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Abstract

We consider regular (identical-edge identical-node) networks whose cells can be
grouped into classes by an equivalence relation. The identification of cells in the
same class determines a new network - the quotient network. In terms of the dy-
namics this corresponds to restricting the coupled cell systems associated with a
network to flow-invariant subspaces given by equality of certain cell coordinates.
Assuming a bifurcation occurs for a coupled cell system restricted to the quotient
network, we ask how that bifurcation lifts to the overall space. Surprisingly, for
certain networks, new branches of solutions occur besides the ones that occur in the
quotient network. To investigate this phenomenon we develop a systematic method
that enumerates all networks with a given quotient. We also prove necessary condi-
tions for the existence of solutions branches not predicted by the quotient. We then
apply our method to two particular quotient networks; namely, two- and three-cell
bidirectional rings. We show there are no additional bifurcating solution branches
when the quotient network is a two-cell bidirectional ring. However, two of the 12
five-cell networks that have the three-cell bidirectional ring as a quotient network

∗CMUP is supported by FCT through the programmes POCTI and POSI, with Portuguese and
European Community structural funds.
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exhibit bifurcating solutions that do not occur in the quotient itself. Thus, network
architecture sometimes forces the existence of bifurcating branches in addition to
the ones determined by the quotient.

AMS subject classification: Primary: 34C15; Secondary: 34C23, 37G10
Keywords: Coupled cell network, quotient network, bifurcation.

1 Introduction

A theory for coupled cell networks has been developed in [12, 8, 7]. In this theory a cell
is a system of ordinary differential equations and a coupled cell network is a collection of
interacting cells. The network architecture is a directed graph whose nodes represent cells
and whose arrows represent couplings between cells. Such networks form an interesting
class of dynamical systems that have been used as models in different areas such as biology,
economics, physics and ecology. See for example Strogatz [13], Wang [14], Stewart [11],
Lieberman et al. [10], Boccaletti et al. [3] and references therein.

In this paper we only consider regular networks: networks where each node has the
same differential equation (up to reordering of coordinates) and one kind of coupling. The
general theory associates a class of admissible vector fields to each network. In a regular
network let xj ∈ Rk be the coordinates of the jth cell, where k is the dimension of the
internal dynamics in each cell. The jth coordinate of an admissible vector field of an
n-cell regular network has the form

ẋj = f(xj, xσj(1), . . . , xσj(v)) j = 1, . . . , n (1.1)

where v is the valency of the network, σj(i) is the index of the ith cell that couples to
cell j. The overbar indicates the coupling coordinates are invariant under permutations
of the coupling cells; this invariance is assumed since there is just one kind of coupling.
Since there is only one kind of node, we assume that the function f : Rk × (Rk)v → Rk

is independent of j. In general, the theory permits self-coupling (σj(i) = j for some i and
j) and multiple arrows (σj(i1) = σj(i2) for some i1 6= i2 and j).

The three-cell bidirectional ring pictured in Figure 1 is an example of a regular network
architecture and the admissible vector fields have the form

ẋ1 = f(x1, x2, x3)
ẋ2 = f(x2, x1, x3)
ẋ3 = f(x3, x1, x2)

(1.2)

where the overline indicates that

f(a, b, c) = f(a, c, b). (1.3)

Note that the bidirectional ring has S3-symmetry.
In this paper we discuss a surprising feature of synchrony-breaking bifurcations in

certain regular networks. To describe this feature we need to define synchrony subspaces.
A polydiagonal is a subspace of the network phase space (Rk)n that is defined by equalities
between cell coordinates; that is, xi = xj for certain pairs of cells i, j. A synchrony
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Figure 1: Three-cell bidirectional ring.

subspace is a polydiagonal that is flow-invariant for every admissible vector field. It follows
that solutions whose initial conditions are in ∆ stay inside ∆ for all time. Solutions in ∆
are (partially) synchronous since xi(t) = xj(t) for all time t. It is straightforward to note
that setting all coordinates equal in a regular network yields a synchrony subspace. Let

∆0 = {(x, . . . , x) ∈ (Rk)n}.

We assume that an admissible vector field F has a (fully) synchronous equilibrium
X0 ∈ ∆0. Let Ec be the center subspace of (dF )X0

. The equilibium X0 has a synchrony-
breaking bifurcation if Ec \∆0 is nonempty; that is, there is a vector in Ec that is not in
∆0.

Suppose that ∆ ⊃ ∆0 is another synchrony subspace and that F |∆ has a synchrony-
breaking bifurcation. One might expect that all bifurcating solutions remain inside ∆. In
this paper we show that there are five-cell examples where this supposition is false, and
in those cases we analyse the actual bifurcations.

To understand this observation more fully we need to describe more of the general
theory. We can associate to each polydiagonal ∆ a coloring of the network nodes. In this
coloring two cells i, j have the same color precisely when xi = xj is part of the definition
of ∆. Theorem 4.3 of [8] states that ∆ is a synchrony-subspace if and only if the coloring
associated to ∆ is balanced. For regular networks, a coloring is balanced if any pair of
cells with color r have the same number of inputs from cells of color b for each b. An
example of a balanced coloring of the bidirectional ring is given in Figure 2 (left). Note
that each blue cell has one white cell and one blue cell as inputs. Hence x2 = x3 is a
synchrony subspace.
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Figure 2: Two-cell quotient of the three-cell bidirectional ring.

The restriction of an admissible vector field (1.2) to the synchrony subspace x2 = x3

has the form
ẋ1 = f(x1, x2, x2)
ẋ2 = f(x2, x1, x2).

(1.4)

These vector fields are admissible with respect to the network (with multiple arrows and
self-coupling) in Figure 2 (right). Theorem 5.2 of [8] shows that for any synchrony sub-
space ∆ there is always a network, called the quotient network, such that the restrictions
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of admissible vector fields to ∆ are the admissible vector fields of the quotient network.
Observe that a given network can be the quotient network of many different networks.
However, a quotient network is a regular network if and only if the original network is a
regular network. Part of this paper will address the ‘inverse’ problem: Given a regular
network Q, enumerate the networks G that have Q as a quotient network. We develop
techniques to enumerate such networks and point out that these techniques can also be
useful when trying to find networks with a pre-defined dynamics. See Aguiar et al. [2].

As noted, dynamics on a quotient network describe (partially) synchronous dynam-
ics on the whole network. Specifically, admissible vector fields associated to the two-cell
network in Figure 2 (right) describes the dynamics of the three-cell network in Figure 2
(left) in which cells 2 and 3 form a subset of cells or a population of cells that move
synchronously. More generally, a balanced coloring enables us to partition the cells in a
network into subsets of cells or subpopulations of cells, where the cells within each subpop-
ulation move synchronously. From this perspective, it seems surprising that bifurcations
within the quotient network may force, because of the network architecture of the larger
network, solutions in which these subpopulations do not move synchronously. However,
we will present examples of five-cell networks with three-cell bidirectional rings as quo-
tients where bifurcations within the ring dynamics leads to solutions that break synchrony
in the five-cell network.

The adjacency matrix A of a regular network G is the matrix whose i, j entry is the
number of arrows that connect cell j to cell i. Results in [9, 5] relate the eigenvalues of
the Jacobian JG of a coupled cell system at X0 with the eigenvalues of A. In order for
bifurcations within the quotient network Q to lead to nonsynchronous solutions in the
larger network G the center subspace of JG must be larger than the center subspace of
JQ. We present results that relate the eigenvalues of the adjacency matrix of the network
G with those of the adjacency matrix of the quotient Q. These results provide an easy
way to identify networks G for which the dimension of the center subspaces of JG and JQ

are the same.
We organize the paper as follows. In Section 2 we develop a general method to enumer-

ate all networks that admit a given quotient. Moreover, we relate the eigenvalue structure
of the adjacency matrices of such networks with the adjacency matrix corresponding to
the quotient.

In Section 3.1, we enumerate connected networks that admit the two-cell bidirec-
tional ring as a quotient network. We show that codimension-one steady-state synchrony-
breaking bifurcations for coupled cell systems associated with that quotient do not lead
to new branches besides the ones guaranteed by the quotient.

In Section 3.2 we enumerate the four and five-cell networks admitting the three-cell
bidirectional ring quotient network. Up to isomorphism, there are two four-cell and
twelve five-cell networks. See Figures 4 and 5. In Theorem 3.2 we show that only two
such networks can exhibit branches of steady-state solutions not predicted by bifurcation
in the three-cell bidirectional ring. In Theorems 3.4 and 3.5 we show that, generically,
the coupled cell systems associated with networks 4 and 6 in Figure 5 have additional
branches. The proofs of these theorems involve long computations which are given in the
Appendix.
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2 Networks with a Quotient network

In this paper we consider regular networks – networks with one kind of node and one kind
of coupling, and where the number of edges directed to each cell is equal for all cells.

For a valency l regular network G and a balanced equivalence relation ⊲⊳ on its cells,
the quotient network G⊲⊳ is also a valency l regular network defined naturally as follows:
the set of cells of G⊲⊳ is formed by one cell of each color (each ⊲⊳-equivalence class);
the edges in the quotient network are the projection of edges in the original network.
Specifically, given a cell in the quotient, representing the cells with a color i, the number
of edges directed from a cell representing the cells with a color j to that cell is equal to the
number of edges that any cell with color i receives from cells with color j in the network
G.

In this section we derive general results concerning the enumeration of all networks
that admit a given quotient and the eigenvalue structure of the corresponding adjacency
matrices in order to address the main question of the paper.

2.1 Enumeration

Given a regular network Q with p cells we present a general method to enumerate the n-cell
(regular) networks, where n > p, that admit Q as a quotient network. This is equivalent
to determining the n-cell networks G that admit a balanced equivalence relation ⊲⊳ such
that Q is the quotient network of G by ⊲⊳.

In what follows we denote by AG the n × n adjacency matrix of an n-cell regular
network G with cells C = {1, . . . , n}. The ij-entry of AG is the number of directed edges
from cell j to cell i.

Definition 2.1 Let G be a regular coupled cell network with n cells C = {1, . . . , n} and
let AG be the corresponding adjacency matrix whose columns we denote by AG1

, . . . , AGn
.

Let ⊲⊳ be an equivalence relation on C with classes I1, . . . , Ip. Denote by AG the n × p-
matrix whose columns C1, . . . , Cp are defined by

Cj =
∑

i∈Ij

AGi
.

We say that the matrix AG is ⊲⊳-balanced if for each j = 1, . . . , p, the rows for i ∈ Ij of
AG are identical. 3

Proposition 2.2 Let G be an n-cell regular network and AG the corresponding adjacency
matrix. An equivalence relation ⊲⊳ on the set of cells of G is balanced if and only if the
matrix AG is ⊲⊳-balanced.

Proof The definition of balanced equivalence relation in terms of the adjacency matrix
associated with the network gives the result. To see that, let G be a regular coupled cell
network with n cells, say C = {1, . . . , n}, AG the corresponding n × n adjacency matrix
with columns AG1

, . . . , AGn
, and ⊲⊳ a balanced equivalence relation on C with classes

I1, . . . , Ip. Let j ∈ {1, . . . , p}. Now observe that each entry i in the jth column of the
matrix AG as defined in Definition 2.1 represents the number of cells in the class Ij that
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are tail cells of edges with head cell i. Moreover, because ⊲⊳ is balanced it follows that if
i, i

′

belong to the same class, then the corresponding entries in column j of AG are equal.
2

Proposition 2.3 Let G be a regular network, AG the corresponding adjacency matrix
and ⊲⊳ a balanced equivalence relation on the set of cells of G with classes I1, . . . , Ip. For
each j = 1, . . . , p, choose any ji ∈ Ij. Then the adjacency matrix of the quotient network
G⊲⊳ is the p × p submatrix of AG whose jth row is the row ji of AG.

Proof By Proposition 2.2, since ⊲⊳ is balanced, the matrix AG is balanced. Now the
definition of quotient network leads to the above result. 2

Definition 2.4 Given t ∈ Z+
0 and r, s ∈ N define

Mrs(t) =















M = [mij ] 1 ≤ i ≤ r,

1 ≤ j ≤ s

∈ Mr×s(Z
+
0 ) :

s
∑

j=1

mij = t, i = 1, . . . , r















.

3

Theorem 2.5 Let Q be a regular network with p cells and adjacency matrix AQ =
[qij ]1≤i,j≤p. A regular network G with n cells, say C = {1, . . . , n}, admits the quotient
network Q if and only if there is a partition of C into p-parts, say I1, . . . , Ip, such that,
after relabeling the cells if necessary, the adjacency matrix AG of G has the following block
structure:







Q11 · · · Q1p
... · · ·

...
Qp1 · · · Qpp







where
Qij ∈ M#Ii #Ij

(qij), for i, j = 1, . . . , p.

Here #Il denotes the cardinality of the set Il.

Proof By definition, an n-cell regular network G admits a quotient network Q if and
only if there is some balanced equivalence relation ⊲⊳ on the set of cells of G such that
Q is the quotient of G by ⊲⊳. Moreover, by Proposition 2.2, the corresponding adjacency
matrix is ⊲⊳-balanced and by Proposition 2.3, up to an isomorphism of the cells, the
adjacency matrix of G has the above form. 2

Using Theorem 2.5, we describe below an algorithm that enumerates all the regular
networks G with n cells admitting a given regular quotient network Q with p cells. It
starts by partitioning the set {1, . . . , n} into all possible parts with sizes d1, . . . , dp such
that 0 < d1 ≤ · · · ≤ dp. For each of these partitions, it enumerates the adjacency matrices
of all non-isomorphic connected networks that admit a balanced equivalence coloring with
equivalence classes of sizes d1, . . . , dp such that the corresponding quotient is Q. In this
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algorithm, we use two subroutines. One to check if a given network is isomorphic to any
of the networks of a given set of networks. The other to check if a network is connected.

Algorithm 2.6 Given a regular network Q with p cells and adjacency matrix AQ =
[qij ]1≤i,j≤p and a positive integer n > p, this algorithm finds the set SG of the adjacency
matrices of all non-isomorphic connected networks with n cells admitting the quotient Q.

1 [Compute the set of partitions] Compute the set Pn of vectors (d1, . . . , dp) such that
0 < d1 ≤ · · · ≤ dp and d1 + · · ·+ dp = n.

2 [Initialize] Set SG = ∅.

3 [Compute sub-blocks for each partition] Given (d1, . . . , dp) ∈ Pn do the following:
set Pn = Pn \ {(d1, . . . , dp)}; for i, j = 1, . . . , p compute Mdi dj

(qij).

4 [Actualize AG] For each (Q11, . . . , Qpp) ∈ Md1 d1
(q11) × . . . × Mdp dp

(qpp) do the fol-
lowing: let

M =







Q11 · · · Q1p
... · · ·

...
Qp1 · · · Qpp






;

if Connected(M)=1 then: if CheckIsomorphic(SG,M) = 0 then SG = SG ∪ {M}.

5 [Finish?] If Pn = ∅ then output SG and terminate the algorithm. Otherwise go to
step 3.

3

The next algorithm determines if a n × n square matrix M is the adjacency matrix
of a connected n-cell network. Note that the graph can have multiple arrows. Moreover,
a network is connected if and only if given any two distinct cells, there is a path formed
by undirected edges connecting them. Thus we start by forming the connection matrix
C = [cij ]1≤i,j≤n defined in the following way: (i) for all i, j we have cij = cji; cij = 1 if
cell j has at least one directed edge to i or cell j has at least one directed edge to cell i,
and zero otherwise; (ii) cii = 1 for all i. Then the graph is connected if and only if all the
entries of Cn are nonzero.

Algorithm 2.7 (Connected) Connected(M) verifies if an n×n square matrix M is the
adjacency matrix of a connected regular network. Let A = [aij ]1≤i,j≤n = M + M t + Idn

and C = [cij ]1≤i,j≤n where each cij is 0 if aij = 0 and 1 otherwise. If Cn has zero entries
returns 0, otherwise returns 1. 3

Algorithm 2.8 (CheckIsomorphic) CheckIsomorphic(SG,M) verifies if an n×n square
matrix M is the adjacency matrix of a regular network isomorphic to one of the regu-
lar networks that have adjacency matrix in SG. If for some matrix A ∈ SG there is a
permutation matrix Pσ ∈ Sn such that

M = PσAP−1
σ

then returns 1. Otherwise returns 0. 3
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2.2 Eigenvalue Structure of Adjacency Matrices

We present now a few properties related with the structure of the adjacency matrices of
regular networks admitting balanced colorings. In the cases where the quotients associ-
ated with the balanced colorings have no self-coupling, we can conclude some important
remarks.

Theorem 2.9 Let G be an n-cell regular network. Let ⊲⊳ be a balanced equivalence rela-
tion on the set of cells of G with p classes. Let AQ be the p × p adjacency matrix of the
quotient network Q of G by ⊲⊳.

Then the adjacency matrix of G is similar to a matrix with the following block structure:

[

AQ R

0(n−p)×p B

]

(2.5)

where R is a p × (n − p) matrix and B is a (n − p) × (n − p) matrix.

Proof Let AG be the adjacency matrix associated to network G. We can interpret AG

as the matrix of a linear G-admissible vector field with respect to the canonical basis of
Rn, say (e1, . . . , en). If

∆⊲⊳ = {x ∈ Rn : i ⊲⊳ j ⇒ xi = xj}

then AG(∆⊲⊳) ⊆ ∆⊲⊳. Moreover
(

∑

i∈I1
ei, . . . ,

∑

i∈Ip
ei

)

is a basis of ∆⊲⊳ and AG|∆⊲⊳

with respect to this basis is the adjacency matrix AQ of the quotient network Q of G

by ⊲⊳. Denote by I1, . . . , Ip the ⊲⊳-equivalence classes. Choose sj ∈ Ij, j = 1, . . . , p and
let S = C \ {s1, . . . , sp}. We can complete the above basis of ∆⊲⊳ with the elements of
{ei : i ∈ S} obtaining a basis of Rn. The matrix AG with respect to that basis has the
structure (2.5). 2

Remark 2.10 We make a few observations related to the above theorem when ⊲⊳ deter-
mines a quotient network with no self-coupling. That is, when there are no connections
between cells in the same ⊲⊳-class.

(a) Following the proof of the theorem we can complete the basis of ∆⊲⊳ with the ele-
ments of {ei : i ∈ S} choosing any ordering in S such that the cells in the same
⊲⊳-equivalence class are contiguous. In this case, B is an (n−p)×(n−p) matrix with
diagonal blocks that are null square matrices of order #Ij − 1, for all j ∈ {1, . . . , p}
such that #Ij > 1.

(b) Consider the special case where ⊲⊳ is a balanced equivalence relation on the set of
cells of G with classes I1, . . . , In−1 such that #Ij = 2 for some j = 1, . . . , n − 1 and
#Ii = 1 for i 6= j. Then the eigenvalues of the adjacency matrix associated to G

are the eigenvalues of AQ plus the zero eigenvalue.

(c) More generally, suppose ⊲⊳ is a balanced equivalence relation on the set of cells of
G with classes I1, . . . , In−s such that #Ij = s + 1 for some j = 1, . . . , n − s and
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#Ii = 1 for i 6= j. Then the eigenvalues of the adjacency matrix associated to G

are the eigenvalues of the matrix AQ, with the same algebraic multiplicity, plus the
zero eigenvalue, with algebraic multiplicity s.

3

Algorithm 2.11 Given an n-cell regular network G with adjacency matrix AG and a
balanced equivalence relation ⊲⊳ on the set of cells of G with classes I1, . . . , Ip such that
ij = #Ij , j = 1, . . . , p. This algorithm computes a matrix similar to AG and with the
block structure (2.5).

1 For each equivalence class Il, l = 1, . . . , p substitute the first column of the matrix
AG indexed by a cell in Il by the sum of all the columns of AG indexed by cells in
Il.

2 Permute the columns of AG such that the first column is the sum of the columns for
class I1, the second column is the sum of the columns for class I2, and so on until
column p. The next columns are the remaining columns of AG.

3 Permute the rows of AG such that the first row is the first row of the matrix AG

indexed by a cell in I1, the second row is the first row of the matrix AG indexed
by a cell in I2, and so on until row p. The next rows are the remaining rows of AG

indexed by cells in I1, then the remaining rows of AG indexed by cells in I2, and so
on until the remaining rows of AG indexed by cells in Ip.

4 According to Proposition 2.3 the p × p submatrix of AG with the first p rows and
the first p columns of AG is the matrix AQ associated with the quotient network Q

and the first p columns of the rows indexed by cells in the same equivalence class
are identical.

5 For each equivalence class Il, l = 1, . . . , p subtract the first row of the matrix AG

indexed by a cell in Il to all the other rows of AG indexed by cells in Il. This way
the first p columns of the last n − p rows of AG have null entries.

3

Remark 2.12 If ⊲⊳ determines a quotient network with no self-coupling the matrix B in
(2.5) will have diagonal blocks corresponding to null square matrices if in step 2 of the
above algorithm the last n− p columns are ordered such that the columns of AG indexed
by cells in I1 appear first then followed by the columns of AG indexed by cells in I2, and
so on. 3

Theorem 2.13 Let Q be a p-cell regular network with no self-coupling and G an n-cell
network, with n > p, that admits Q as a quotient network.

Assume there are networks Q0 = Q, Q1, . . . , Qn−p = G such that for j = 1, . . . , n− p,
Qj has p+ j cells and Qj admits Qj−1 as a quotient network. Then the eigenvalues of the
adjacency matrix associated to G are the eigenvalues of the adjacency matrix associated
to the quotient network Q, with the same algebraic multiplicity, plus the eigenvalue zero,
with algebraic multiplicity n − p.
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Proof The result follows from Theorem 2.9 and Remark 2.10. 2

2.3 Codimension-one Bifurcations

In Proposition 2.14 below, which is a generalization of [9, Proposition 3.1], we use the
eigenvalue structure of adjacency matrices of networks G admitting a quotient Q to de-
scribe the linearization J of the admissible vector fields for the networks at the bifurcation
point.

Consider an n-cell regular network G and denote the total phase space by P = (Rk)n

where Rk is the phase space of each cell. Recall that the coupled cell systems associated
to such networks have the form Ẋ = F (X, λ), where X = (x1, . . . , xn) ∈ P , λ ∈ R
and the n coordinate functions of F are defined by the same function f . As mentioned
above we assume that there exists a synchronous equilibrium in the synchronous subspace
△0 = {(x, x, . . . , x) : x ∈ Rk}, which we may assume, after a change of coordinates, is at
the origin. Let J = (dF )(0,0) and Jc = J |Ec, where Ec denotes the center subspace.

Let α = (dxi
f)0 be the linearized internal dynamics and let β = (dxj

f)0 be the
linearized coupling. Note that α and β are k × k matrices. Denote the eigenvalues of A

by µ1,. . . , µn where µ1 corresponds to the synchrony eigenvector (1, . . . , 1) ∈ △0 and is
equal to the valency of the network.

The proof of the following proposition is similar to the one given for Proposition 3.1
in [9].

Proposition 2.14 The eigenvalues of J are the union of the eigenvalues of the k × k

matrices α + µjβ, j = 1, . . . , n, including algebraic multiplicity.

The eigenvalues of each of the n matrices α+µjβ of order k×k are generically simple.
So the possible steady-state bifurcation types do not depend on k, and we assume k = 1.
In this case the n × n matrix J has n eigenvalues γj = α + µjβ, where α and β are 1× 1
matrices. Say, γ1 corresponds to the synchrony eigenvector (1, . . . , 1) ∈ △0.

Codimension-one bifurcations divide into steady-state (Jc has a zero eigenvalue) and
Hopf bifurcation (Jc has purely imaginary eigenvalues). Each of these bifurcation types
divide into synchrony-preserving (Ec ⊂ △0) and synchrony-breaking (Ec 6⊂ △0). We
focus in this paper on synchrony-breaking steady-state bifurcations from a synchronous
equilibrium.

Suppose ∆ ⊃ ∆0 is a synchrony subspace of the total phase space. Then Jc(∆∩Ec) ⊆
∆ ∩ Ec. Denote the quotient network associated to ∆ by Q. Assume a codimension-one
steady-state bifurcation occurs in a coupled cell system associated to Q (and hence for
G). In this paper we investigate whether this bifurcation also gives rise to branches of
steady-state solutions outside of ∆.

3 Two Sample Cases

In this section we apply our results to regular quotient networks with two and three cells.
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3.1 Networks with Two-Cell Bidirectional Ring Quotient

Following the methods in Section 2.1, we describe now all connected networks G that
admit the two-cell bidirectional ring (see Figure 3) as a quotient network. We prove then
that for any such G, the synchrony-breaking bifurcations that occur in G lead only to
branches of solutions guaranteed by the quotient two-cell network.

1 2

Figure 3: Two-cell bidirectional ring.

The adjacency matrix of the two-cell bidirectional ring quotient network Q is

AQ =

[

0 1
1 0

]

·

An n-cell network admitting Q as quotient has a balanced coloring of two colors such
that one group I1, say of n1 cells, receives one color, and the other group I2, say with n2

cells, receives the other color. Thus n1 + n2 = n. Moreover, in order for the coloring to
be balanced and leading to the given quotient Q, cells inside each group do not connect
between them and each cell of one group receives an edge from a cell of the other group.
The graphs corresponding to such networks are called bipartite graphs. The adjacency
matrix of any such network has the form

[

0 Q12

Q21 0

]

where each Qij is an ni ×nj-matrix having rows with one nonzero entry equal to 1. Here,
we are enumerating so that the cells from group I1 appear first. Coupled cell systems
consistent with the quotient network have the form

ẋ1 = f(x1, x2, λ)
ẋ2 = f(x2, x1, λ)

(3.6)

where x1, x2 ∈ R and λ ∈ R is the bifurcation parameter. As mentioned in Section 2.3,
there is no loss of generality in assuming that each cell-phase is one-dimensional. The
eigenvalues of the adjacency matrix of the two-cell ring are 1,−1 and the eigenvalues
of the Jacobian of the associated systems at the origin are fu(0) + fv(0), fu(0) − fv(0)
where fu(0), fv(0) denote the derivative of f with respect to the first and second variable,
respectively, evaluated at the origin. (Recall Proposition 2.14.)

Assuming f(0, 0, λ) = 0 and fu(0)− fv(0) = 0, generically we have a codimension-one
steady-state synchrony-breaking bifurcation from the trivial equilibrium to a branch of
steady-state solutions satisfying x1 6= x2. Observe that the critical value fu(0) − fv(0) is
associated with the eigenvalue −1 of the adjacency matrix of the two-cell directed ring.
Now, any coupled cell system admitting this quotient network with the restriction to the
synchronous subspace given by (3.6) admits this branch of solutions.

11



The first step to analyze if there are additional branches outside the synchronous
subspace is to determine the multiplicity of the critical eigenvalue fu(0) − fv(0). This
multiplicity is greater than one if and only if the adjacency matrix AG of G has the
eigenvalue −1 with multiplicity greater than one. We show that this cannot happen.

Observe that, as any G has a bipartite structure, we have necessarily an l-cycle where
l ≥ 2: Just fix one cell of one group. Say cell a1 of group I1. Then there is a cell of group
I2, say b2, that has a directed edge to a1. Again, there is a cell of group I1 that has a
directed edge to cell b2. If it is a1, we have a 2-cycle. If not, suppose it is a2. We repeat
this process. There will be a stage where necessarily a cell of one group that has already
appeared will connect to a cell of the other group and so close an l-cycle where l ≥ 2.

Now, if G contains two or more cycles, again because any cell receives only one edge
from another cell, these cycles cannot receive inputs from other cells and they can only
send inputs. It follows then that the graph is disconnected, which we exclude from our
discussion. Therefore, if G is connected, we can enumerate the cells in the graph G such
that the adjacency matrix AG has the following block structure:

[

Cl 0
B1 B2

]

where Cl corresponds to the adjacency matrix of an l-cycle, B1 is an (n − l) × l-matrix
and B2 is an (n − l) × (n − l) lower triangular matrix with zero entries at the diagonal.

To see the structure of the matrix B2 we should consider the subnetwork consisting
of the cells not belonging to the l-cycle and the connections between them. There is at
least one cell in the subnetwork that does not receive any connection from the other cells
in the subnetwork and so the matrix B2 has at least one row with all the entries equal
to zero. The cells of the subnetwork can be rearranged into groups such that the cells
in each group are ‘sequentially connected’. In the intersection of any two groups of cells
there is at most one cell. That common cell receives at most one connection from only
one of the cell groups. Thus, there is an ordering of the cells in the subnetwork such that
the adjacency matrix B2 is a lower triangular matrix with zero entries at the diagonal.
So, the matrix B2 has the eigenvalue zero with (n − l) algebraic multiplicity.

Since AQ has eigenvalues ±1, it follows then that Cl has eigenvalues ±1. Moreover,
as Cl corresponds to an l-cycle permutation matrix, the eigenvalues are the lth roots of
unity. Thus l is even and the real parts of the other eigenvalues of Cl are not equal to −1.
Therefore, AG has the eigenvalue −1 with algebraic multiplicity one and it has no other
eigenvalues with real part −1. Thus, the algebraic multiplicity of the critical eigenvalue
fu(0)− fv(0) of the Jacobian at the origin for the coupled cell systems associated with G

is one, and there are no other eigenvalues with real part equal to fu(0) − fv(0).

3.2 Networks with Three-cell Bidirectional Ring Quotient

We now consider the three-cell bidirectional ring Q of Figure 1. We observe that Q is the
only S3-symmetric three-cell network which has neither self-coupling nor multiple arrows.
(All the other three-cell S3-symmetric networks are ODE-equivalent to Q in the sense
that they all generate the same space of admissible vector fields, see Dias and Stewart [4].
Moreover, Q has minimal number of edges among all such networks. Following Aguiar
and Dias [1], Q is the minimal network of the ODE-class.)

12



Five-cell Networks: Enumeration

Using the method described in Section 2.1 we find, up to isomorphism, the four-cell and
five-cell networks admitting the quotient Q. In Theorem 3.1 we show that there are twelve
such five-cell networks, see Figure 5. Analogous computations prove the existence, up to
isomorphism, of two four-cell networks admitting the quotient Q, see Figure 4.

1


3

24

1


3

2

4

Figure 4: Four-cell networks with the three-cell bidirectional ring as a quotient network.

Theorem 3.1 Let G be a five-cell network. The network G admits the three-cell bidirec-
tional ring quotient network Q if only if it is isomorphic to one of the twelve coupled cell
networks in Figure 5.

Proof We start by observing that by definition, a network G has the three-cell bidi-
rectional ring quotient network Q if and only if Q is the quotient of G by a balanced
equivalence relation ⊲⊳ on the set of the five cells of G having three equivalence classes.
Say I1, I2, I3.

Let C = {1, 2, 3, 4, 5} be the set of cells of G and A = [aij ]1≤i,j≤5 the corresponding
adjacency matrix. Let AQ = [qij ]1≤i,j≤3 be the adjacency matrix of the quotient network
Q.

By Theorem 2.5, relabeling the cells if necessary, the adjacency matrix A of G satisfies:

A =





Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33





where
Qij ∈ M#Ii #Ij

(qij), for i, j = 1, . . . , 3.

As the quotient network Q has no self-coupling, that is, qii = 0 for i = 1, 2, 3, we have
that Q11, Q22 and Q33 are zero matrices.

Up to a renumbering of the cells, there are only two possible partitions of the set of
five cells into three equivalence classes, I1, I2, I3, as follows:

(a) #I1 = #I2 = 1 and #I3 = 3,

(b) #I1 = 1 and #I2 = #I3 = 2.

We consider now the two cases separately.
Case (a)
Since q12 = 1 and q21 = 1 we have Q12 = [1] and Q21 = [1]. Moreover, the matrices Q31
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Figure 5: Five-cell networks with the three-cell bidirectional ring as a quotient network.

and Q32 are column vectors of order 3 × 1 with all entries equal to 1 since q31 = 1 and
q32 = 1. Hence, the structure of A is

A =













0 1 Q13

1 0 Q23

1 1 0 0 0
1 1 0 0 0
1 1 0 0 0













.

As the quotient network Q has valency 2, this implies that one of the entries in Q13 is
1 and the others are zero, and one of the entries in Q23 is 1 and the others are zero. This
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corresponds to nine hypotheses for the matrix A which, up to isomorphism, correspond
to the last two matrices in Table 1, the adjacency matrices of the last two networks in
Figure 5.
Case (b)
Since q12 = 1 and q13 = 1 we have that the matrices Q12 and Q13 of order 1 × 2 have one
entry equal to 1 and the other entry is zero. Without loss of generality, we can assume
that Q12 = [1 0] and Q13 = [1 0]. Moreover, the matrices Q21 and Q31 are column vectors
of order 2 × 1 with all entries equal to 1 since q21 = 1 and q31 = 1. This implies the
following structure for A:

A =













0 1 0 1 0
1
1

0 0
0 0

Q23

1
1

Q32
0 0
0 0













.

The valency 2 of the quotient network Q implies that

Q23, Q32 ∈

{[

1 0
1 0

]

,

[

1 0
0 1

]

,

[

0 1
1 0

]

,

[

0 1
0 1

]}

which consists in sixteen hypotheses for matrix A. It is easy to see that, up to isomorphism
there are only ten hypotheses for A, the first ten matrices in Table 1, which correspond
to the adjacency matrices of the first ten networks in Figure 5. 2

Five-cell Networks: Codimension-one Steady-state Bifurcation

The coupled cell systems associated to the bidirectional ring Q of Figure 1 satisfy

ẋ1 = f(x1, x2, x3, λ)
ẋ2 = f(x2, x1, x3, λ)
ẋ3 = f(x3, x1, x2, λ)

(3.7)

where x1, x2, x3 ∈ R, the bifurcation parameter is λ ∈ R and f(u, v, w, λ) is a smooth
function. The adjacency matrix of Q is

AQ =





0 1 1
1 0 1
1 1 0



 .

with eigenvalues 2,−1,−1 and associated eigenspaces

E2 =< (1, 1, 1) >, E−1 =< (1,−1, 0), (1, 0,−1) > .

By Proposition 2.14 the eigenvalues of the Jacobian J at the origin, say for λ = 0, are
fu(0)−2fv(0), fu(0)−fv(0) and fu(0)−fv(0). Assuming f(0, 0, 0, λ) = 0 and fu(0) = fv(0),
it is known that generically there are three branches of steady-state solutions bifurcating
from the trivial equilibrium. See for example [6, Ch 1].
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(1)













0 1 0 1 0
1 0 0 0 1
1 0 0 0 1
1 0 1 0 0
1 0 1 0 0













(2)













0 1 0 1 0
1 0 0 0 1
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0













(3)













0 1 0 1 0
1 0 0 0 1
1 0 0 0 1
1 1 0 0 0
1 0 1 0 0













(4)













0 1 0 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0













(5)













0 1 0 1 0
1 0 0 0 1
1 0 0 1 0
1 1 0 0 0
1 0 1 0 0













(6)













0 1 0 1 0
1 0 0 1 0
1 0 0 0 1
1 1 0 0 0
1 0 1 0 0













(7)













0 1 0 1 0
1 0 0 1 0
1 0 0 1 0
1 1 0 0 0
1 0 1 0 0













(8)













0 1 0 1 0
1 0 0 1 0
1 0 0 1 0
1 1 0 0 0
1 1 0 0 0













(9)













0 1 0 1 0
1 0 0 1 0
1 0 0 1 0
1 0 1 0 0
1 0 1 0 0













(10)













0 1 0 1 0
1 0 0 1 0
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0













(11)













0 1 1 0 0
1 0 1 0 0
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0













(12)













0 1 1 0 0
1 0 0 1 0
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0













Table 1: Adjacency matrices associated to the networks in Figure 5.

We analyze the codimension-one steady-state synchrony-breaking bifurcation imposed
by the same degeneracy condition for systems associated to networks with the quotient Q.
This bifurcation leads to the three bifurcating solution branches lying in the synchrony
subspace associated with Q. Additional branches can only exist for the networks with
adjacency matrix admitting the eigenvalue −1 with algebraic multiplicity greater than 2.
That is, the center subspace at bifurcation for the corresponding coupled cell systems is
not contained in the synchronous subspace associated with the quotient.

By Remark 2.10 (b) it follows immediately that for the four-cell networks with quo-
tient Q the algebraic multiplicity of the eigenvalue −1 does not change and thus no new
branches appear. As we show in the next theorem, this is not the case for only two of the
five-cell networks with quotient Q.

Theorem 3.2 Consider the coupled cell systems associated with the twelve five-cell net-
works (in Figure 5) that admit the three-cell bidirectional ring quotient network Q. As-
sume that a codimension-one steady-state synchrony-breaking bifurcation associated with
the eigenvalue fu(0) − fv(0) occurs for the coupled cell systems associated with Q. Then,
generically, only the coupled cell systems associated with the two networks 4 and 6 of Fig-
ure 5 admit additional branches of steady-state solutions besides the three branches lying
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in the synchrony subspace associated with Q.

Proof As we have remarked before, the critical space of the Jacobian of the coupled
cell systems at the bifurcation point is determined by the eigenvalue structure of the
adjacency matrix of the network. Recall Proposition 2.14. Specifically, the degeneracy
condition fu(0)−fv(0) = 0 corresponds to the −1 eigenvalue of the adjacency matrix of Q.
Additional branches of steady-state solutions for the five-cell coupled cell systems, besides
the three branches lying in the synchrony subspace associated with Q, may arise only when
the algebraic multiplicity of the eigenvalue −1 of the adjacency matrix increases, i.e., it
is greater than 2. All the five-cell networks, except networks 4, 5, 6 of Figure 5, admit a
four-cell quotient network in Figure 4. Hence, by Theorem 2.13, there are no new branches
of steady-state solutions for those networks. It remains to analyze the networks 4, 5, 6 in
Figure 5.

By Theorem 2.9 and Remark 2.10, if A = [aij ]1≤i,j≤5 is the adjacency matrix of a
five-cell network with quotient Q, then it is similar to a matrix of the form

[

AQ R

02×2 B

]

, (3.8)

where AQ is the 3 × 3 adjacency matrix of the bidirectional ring Q of Figure 1 and

B =

[

0 a35 − a25

a53 − a43 0

]

. (3.9)

The two eigenvalues of B depend on whether cell 3 connects or not to cells 4 or 5 and
whether cell 5 connects or not to cells 2 or 3. Moreover, they are both zero or symmetric
with values ±1 or ±i, since the trace of B is zero.

For network 5 the matrix B has eigenvalues ±i. For the networks 4 and 6 it has
eigenvalues ±1. So the algebraic multiplicity of the eigenvalue −1 increases only for
networks 4 and 6. We prove the generic existence of additional branches of steady-state
solutions for the coupled cell systems associated with these two networks in Theorems 3.4
and 3.5. 2

Remark 3.3 Observe that network 4 is Z2 =< (24)(35) >-symmetric and network 6 is
Z2 × Z2 =< (24), (35) >-symmetric. In both cases the symmetry implies matrix B in
(3.9) to be symmetric and so to have symmetric real eigenvalues.

The eigenvalue structure for the adjacency matrices for the networks 4 and 6 is sum-
marized in Table 2.

Network 6: Additional Branches of Solutions

Following the discussion given in Section 1, more precisely, using (1.1) it is straightforward
to give the form of the admissible vector fields for network 6 of Figure 5

ẋ1 = f(x1, x2, x4, λ)
ẋ2 = f(x2, x1, x4, λ)
ẋ3 = f(x3, x1, x5, λ)
ẋ4 = f(x4, x1, x2, λ)
ẋ5 = f(x5, x1, x3, λ)

17



Net Eigenvalues Eigenspaces

(4) 2,−1,−1,−1, 1 E2 =< (1, 1, 1, 1, 1) >

E−1 =< (1,−1,−1, 0, 0), (1, 0, 0,−1,−1) >

E1 =< (0,−1, 1, 1,−1) >

(6) 2,−1,−1,−1, 1 E2 =< (1, 1, 1, 1, 1) >

E−1 =< (1,−1,−1, 0, 0), (1, 0, 0,−1,−1), (1, 0,−1,−1, 0) >

E1 =< (0, 0, 1, 0, 1) >

Table 2: Eigenvalues and eigenspaces of the adjacency matrix of networks 4 and 6 of
Figure 5.

where xi ∈ R, the bifurcation parameter is λ ∈ R and f : R4 → R is smooth.
We show that bifurcations for network 6 associated to the critical eigenvalue fu(0) −

fv(0) = 0 lead to nine nontrivial bifurcating branches that are either transcritical or
pitchfork.

In order to state the following results we present a list of expressions involving the
first and second derivatives of f with respect to the first and the second variable at the
origin, that we denote by fu(0), fv(0), fuu(0), etc.

Let

C = fuu(0) − 2fuv(0) − fvv(0) + 2fvw(0) (3.10)

D = (fuuu(0) − 3fuuv(0) + 3fuvv(0) − fvvv(0)) (3.11)

E = fuu(0) + fvv(0) − 2fuv(0) (3.12)

F = E −
2

3

fu(0)D

fuu(0) − fvv(0)
(3.13)

G = 2D − 3
fuu(0) − fvv(0)

fu(0)
E (3.14)

L =
fvv(0) − fuu(0) + 6fuv(0) − 6fvw(0)

fuu(0) − fvv(0)
. (3.15)

Theorem 3.4 Consider a coupled cell system associated to network 6 satisfying the fol-
lowing nondegeneracy conditions:

fu(0) = fv(0) 6= 0, fuλ(0) − fvλ(0) 6= 0, fuu(0) − fvv(0) 6= 0,

C 6= 0 6= F, G 6= 0 6= L.

Then, there are eight transcritical branches of solutions and one pitchfork branch of so-
lutions bifurcating from the trivial solution. See Table 3 for the form of the solution
branches. All these solutions are unstable.

The proof of Theorem 3.4, see Appendix A, consists basically in listing the polydi-
agonal subspaces of R5 that are flow-invariant by all admissible vector fields associated
with the network 6 and then by showing the existence of eight bifurcating branches of
steady-state solutions contained in those flow-invariant subspaces. Finally, we prove that
besides those branches there is only one more branch.
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Zero Eigenvalue Eigenvectors Synchrony Growth Rates

fu(0) − fv(0)
(0, 0, 1, 0,−1)
(−2, 1, 1, 1, 1)
(1,−1,−1, 0, 0)

x1 = x2 = x3, x4 = x5

x1 = x4 = x5, x2 = x3

x2 = x3 = x4 = x5

λ λ λ λ λ

λ λ λ λ λ

λ λ λ λ λ

x1 = x2 = x5, x3 = x4

x1 = x3 = x4, x2 = x5

x1 = x4, x3 = x5

x1 = x2, x3 = x5

x1 = x2 = x4 = 0
x2 = x4

λ λ λ λ λ

λ λ λ λ λ

λ λ λ λ λ

λ λ λ λ λ

0 0 λ1/2 0 λ1/2

λ λ λ1/2 λ λ1/2

Table 3: Form of asynchronous branches of equilibria for network 6. The nonzero terms
in x1, . . . , x5 indicated in the last column are the approximation at lowest order in λ. The
three first solution branches are inside the synchrony subspace associated to the quotient
bidirectional ring.

Network 4: Additional Branches of Solutions

The form of the coupled systems associated to network 4 is:

ẋ1 = f(x1, x2, x4, λ)
ẋ2 = f(x2, x1, x5, λ)
ẋ3 = f(x3, x1, x4, λ)
ẋ4 = f(x4, x1, x3, λ)
ẋ5 = f(x5, x1, x2, λ)

where we are assuming xi ∈ R, the bifurcation parameter is λ ∈ R and f : R4 → R
is smooth. We show that bifurcations occurring for these vector fields and the critical
eigenvalue fu(0)−fv(0) (which has algebraic and geometric multiplicity respectively three
and two) lead to six nontrivial bifurcating solution branches that are transcritical.

Theorem 3.5 Consider a coupled cell system associated to network 4 satisfying the fol-
lowing nondegeneracy conditions:

fu(0) = fv(0) 6= 0, fuu(0) − fvv(0) 6= 0, fvw(0) − fuv(0) 6= 0, (3.16)

fuλ(0) − fvλ(0) 6= 0, A 6= 0, D 6= 0, (3.17)

where
A = fuu(0) − 2fuv(0) − fvv(0) + 2fvw(0),

D =
1

2
(fuu(0) + fvv(0) − 2fuv(0)) + fu(0)E,

E =
fvvv(0) − fuuu(0) + 3fuuv(0) − 3fuvv(0)

3(fuu(0) − fvv(0))
.

(3.18)

Then, there are six transcritical branches of solutions bifurcating from the trivial solution.
See Table 4 for the form of the solution branches.
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Zero E’value Generalized E’vectors Synchrony

fu(0) − fv(0)
(1, 1, 1,−2,−2)
(2,−1,−1,−1,−1)
(0,−1, 2,−1, 2)

x1 = x2 = x3, x4 = x5

x1 = x4 = x5, x2 = x3

x2 = x3 = x4 = x5

x2 = x4, x3 = x5

x2 = x5

x3 = x4

Table 4: Form of asynchronous branches of equilibria for network 4. In all solution
branches the growth rate in each coordinate x1, . . . , x5, at lowest order in λ, is of order
λ. The three first branches of solutions are inside the synchronous subspace associated to
the quotient bidirectional ring.

Appendix B contains the proof of Theorem 3.5. In the proof we start by considering
the polydiagonal subspaces of R5 that are flow-invariant by all admissible vector fields
associated with the network 4 and by computing the bifurcating branches of steady-state
solutions contained in those subspaces. We show that there are four such branches. Then
we prove the existence of two more nontrivial branches.

4 Conclusions

In the first part of this paper we obtained two general results. First, we developed an
algorithm that enumerates all networks that admit a given quotient network. Second, we
found necessary conditions that identify those networks with a given quotient, that could
exhibit branches not predicted by the quotient. These conditions are given in terms of
the eigenvalue structure of the adjacency matrix.

In the second part of the paper we apply our results to two quotient networks. The
intuitive answer to the question on how steady-state bifurcations lift from the quotient
network seemed to be that in general there would be no additional branches of solutions
for the full network besides the ones in the quotient. The answer turned out to be the
opposite for one of the two quotient network examples we discuss here. We show that
among all the four-cell and five-cell networks that quotient to the three-cell bidirectional
ring there are two exhibiting bifurcating solution branches not occurring in the quotient
itself. This result is interesting since it shows that sometimes the network architecture
forces additional bifurcating branches of solutions other than the ones determined by the
quotient network. We also show that there are no new bifurcating solution branches for
the systems associated with networks having the two-cell bidirectional ring as a quotient
network.

As we increase the number of cells, the number of networks that have a specific quotient
network increases exponentially. However, we note that most of the five cell networks
(nine out of twelve) admit a four cell quotient network that quotients to the three-cell
bidirectional ring. Using the results of Section 2.2 we conclude immediately that no new
branches can arise for those five cell networks. This property generalizes to networks with
any number of cells. Specifically, it can easily be argued that many of the n-cell networks
that quotient to the three-cell bidirectional ring also quotient to an (n − 1)-cell network
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that quotients to the three-cell bidirectional ring. Recursively, we obtain networks with n

cells that admit a chain of quotient networks Qk with k cells for 3 ≤ k ≤ n− 1 such that
Q3 is the three-cell bidirectional ring. Using the results of Section 2.2 again we conclude
that no new branches arise for that chain of networks. Those networks certainly form a
big subset of all the networks that quotient to the three-cell bidirectional ring.

We remark that the two networks with five cells that quotient to the three-cell ring
and have additional branches (networks 4 and 6) are symmetric. Further more only the
symmetry of the network 4 leaves invariant the synchrony subspace associated to the
three-cell ring. As we have proved, some of the additional solution branches of network 6
are forced by the symmetry. But the other seem not to be explained by the symmetry. It
would be interesting to clarify in general the relation between the existence of symmetry
and the occurrence of branches of solutions besides the ones in the quotient.
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A Proof of Theorem 3.4

In Table 5 we list the polydiagonal subspaces of R5 that are flow-invariant by all admissible
vector fields associated with the network 6.

Symmetry Z2 × Z2 =< (24), (35) >

Synchrony subspaces ∆00 = {x : x2 = x4}
∆01 = {x : x3 = x5}
∆02 = {x : x1 = x2}
∆03 = {x : x1 = x4}

∆1 = {x : x2 = x3, x4 = x5}
∆2 = {x : x1 = x2 = x4} = Fix(< (124), (12) >)
∆3 = {x : x2 = x4, x3 = x5} = Fix(< (24), (35) >)
∆4 = {x : x2 = x5, x3 = x4}
∆5 = {x : x3 = x5, x1 = x4}
∆6 = {x : x1 = x2, x3 = x5}

∆11 = {x : x1 = x2 = x3, x4 = x5} ⊆ ∆1

∆12 = {x : x2 = x3, x1 = x4 = x5} ⊆ ∆1

∆13 = {x : x2 = x3 = x4 = x5} ⊆ ∆1, ∆4, ∆3

∆21 = {x : x1 = x2 = x4, x3 = x5} ⊆ ∆2, ∆3, ∆5, ∆6

∆41 = {x : x1 = x2 = x5, x3 = x4} ⊆ ∆4

∆43 = {x : x1 = x3 = x4, x2 = x5} ⊆ ∆4

Table 5: Symmetry and synchrony subspaces associated to the five-cell network 6 of
Figure 5.
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The critical space associated with the Jacobian at the origin is given by

Efu(0)−fv(0) = {x ∈ R5 : x4 = −x1 − x2, x5 = −x1 − x3}.

We start by proving the existence of eight bifurcating branches of steady-state solutions
contained in the flow-invariant subspaces ∆1, ∆4, ∆6, ∆5 and ∆2. We end by proving
that besides those branches there is only one more branch.

Consider the coupled cell systems associated to network 6. Those systems restricted
to ∆1 have the form

ẋ1 = f(x1, x2, x4, λ)
ẋ2 = f(x2, x1, x4, λ)
ẋ4 = f(x4, x1, x2, λ)

and are S3-symmetric. They correspond to the coupled cell systems associated to the
bidirectional ring in Figure 1. Observe that Efu(0)−fv(0) ∩ ∆1 is two-dimensional. The
bifurcations for these systems have been studied in [6, Ch 1]. Provided the nondegeneracy
conditions fuλ(0)− fvλ(0) 6= 0 and C 6= 0 are satisfied, codimension-one bifurcations lead
to three nontrivial transcritical symmetry related branches whose form is given in Table 3.
We obtain branches of solutions in the following flow-invariant subspaces of ∆1: ∆11, ∆12

and ∆13. Moreover, using the Z2 × Z2-symmetry of the network 6 we obtain two more
transcritical branches in the flow-invariant subspaces ∆41 and ∆43. Note that the coupled
cell systems associated with the network 6 restricted to the flow-invariant space ∆4 also
correspond to the admissible vector fields for the bidirectional ring of Figure 1.

The coupled cell systems associated with the network 6 restricted to ∆6 have the form

ẋ1 = f(x1, x1, x4, λ)
ẋ3 = f(x3, x1, x3, λ)
ẋ4 = f(x4, x1, x1, λ)

·

These correspond to the coupled cell systems associated with the three-cell network 26
that appears in [9], see Figure 6. We can conclude that there is one transcritical bifurcating
branch in ∆6 provided fuλ(0) − fvλ(0) 6= 0 and C 6= 0 (C in (3.10)). Using the Z2 × Z2-
symmetry of the network 6 we obtain one more transcritical branch in the flow-invariant
space ∆5.

3 1 4

Figure 6: Three-cell network 26 in [9].

Now, taking the coupled cell systems associated with the network 6 restricted to the
flow-invariant subspace {x : x1 = x2 = x4 = 0} ⊆ ∆2 we obtain

ẋ3 = f(x3, 0, x5, λ)
ẋ5 = f(x5, 0, x3, λ)

(A.19)

which are Z2-symmetric. Observe that

Efu(0)−fv(0) ∩ {x : x1 = x2 = x4 = 0} =< (0, 0, 1, 0,−1) >
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where the Z2×Z2-symmetry of the network 6 acts as −Id. Generically, we have a pitchfork
branch of solutions bifurcating from the trivial solution provided fuλ(0)− fvλ(0) 6= 0 and
G 6= 0, where G is given in (3.14).

We end the proof by showing that generically, there exists only one more transcritical
branch of solutions bifurcating from the trivial solution in the flow-invariant subspace
x2 = x4 denoted by ∆00.

For the systems associated with network 6 the equations for cells 1, 2, 4 decouple from
the equations for cells 3, 5 and are S3-symmetric:

f(x1, x2, x4, λ) = 0
f(x2, x1, x4, λ) = 0
f(x4, x1, x2, λ) = 0

·

Thus, the codimension-one synchrony-breaking bifurcations in cells 1, 2, 4 lead to three
symmetry-breaking transcritical branches where two of the cells are synchronized and the
trivial branch. Denote the first three branches by:

• (x1, x2, x4, λ) = (A(λ), A(λ), B(λ), λ);

• (x1, x2, x4, λ) = (A(λ), B(λ), A(λ), λ);

• (x1, x2, x4, λ) = (B(λ), A(λ), A(λ), λ).

Easy computations show that

A
′

(0) =
2

C
(fuλ(0) − fvλ(0)) , (A.20)

B
′

(0) = −2A
′

(0) (A.21)

where C is given in (3.10).
Each of these branches and the trivial branch can be entered into the equations for

cells 3, 5 obtaining a system in the variables x3, x5:

f(x3, x1(λ), x5, λ) = 0

f(x5, x1(λ), x3, λ) = 0
· (A.22)

Observe that since f(u, v, w, λ) is invariant in the v, w variables, fu(0) = fv(0) and
f(0, 0, 0, λ) ≡ 0, the Taylor expansion of f at the origin is

f(u, v, w, λ) = fu(0)(u + v + w) + 1
2
fuu(0)u2 + 1

2
fvv(0)(v2 + w2) + fvw(0)vw

+fuv(0)u(v + w) + fuλ(0)uλ + fvλ(0)(v + w)λ + O(3).

Moreover, f(u, v, w, λ) − f(w, v, u, λ) vanishes when u = w. Hence,

f(u, v, w, λ) − f(w, v, u, λ) = (u − w)h(u, v, w, λ) (A.23)

where

h(u, v, w, λ) =
1

2
(fuu(0)− fvv(0))(u +w)+ (fuv(0)− fvw(0))v +(fuλ(0)− fvλ(0))λ+O(2) .

(A.24)
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Thus, (A.22) is equivalent to

f(x3, x1(λ), x5, λ) = 0

f(x3, x1(λ), x5, λ) − f(x5, x1(λ), x3, λ) = 0
(A.25)

and so to
f(x3, x1(λ), x5, λ) = 0
(x3 − x5)h(x3, x1(λ), x5, λ) = 0

(A.26)

where

h(x3, x1(λ), x5, λ) = 1
2
(fuu(0) − fvv(0)) (x3 + x5) + (fuv(0) − fvw(0))x1(λ)

+ (fuλ(0) − fvλ(0))λ + O(2).

We distinguish the following three cases:
(a) If x1(λ) ≡ 0 in (A.26) we obtain (A.19) deriving the pitchfork branch and the trivial
branch of solutions in the flow-invariant space ∆2.

(b) If x1(λ) ≡ A(λ) in (A.26) then:
(b.i) If x3 = x5 and (x1, x2, x4) = (A(λ), A(λ), B(λ)) then we have solutions that satisfy
x3 = x5 and x1 = x2. Thus, we obtain the transcritical branch of solutions in the flow-
invariant space ∆6. If x3 = x5 and (x1, x2, x4) = (A(λ), B(λ), A(λ)) then we have solutions
that satisfy x3 = x5 and x1 = x4. Thus, we obtain the transcritical branch of solutions in
the flow-invariant space ∆5.
(b.ii) If x3 6= x5 then (A.26) is equivalent to

f(x3, A(λ), x5, λ) = 0
h(x3, A(λ), x5, λ) = 0

(A.27)

Assuming fuu(0) − fvv(0) 6= 0, we can solve the second equation for example for x5 as a
function of x3 and λ obtaining x5 = X5(x3, λ) where X5(0, 0) = 0,

X5(x3, λ) = −x3 − A′(0)λ + O(2) (A.28)

and A′(0) is given in (A.20). Substitution of (A.28) into the first equation in (A.27) leads
to an equation in the two variables x3, λ:

g(x3, λ) ≡ f(x3, A(λ), X5(x3, λ), λ).

Implicit differentiation with respect to x3, λ and evaluation at the origin show that

g(0) = 0, gx3
(0) = 0, gλ(0) = 0, gx3x3

(0) 6= 0, gλλ(0) 6= 0

with

gx3x3
(0) = F (A.29)

gλλ(0) = fu(0)

(

A
′′

(0) +
∂2X5(x3, λ)

∂λ2
|0

)

+ 2A
′

(0)2(fvv(0) − fvw(0))
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where A′ and G are given respectively in (A.20) and (3.13), and

∂2X5(x3,λ)

∂x2

3

∣

∣

∣

0
= −2

3

D

fuu − fvv

∂2X5(x3,λ)
∂λ2

∣

∣

∣

0
=

2

fuu − fvv

[

fvλλ − fuλλ + (fvw − fuv)A
′′

−
1

3
D(A′)2 + MA′

]

M = fuuλ − fvvλ + 2fvwλ − 2fuvλ

A
′′

=
2

C
(fuλλ − fvλλ) +

4

3fuC
(fvλ − fuλ)

2 .

The derivatives of f and A(λ) are all evaluated at the origin and C, D are given in (3.10),
(3.11).

We have two transcritical branches if gx3x3
(0)gλλ(0) < 0. As we know that

f(A(λ), A(λ), B(λ), λ) = 0

f(B(λ), A(λ), A(λ), λ) = 0,
(A.30)

it follows this is the case. That is, the system (A.27) in the variables x3, x5, λ has the
two transcritical branches of solutions (x3, x5, λ) = (A(λ), B(λ), λ) and (x3, x5, λ) =
(B(λ), A(λ), λ). Thus we obtain the transcritical branches in the flow-invariant spaces
∆11 and ∆41 if (x1, x2, x4) = (A(λ), A(λ), B(λ)) and the transcritical branches in the
flow-invariant spaces ∆43 and ∆12 if (x1, x2, x4) = (A(λ), B(λ), A(λ)).

(c) If x1(λ) ≡ B(λ) in (A.26) then:
(c.i) If x3 = x5 as (x1, x2, x4) = (B(λ), A(λ), A(λ)), we obtain solutions satisfying x3 = x5

and x2 = x4. Thus we obtain the transcritical branch of solutions in the flow-invariant
space ∆13.
(c.ii) If x3 6= x5 then (A.26) is equivalent to

f(x3, B(λ), x5, λ) = 0
h(x3, B(λ), x5, λ) = 0

(A.31)

Again, since we are assuming fuu(0) − fvv(0) 6= 0, we can solve the second equation for
example for x5 as a function of x3 and λ obtaining x5 = X5(x3, λ) where X5(0, 0) = 0,

X5(x3, λ) = −x3 + LA′λ + O(2) (A.32)

with L given in (3.15). Substitution of (A.32) into the first equation in (A.31) leads to
an equation in the two variables x3, λ:

g(x3, λ) ≡ f(x3, B(λ), X5(x3, λ), λ).

Direct calculations show that

g(0) = 0, gx3
(0) = 0,

gλ(0) = −6fu(0)
fuλ(0) − fvλ(0)

fuu(0) − fvv(0)
6= 0
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and gx3x3
(0) is given by (A.29), which is nonzero by assumption. Thus, we obtain a

transcritical branch of solutions in the flow-invariant subspace x2 = x4 where (x1, x2, x4) =
(B(λ), A(λ), A(λ)) that we call of parabolic type since the branch is transcritical in the
variables x1, x2, x4 and cells x3, x5 have a rate of growth of order λ1/2.

We end the proof with a final remark on the instability of the solutions. The instability
of the solutions of the branches obtained in cases (b) and (c) follows immediately from
the following two facts: equations for cells 1, 2 and 4 decouple from the ones for cells 3
and 5 implying a block structure for the Jacobian matrix at any point; equations for cells
1, 2 and 4 are S3-symmetric and it is known that in this case the non-trivial solutions are
generically unstable. The solutions of the pitchfork branch obtained in case (a) correspond
to the trivial branch of solutions of the system with equations for cells 1, 2 and 4. In this
case, if the branch is supercritical the instability follows from the instability of the trivial
branch of solutions for λ positive near zero. 2

B Proof of Theorem 3.5

In Table 6 we list the synchronous polydiagonal subspaces of R5 that are flow-invariant
by all admissible vector fields associated to the network 4.

The critical space at the origin is given by

Efu(0)−fv(0) = {x ∈ R5 : x1 = −x3 −
4

3
x4 +

1

3
x5, x2 = x3 + x4 − x5}.

Consider the coupled cell systems associated to network 4. We have that these re-
stricted to ∆1 have the form

ẋ1 = f(x1, x2, x4, λ)
ẋ2 = f(x2, x1, x4, λ)
ẋ4 = f(x4, x1, x2, λ)

and are S3-symmetric. These systems correspond to the coupled cell systems associated to
the network in Figure 1. As mentioned before, under the assumptions fuλ(0)− fvλ(0) 6= 0

Symmetry Z2 =< (24)(35) >

Synchrony subspaces ∆00 = {x : x3 = x4}
∆01 = {x : x2 = x5}

∆1 = {x : x2 = x3, x4 = x5}
∆2 = {x : x2 = x4, x3 = x5} = Fix(< (24)(35) >)
∆3 = {x : x2 = x5, x3 = x4}

∆11 = {x : x1 = x2 = x3, x4 = x5} ⊆ ∆1

∆12 = {x : x2 = x3, x1 = x4 = x5} ⊆ ∆1

∆13 = {x : x2 = x3 = x4 = x5} ⊆ ∆1

Table 6: Symmetry and synchrony subspaces associated to the five-cell network 4 of
Figure 5.
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and A 6= 0, codimension-one bifurcations lead to three nontrivial transcritical symmetry
related branches whose form is given in Table 4. That is, we obtain branches of solutions
in the following flow-invariant subspaces of ∆1: ∆11, ∆12 and ∆13. The solutions are
unstable in the directions in the ∆1 subspace.

Next we consider the flow-invariant subspace ∆2. The coupled cell systems restricted
to ∆2 have the form

ẋ1 = f(x1, x2, x2, λ)
ẋ2 = f(x2, x1, x3, λ)
ẋ3 = f(x3, x1, x2, λ)

with synchronous space x2 = x3. These systems correspond to the coupled cell vector fields
associated with the three-cell network 11 in [9]. See Figure 7. Hence, by [9, Theorem 4.14]
we conclude that there are two transcritical bifurcating branches of unstable solutions,
provided fuλ(0)−fvλ(0) 6= 0 and A 6= 0. One of these branches occurs in the intersection of
the plane x2 = x3 with ∆2, that is, it lies in the space ∆13. Observe that Efu(0)−fv(0)∩∆13

is one-dimensional. Hence, this transcritical branch is unique and is the one identified
previously.

2

1

3

Figure 7: Three-cell network 11 in [9].

We show now that there are two more nontrivial branches in addition to these four
transcritical branches. The proof consists in studying all the possible solutions of the
following system:

f(x1, x2, x4, λ) = 0
f(x2, x1, x5, λ) = 0
f(x3, x1, x4, λ) = 0
f(x4, x1, x3, λ) = 0
f(x5, x1, x2, λ) = 0.

(B.33)

To find the solutions of (B.33) we apply (A.23) to cells 2,5 equations and cells 3,4
equations and we obtain

f(x2, x1, x5, λ) − f(x5, x1, x2, λ) = (x2 − x5)h(x2, x1, x5, λ) = 0 (B.34)

f(x3, x1, x4, λ) − f(x4, x1, x3, λ) = (x3 − x4)h(x3, x1, x4, λ) = 0 (B.35)

where h is defined by (A.24).
Thus, there are the following four possibilities for solutions of (B.33):

1. x2 = x5, x3 = x4;

2. x2 = x5, h(x3, x1, x4, λ) = 0;

3. x3 = x4, h(x2, x1, x5, λ) = 0;

4. h(x2, x1, x5, λ) = 0 = h(x3, x1, x4, λ).
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Case 1: x2 = x5, x3 = x4. This possibility corresponds to the restriction of network 4
equations to ∆3. The restricted coupled cell systems have the form

ẋ1 = f(x1, x2, x3, λ)
ẋ2 = f(x2, x1, x2, λ)
ẋ3 = f(x3, x1, x3, λ)

which correspond to the three-cell network 10 in [9]. See Figure 8. Hence, by [9, Table 3]

12 3

Figure 8: Three-cell network 10 in [9].

we conclude that there exists a unique transcritical bifurcating branch satisfying x2 =
x3 = x4 = x5. This branch lies in ∆13 and it was identified previously.

Case 2: x2 = x5, h(x3, x1, x4, λ) = 0. In this case to find the solutions of (B.33) is
equivalent to solve the following system:

h(x3, x1, x4, λ) = 0 (B.36)

f(x1, x2, x4, λ) = 0 (B.37)

f(x2, x1, x2, λ) = 0 (B.38)

f(x3, x1, x4, λ) = 0. (B.39)

By (A.24) it follows that

h(x3, x1, x4, λ) =
1

2
(x3+x4)(fuu(0)−fvv(0))+(fuv(0)−fvw(0))x1+(fuλ(0)−fvλ(0))λ+O(2).

Let

B = 2
fvw(0) − fuv(0)

fuu(0) − fvv(0)
, C = 2

fvλ(0) − fuλ(0)

fuu(0) − fvv(0)
.

Next we assume (3.16) and we solve (B.36) for x4, which yields

x4 = X4(x1, x3, λ) = −x3 + Bx1 + Cλ + O(2). (B.40)

Substitution of (B.40) into (B.37)-(B.39) leads to

f(x1, x2, X4(x1, x3, λ), λ) = 0
f(x2, x1, x2, λ) = 0

f(x3, x1, X4(x1, x3, λ), λ) = 0.

(B.41)

The implicit function theorem guarantees that there exists a unique branch of solutions
X(λ) = (x1(λ), x2(λ), x3(λ)) of the system (B.41) satisfying X(0) = 0 provided
fuu(0) − fvv(0) 6= 0 and A 6= 0.
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Substitution of (B.40) into (B.39) leads to

g(x3, x1, λ) ≡ f(x3, x1,−x3 + Bx1 + Cλ + O(2), λ) = 0.

A straightforward calculations shows that

∂g

∂x1
(0) =

fu(0)A

fuu(0) − fvv(0)

which is nonzero by (3.16) and (3.17). Hence, the implicit function theorem guarantees
that there exists a unique solution x1 = X(x3, λ) satisfying X(0) = 0 and

g(x3, X(x3, λ), λ) = f(x3, X(x3, λ),−x3 + BX(x3, λ) + Cλ + O(2), λ) ≡ 0.

Implicit differentiation of g with respect to x3 and λ, and evaluation at the origin leads
to

Xx3
(0) = 0, Xλ(0) = −

2

A
(fvλ − fuλ).

Note that Xλ(0) 6= 0 since (3.17) holds. Hence,

x1 = Xλ(0)λ + O(2) = −
2

A
(fvλ − fuλ)λ + O(2). (B.42)

Next we consider (B.38). Observe that

∂f

∂x2
(0) = fu(0) + fv(0)

which is nonzero since fu(0) = fv(0) 6= 0. Therefore, the implicit function theorem implies
that there exists a unique solution x2 = Y (x1, λ) such that Y (0) = 0 and

f(Y (x1, λ), x1, Y (x1, λ), λ) ≡ 0.

A straightforward calculation using implicit differentiation of f with respect to x1 and λ

shows that

Yx1
(0) = −

1

2
, Yλ(0) = 0.

Hence, x2 = −1
2
x1 + O(2). Substitution of (B.42) in this expression yields

x2 =
1

A
(fvλ − fuλ)λ + O(2). (B.43)

To complete the analysis of case 2 we consider the equation (B.37). Substitution of (B.43),
(B.40) and (B.42) into (B.37) leads to

l(x3, λ) ≡ f(X(x3, λ), Y (X(x3, λ), λ), X4(X(x3, λ), x3, λ), λ) = 0.

Implicit differentiation of l with respect to λ shows that the Taylor expansion of l at the
origin is given by

l(x3, λ) = fv(0)

(

−x3 +
fvλ(0) − fuλ(0)

A
λ

)

+ O(2).

30



Hence, the solution of l = 0 is

x3 =
1

A
(fvλ(0) − fuλ(0))λ + O(2). (B.44)

Substitution of (B.44) into (B.40) yields

x4 =
1

A
(fvλ − fuλ)λ + O(2)

where A is given in (3.18). This branch of solutions is of transcritical type and is in the
flow-invariant subspace satisfying x2 = x5. Moreover, it coincides at linear order (in λ)
with the solution branch in the flow invariant subspace ∆13. However, as we prove next,
this is a new bifurcating solution branch and it does not lie in ∆13.

Suppose that the transcritical solution branch we have found was in ∆13. Under this
assumption the solution branch must satisfy x3 = x4 and solve the system (B.36)-(B.39).
That is, it is a solution of the following system

h(x3, x1, x3, λ) = 0 (B.45)

f(x1, x2, x3, λ) = 0 (B.46)

f(x2, x1, x2, λ) = 0 (B.47)

f(x3, x1, x3, λ) = 0. (B.48)

Observe that the system consisting of equations (B.46)-(B.48) is precisely the one
obtained in case 1. The only nontrivial solution of this system satisfies x2 = x3 = x4 = x5.
Thus, to find the solutions of system (B.45)-(B.48) is equivalent to solve the system:

h(x2, x1, x2, λ) = 0 (B.49)

f(x1, x2, x2, λ) = 0 (B.50)

f(x2, x1, x2, λ) = 0. (B.51)

Note that (A.23) with v = w can be applied to (B.50) and (B.51) reducing (B.49)-
(B.51) to the following system

h(x2, x1, x2, λ) = 0 (B.52)

f(x1, x2, x2, λ) = 0 (B.53)

(x1 − x2)h(x1, x2, x2, λ) = 0. (B.54)

There are the following two possibilities for the solutions of (B.52)-(B.54):
(a) x1 = x2 and h(x2, x1, x2, λ) = 0 = f(x1, x2, x2, λ);
(b) h(x2, x1, x2, λ) = 0 = h(x1, x2, x2, λ) = 0 and f(x1, x2, x2, λ) = 0.

In case (a) the solutions are in the fully synchronous subspace. Hence, there is only
the trivial solution branch which is not the case of the transcritical solution branch we
have found.

In case (b) a straightforward calculation shows that the Jacobian of the system formed
by the three equations, evaluated at the origin, has determinant given by

3

2
(fuλ(0) − fvλ(0)) fu(0)A
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with A given in (3.18). Since we are assuming the nondegeneracy conditions fu(0) 6= 0,
fuλ(0) − fvλ(0) 6= 0, and A 6= 0 it follows that the determinant is nonzero.

Thus the only solution of system (B.45)-(B.48) is the trivial one. That is, the only
solution of system (B.36)-(B.39) satisfying x3 = x4 is the trivial one. Since the transcritical
solution branch we have found is nonzero at linear order, we conclude that it is outside
∆13 and it is a new bifurcating branch.

Case 3: x3 = x4, h(x1, x2, x5, λ) = 0. The analysis of this case follows precisely the
steps described in Case 2, with the variables x3, x4 playing the role of the variables x2, x5

in Case 2. Similarly to case 2, we obtain a unique transcritical branch that is in the flow-
invariant subspace x3 = x4. Equivalently, the Z2 =< (24)(35) >-symmetry of network 4
applied to the branch of solutions obtained in case 2 gives the same result.

Case 4: h(x2, x1, x5, λ) = 0 = h(x3, x1, x4, λ). To find solutions of (B.33) satisfying
conditions in case 4 we solve the system consisting of equations (B.36), (B.37), (B.39),
and

h(x2, x1, x5, λ) = 0 (B.55)

f(x2, x1, x5, λ) = 0. (B.56)

Observe that (B.36) was solved in Case 2 leading to (B.40). Using a similar procedure we
solve (B.55) leading to

x5 = X5(x1, x2, λ) = −x2 + Bx1 + Cλ + O(2). (B.57)

Next we substitute (B.40) (considering the Taylor expansion of X4(x1, x3, λ) around
the origin of degree 2) into (B.39) and (B.57)) (considering the Taylor expansion of
X5(x1, x2, λ) around the origin of degree 2) into (B.56). Subtracting the resulting ex-
pressions we obtain

(x2 − x3)M(x1, x2, x3, λ) = 0 (B.58)

where

M(x1, x2, x3, λ) = (x2 + x3)

(

1

2
(fuu + fvv − 2fuv) + fu(0)E

)

+[(1 + B)fuv − fvw − Bfvv − BEfu(0)]x1

+[C(fuv − fvv) + fuλ − fvλ − CEfu(0)]λ + O(2).

Hence, there are the following two possibilities for solutions of (B.58):
(a) x2 = x3;
(b) M(x1, x2, x3, λ) = 0.

(a) x2 = x3. It is straightforward to see that by (B.57) and (B.40) the condition x2 = x3

implies x4 = x5. Recall that ∆1 = {x2 = x3, x4 = x5} is a flow-invariant subspace and
the solutions on this subspace were previously identified.
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(b) M(x1, x2, x3, λ) = 0. In this case we have to solve the following system:

f(x1, x2, X4(x1, x3, λ), λ) = 0

f(x3, x1, X4(x1, x3, λ), λ) = 0
M(x1, x2, x3, λ) = 0.

(B.59)

By the implicit function theorem, provided A 6= 0, fuu(0) − fvv(0) 6= 0, fu(0) 6= 0 and
D 6= 0, we have a unique branch of solutions (X1(λ), X2(λ), X3(λ)) such that X1(0) =
X2(0) = X3(0) = 0. This branch must correspond to the solution branch in ∆2 not lying
in ∆13. 2
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