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Abstract

The purpose of this paper is the definition of a particular frac-
tional analog of the Laplace operator in a rectangular domain in the
plane by exploiting the Riemann-Liouville fractional derivatives. Such
a definition allows the introduction of fractional boundary value prob-
lems which correspond to the classical Dirichlet, Neumann and mixed
boundary value problems for the Laplace operator. By exploiting a
suitable Integration by Parts Formula and the positiveness of the cor-
responding energy integral we verify some uniqueness results for the
solutions of the boundary value problems and we show the existence
of particular solutions which play the role of the affine functions.
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1 Introduction

As is well known the fractional Laplace operator is usually defined by exploit-
ing the Riesz transform (c.f. e.g. Samko, Kilbas and Marichev [8, Chap. 5].)
Its properties and applications has been largely investigated in literature. We
mention here as an example the work of Bogdan [1], Samko [7], Guan and
Ma [4], Guan [3], Caffarelli, Salsa and Silvestre [2]. In particular, Guan has
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shown in [3] the validity of a Integration by Parts Formula for the fractional
Laplace operator. Due to the positiveness of the corresponding energy inte-
gral such a formula can be exploited to show uniqueness results for suitable
boundary value problems. Here instead we consider a fractional analog of
the Laplace operator in a rectangular domain in the plane defined by exploit-
ing the Riemann-Liouville fractional derivatives in directions x and y. We
introduce the following notation.

Let xg, 1, %0, y1 € R with zg < z1, yo < y1. Let X =|xg, x1[X]yo, v1[. (1)

Let o, 8 €]0,1[. In [9] the second author has considered the operator A®?
defined by

A*Pu(z,y) = Dyrtu(e,y) + Dy lule,y) V(r,y) € dX (2)

for all measurable function v from X to R. Here clX denotes the closure
of X and Diotf‘, D;rf denote the Riemann-Liouville fractional derivative
by z and y of order 1 + « and 1 + f3, respectively (cf. Samko, Kilbas and
Marichev [8, Chap. 1 and 5].) In particular, by the results of [9] one can
deduce a uniqueness result for the solution of the fractional boundary value

problem

APz, y) =0 for all (z,y) € X
Ié{f“(% vo) = fo(x), D50+u(x,y0) = fi(z) for all x €]zg, z1[, (3)
Izofu(%, y) = go(y) ) D§0+U($o; y) = gl(y) for all y E]?/o; yl[,

where [, ;O_f and Iylo_ f denote the Riemann-Liouville fractional integration by
x and y of order 1 — o and 1 — f3, respectively (cf. Samko et al. [8, Chap. 1
and 5].) We note that, for @ and § which tends to 1 the boundary value
problem in (3) becomes

Au=0 in X
u(z,yo) = folz), diu(x,yo) = fi forall x € [xg, 11], (4)
u(zo,y) = go(y), su(wo,y) = g1 for all y € [yo, 1] .

The system of equations in (4) is a boundary value problem for the par-
tial differential equation Au = 0 with a Cauchy type condition on the edge
{(z0,y) : v € [wo, ]} U{(z,%) : = € [z, x1]}. As is well known, for the
equation Au = 0 it is more common to consider boundary conditions of
Dirichlet, Neumann, Robin or mixed type. It is then natural to ask whether
it would be possible to consider fractional boundary value problems like the
one in (3) but with boundary condition which becomes of Dirichlet, Neu-
mann, Robin or mixed type when o, — 1 and in case to investigate the

2



existence and the uniqueness properties of the corresponding solutions. In
this paper we exploit a method based on a suitable Integration by Parts
Formula and on the positiveness of the corresponding energy integral. Our
aim is to prove uniqueness results for some fractional boundary value prob-
lems which correspond to the Dirichlet, Neumann, Robin or mixed classical
boundary value problems. Unfortunately we could not succeed to apply this
strategy to the operator A®?. For this reason we introduce the fractional
partial differential operator A*{ = Dg _Dg . + D51,D50 + (cf. definitions
(12) here below.) For the operator A%? we can prove the validity of an Inte-
gration by Parts Formula which in turn implies uniqueness properties of the
solutions of some boundary value problems for the fractional partial differ-
ential equations Af’fu = F (cf. Thm. 4.2.) In particular, we consider in two
examples mixed Dirichlet-Neumann and Robin type boundary conditions (cf.
Examples 5.3 and 5.4.)

The paper is organize as follows. Section 2 is a section of preliminaries
where we introduce some notation and we state some known properties of
the fractional integral and derivatives. In Section 3 we introduce the space of
functions A®?(X) which is the natural domain of the operator A*?. Then,
we introduce the functions C'; L and A which play the role of constant, linear
and affine functions on a interval of R. In Section 4 we prove the Integration
by Parts formula for the operator Af’f and for a couple of functions u, v
of A%#(X). In Section 5 we deduce some uniqueness results for fractional
boundary value problems for the operator Ai’f. We also show in a example
how to obtain existence and uniqueness results for those particular boundary
value problems which admit solutions corresponding to the affine functions
on X (cf. Example 5.5.) In Section 6, we provide an equivalent formulation
of the equation Ai’fu = F' in terms of a fractional integral equation. In the
last Section 7, we show the existence of solution u of the equation Aa_’fu =0
which do not correspond to the affine functions on X. To do so, we investigate

equation A%y = 0 for u(z,y) = f(x)g(y) (cf. Thm. 7.2 and 7.4.)

2 Preliminaries and notation

Let a,b € R, a < b. Let v €]0,1[. Let f be a measurable function from
the open interval |a,b[ to R. Then I/, f(z) and D], f(z) denote the left-
sided Riemann-Liouville integral and derivative of f in the point z of |a, b|,
respectively, and I, f(z), D;_f(z) denote the right-sided Riemann-Liouville
integral and derivative of f in the point z of |a, b, respectively. Namely, we



set

I'(v)
DLI@) = Freras | =0 0 )
i) =g [ =, (7)
Dy f@) =gy [ -0 0 (8)

for all x €|a,b]. Here I'(-) denotes the Euler Gamma Function. We define
the Riemann-Liouville fractional integral and derivative in the endpoints a
and b to be the limits as x — a and * — b of the expressions in (5)—
(8). Namely, we set I, f(a) = lim, .+ I, f(z), I, f(b) = limm_ﬂ7 f(z),
and D), f(a) = lim, .+ D, f(x), D), f(b) = lim, - D], f(x), I, ( ) =
lim, o+ I) f(x), I f(b) = lim, - I) f(x), D)_f(a) = lim, .+ D f(x),
D} f(b) =lim, - D] f(z). We also find convenient to set

z/ﬁwﬁ, Eﬂ@z/f®ﬁ. (9)

Now let xo, z1,yo,y1, X be as in (1). Let u = u(-,-) be a function from
clX to R. Let (z,y) be a fixed point of clX. Then u, and u¥ denote the
functions from [y, 1] to R and from [xg, z1] to R, respectively, defined by

uz(s) =u(z,s) Vs ey, u/(t) = ult,y) Vte |xg,x1].

If (x,y) € clX then we denote by I}  u(x,y) the v fractional integral in
the point = of the function w¥. Namely, we set I]  u(z,y) = I]  u¥(x)
for all (z,y) € clX. Similarly we define D] +u(x y) = D), u(x), and
L) u(z, y) = I, u,(y), and D, u(z,y) = D) ,u,(y), and I} u(z,y) =
I} _w¥(z), and D] _u(zx,y) = D7 _uY(x), and I7 u(z,y) = I;l,uz(y), and
D;l_u(:t,y) D'yyl_ux(y) for all (x,y) € clX.

We collect in the following Lemmas 2.1, 2.2 and 2.3 some known bounded-
ness and inversion properties of the operators I, and I, acting on Ly(a,b)
and on L;(X). In the sequel we denote by L,(a,b) and by L,(X) the classi-
cal Lebesgue spaces endowed with the usual norm || - ||,,, for all p € [1, +o0].
We denote by ACla,b] the set of absolutely continuous functions from the
closed interval [a, b] to R. If A €]0, 1], we denote by H*[a, b] the space of the
functions from [a, b] to R which are Hélder continuous with exponent A.



Lemma 2.1. Let a,b € R, a < b. Let v €]0,1]. Let f € Li(a,b). Then the
functions I f and I]_f belong to L,(a,b) for allr € [1,1/(1—~)[. Moreover,

b—a)Y 1+1/r b a"/ 1+1/r
we have | I, < m()(r(i_l)ﬂ Al and 1 fl < B,

forallr e [1,1/(1 —

Proof. The statement of the Lemma can be verified by means of a straight-
forward calculation based on the generalized Minkowski Inequality. O

Lemma 2.2. Let xo, x1, Yo, y1, X be asin (1). Letv €]0,1[, p € [1,1/(1—7)].

Then the operators 1), I, I, ., 1) are bounded from L,(X) to itself.

Proof. The statement of the Lemma can be verified by means of a straightfor-
ward calculation based on the generalized Minkowski Inequality. We include
here a proof for the sake of completeness. Let ¢ € L,(X). Then we have

{/ / 11, oz, y)|" dxdy}l (10)
) L1 o] )

where X, =1 if t < x and X,, =0 if t > x. By the Minkowski Inequality
the expression on the right hand side of (10) is less or equal than

1 /CEl {/$1 /y1 ( _1) » }117
—_— Xico (x = )PV (L, y)|" dady p dt
P Jog ey Sy 7 SN
1 1 z1 % Y1 %
= me—tp(v—l)dx} {/ t, pd} dt .
5 [ deamn "ot ay

Which in turn is less or equal than

F(ig)c(lp;yxi);tlgl/p /x : { /y j |o(t,y) " dy}; dt.

Finally, by the Holder Inequality the integral right above is less or equal than
(x1 —20)' "7 ||¢]l,. So that

(21— x0)"

H 0+¢Hp — F )( (7 1) )1/;; H¢H

The proof for I

’7 ’7 . . . . .
21— Lo+ and I _ is similar and we omit it. O



Lemma 2.3. Let a,b € R, a < b. Let vy €]0,1]. Let f € Li(a,b). Then the
following statements hold.

(1) = DZ+IZ+f-
(i) f=D) 1) [
(iii) If I.."f € ACla,b], then

ro(z)’ 1

['(v)

where rq(x) = (x — a) for all x € [a,b].

Loy Doy f(x) = flx) - I;"fla) Ve [ab)

() If 1,7 f € AC[a, ], then

D f(x) = f(a) = "L F () Ve € fab

where ry(x) = (b — x) for all x € [a,b].

Proof. For a proof of (i) and (iii) we refer Samko et al. [8, Chap. 1, Thm. 2.4].
To prove (ii) we note that

I f(x) = QULQS) (x), Dy f(x) =Q(De,Qf) (x)  Vaela,b] (11)

where @ is the “reflection operator” which takes a function g from [a,b] to
R to the function Qg defined by Qg(t) = g(a + b —t) for all ¢ € [a,b]. Then
we have D) I)) f =Q (D), QQ (I),Qf)) = Q (D, (I].Qf)) and statement
(i) implies that Q (D), (I, Qf)) = QQf = f. Similarly we verify state-
ment (iv). Indeed by (11) we have I D] f = Q([,.QQ (D).Qf)) =
Q (I} (D}.Qf)). Then statement (iii) implies that Q (1), (D}, Qf))
QQf —T() QI QU Qf () = f =T () 'y LT £(b).

Lemma 2.4. Leta,b € R, a <b. Let~y,0 €]0,1[, v+0 < 1. Let f € Ly(a,b).
Then I I f=17"f and I) 1) f = 1]°f.

O

Proof. For a proof of 1,17, f = Igigf we refer to Samko et al. [8, Chap. 1,
Thm. 2.5]. Then, by equation I} I} f = QI) I Qf we deduce the validity
of I I! f= Ib”_wf (cf. proof of Lemma 2.3.) O

Now let xg, x1, Yo, 41, X be asin (1). Let o, § €]0,1[. We set

A*Py(z,y) = —D2 Dy u(z,y) — D’ D50+u(:1c,y) V(z,y) € clX (12)

xr1— Yyi1—



and
Valu(ey) = (D5, ulw,y), Djysulw,y)) Viwy) €dX  (13)

for all measurable function v of X to R. We note that the expression on
the right hand side of (12) is defined for almost all (z,y) € X if Dy  u¥ €
12 _(Ly(z9, 1)) and Dy0+ux € Ifl,(Ll(yo,yl)) for all fixed (z,y) € clX.
Moreover, if u is a sufficiently smooth functlon on X then the right hand
side of (12) converges to Au = + 4y + 2u and the right hand side of (13)

gy, 4 )Whena,ﬁ—>1

converges to Vu = (F-u, U

3 Some particular functions for Ag’f

Let a,b € R, a < b. Let v €]0, 1[. Then we denote by .A(a,b) the space of
functions from |a, b] to R defined by

A'(a,b) = {f € Li(a,b) : I,;"f € AC[a,b] and I,_ "D}, f € AC[a,b]} .

Let o, 21, %0, y1, X be as in (1). Let «, 8 €]0,1[. We set
AP (X)) = {u € Li(X) : (14)
u’ € A%(xq, 1), uy € AP(yo,y1) for almost all (z,y) € ClX}.

Let ¢,d € R. We denote by C[y,a,b,c|, L[y,a,b,d] and Aly,a,b,c,d] the
functions form Ja, b[ to R defined by

Cly,a,b,d(t) = “F(g)_lc, (15)
Livy,a,b,d|(t) = %d, (16)
Apy,ab,e,d)(t) = ﬁ{’"“( et (1,0 ](t)d} (17)

for all ¢ €]a,b| and for all ¢,d € R (see also Lemma 2.3 (iii) and (iv).) We
note that for v — 1 the function C[y,a,b,c|, Llv,a,b,d] and Aly,a,b,c,d]
become constant, linear and affine on |a, b, respectively.

For the space A7 (a, b) the following statements hold.

Proposition 3.1. Let a,b € R, a < b. Let v €]0,1[. Then the following
statements hold.



(i) A function f from la,b] to R belongs to A7(a,b) if and only if there
exist ¢ € Ly(a,b) and ¢,d € R such that [ = I I ¢ + Alvy,a,b,¢,d].

(ii) Let f € A¥(a,b). Let ¢ € Lyi(a,b). Let c,d € R. Then we have

Dy_Doyf =9,
1,77 f(a) =
I'D) f(b) =d

if and only if f =11 ¢+ Alvy,a,b,c,d].
(iii) If f € A7(a,b), then the functions f and D], f belong to L,(a,b) for

allr € [1,(1—~)71.

(w) If f € A(a, b) < %, then f — C|v,a,b, I;:Yf(a)] € L.(a,b) for
allr e [1,(1— ) [

(v) If f € A'(a,b) and v > 35, then f — Cly,a,b, .. f(a)] € Ha, ] for

all X €]0,2y — 1.

Proof. (i) Let f € AY(a,b). Then I,."f € AC[a,b]. Thus there exist ¢ € R
and ¢ € Ly(a,b) such that I,;"f = I'.¢ + ¢. By Lemma 2.3 (i), and by
Lemma 2.4, and by the membership of f in L;(a,b) we deduce that

f=D I +¢) = I+ D3 c. (18)

Moreover, D}, f = L(I},¢) +¢c) = ¢ and I, D], f = I,""¢. Since we
have I, "D). f € AC[a,b], we deduce that there exists d € R and ¢ €
Ly(a,b) such that I, = I} ¢+ d. Thus Lemma 2.3 (ii) implies that
¢ = D,_"(IL ¢ + d). By equation (18) and by Lemma 2.4 we deduce that
f=1.1" ¢+ D ﬁc—l—f;rDl 7d, which in turn implies that f = I/, I] ¢+
ﬁr;* c+ F(ly)l(lr d = I I) ¢ + Aly,a,b,c,d] (cf. Samko et al. [8,
Chap. 1, § 2.5].)

Now let f = I 1) ¢+ A[vy,a,b,c,d]. We show that f € A(a,b). Since
I7, and I} are bounded in L, (a, b) and since 71~ and r, ? belong to Ll(a b),
we deduce that f € L 1(a,b) (cf. Lemma 2.1.) Then we have I,.7f =

[1 I ¢p+c+ (17)[;+ “7d and I1 "Dl f=1}¢+d(cf Lemma24) Thus

17 f and I.-7D]., f belong to AC[a, b]. By definition (14) we conclude that
feAla,b).
(i) Since f € A7(a,b), statement (i) implies that there exist ¢’ € L;(a,b),
d,d € Rsuch that f =I) I ¢'+Aly,a,b,¢,d]. By Lemma 2.3 (i) and (ii),
and by a straightforward calculation we verify that D} D}, f = ¢’ (see also
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Samko et al. [8, Chap. 1, § 2.5].) By Lemma 2.4, I,.7f = I} (I, 7¢/) + ¢ +

FC(I;) I;Jrr;_v. By the membership of I, "¢’ and of , 7 in L (a,b) we deduce

that 1,.7 f(a) = ¢. Finally, I, "D} f = I} ¢ +d and thus I,_" D}, f(b) =
d'. Hence the system of equations in statement (ii) holds if and only if ¢’ = ¢,
¢ = cand d = d. The validity of the statement follows immediately.

(iii) Since f € Li(a,b), we have f = D", f (cf. Lemma 2.3 (i).)
Since we have I, "f € AC[a,b] and since D +7 maps functions of AC|a, b
to functions of L,(a,b) for all r € [1, (1 —~)7![ (cf. Samko et al. [8, Chap. 1,
Lemma 2.2]), we deduce that f € L,(a,b) for all r € [1,(1 —~)![. To show
that D), f € L,(a,b) for r € [1,(1—~)"'[ we note that D], f = I, P+ I 1al
(cf. statement (i) and Lemma 2.3 (i), see also Samko et al. [8, Chap 1
§ 2.5].) Then the statement follows by Lemma 2.1 and by a straightforward
calculation.

(iv) The operator I, maps functions of L,(a,b) with p €]1,77![ to func-
tions of L,(a,b) with ¢ = p(1—~p)~* (cf. Samko et al. [8, Chap. 1, Thm. 3.5].)
Then, by the equality f — Cla,a,b, I..7 f(a)] = I, D}, f and by statement
(iii) we deduce the validity of statement (iv) (see also Lemma 2.3 (iii).)

(v) The operator I, maps functions of L,(a, b) with p > v~ to functions
of H' ™ » [a b] (cf. Samko et al. [8, Chap. 1, Thm. 3.6].) Then, by the equality
f = Cla,a,b, 1,7 f(a)] = I] D], f and by statement (iii) we deduce the
validity of statement (iv) (see also Lemma 2.3 (iii).) O

In the following Proposition 3.2 we emphasize the analogy between the
role played by the functions C, L and A (cf. (15), (16) and (17)) as solutions
of the fractional differential equation D} D}, f = 0 and the corresponding
constant, linear and affine solutions of the ‘classical’ differential equation
(;‘l—; f =0. To do so, we find convenient to introduce the following notation.
Let v €]0,1[, a,b € R, a < b. Let f € A¥(a,b). Then we set

BLf = Lif(a), (19)
Bppf = —ﬂ Dy f(a), (20)
Byf = L'D) f(b), (21)
Binf = —1..D)_ D, f(b). (22)

Here the letter ‘D’ stands for ‘Dirichlet’ and the letter ‘N’ stands for ‘Neu-
mann’. We note that, for f is sufficiently smooth the right hand sides of

(19)—(22) converge to f(a), f(b) — f(a), %f(b) and % (b) — % (a), respec-
tively, as v — 1.

Proposition 3.2. Let vy €]1/2,1], a,b € R, a < b. Let f € A'(a,b). Then
the following statement hold.



(i) The following condition are equivalent.

(i.a) =0,
(i.b) D) D], f=0, B,f=0 and B},,f =0,
(i.c) D] D], f=0, B,f=0 and B}, f = 0.

(ii) The following condition are equivalent.

(ii.a) f=Cly,a,b, BLf],

(ii.a) D), f =0,

(ii.c) D} D]}, f =0 and B} f =0,
(ii.d) D} D}, f =0 and B},,f = 0.

(iii) f = L[y, a,b, B} f] if and only if D} D_, f =0 and B),f = 0.
(w) f=Aly,a,b,BLf, By f] if and only if D] D, f =0.

(v) If f = Aly,a,b, BLf, BX f] then BYnf = 0.

Proof. Since f € A7(a,b) and D] D], f =0, Proposition 3.1 (i), (ii) implies

that f = A[y,a,b, BLf, B}, f]. Then the equivalence of (i.a) and (i.c) follows

immediately. Now we prove that (i.b) implies (i.a). Since BLf = 0 we

have f = L[y,a,b, B\ f]. Since B},,f = 0 we have B},,L[v,a,b, B} f] =
1

[;_;f?(—;)(a)B?Vf = 0 (cf. Lemma 2.3 (i).) By a direct evaluation one can

y—1 2v—1
verify that ];’_}l’m (a) = % (cf. Samko et al. [8, Chap. 1, (2.45)].)
We deduce that B} f = 0 and thus f = 0. By a linearity argument one
immediately verifies that (i.a) implies (i.c). Hence, the proof of statement (i)

is completed. The proof of statements (ii)—(v) is similar and we omit it. [

In the following Theorems 3.4 and 3.5 we show that the analogy between
the role played by the functions C', L and A and the constant, linear and
affine functions (cf. Proposition 3.2) can be extended to the case of functions
defined on the open rectangle X. To do so we need the following elementary
Lemma 3.3.

Lemma 3.3. Let xg,x1,Y0,y1,X be as in (1). Let v €]0,1[. Let f be a
function from X to R. If f = 0 almost everywhere on X then I) . f = 0,
I} _f=0,D]  f=0and D}, _f =0 almost everywhere on X.

Proof. By Lemma 2.2 we deduce that I ,f =0, I] _f =0, I;;Zf =0

X

and I, 7f = 0 a.c. on X. Then we also have D} f = L1, -7f = 0 and

Dzlff:—ill_wf:Oa.e. on X. O

dr~ T1—
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Theorem 3.4. Let xg,x1, Yo, y1, X be as in (1). Let a, B €]1/2,1[. Let u be
a function of A“P(X). Then we have

DY D% u=0 and D’ D’ u=0 ae onX (23)

T1—" o+ y1—""yo+

if and only if there exist four real constants ¢y, cs, c3 and ¢4 such that

u(z,y) (24)
= 1Ca, xg, 1, 1](2)C[B, yo, y1, 1|(y) + c2C |, g, 1, 1] () L[5, Yo, y1, 1](y)
+C3L[a7 Zo, X1, 1](56’)0[57 Yo, Y1, 1](y) + C4L[O./, Zo, X1, 1](I)L[ﬁ7 Yo, Y1, 1](y)

for almost all (x,y) € X.

Proof. If u is as in (24), then we deduce by Proposition 3.2 and a by a
straightforward application of the Fubini Theorem that wu satisfies the con-
dition in (23).

Now we assume that u satisfies the condition in (23) and we show the
validity of equation (24). By the membership of u in A*?(X) and by
Proposition 3.1 (i), (ii) there exists a function ¢ from X to R such that
@Y € Li(xo, 1) for a.e. y €]yo, y1] and such that u(z,y) = I3 I _o(x,y) +
Ala, zo, 1, B!, ByuY}(z) for a.e. (r,y) € X. Equation Dy _Dg ,u =0
and Lemmas 2.3, 3.3 imply that ¢ = 0 almost everywhere on X. Then, we
have I , I® ¢ = 0 almost everywhere on X. By Lemma 3.3 we deduce that

zo+~ 1
u(z,y) = Ala, xg, x1, Bhu?, Byu’](x) for ae. (z,y) € X. (25)

Similarly, we can show that u(z,y) = A[/B,yo,yl,BguI,Bﬁ,ux](y) for a.e.
(z,y) € X. So that

A[O{, Lo, L1, Bla)uyu B]C\M/'uy] (ZL’) - A[ﬁa Yo, Y1, Bgur7 B]B\/ux](y) (26)

for almost all (z,y) € X. By multiplying both on the left and right hand
side equation (26) by Cla, zo, 21, 1]72C|B, yo, y1, 1]} = F(a)l“(ﬁ)rio_o‘r;o_ﬁ we
deduce that

C1B, 0, 11, 1]71@)3/%“‘1/ (27)
+ (Clev, wo, 21, 1] () L]av, o, 1, 1](2)) (C[B, yo, y1, 1]~ (y) Byu?)
= Cla, xg, 21, 1]_1(x)Bgum
+ (CI8, yo, y1, 17 (W) LIB, yo, y1, 1) (y)) (Clav, o, 21, 117 () By,

for almost all (z,y) € X. We now note that the function T;;“T;;fgu is
continuous on clX \ {(;,y;)}ijefo1y (cf. Proposition 3.1 (i) and (v).) Then
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both the left and the right hand side of equation (27) define a continuous
function on clX \ {(z,¥;)}ijefo1y- In particular, for y €lyo, 1| fixed the
functions defined by the left and the right hand side of (27) have finite limits
as = goes to xg. Moreover, such limits coincide. We note that L|o, xg, 21, 1]
is continuous on [zg, 1] for o > 1/2 (cf. e.g. Proposition 3.1 (v).) Thus
Cla, zg, v, 1] (x) L], wg, 21, 1](z) vanishes as z — x. Then, by taking the
limit as © — x¢ in (27) we deduce that

C[/Bayﬂvyla 1]_1(y)Bguy (28)
= lim {C[a,xo,xl,l]’l(x)Bgux

T—T0

+(C1B, 90,91, 1) (W) LB, yo, w1, 1 () (Clev, zo, 21, 1] (2) Byus ) }

Since the function C[8,yo, y1, 1] (y) LB, v0,v1,1](y) of y E€]yo,y1[ is non-
constant and since the limit on the right hand side of (28) exists in R,
we deduce that both the limits {, = lim,_,,, Cla, 2o, 21, 1]—1(33)31@% and
ly = lim,_,, Clo, xg, 1, 1]_1(:c)B]ﬁVux exist in R. Then equation (28) and
definition (17) imply that

BaDU’y = C[ﬁ, Yo, Y1, 1](?/)[1 + L[ﬁ) Yo, Y1, 1](y)l2 = A[ﬁv Yo, Y1, lly ZQ](y) (29)

for all y €]y, y1[. Now, by the definition in (17) and by (26) we deduce that

C[Oéa Zo, L1, 1]($)A[ﬁa Yo, Y1, l1, lz](y) + L[av To, L1, 1]@)310\(/“?4 (30)
= C[B? Yo, Y1, 1](3’/)3%“35 + L[B? Yo, Y1, 1](y)B]€7uI

for all (z,y) € X. We observe that the function Lo, xg,x1,1] is strictly
positive on [xg, z1]. Then we can divide both the left and right hand side of
(30) by L[a, xg, z1,1] and we obtain
Clo, o, x1, 1](x)
Lla, xg, 21, 1](x)
+C18, 9o, y1, 1] (y) By + L[B, 4o, y1, 1](y)
T Lla, g, 1, 1)(2) T

B u, — Clo, xg, 1, 1) (2)

Lla, zg, 1, 1](x)

Byru, — Cla, g, w1, 1) ()
Lla, zg, x1, 1)(x)

ByuY = —

AlB,yo,y1, i, 1] (y) (31)

Bjﬁvugc
Lla, zg, 1, 1)(x)

= C[B, y0,y1,1](y)

+LI[B, yo, 11, 1](y)

for all (z,y) € X. Since C[B,vo, y1, 1] and L[S, 4o, y1, 1] are linearly indepen-
dent elements of the space of real functions on |yg, y1[, we deduce that there
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exist mq, my € R such that

BYu, — Cla, zo, 1, 1) (2) B, — Cla, xg, 1, 1] ()

Lla, zg, 1, 1)(x) =m  and Lla, g, 71, 1)() -
Hence
Byu? = A[B, yo, y1, m1, ma] . (32)
The validity of condition (24) now follows by the definition in (17), and by
equations (25), (29) and (32). O

Theorem 3.5. Let g, x1,Y0,y1, X be as in (1). Let a, B €]1/2,1]. Let u be
a function of A*P(X). Then we have

Dy ,u=0 and Dgﬁu =0 ae onX (33)

if and only if there exists a constant ¢ € R such that

w(@,y) = cClao, zo, 21, (2)C[B, 50, 41, 1(y) ~ for ace. (z,y) € X.  (34)

Proof. If u is as in (34) then we deduce by Proposition 3.2 (ii) and by a
straightforward application of Fubini Theorem that u satisfies the condition
n (33). Now assume that u satisfies the condition in (33). Then u satisfies
the condition in (23) and Theorem 3.4 implies that u is as in (24) with
c1,09,03,¢4 € R. By condition (33) we have D§O+Dyo+u(x y) = 0. By a
straightforward calculation we deduce that c,(rg!/I'(« (P Ty YT(B) =

which in turns implies that €1 = 0 (see also Samko et al. 8, Chap 1, §2.5].)
Then D2, u(z,y) = cs(r%/T(@))C1B, yo, 1, 1(y) = 0 and DL, u(z, ) =

coClay xg, 1, 1] (2 )( /F( )) = 0 (see also Samko et al. [8, Chap. 1, §2.5].)
Thus s = 0 and c5 = O and condition (34) holds with ¢ = ¢;. O

4 Integration by Parts Formula for Ag’f

In this Section we prove an Integration by Parts Formula for the operator
Af’f. To do so we first verify in the following Proposition 4.1 an e Integration
by Parts Formula for the operator D] D], and for a couple of functions f,
g of A7(a,b), with v > 1.

Proposition 4.1. Let a,b € R, a < b. Let v €]1/2,1[. Let f, g € A¥(a,b).
Then

/( a+f) (Dayg) dt (35)
b
/ (D}_DY,f) (g — Clvasb, Byg))dt + (B f) (B pg)

13



Moreover,
b
| ©rn wrg (36)
b
— [ (DL_DL D)gdt + (B (Blg) + (B Blo)

whenever f;(D;_DZ+f)g dt exists finite (cf. definitions (19)—(22).)

Proof. By Proposition 3.1 (i), (ii) and by the membership of f and ¢ in
A(a,b) there exist two functions ¢, ¢ in L;(a,b) such that f = I, I} ¢ +
Aly,a,b, B f, By f] and g = I I] ¢ + A[y,a,b, B9, BXg]. Then Proposi-
tion 3.2 (ii) and Lemma 2.3 (i) imply that

BlLf . f
DLf=R o+ odmt Dlg=nue D 37
+ b F(’)/) b +9 (’Y) b ( )
So, the integral in the left hand side of (35) equals
b BY g
I Byl ) (I e ) dt 38
/a ( ()" =TT %)

We verify that 7)™, I} ¢ and I,_4 belong to L,(a,b) for all r € [1,1/(1—7)[
(cf. Lemma 2.1.) Then, by the Holder Inequality and by the assumption
v > 1/2 we verify that the functions (I, ¢)(I]_v), (I]_¢)r) ", (I _¢)r1 ™Y,

;7 ~% are summable on Ja, b[. Tt follows that the integral in (38) equals
' y y B?vf ' Y -1
([b—¢) ([b—¢) F(’Y) (Ib—w) Ty dt (39)
B?\/Q/b -1 BYIBYY [° 242
+ I o) r) dt+M/M dt.
0y J, U)ot T ),

Now, by the membership of ¢ in Ly(a,b) and of I ¢ in L,(a,b) for r €
[1,1/(1—7)[, and by the Integration by Parts Theorem for fractional integrals
(cf. Samko et al. [8, Chap. 1, (2.20)]), and by Proposition 3.1 (ii) we have

b
| 10) (1-0) a (40
¢ b b
_ / b (10,1 ) dt = / 6 (9 — Aly,a,b, B)g. Blyg)) dt
b -1 Il V¥~ 1
_ _l'a pv,_  Tat b Y
—/a U Vo S T D

14



Since g — %Bz}g is a continuous function on [a, b] (cf. Proposition 3.1 (v))
the last integral in (40) equals

b ry—t BYg [* .
[ oto— fisBra)a— 28 [Conn s (1)

By the membership of ¢ in L, (a, b) and of 7" in L,(a, b) for r € [1,1/(1—7)],
and by the Integration by Parts Theorem for fractional integral, we have

b 1 1 B'yg b 1
/ Pl r)hdt = F(Nv ) / (1) ¢)r) " dt (42)

Byg
INGD

So that, the expression in (39) equals

’ ry ! N 1 BYfBYg [ oy
¢(g— 2~Blg)d N / (I o dt+M/th.43
[ oo ti5 e J, 7 3

We now note that ¢ = D} DJ.g and BY,g = I, "D}, g(b) (see Proposi-
tion 3.1 (ii).) Then, by Lemma 2.3 (iv) we have

BZWVf ’ Y Tv—l
P(W)/ (Ib—w) b dt (44)

57 Ly PR e
— N / (DX g)r) I’(Ji) (Ibl_“’DaJrg(b))/ar2W 2dt
B fBlLg )

= B0 gl) - 25 [

We deduce that the expression in (43) equals the expression on the right
hand side of (35) (see also Proposition 3.1 (ii).) Thus the equation in (35) is
proved. Equation (36) follows by (35) and by the definition of 1., . O

We note that for 7 — 1 the equation in (36) becomes the usual Integration
by Parts Formula f (4 1)( dtg dt f L hgdt+ (£ F(b) — £ f(a))gla) +
(O (g(b) = g(a)) = = [, (= g dt + (5 £ (0)g(b) — (4 f(a))g(a). We are

now ready to prove in the followmg Theorem 4.2 an Integration by Parts
Formula for the operator Af’f and for a couple of functions u, v in A*?(X)
with a, 8 in |1/2,1].

Theorem 4.2. Let xg,21,Y0,91, X be as in (1). Let o, 8 €]1/2,1[. Let u
and v be functions of A%?(X). ]f the functwns which take (z,y) € X to
D¢ u(z,y) Dy v(z,y), and to Dy0+u(x Y) Dy0+v(x y), and to

(D3, D u(z,y))(v(x, y) — Clv, z0, 21, BHov'](z)),
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and to

(D~ Dy, ) (v, 9) = Cly. o v, Bhva] (4)
belong to Ly(X), then

/ / VL, VB 0) dudy (45)
//{ Sl y))o(z.y)

+(Dg, D3, yul, y))Cly, wo, w1, Bpo') (z)

xr1—

+(Dy, Dy, 9))C[Y, yo, y1, Bhva) (v) }dwdy

Y1 T
+ / (B ) (B po¥)dy + / (Blus)(BS pvs)da

Yo zo

If we further assume that (Dyﬁl_DyOJru(x y))v and (Dg, Dy u(z,y))v belong
to L1(X) then

/ / xo yo+ Vi yo+v> dxdy (46)
/ / w)v dxdy
o

s [T BBy + [ B B
Yo o

Y1
T / (BSyu) (B3 po¥)dy + / (B ua) (B v, )d.

Yo o

Proof. By definition (13) we have

/ / Vzo ot Uy Voo y0+v> dxdy (47)

/ / Dy uDg v+ D50+u D50+v dzxdy .
Yo

Then, by the Fubini Theorem we deduce that the integral on the right hand
side of (47) equals

Y1 x1
/ </ Dy u¥(x) Dy vY(x) da:) dy (48)
Yo zo

1 Y1
—i—/ ( DIOJrux( ) Dgﬁvm(’y) dy> dx .
o Y

0

Then the validity of (45) and (46) follows by Proposition (4.1) and by a
straightforward calculation based on the Fubini Theorem. O]
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5 Some uniqueness results

In this Section we show some umqueness results for fractional boundary value
problems for the equation A>F wu = I which correspond to mixed Dirichlet-
Neumann boundary value problems and to Robin boundary value problems
for the differential equation Au = F when a, f — 1 (cf. Examples 5.3 and
5.4 here below.) To do so, we exploit the following Lemmas 5.1, 5.2.

Lemma 5.1. Let xg,x1,Y0,41, X be as in (1). Let o, €]1/2,1[. Then the
following conditions are equivalent.
(i) w is a function of AP (X), the maps | D2, , ul?, |D ul?, (DS _DS L u)u
and (DB Dy0+u)u belong to L,(X), and we have

APy =0 in X,

(Byyu’)(Bpu?) <0 fory G]yo, nl,

(Byw)(Bppu’) <0 fory €lyo, 1], (49)
(Bt (Bipua) <0 for z o, 1]
(Bf,um)(Blﬁ)Dum) <0 forx €]zg, x1].

(11) There exits ¢ € R such that u(z,y) = ¢ Cla, zo, 21, 1](x)C[5, yo, y1, 1](y)
for almost all (x,y) € X.

Proof. If u = ¢Cla, zg, 21, 1]C|[B, Yo, y1, 1] then Proposition 3.2 (ii) and (v)
imply that Dy vw¥ = 0, Dy, _Dg ,u’ = 0, Bypu? = 0, Byyu? = 0 for all
y €]yo, y1] and that Dfﬁuz =0, Dgl_DWum =0, By pyu, = 0, By yu, =0
for all x €]z, z1[. Hence, u satisfy the conditions in (i). Now let u be as in

(i). Then equation (46) holds with v = u. We deduce that
s

y1 Y1
/ / +u da:dy + / / Dy0+u da:dy <0,

which in turn implies that Df ,u = 0 and Dyo +u = 0 almost everywhere on
X. Then the validity of statement (ii) follows by Theorem 3.5. O

2
Vf’fu‘ dzdy

Lemma 5.2. Let xg,x1,Y0,%1, X be as in (1). Let o, B €]1/2,1[. Let u €
A%B(X) be as in condition (i) of Lemma 5.1. Then the following conditions
are equivalent.

(i) u=0.
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(ii) There exists at least one point x* €)xg, 21| such that Biug. = 0.
(iii) There exists at least one point y* €|yo, y1[ such that B{u?" = 0.

Proof. By Lemma 5.1, we have u = ¢Cl«, zo, 1, 1]C[B, Y0, y1, 1]. Then we
can verify that Bgux* = cCla, xg, x1, 1)(z*), guy* = cC[B, yo,y1, 1](y*)
(cf. Proposition 3.2.) The equivalence of (i)—(iii) and condition ¢ = 0 follows
immediately. [l

Example 5.3. Let xo,x1,Y0,%1, X be as in (1). Let a, B €|1/2,1[. Let F
be a function from X to R. Let fo, fi be functions from |xg, x| to R. Let
go, g1 be functions from lyo, y1[ to R. Then there exist at most one function
u € A%P(X) such that

Aafu =F in X,

Du:r: fo(z)  forx G]xo,xl[
Bpus = fi(z) for x €]zg, 21],
B{uY = go(y)  fory €]yo, il
By’ = g1(y) fory €lyo, yi|

and such that | DS ul?, |D Lrul? (DS _D2  u)u and (Dgl_DyU+u)u belong
to Ll(X)

Proof. By linearity it suffices to show that u = 0 for ' =0, fo = f1 =0
and gy = g1 = 0. Then the validity of the statement follows by Lemmas 5.1,
5.2. O

Example 5.4. Let xo, z1,Y0, 41, X be as in (1). Let o, B €]1/2,1[. Let F be
a function from X to R. Let f be a functions from the boundary 0X of X
to R. Assume that f < 0 and that there exists at least one point y* €|yo, yi|
such that f(zo,y*) < 0. Then there exist at most one function u € A“’(X)
such that

APy =F in X,

B]%Nux = f(x,yo)Bgux forx E]:Eo, xq[,

By, = [(,41)Bppus for x €], 1], (50)

Biyyu? = f(zo,y)Bpu¥  fory €lyo, yil,

B’ = f(z1,y)Bppu’  fory €lyo, 1|

and such that |D2 ,ul?, | D) ul?, (DS _D2 u)u and (D, _Dl  u)u belong
to Ll (X)
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Proof. By linearity it suffices to show that u = 0 for F' = 0. By Lemma 5.1,
there exists ¢ € R such that u = ¢Cla, xo, 1, 1|C[5, Yo, y1, 1]. Then Propo-
sition 3.2 (v) implies that B{yu? = 0 for all y €]yo, y1[. Since f(zo,y*) <
0, the third equation in (50) implies that B%uY" = 0. Then u = 0 by
Lemma 5.2. [l

By exploiting Theorem 3.4 and the uniqueness results in this Section, we
can show existence and uniqueness results for those particular boundary value
problems for the equation A‘i’fzu = 0 which admit solutions corresponding to
the affine functions on X when a, § — 1 (cf. equation (24).) In the following
Example 5.5 we consider the case of a mixed Dirichlet-Neumann boundary
value problem.

Example 5.5. Let zg,x1,Y0,y1,X be as in (1). Let o, €]1/2,1[. Let
dy,ds,ds,dy € R. Then there exists a unique solution u € A“?(X) of

( Aa_’fu =0 in X,
Bgux = Ala, xg, x1, dy, ds](2) for x e]xo,xl[
BgDux = %A[a, T, X1, do, dy](z)  for x €]xg, 21], (51)
Byw? = A[B,yo0, Y1, d3, da)(y) Jfor y €lyo,

| Byyuw! =0 for y €lyo, y1|

such that | D¢ ,ul?, |D ,uf?, (D2,_D2 ,u)u and (Dfl_D’B Lu)u belong to

Li(X). Moreover, the solution u satisfies the equation in (24) with ¢; = dy,
Cy =d, 3 =d3, ¢4 = dy.

Proof. By Proposition 3.2 and by a straightforward calculation we verify that
the function defined by the right hand side of (24) with ¢; = dy, ¢co = da,
c3 = ds, ¢4 = dy is a solution of the system in (51) (see also Samko et al. [8,
Chap. 1, § 2.5].) The uniqueness of such a solution follows by the result in
Example 5.3. [

6 An integral equivalent for A” +u =F

In this Section we introduce a fractlonal integral equation equivalent to the
fractional differential equation A®? Yu = F. To do so, we need the following
elementary Lemmas 6.1 and 6.2.

Lemma 6.1. Let xo,xl,yo,yl,X be as in (1). Let o, €]0,1[. Let f €
Li(X). Then we have I¢ . I0  f =10 1% f, and I¢ _I) _f=1) 1o _f.

yi—"r1—
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Proof. Let fi(z,y) = sup{f(z,y),0} and f_(z,y) = sup{—f(z,y),0} for
all (z,y) € X. So that f = f, — f_. Then we have f,,f_ € L;(X) and
f+, f- > 0. By Lemma 2.2 we deduce that

150+150+f - Igo+150+f+ - ]go+150+f— .

By the Fubini Theorem we have I§‘0+]50+f+ = ]50+I§0+f+ and I§‘0+150+f_ =

Ifﬁlgﬁf_. Then I§O+Ifo+f = 150+I§O+f. The proof for I3 and Ifl, is
similar and we omit it. O

Lemma 6.2. Let xo, z1,Y0,y1, X be as in (1). Let v €]0,1[. Let f € L1(X).
IfI0 f=0(orI) _f=0,0r L) f=0,o0rI) f=0)ae onX, then
f=0.

Proof. Let I, f =0a.e. on X. Then D] I | f(z,y) = D, I} . f(x) =0
for a.e. (z,y) € X (cf. Lemma 3.3.) By the membership of f in L;(X) and
by the Fubini Theorem we have f¥ € Ly(zg,z1) for a.e. y €yo, y1]. Then, by
Lemma 2.3 (i), f(z,y) = fY(z) = D}, I, f¥(z) = 0 for a.e. « €]xo,z1[ and
a.e. y €lyo, y1[- O

Theorem 6.3. Let xq,z1,Y0,y1, X be as in (1). Let o, 5 €]0,1[. Let F €
Ly(X). Let u € A*P(X) be such that D2 _DS  u and Dfl_Da u belong to

T1— Yo+

Li(X). Then the following equations (52) and (53) are equivalent.

APy = F a.e. in X, (52)
—I0 I u(x,y) — 17 1P u(x,y) (53)
To+"T1— ) Yo+ y1— )

1
+m-]§o+1yﬂr/1 [a, xo, 21, BHu?, Bf\‘,uy] (x)

1

«a a B 8
+mjsco+]$1—"4[ﬁa Yo, Y1, BDuJ:7 BNU’JZ:| (y)
= ]go+jyﬂo+]g1—]yﬁlfF(l‘ay) fOT a.ce. (Jf,y) € X.

Proof. By the membership of Acf’fu and Fin L;(X), and by the boundedness

of the operators I¢ , Ifﬁ, I, 151, from L;(X) to itself (cf. Lemma 2.2),

and by Lemma 6.2 the equation in (52) is equivalent to

o 08 e 18 Ay =12 18 1e 1P F (54)

o+ Yo+ T1—"Y1— o+ Yo+ 1 —"Y1—" -

By definition (12), and by the membership of I 1_‘1D§0 ¥ in AC[wg, 2] and

Tr1—

of Il_ﬁDf LUy in AC|yo, y1], and by statements (iii) and (iv) of Lemma 2.3,

Yyi1— 0
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and by Lemma 6.1 we deduce that

I3 Iy, A*u(z,y) = —I3,_Dy cu(e.y) — I, Dy, +u<ac v) (55)
T ()" ! ) 1—
[/3 0 [1 aDa I Y0 [ ﬁD
+ yl—{ F(Oé) T1— +u 1, Y }+ oc1—{ ) y1— yo+u(3j yl)

for almost all (z,y) € X Now, by (55), and by the membership of I, *uY in
AC|zg, 1] and of I~ +ux in AC[yo,y1], and by (iii) and (iv) of Lemma 2.3,
and by Lemma 6.1, and by definitions (17), (19), (21) we deduce that the
function on the left hand side of (54) equals the function on left hand side
of (53) almost everywhere on X. O

7 Solutions in the form u(z,y) = f(z)g(y)

The functions u € A%?(X) which satisfy the equation in (24) for some
c1,Co,C3,¢4 € R are solutions of the equation Af’f_u = 0. Indeed we have
Dg _Dg v =0 and Dgl_DyoJru = 0. Besides, every function u € A*#(X)
which satisfies both the equations Dy, _Dg ,u = 0 and D51,D50+u =0,1is a
solution of the equation in (24) for some ¢y, ¢o, c3,¢4 € R (cf. Theorem 3.4.)
Our purpose in this Section is to show the existence of solutions u € A%?(X)
of A®P *u = 0 which are not solution of both the equations Dg Dg ,u=0
and Dfl_Dﬁ Lu = 0. To do so we consider equation A% u = 0 for functions
u(z,y) = f(z)g9(y) and we need the following Lemma.
Lemma 7.1. Let a,b,c,d,w € R, a < b. Let vy €]0,1]. Let f € Li(a,b). If

f+wll I f=Aly,a,bcd], then f € A'(a,b) and BLf = ¢, B f =d.

Proof. By the boundedness of I, from L;(a,b) to itself and by the member-
ship of f in Li(a,b), we have I} f € Ly(a,b). Then I,;"f = —wI} . I f+
c+ %[;Jrrg_l and I, "D} f = —wI} f+d (cf. Lemma 2.4 and Lemma 2.3
(i) and (ii).) By the membership of I] f, #J~" and f in Li(a,b) we de-
duce that I, +7 f and I DY o[ are absolutely continuous on [a,b] and that

L' f(a) =cand I jVDL (b) = d. Thus the validity of the Lemma follows
by the definition of A7(a,b) and by the definitions in (19), (21). O

In the following Theorem 7.2 we show that equation Ai’fu = 0 with
u(z,y) = f(x)g(y) is equivalent to a system of fractional integral equations
for the functions f and g.

Theorem 7.2. Let xg,x1,Y0,y1, X be as in (1). Let f € Li(xg,x1), g €
Li(yo,v1). Assume that fai)l |fldz > 0 and fy‘q’;l lgldy > 0. Let u € L(X)
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be defined by u(z,y) = f(x)g(y) for all (x,y) € X. Then the following
conditions are equivalent.

(i) ue A*?(X) and A%Pu=0 a.e on X.
(it) There exists w,cy,dy, ¢y, d, € R such that

{f(x) +wl I _f(z) = Ala,zo, 21, ¢,dy](x)  for a.e. x €|xg, x4,
9(y) —wlp Iy _g(y) = A[B,y0, 41, ¢, dg] (y)  for a.e. y €lyo, -

Proof. First we show that the condition in (i) implies the condition in (ii).
By the membership of u in A*%(X), we have (I, f)g(y) € AC[xo,z1] for
a.e. Y €|yo,y1[. Since the function ¢ is not identically equal to 0, we deduce
that I, f € AC[zg,z1]. Similarly, we prove that Imll__a oS € AC[xo, 21],
Iylo_fg, Iyll_ngoJrg € AC[xg,z1]. Thus f € A%(wg,7,) and g € AP(yo, y1).
Now, by Theorem 6.3 and by Fubini Theorem we deduce that

{12, 12 f() o) — A[B,v0, 11, By, Big) (v)} (56)
+H{Ip Iy g H f(2) — Al 2o, 20, B f, B f] (x)} =0

for a.e. (z,y) in X. Since [50+ and 151, are bounded in Li(yo,y1), we

have [50+151_g € Li(y0,v1). Moreover, fygf |I§0+Iyﬁl_g]dy > 0. Indeed if

Ifﬁffl,g = 0 then g = D51,D50+(]50+1y1,g) = 0, which contradicts the
assumption fyz’(']l |g| dy > 0. Then, by multiplying the left and right hand side

of equation (56) by the function

+1 I I0 g(y) >0,
sign([50+[y’81_g)(y) =< -1 if 150+[51_g(y) <0,
0 ifI).I) _g(y)=0,
and by integrating over y €|yo, 1], we deduce that
wlp I3 _f(x) + f(x) — Ale, wo, 21, BR f, By f](2) = 0 (57)

for a.e. x €]xg, [, where

fy!i)l Slgn(150+.751_g)(y){9(y) - A[/Ba Yo, Y1, ng7 B]szg] (y)}dy

fyzi)l ’[yﬁo+[y/81*g|dy

(58)

w =

Then, by equations (56) and (57) we deduce that

{15,125 f (@)} a(y) — A[B,y0, 91, Bpg. BRg] (v) } (59)
—w{I§O+I§1_f(m)}{[50+Iyﬁl,g(y)} =0 for a.e. (z,y) € X.
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Now we observe that 12 I _f € Ly (o, 21) and [ |13 T2 _ fldz > 0. Thus

o+ x1— Tro+ X1

equation (59) implies that

g(y) - A[Ba Yo, Y1, nga B]B\/g} (y) - WI50+]51—g<y) =0 for a.e. Yy e]y()?yl['

Then condition (ii) holds with w as in (58) and ¢y = B¢ f, df = BSf,
Cqg = ng, dy = B]ﬁ\,g.

Now we assume that (ii) holds and we show the validity of (i). By
Lemma 7.1 we deduce that f € A%(zg,7;) and g € A®(yo,%1). By a straight-
forward computation we verify that v € A*?(X). By the membership of f in
A%(zo,x1) and by Proposition 3.1 we deduce that there exists a function ¢ €
Lyi(xo, 1) such that DS _Dg  f = ¢. Then D _Dg u= (D3 _Dg  f)g =
¢ g belongs to Li(X). Similarly we can show that D517D50+u € L1(X).
Then Theorem 6.3 implies that equation Aﬁ’fu = 0 is equivalent to the in-
tegral equation in (53) with F' = 0. Since u(z,y) = f(z)g(y), the integral
equation in (53) with F' = 0 is equivalent to the integral equation in (56).
By exploiting Lemma 7.1 we verify that that the equation in (56) holds for
f and g as in condition (ii). The Theorem is thus proved. O

In the following Theorem 7.4 we show the existence of functions f # 0
and g # 0 which satisfy the condition in (ii) of Theorem 7.2 with w # 0.
Accordingly, the corresponding function u(z,y) = f(z)g(y) is a solution of

Af’fu = 0 which is not simultaneously solution of Dg _Dg ,u = 0 and

D2 DS w = 0. Indeed, D®_D% .u = —wu, and D2 _D2 .u = wu, and

Yy1— 0
u # 0. To prove Theorem 7.4 we need the following Lemma 7.3.
Proposition 7.3. Let a,b € R, a < b. Let v €]0,1[. Let p €]1,40o0].
Then there exists a discrete subset Q[y,p,a,b] of R such that the operator
I+wl] 1] from Ly(a,b) to itself which takes f to f+wlI) I] f is an iso-
morphism for all w € R\ Q[y,p, a,b].

Proof. We note that the operators I, and I] are compact from L,(a,b)
to itself as operators with a weakly singular kernel (cf. e.g. Mikhlin and
Prossdorf [6, Chap. II, Th. 4.1}, see also Krasnosel’skii, Zabreiko, Pustyl'nik
and Sobolevskil [5, Th. 5.6].) Then, the operator I I} is compact from
L,(a,b) to itself. By the known properties of compact operators there exists
a subset o of R such that the operator pI + I +Ib1 has a bounded inverse
for all p € R\ 0. Moreover, o is bounded, contains 0 and may have only 0
as an accumulation point. We set Q[v,p,a,b] = {w € R : 1/w € o}. Then
Q[v,p,a,b] is a discrete subset of R and I +wl] I} is an isomorphism for
all w € R\ Q[v,p,a,b. ]
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Theorem 7.4. Let xo, z1,Y0, Y1, X be as in (1). Let o, B €]0,1[. Then there
exist a discrete subset ) of R such that the system of fractional integral
equations
{ fHwld I8 _f= A[a,xo,zl,cf,df] , (60)
9= wly Iy 9= A[B,yo,y1, ¢, dy]
has a unique solution (f,g) in L1(xo,x1) X L1(yo, y1) for all cs, dy, ¢q, dy € R
and all w € R\ Q.

Proof. Let po €]1,1/(1 — &)[, pa €]1,1/(1 — B)[. Let Q = Q[ pa, T, x1] U
(—QB, s, Yo, y1]). Then € is a discrete subset of R and the operator which
takes a couple of functions (f,g) to (f +wlg IS f, g9 — w[50+151_g) is
an isomorphism from Ly, (2o, 21) X Ly, (yo,y1) to itself (cf. Lemma 7.3.)
By Proposition 3.1 (i), (iii) we have A[o, o, 21,¢p,df] € Ly, (20,21) and
A[ﬁ,yo,yl,cg,dg} € Ly, (yo,y1). Thus, for w € R\ Q there exists a unique
pair of functions (f,g) € Ly, (w0, 71) X Ly, (yo,y1) which satisfies the system
in (60). Since Ly, (vo,71) C Li(wo,21) and Ly, (yo,y1) C Li(yo,y1), the
statement of the Theorem is now proved. O
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