
of the eigenratio, the minimization of γN/γ2. We are not interested in such
a case. To construct network topologies that are good for complete synchro-
nization, see Refs. [21, 24, 25, 26].

2.4 Good topologies for information transmission

Before explaining how we obtain good network topologies for information
transmission, it is important to discuss the type of topology expected to be
found by maximizing either B1, in Eq. (7) or B2, in Eq. (8). Notice that
Laplacians whose eigenvalues maximize B1 are a perturbed version of the star
topology, and the ones that maximize B2 are a perturbed version of the all-
to-all topology. In addition, in order to have a network that presents many
independent modes of oscillations it is required that the Laplacian matrix
presents as much as possible, a large number of non-degenerate eigenvalues.
That can be arranged by rewiring (perturbing) networks possessing either
the star or the nearest-neighbor topology, breaking the symmetry.

In order to calculate a Laplacian from a good network, we propose an
approache described in Sec. 4.4, based on the reconstruction of the network
by evolving techniques, simulating the process responsible for the growing
or rewiring of real biological networks, a process which tries to maximize or
minimize some cost function.

In order to better understand how a network evolves (grows) in accor-
dance with the maximization of the cost functions in Eqs. (7) and (8), we
first find the network configurations with a small number of elements. To be
specific, we choose N=8 elements. To show that indeed the calculated net-
work topologies produce active networks that operate as desired, we calculate
the average upper bound value of the MIR [Eq. (10)] for neural networks
described by Eqs. (6) with the topology obtained by the evolution technique,
and compare with other network topologies. Figure 4 shows 〈IP 〉, the aver-
age channel capacity, calculated for networks composed of 8 elements, using
one of the many topologies obtained by evolving the network maximizing B1

(circles, denoted in Fig. by ”evolving 1”), all-to-all topology (squares), star
topology (diamonds), nearest-neighbor (upper triangle), and maximizing B2

(down triangle, denoted in Fig. by ”evolving 2”). The star points to the value
of σ2

min, when c1, the most unstable communication channel (a self-excitable
channel), becomes non-self-excitable.

As desired the evolving network 1 has a large upper bound for the MIR
(as measured by 〈IP 〉) for a large range of the coupling strength, since the
network has predominantly self-excitable channels. The channel c1 has a large
robustness parameter ∆σ2

SE , i.e., it is a self-excitable channel for σ < σ2
min,
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where σ2
min=2.0. In contrast to the other topologies, in the star, nearest-

neighbor, and all-to-all topologies, ∆σ2
SE is smaller and ∆σ2

NSE is larger.
Even though most of the channels in the evolving 2 topology are of the non-
self-excitable type, 〈IP 〉 remains large even for higher values of the coupling
strength. That is due to the channel c1 which turns into a self-excitable
channel only for σ > 2.

The KS-entropies of the 5 active networks whose 〈IP 〉 are shown in Fig. 4
are shown in Fig. 5. Typically, the network capacities are reached for roughly
the same coupling strength for which the maximum of 〈IP 〉, is reached. In
between the coupling strength for which the network capacities and the max-
imal of 〈IP 〉 are reached, λ3 becomes negative. At this point, also BPS ap-
pears in the slow time-scale, suggesting that this phenomena is the behavioral
signature of a network that is able to transmit not only large amounts of in-
formation between pairs of elements (high MIR) but also overall within the
network (high HKS).

Note however, that since the evolving networks have a small number of
elements, the cost function cannot reach higher values and therefore, the
networks are not as good as they can be. For that reason, we proceed now
to evolve larger networks, with N=32.

Maximization of the cost function B1 leads to the network connectivity
shown in Fig. 6(A) and maximization of the cost function B2 leads to the
network connectivity shown in Fig. 6(B). In (A), the network has the topol-
ogy of a perturbed star, a neuron connected to all the other outer neurons,
thus a hub, and each outer neuron is sparsely connected to other outer neu-
rons. The arrow points to the hub. In (B),the network has the topology of a
perturbed all-to-all network, where elements are almost all-to-all connected.
Note that there is one element, the neuron S32, which is only connected to
one neuron, the S1. This isolated neuron is responsible to produce the large
spectral gap between the eigenvalues γ3 and γ2.

〈IP 〉 for the network topology represented in Fig. 6(A) is shown in Fig.
7 as circles, and 〈IP 〉 for the network topology represented in Fig. 6(B) is
shown in Fig. 7 as squares. We see that the star topology, whose connectivity
is represented in 6(A), has larger 〈IP 〉 for a larger coupling strength than the
topology whose connectivity is represented in 6(B). Other relevant parame-
ters of the network whose topology is represented in 6(A) are σ2

min=0.8468,
σ3

min=0.8249, , σN
min=0.0278, σCS=0.9762 and for the topology represented

in 6(B) are σ2
min=0.8512, σ3

min=0.042, σN
min=0.031, and σCS=0.9761.

It is worth to comment that the neocortex is being simulated in the Blue
Brain project, by roughly creating a large network composed of many small
networks possessing the star topology. By doing that, one tries to recreate the
way minicolumnar structures [19] are connected to minicolumnar structures
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of the neocortex [27]. Each minicolumn can be idealized as formed by a
pyramidal neuron (the hub) connected to its interneurons, the outer neurons
in the star topology, which are responsible for the connections among this
minicolumn (small network) to others minicolumn. So, the used topology to
simulate minicolumns is an good topology in what concerns the transmission
of information.

2.5 Active networks formed by non-chaotic elements

The purpose of the present work is to describe how information is transmitted
via an active media, a network formed by dynamical systems. There are three
possible asymptotic stable behaviors for an autonomous dynamical system:
chaotic, periodic, or quasi-periodic. A quasi-periodic behavior can be usually
replaced by either a chaotic or a periodic one, by an arbitrary perturbation.
For that reason, we neglect such a state and focus the attention on active
channels that are either chaotic or periodic.

Equation (4) is defined for positive exponents. However, such an equation
can also be used to calculate an upper bound for the rate of mutual informa-
tion in systems that also possess negative Lyapunov exponents. Consider first
a one-dimensional contracting system being perturbed by a random stimu-
lus. Further consider that the stimulus changes the intrinsic dynamics of this
system. This mimics the process under which an active element adapts to
the presence of a stimulus.

Suppose the stimulus, θn, can be described by a discrete binary random
source with equal probabilities of generating ’0’ or ’1’. Whenever θn = 0, the
system presents the dynamics xn+1 = xn/2, otherwise xn+1 = (1 + xn)/2. It
is easy to see that the only Lyapunov exponent of this mapping, λ1, which
is equal to the conditional exponent, λ1, is negative. Negative exponents do
not contribute to the production of information. From Eq. (4) one would
arrive at IP =0. However, all the information about the stimulus is contained
in the trajectory. If one measures the trajectory xn, one knows exactly what
the stimulus was, either a ’0’ or a ’1’. The amount of information contained
in the stimulus is log (2) per iteration which equals the absolute value of the
Lyapunov exponent, |λ1|. In fact, it is easy to show that IC = IP = |λ1| =
|λ1| = log (2), or if we use the interpretation of [28], IC = IP = λ, where λ =
|λ1| is the positive Lyapunov exponent of the time-inverse chaotic trajectory,
xn+m, xn+m−1, . . . , x0, which equals the rate of information production of the
random source. So, in this type of active communication channel, one would
consider in Eq. (4) the positive Lyapunov exponents of the time-inverse
trajectory, or the absolute value for the negative Lyapunov exponent.

Another example was given in [11]. In this reference we have shown
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that a chaotic stimulus perturbing an active system with a space contracting
dynamics (a negative Lyapunov exponent) might produce a fractal set. We
assume that one wants to obtain information about the stimulus by observing
the fractal set. The rate of information retrieved about the stimulus on this
fractal set equals the rate of information produced by the fractal set. This
amount is given by D1|λ|, where D1 is the information dimension of the
fractal set and |λ| the absolute value of the negative Lyapunov exponent.
In fact, D1|λ| is also the rate of information produced by the stimulus. So,
if an active system has a space contracting dynamics, the channel capacity
equals the rate of information produced by the stimulus. In other words, the
amount of information that the system allows to be transmitted equals the
amount of information produced by the chaotic stimulus.

2.6 The role of a time-dependent stimulus in an active
network

The most general way of modeling the action of an arbitrary stimulus per-
turbing an active network is by stimulating it using uncorrelated white noise.
Let us assume that we have a large network with all the channels operating
in non-self-excitable fashion. We also assume that all the transversal eigen-
modes of oscillations except one are stable, and therefore do not suffer the
influence of the noise. Let us also assume that the noise is acting only on one
structurally stable (= far from bifurcation points) element, Sk. To calculate
the upper bound of the MIR between the element Sk and another element
Sl in the network, we assume that the action of the noise does not alter the
value of λ1. Then, the noise on the element Sk is propagated along the vi-
brational mode associated with the one unstable transversal direction, whose
conditional exponent is λ2. As a consequence, the action of the noise might
only increase λ2, while not affecting the negativeness of all the other expo-
nents (λm, m > 2), associated with stable transversal modes of oscillation.
That means that the channels responsible for transmiting large amounts of
information (associated with λm, with m large) will not be affected. So, for
such types of noises, Eq. (4) of the autonomous network is an upper bound
for the non-autonomous network.

Consider now a situation where the noise acts equally on all the elements
of an active network. The mapping

xn+1 = 2xn − ρ(x2
n + y2

n) − 2σ(yn − xn),

yn+1 = 2yn − ρ(x2
n + y2

n) − 2σ(xn − yn), (9)

was proposed as a way to understand such a case. In this mapping, we
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consider ρ ≥ 0 and xn, yn ∈ [0, 1], which can be accomplished by applying
the mod(1) operation.

Note that the term ρ(x2
n + y2

n) that enters equally in all the maps has
statistical properties of an uniformly distributed random noise. Calculating
IP for ρ = 0 (the noise-free map) we arrive at IP

∼= 2σ, for small σ, while
the true MIR IC

∼= 2(σ− ρ). These results are confirmed by exact numerical
calculation of the Lyapunov exponents of Eq. (9) as well as the calculation
of the conditional exponents of the variational equations. So, this example
suggests that Eq. (4) calculated for an autonomous non-perturbed network
gives the upper bound for the mutual information rate in a non-autonomous
network.

3 Discussions

We have shown how to relate in an active network the rate of information
that can be transmitted from one point to another, regarded as mutual in-
formation rate (MIR), the synchronization level among elements, and the
connecting topology of the network. By active network, we mean a network
formed by elements that have some intrinsic dynamics and can be described
by classical dynamical systems, such as chaotic oscillators, neurons, phase
oscillators, and so on.

Our main concern is to suggest how to construct a good network. A
network that simultaneously transmits information at a large rate, is robust
under couplings alterations, and further, it possesses a large number of in-
dependent channels of communication, pathways along which information
travels.

We find that there is not the best topology but many that can be classi-
fied in two classes. Self-excitable [maximizing Eq. (7)] or non-self-excitable
[maximizing Eq. (8)] (see definition of self-excitability in Sec. 4.1). Self-
excitable networks have communication channels that transmit information
in a higher rate for a large range of the coupling strength. Most of the os-
cillation modes in these networks are unstable, and therefore, information is
mainly propagated in a desynchronous environment. Non-self-excitable net-
works have communication channels that transmit information in a higher
rate for a small range of the coupling strength, however, they have chan-
nels that transmit reliable information in a moderate rate for large range
of coupling strengths. Most of the oscillation modes in these networks are
stable, and therefore, information is mainly propagated in a synchronous
environment, a highly reliable environment for information transmission.

One of the main results of our work, the Eq. (4), which relates synchro-
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nization, topology and information in active networks, can only be used in
networks composed of nodes that have equal dynamics. We have reasons
to believe that if the nodes have non equal dynamics, Eq. (4) provides an
upper bound for the value of the mutual information rate that modes in the
network exchange. That was shown in Ref. [11] for two linear coupled maps.
Another reason is given in the following. When the nodes are not completely
synchronous, networks of nodes with equal dynamics but randomly coupled
(as the networks in [12] and Sec. VIII(B) in Ref. [12]), are good models
of networks with nodes that have different dynamics. We have found that
these random networks with nodes electrically connected usually become
more non-self-excitable than the networks with nodes being connected with
equal bidirectional couplings. As a consequence, both the network capacity
and the channel capacities become smaller. It remains still to be verified if
that is so for networks whose nodes are connected with chemical synapses.
As shown in Ref. [12], chemical couplings make the network to become highly
excited. As a consequence, it might be that as the nodes are made non-equal,
the network gains a self-excitable character, resulting in an increase of the
information capacities. In such a case, Eq. (4) would provide a lower bound
for the mutual information rate of networks with nodes that have non equal
dynamics.

If brain-networks somehow grow in order to maximize the amount of
information transmission, simultaneously remaining very robust under cou-
pling alterations, the minimal topology that small neural networks must have
should be similar to the one in Fig. 6(A), i.e., a network with a star topol-
ogy, presenting a central element, a hub, very well connected to other outer
elements, which are sparsely connected.

4 Methods

4.1 Self-excitability

In Ref. [11] self-excitability was defined in the following way. An active
network formed by N elements, is said to be self-excitable if HKS(N, σ) >
HKS(N, σ = 0), which means that the KS-entropy of the network increases
as the coupling strength is increased. Thus, for non self-excitable systems,
an increase in the coupling strength among the elements forming the network
leads to a decrease in the KS-entropy of the network.

Here, we adopt also a more flexible definition, in terms of the properties
of each communication channel. We define that a communication channel
ci behaves in a self-excitable fashion if λi > λ1. It behaves in a non-self-
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excitable fashion if λi ≤ λ1.

4.2 Mutual Information Rate (MIR), channel capacity,
and network capacity

In this work, the rate with which information is exchanged between two
elements of the network is calculated by different ways. Using the approaches
of Refs. [10, 11], we can have an estimate of the real value of the MIR, and
we refer to this estimate as IC . Whenever we use Eq. (4) to calculate the
upper bound for the MIR, we will refer to it as IP . Finally, whenever we
calculate the MIR through the symbolic encoding of the trajectory, we refer
to it as IS.

We define the channel capacity of a communication channel formed by
two oscillation modes depending on whether the channel behaves in a self-
excitable fashion or not. So, for the studied network, every communication
channel possess two channel capacities, the self-excitable capacity and the
non-self-excitable one. A channel ci operates with its self-excitable capacity
when I i

P is maximal, what happens at the parameter σ(i+1)∗. It operates with
its non-self-excitable capacity when λi+1 = 0.

We also define the channel capacity in an average sense. In that case, the
averaged channel capacity is given by the maximal value of the average value

〈IP 〉 =
N∑

i=2

1

N − 1
|λ1 − λi|, (10)

The network capacity of a network composed of N elements, CN (N), is
defined to be the maximum value of the Kolmogorov-Sinai (KS) entropy,
HKS, of the network. For chaotic networks, the KS-entropy, as shown by
Pesin [29], is the sum of all the positive Lyapunov exponents. Notice that if
I denotes the MIR then

I ≤ HKS (11)

As shown in Ref. [11] and from the many examples treated here, CN (N) ∝
N , and so, the network capacity grows linearly with the number of elements
in an active network.

4.3 Understanding Eq. (4)

4.3.1 Positiveness of the MIR for self-excitable channels in the
(non-linear) HR network

To show that indeed I i
P should be positive in case of a self-excitable channel

in the HR network, one can imagine that in Eq. (1) the coupling strength is
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arbitrarily small and that N=2. At this situation, the Lyapunov exponent
spectra obtained from Eq. (2) are a first-order perturbative version of the
conditional exponents, and they appear organized by their strengths. One
arrives at λ1

∼= λ2 and λ2
∼= λ1, which means that the largest Lyapunov

exponent equals the transversal conditional exponent and the second largest
Lyapunov exponent equals the conditional exponent associated with the syn-
chronous manifold. Using similar arguments to the ones in Refs. [11, 30, 10],
we have that the MIR is given by the largest Lyapunov exponent minus the
second largest, and therefore, IC = λ1 − λ2, which can be put in terms of
conditional exponents as IP ≤ λ2 − λ1.

4.3.2 The inequality in Eq. (4)

To explain the reason of the inequality in Eq. (4), consider the following two
coupled maps:

xn+1 = 2xn − ρx2
n + 2sσ(yn − xn),

yn+1 = 2yn − ρy2
n + 2sσ(xn − yn), (12)

with s = 1 and xn, yn ∈ [0, 1]. For this mapping, the MIR can be writen
in terms of the Lyapunov Exponents [11, 31]. For two coupled systems, the
MIR can be exactly calculated by IC = λ1 − λ2, since λ‖ = λ1 and λ⊥ =
λ2, assuming that both λ1 and λ2 are positive. Calculating the conditional
exponents numerically, we can show that IP ≥ IC , and thus IP is an upper
bound for the MIR. For more details on this inequality, see [12]

4.4 Evolutionary construction of a network

In our simulations, we have evolved networks of equal bidirectional couplings
[32]. That means that the Laplacian in Eq. (1) is a symmetric matrix of
dimension N with integer entries {0, 1} for the off diagonal elements, and
the diagonal elements equal to −

∑
j Gij , with i 6= j.

Finding the network topologies which maximize B in Eq. (7) is imprac-
tical even for moderately large N . Figuring out by ”brute force” which
Laplacian produces the desired eigenvalue spectra would require the inspec-
tion of a number of 2N(N−1)/2

N !
configurations. To overcome this difficulty, Ref.

[20] proposed an evolutionary procedure in order to reconstruct the network
in order to maximize some cost function. Their procedure has two main
steps regarded as mutation and selection. The mutation steps correspond
to a random modification of the pattern of connections. The selection steps
consist in accepting or rejecting the mutated network, in accordance with
the criterion of maximization of the cost function B, in Eq. (7).
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We consider a random initial network configuration, with N elements,
which produce an initial Laplacian G0, whose eigenvalues produce a value
B0 for the cost function. We take at random one element of this network
and delete all links connected to it. In the following, we choose randomly
a new degree k to this element and connect this element (in a bidirectional
way) to k other elements randomly chosen. This procedure generates a new
network that possesses the Laplacian G′, whose eigenvalues produce a value
B′. To decide if this mutation is accepted or not, we calculate ∆ǫ = B′ −B0.
If ∆ǫ > 0, the new network whose Laplacian is G′ is accepted. If, on the
other hand, ∆ǫ < 0, we still accept the new mutation, but with a probability
p(∆ǫ) = exp(−∆/ǫT ). If a mutation is accepted then the network whose
Laplacian is G0 is replaced by the network whose Laplacian is G′.

The parameter T is a kind of “temperature” which controls the level
of noise responsible for the mutations. It controls whether the evolution
process converges or not. Usually, for high temperatures one expects the
evolution never to converge, since new mutations that maximizes B are often
not accepted. In our simulations, we have used T ∼= 0.0005.

These steps are applied iteratively up to the point when |∆ǫ| = 0 for
about 10,000 steps, being that we consider an evolution time of the order of
1,000,000 steps. That means that the evolution process has converged after
the elapse of some time to an equilibrium state. If for more than one network
topology |∆ǫ| = 0 for about 10,000 steps, we choose the network that has
the larger B value.

This constraint avoids the task of finding the best network topology. How-
ever, we consider that a reasonably low number of mutations would recreate
what usually happens in real networks.
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Figure 1: The quantities IC (black circles), IP (red squares), IS (green dia-
monds), and HKS (blue diamonds), for two (A) and four (B) coupled neurons,
in an all-to-all topology. Notice that since there are only two different eigen-
values, there is only one channel of communication whose upper bound for
the MIR is given by IP = |λ1 − λ2|. Also, IS and IC represent the mutual
information exchanged between any two pairs of elements in the system. In
(A), σ2∗=0.092, σBPS

∼= 0.2, σ2
min =0.42, σPS = 0.47, and σCS=0.5. In (B),

σ2∗=0.046, σBPS
∼= 0.1, σ2

min =0.21, σPS = 0.24, and σCS=0.25. CS indicates
the coupling interval σ ≥ σCS for which there exists complete synchroniza-
tion.
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Figure 2: MIR between the central neuron and an outer one (black circles),
I1
P , (resp. IS(1, k), in green line), and between two outer ones (red squares),

I3
P , (resp. IS(k, l), in blue line). Blue diamonds represents the KS-entropy.

Other quantities are σ4∗ = 0.181, σ2∗ = 0.044, σ4
min = 0.84, σ2

min = 0.22,
σ4

CS=0.27, σBPS=0.265, σPS=0.92, and σCS=1.0. The star indicates the
parameter for which BPS first appears.
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Figure 3: Representation of the eigenvalues sets that produce good self-
excitable (SE) and non-self-excitable active networks (NSE).
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Figure 4: The average value of the upper bound MIR, 〈IP 〉 [as defined in
Eq. (10)] for active networks composed of 8 elements using one of the many
topologies obtained by evolving the network maximizing B1 (circles), all-to-all
topology (squares), star topology (diamonds), nearest-neighbor (upper trian-
gle), and maximizing B2 (down triangle). The values of σ2

min indicated by the
starts are σ2

min=0.169 (evolving 1), σ2
min=0.05 (all-to-all), σ2

min=0.037 (star),
σ2

min=0.037 (nearest-neighbor), and σ2
min=0.6 (evolving 2). The evolving 1

network has a Laplacian with relevant eigenvalues γ7=3.0000, γ8=6.1004,
which produces a cost function equal to B1=1.033. The evolving 2 network
has a Laplacian with relevant eigenvalues γ2=0.2243 and γ3=1.4107, which
produces a cost function equal to B2=5.2893.
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Figure 5: KS-entropy for the same active networks of Fig. 4 composed of 8
elements.
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Figure 6: A point in this figure in the coordinate k × l means that the elements Sk and

Sl are connected with equal couplings in a bidirectional fashion. In (A), a 32 elements

network, constructed by maximizing the cost function B1 in Eq. (7) and in (B), 32 elements

network, constructed by maximizing the cost function B2 in Eq. (8). In (A), the network

has the topology of a perturbed star, a hub of neurons connected to all the other neurons,

where each outer neuron is sparsely connected to other neurons. The arrow points to the

hub. In (B),the network has the topology of a perturbed all-to-all network, where elements

are almost all-to-all connected. Note that there is one element, the neuron S32, which is

only connected to one neuron, the S1. This isolated neuron is responsible to produce the

large spectral gap between the eigenvalues γ3 and γ2. In (A), the relevant eigenvalues

are γ31=4.97272, γ32=32, which produce a cost function equal to B=5.43478. In (B), the

relevant eigenvalues are γ2=0.99761, γ3=27.09788, which produce a cost function equal to

B2=26.1628.
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Figure 7: 〈IP 〉 for the networks shown in Fig. 6(A-B) by circles and squares,
respectively.
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