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Abstract. This is a survey of results of the profinite approach to decidability problems in the
theory of finite semigroups.

1. Introduction

This is an expanded version of an invited talk presented at the 38th Iranian International Confer-
ence on Mathematics, held on 3-6 September 2007, at the University of Zanjan, Zanjan, Iran. The
purpose of the talk was to give a short survey of the profinite approach to decidability problems in
the theory of finite semigroups.

The main motivation for studying finite semigroups comes from the theories of formal languages
and automata. In the framework set up by S. Eilenberg in the 1970’s, under a strong influence
of M.-P. Schützenberger, the theory has evolved mainly in the direction of the classification in so-
called pseudovarieties. The typical problems consist in, for a certain recursively enumerable set of
finite semigroups, solving the membership problem in the pseudovariety it generates, that is given
a finite semigroup, to determine whether it is a homomorphic image of some subsemigroup of some
finite direct product of members of the set. While, even for some naturally constructed sets it is
known that the answer is negative, there are many positive examples, and even classes of examples
which can be treated more or less uniformly.

In the following sections, we introduce and motivate more extensively the general problem, the
profinite method, and how it has been used to obtain positive results. This survey is meant as a
quick introduction to the subject and not as an exhaustive coverage of results to date. As this area
of research is quite active, perhaps it is does not even make sense to try to elaborate an exhaustive
survey, as it will probably already be outdated at the time it is made available. It is hoped that,
nevertheless, it will be of use both to researchers with an interest in the area as well to those already
initiated or even participating in the joint endeavor of development of the subject.

The reader seaking further details and bibliography on the subject is referred to the books [44, 4],
respectively for an elementary and more advanced introductions to the theory of pseudovarieties
and its applications. For the profinite approach, see [19, 64, 18, 10, 9, 50]. More specific references
will be given in the remainder of the text.

2. Semigroups via automata

Finite automata can be viewed as simple recognition devices for formal languages. In this paper,
A will always denote a finite alphabet, that is a finite set whose members are called letters. The set
of all finite words on the alphabet A is denoted A∗. By a word we simply mean a finite sequence
of letters, normally written consecutively, in the form a1a2 · · · an. We include in A∗ the empty
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sequence, denoted 1. Under the operation of concatenation of sequences, a1 · · · am · b1 · · · bn =
a1 · · · anb1 · · · bn, the set A∗ is the free monoid on the set A in the sense that every mapping from
A∗ to a monoid M extends uniquely to a homomorphism A→M . The set A∗ \ {1} is denoted A+

and is similarly the free semigroup on A.
By an A-automaton, we mean a finite directed (multi)graph whose edges are labeled by the

elements of A and whose vertices are called states, in which subsets of initial and final states are
distinguished. The language recognized by such an automaton A is the set L(A) of all words which
are obtained by concatenating the successive labels of the edges in some (directed) path from an
initial to a terminal state. An automaton is called deterministic if it has a unique initial state
and there are no two edges leaving from the same state with the same label. An A-automaton is
complete if, for every state q and every letter a ∈ A there is an outgoing edge from q labeled a.

For example, consider the {a, b}-automaton described by the following diagram

1 2

a

b

where an incoming arrow which does not start at a state means that the state where it ends is an
initial state and dually for terminal states. The language recognized by it is L = (ab)∗a, where,
in general, with an abuse of notation which pervades the literature, for a language K ⊆ A∗, K∗

denotes the submonoid of A∗ generated byK. Similarly, forK ⊆ A+, K+ denotes the subsemigroup
of A+ generated by L. In other words, in our example, L consists of all words alternating a’s and
b’s, which start and end with a. The automaton in this example is minimum in the sense that it is
the unique (up to isomorphism) deterministic (perhaps incomplete) automaton recognizing L with
a minimum number of states.

Note that, if Q is the set of states of an A-automaton A, then each letter defines a binary
relation on the set Q whose members are the pairs (p, q) such that there is an edge from p to q
labeled a. The mapping thus defined extends uniquely to a homomorphism ϕ : A+ → BQ into
the semigroup of binary relations on Q, under the composition of relations. The image ϕ(A+) is
called the transition semigroup of A and denoted T (A). In case A is deterministic, the action of
the alphabet A on Q is by partial transformations. If, further, the automaton is complete then the
action is by full transformations. In case A is deterministic, the language L(A) consists precisely
of those transformations which map the unique initial state to some final state. In particular,
L(A) = ϕ−1ϕ(L(A)), a property that is expressed by saying that the homomorphism ϕ recognizes L.
If A is the minimum automaton of the language L then the relation kerϕ = {(u, v) : u, v ∈
A+, ϕ(u) = ϕ(v)} is the largest congruence on A+ which saturates L, in the sense that L is a union
of its classes. The transition semigroup T (A) ≃ A+/ kerϕ is then the unique (up to isomorphism)
smallest semigroup S for which there exists a homomorphism ψ : A+ → S that recognizes L. It is
called the syntactic semigroup of the language L and it is denoted Synt(L). In general, given an
automaton recognizing a certain language, one may apply the power set construction to determinize
the automaton and then a minimization procedure to compute the minimum automaton of the
language. Hence, the syntactic semigroup of such a language is effectively computable.

Kleene proved in 1956 that a language is recognized by some (finite) A-automaton if and only if
it may be expressed in terms of the languages ∅ and {a} (a ∈ A) by using only the operations ∪ ,
· , and + [35]. Such an expression is called a rational expression for the language, which in case

it admits one is called a rational language. The above discussion shows that every rational language
is recognized by a homomorphism onto a finite semigroup. The converse is easily established by
considering the Cayley graph of the semigroup with respect to the alphabet.
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Two remarkable examples of application of the syntactic semigroup are the following two theo-
rems. We say that a semigroup S is aperiodic if all its subgroups (that is subsemigroups which are
groups) are trivial.

Theorem 2.1 (Schützenberger [54]). A rational language L ⊆ A+ may be expressed in terms of
the languages ∅ and {a} (a ∈ A) by using only the operations ∪ , A+ \ , and · if and only if
its syntactic semigroup is aperiodic.

By a subword of a word a1a2 · · · am we mean a word of the form ai1 · · · air , with 1 ≤ i1 < · · · <
ir ≤ m and r ≥ 0. Call a language L ⊆ A+ piecewise testable if there exists a positive integer n
and a set P such that a word belongs to L if and only if all its subwords of length at most n belong
to P .

Say that two elements s and t of a semigroup S are J-equivalent (in S), and write s J t if they
are factors of each other. Similarly, we write s R t if s and t are left factors of each other and s L t
if s and t are right factors of each other.

Theorem 2.2 (Simon [55]). A rational language L ⊆ A+ is piecewise testable if and only if its
syntactic semigroup is J-trivial.

These two results translate combinatorial—expressability—problems concerning rational lan-
guages to algebraic properties of their syntactic semigroups. While testing directly whether a given
rational language has such a property seems a daunting task, the properties in question of the
syntactic semigroups are easily tested once the syntactic semigroup has been computed, although
there are some complexity issues related with the fact that in general the minimum automaton may
be much (exponentially) smaller than the syntactic semigroup [58].

Eilenberg [29] gave the general framework (which is not to be confused with a generalization) for
such results that we proceed to describe.

A pseudovariety (of finite semigroups) is a class V of finite semigroups that is closed under taking
homomorphic images, subsemigroups, and finite direct products. We include the empty product
{1} =

∏

∅, so that pseudovarieties are necessarily nonempty classes. For example, the class G

of all finite groups, the class A of all finite aperiodic semigroups, the class J of all finite J-trivial
semigroups, and the class R of all finite R-trivial semigroups, are pseudovarieties.

A variety of rational languages is a correspondence V which associates with each finite alphabet
A a Boolean algebra V(A) of languages over A such that:

(1) if L ∈ V(A) and a ∈ A then the languages

a−1L = {w ∈ A+ : aw ∈ L} and La−1 = {w ∈ A+ : wa ∈ L}

also belong to V(A);
(2) if ϕ : A+ → B+ is a homomorphism and L ∈ V(B), then ϕ−1(L) ∈ V(A).

For example, the correspondences that associate with each finite alphabet A the set of all languages
L ⊆ A+ which admit a +-free expression (that is an expression as in Theorem 2.1) or which are
piecewise testable are varieties of rational languages.

Theorem 2.3 (Eilenberg [29]). Consider the correspondence that associates with each pseudovariety
V the variety of rational languages V such that, for a finite alphabet A and L ⊆ A+, L ∈ V(A) if
and only if Synt(L) ∈ V. It is a bijection between the sets of all pseudovarieties of finite semigroups
and all varieties of rational languages.

There have been many extensions of this result to various contexts and in different directions. The
interested reader should do a bibliographic search with the keywords Eilenberg and correspondence.

Naturally, Eilenberg’s correspondence also provides a translation of operators on varieties of
rational languages to operators on pseudovarieties of finite semigroups. Among such operators,
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on either side, deserve particular attention those that derive from natural constructions, be it on
automata, languages or semigroups. For example, the parallel composition of automata corresponds
to taking the smallest variety of rational languages containing two given such varieties (which is
called their join). On the semigroup side, we have the construction of the direct product which
leads similarly to the join ∨ in the lattice of pseudovarieties of finite semigroups.

The cascade composition of automata is similarly associated with the semidirect product of finite
semigroups and of their pseudovarieties. The semidirect product V ∗ W of two pseudovarieties V

and W is the pseudovariety generated by (that is the smallest containing) all semidirect products
of the form S ∗ T , with S ∈ V and T ∈ W. The semidirect product on pseudovarieties turns out
to be an associative operation (see [4, Section 10.1]). For a pseudovariety V, we write Vn for the
n-fold semidirect product in which all factors are V.

Performing substitutions in rational languages is in turn associated with the construction of the
semigroup P(S) of subsets of a given semigroup S, in which the product of two subsets X and Y
is given by XY = {xy : x ∈ X, y ∈ Y }. The corresponding operator on pseudovarieties is known
as the power operator. It associates with each pseudovariety V the pseudovariety PV generated by
all semigroups of the form P(S) with S ∈ V. See [44, 4].

Certain naturally defined hierarchies of rational languages also motivate strongly the study of the
Mal’cev product V©m W, which is defined to be the pseudovariety generated by all finite semigroups
S for which there exists a homomorphism ϕ : S → T into some semigroup T ∈ W such that
ϕ−1(e) ∈ V for every idempotent e ∈ T .

Note that all the above examples of operators on pseudovarieties are defined in terms of gen-
erators. This raises the central decision problem for a pseudovariety V, namely the membership
problem:

Given a finite semigroup S, determine whether S ∈ V.

We say that a pseudovariety is decidable if its membership problem admits an algorithmic solution.
It turns out that none of the above operators on pseudovarieties preserves decidability [1, 23].

Yet, in many useful instances, one obtains decidable pseudovarieties. This raises the question of
whether one can find fairly general conditions under which a pseudovariety that is obtained by
applying the natural operators is decidable.

Here are a couple of examples of specific open problems of our general kind.

• Krohn and Rhodes [38] proved that every finite semigroup divides (that is, it is a homomor-
phic image of a subsemigroup of) an alternating wreath product of finite permutation groups
and finite aperiodic transformation semigroups. The minimum number of group factors is
called the Krohn-Rhodes complexity of the finite semigroup. In terms of pseudovarieties,
the complexity of S is the least n ≥ 0 such that S ∈ A ∗ (G ∗ A)n. Is the Krohn-Rhodes
complexity computable? This is equivalent to asking whether each of the pseudovarieties
A ∗ (G ∗ A)n is decidable.

• It turns out that PJ is the pseudovariety corresponding to the level two of the Straubing-
Thérien (concatenation) hierarchy of +-free rational languages (see [46]). Is PJ decidable?

3. Profinite semigroups

A topological semigroup is a semigroup S endowed with a topology such that the basic semigroup
multiplication S × S → S is continuous. A compact semigroup is a topological semigroup in which
the topology is compact, a property in which we include the Hausdorff separation axiom. In
particular, finite semigroups are viewed as compact semigroups under the discrete topology.

We say that a topological semigroup S is A-generated if a mapping ϕ : A→ S is given such that
ϕ(A) generates a dense subsemigroup of S.
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Given a class C of topological semigroups, we say that a semigroup S is residually in C if, for
every two distinct points s, t ∈ S, there exists a continuous homomorphism ϕ : S → T into some
member T ∈ C such that ϕ(s) 6= ϕ(t). In case C is the class of all finite semigroups, we then simply
say that S is residually finite.

A profinite semigroup is a compact semigroup which is residually finite. Equivalently, a profinite
semigroup is a compact totally disconnected semigroup [43]. More generally, if V is a pseudovariety
of finite semigroups, then by a pro-V semigroup we mean a compact semigroup which is residually
in V. Equivalently, a pro-V semigroup is a projective (or inverse) limit of semigroups from V.

Considering only representatives up to isomorphism, the A-generated semigroups from V form a
directed system, where ϕ : A→ S is larger than ψ : A→ T if there exists a homomorphism (which
must be unique) h : S → T such that h ◦ ϕ = ψ. The projective limit of this system is denoted
ΩAV and is the most general A-generated pro-V semigroup, in the sense that it comes naturally
equipped with a generating mapping ι : A→ ΩAV and, for every mapping ϕ : A→ S into a pro-V
semigroup S, there exists a unique continuous homomorphism ϕ̂ : ΩAV → S such that the following
diagram commutes:

A
ι //

ϕ
!!C

C

C

C

C

C

C

C

C

ΩAV

ϕ̂

��
S

For this reason, ΩAV is called the free pro-V semigroup on A.
The above diagram suggests a way of defining a natural interpretation of each w ∈ ΩAV as an

A-ary operation wS : SA → S: given an argument ϕ ∈ SA, that is a function ϕ : A → S, define
wS(ϕ) = ϕ̂(w). This interpretation is easily seen to commute with continuous homomorphisms
between pro-V semigroups h : S → T in the sense that the following diagram commutes:

SA
wS //

h◦
��

S

h

��

TA
wT // T

Operations with this property are called A-ary implicit operations. One can show that they are
all obtained by natural interpretation of members of ΩAV. Since pro-V semigroups are projective
limits of semigroups from V, each w ∈ ΩAV is completely determined by the implicit operation
(wS)S∈V.

Given a finite semigroup S, s ∈ S, and k ∈ Z, the sequence (sn!+k)n, which is only defined for
n sufficiently large, is eventually constant, that is it converges in S. It follows that, if instead S is
a profinite semigroup, then the sequence still converges. The limit is denoted sω+k. In particular,
sω = sω+0 is an idempotent, and sω−1 is the inverse of sω+1 in the maximal subgroup of S containing
sω. Here are some properties of these operations:

• if k > ℓ then sω+k = sω+ℓsk−ℓ;
• sω+ksω+ℓ = sω+k+ℓ;
• (sω+k)ω+ℓ = sω+kℓ;
• if k > 0 then (sω−1)k = sω−k.

Let S be the pseudovariety of all finite semigroups. If A = {a}, then aω+k is a well-defined
element of ΩAS and therefore determines a unary implicit operation. It is an easy exercise to show
that the correspondence s 7→ sω+k is precisely the interpretation of this implicit operation on each
profinite semigroup. Elements of ΩAS are sometimes also called profinite words or pseudowords
since A+ embeds naturally in ΩAS as a dense subsemigroup.
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A pseudoidentity is a formal equality u = v with u and v in some ΩAS. We say that a profinite
semigroup S satisfies the pseudoidentity u = v and write S |= u = v if uS = vS . For a set Σ of
pseudoidentities, denote by [[Σ]] the class of all finite semigroups which satisfy all pseudoidentities
from Σ. It is immediate to show that such a class is a pseudovariety and Reiterman [49] proved
that every pseudovariety is of this form. In other words, pseudovarieties may always be described
by some set of defining pseudoidentities, also known as a basis of pseudoidentities. Here are some
examples of bases of pseudoidentities:

G = [[xω = 1]] (as an abbreviation of xωy = yxω = y)

A = [[xω+1 = xω]]

J = [[(xy)ω+1 = (yx)ω]]

More examples of implicit operations may be obtained using the following result from [10].
Recall that, for a topological space X, on a function space S ⊆ XX , there are several natural
topologies. The pointwise convergence topology is the subspace topology of the product space XX .
The compact-open topology has as basis of open sets the sets of the form {f ∈ S : f(K) ⊆ U},
where K ⊆ X is a compact subset and U ⊆ X is an open subset. In general, these two topologies
are different.

Theorem 3.1. If S is a finitely generated profinite semigroup, then its monoid of continuous
endomorphisms End(S) is a profinite semigroup with respect to the pointwise convergence topology,
which coincides with the compact-open topology, so that the evaluation mapping (f, s) 7→ f(s) is
continuous.

Let ϕ ∈ End(Ω{x}S) send x to xp. Then the implicit operation xpω
= ϕω(x) = limϕn!(x) =

limxpn!

may be used to define the pseudovariety of all finite p-groups: Gp = [[xpω
= 1]].

Let ϕ ∈ End(Ω{x,y}S) send x to [x, y] = xω−1yω−1xy and fix y. Then [x, ωy] = ϕω(x) =

limϕn!(x) = [x, n!y], where the iterated “commutator” is defined recursively by [x, 1y] = [x, y]
and [x, n+1y] = [[x, ny], y]. The implicit operation [x, ωy] may be used to define the pseudovariety
of all finite nilpotent groups: Gnil = [[ [x, ωy] = 1]] [65].

Let ϕ ∈ End(Ω{x,y}S) send x to xy and y to yx, that is the extension of the usual Thue-Morse
transformation to the profinite world. Then the implicit operation τ(x, y) = ϕω(x) is such that
B(Gnil ∗ G2) = [[τ(x, y) = τ(y, x)]] consists of all finite semigroups S such that

(1) for every s ∈ S, there is at most one element t ∈ S such that sts = s and tst = t;
(2) every subgroup in S is an extension of a nilpotent group by a 2-group.

This follows from results of Širšov [63] (see [7]).
Let ϕ ∈ End(Ω{x,y,z}S) send x to [yxyω−1, zxzω−1] and fix y and z. Let w(x, y, z) = ϕω(x).

Then Gsol = [[w(xω−2yω−1x, x, y) = 1]] is the pseudovariety of all finite solvable groups [24]. An
alternative description of the same pseudovariety is as follows [25]. Let ϕ ∈ End(Ω{x,y}S) send x

to [yω−1xω−1y, x] and fix y. Let v(x, y) = ϕω(x). Then Gsol = [[ v(x, y) = 1]].

4. The role of profinite methods

Although pseudovarieties are defined by pseudoidentities, it is not clear how to use them to
obtain decidability results. A difficulty in this direction is that the free profinite semigroup ΩAS is
uncountable even for |A| = 1. Yet many natural algebraic properties admit descriptions in terms
of pseudoidentities which involve only very simple elements of ΩAS. In spite of the examples at the
end of the preceding section, most often one only uses elements of the subalgebra Ωκ

AS generated
by A with respect to the algebraic operations of multiplication and ω−1.
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Here are some examples of results in this direction. Even though the pseudovarieties J ∨ G and
A ∨ G are not finitely based [62], the former is known to be decidable [12, 56], while for the latter
this remains an open problem. Both proofs of the decidability result, which follow similar lines,
depend on two main ingredients: a structure theorem for ΩAJ [2] and a form of “tameness” for G

[22]. The sense of the word tameness in this context is explained in Section 5.
Another famous result is the following: the pseudovariety PG is decidable. More precisely, it

admits a simple algebraic characterization, namely as the class BG of all finite semigroups S such
that, for every element s, there exists at most one t ∈ S such that sts = s and tst = t. This
combines the work of several researchers [40, 31, 22]. There are essentially no known general
decidability results concerning the power operator.

For the Mal’cev product, the following result is sometimes quite useful.

Theorem 4.1 ([48]). If V = [[Σ]] then V©m W is defined by the pseudoidentities of the form
u(w1, . . . , wn) = v(w1, . . . , wn) where

(

u(x1, . . . , xn) = v(x1, . . . , xn)
)

∈ Σ, w1, . . . , wn ∈ ΩAS,

and W |= w1 = · · · = wn = w2
n.

To test whether a given finite semigroup S belongs to V©m W by using the basis of pseudoidentities
given by Theorem 4.1 we need to be able to figure out for s1, . . . , sn ∈ S, and a given evaluation ϕ :
A→ S, if there is a solution modulo W (w1, . . . , wn) of the system of equations x1 = · · · = xn = x2

n

(that is W |= w1 = · · · = wn = w2
n) such that ϕ̂(wi) = si (i = 1, . . . , n). More generally, for a class

of arbitary finite systems of equations, if there is an algorithm to solve this problem, then we say
that W is hyperdecidable with respect to the class in question. A general decidability result about
Mal’cev products may now be easily derived from Theorem 4.1.

Theorem 4.2. If V is decidable and W is hyperdecidable with respect systems of equations of the
form x1 = · · · = xn = x2

n then V©m W is decidable.

There is a similar but incomplete approach to semidirect products, based on ideas of J. Rhodes
(late 1960’s), which were developed and formalized by Tilson [61]. Small categories (and, more
generally, semigroupoids, categories without the requirement of local identities) are viewed as gen-
eralizations of monoids and semigroups. A similar theory of pseudovarieties has been developed
for such structures. The profinite approach also extends to this context, including descriptions
by pseudoidentities [33, 20]. The variables in pseudoidentities must now come from a set with a
non-trivial structure, namely they are edges on a finite directed graph. The two sides of a pseu-
doidentity become coterminal profinite paths over such a graph. A pseudovariety of semigroupoids
has finite vertex rank if it admits a basis of pseudoidentities for which there is a bound on the
number of vertices of the finite directed graphs on which they are written; otherwise, we say that
it has infinite vertex rank.

A semigroup S may be viewed as a semigroupoid with a single (virtual) vertex whose edges are the
elements of S. The smallest pseudovariety of semigroupoids containing a given pseudovariety V of
semigroups is called the global of V and is denoted gV. The largest pseudovariety of semigroupoids
whose semigroups are the members of a pseudovariety V of semigroups consists of all semigroupoids
whose local semigroups (that is the semigroups of all loops at some vertex) belong to V; it is called
the local of V and is denoted ℓV. A pseudovariety V of semigroups is local if gV = ℓV. Note
that, if V = [[Σ]] is local, then gV is also defined by the pseudoidentities from Σ, now viewed as
pseudoidentities over one-vertex graphs, because such pseudoidentities clearly define ℓV.

Many globals of pseudovarieties of semigroups have been computed. Here is a sample of them.

• The pseudovarieties A, R, all nontrivial pseudovarieties V ⊆ G [59], DS [34], and DA [5], DG

(announced by J. Kad’ourek, in 2005) are all local.
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• For the trivial pseudovariety I = [[x = y]], we have

g I = [[x = y; •
x

++

y
33 • ]]

so that g I does not consist just of semigroupoids with only one edge.
• For Com = [[xy = yx]],

gCom = [[xyz = zyx; •
x,z

++ •
y

kk ]] [60].

• The known proofs of the following result are considered quite difficult:

gJ = [[(xy)ωxt(zt)ω = (xy)ω(zt)ω; •
x,z

++ •
y,t

kk ]] [36, 37, 3].

• For m ≥ 2 and k ≥ 1 (or k = ω), g [[xy = yx, xk+m = xm]] has infinite vertex rank [11].
• For n ≥ 1, g

(

A ∗ (G ∗ A)n
)

has infinite vertex rank [51].

Back to semidirect products of pseudovarieties, for whose calculation categories, semigroupoids,
and globals were first introduced in the theory of finite semigroups, we have the following basis
theorem. For a directed graph Γ, and an edge e ∈ Γ, we denote by α(e) and ω(e) respectively the
start and end vertices of e.

Theorem 4.3 ([20]). If gV = [[Σ]], where Σ is a set of semigroupoid pseudoidentities over finite
graphs with a uniform bound on the number of vertices then V∗W is defined by the pseudoidentities
of the form t u(w1, . . . , wn) = t v(w1, . . . , wn) such that

(

u(x1, . . . , xn) = v(x1, . . . , xn); Γ
)

∈ Σ,

'&%$ !"#p

u(x1,...,xn)
''

v(x1,...,xn)

77'&%$ !"#q , γ : Γ → ΩAS is a continuous graph homomorphism, γ(xi) = wi, γ(p) = t, and W |=

γ(α(xi))wi = γ(ω(xi)).

Just as in the case of Mal’cev products, one may then prove the following result. The system of
equations associated with a finite digraph Γ takes the elements (vertices and edges) of Γ as variables
and has an equation xy = z for each edge y from the vertex x to the vertex z.

Theorem 4.4 ([6]). If gV is decidable and of finite vertex rank, and W is hyperdecidable with
respect to systems of equations associated with finite graphs, then V ∗ W is decidable.

The need for the finite vertex rank hypothesis in Theorem 4.4 coming from the boundedness
hypothesis of Theorem 4.3 is rather unfortunate, although no counter-example is known to Theo-
rem 4.3 with that hypothesis dropped. A recent more general basis theorem for which no counterpart
similar to Theorem 4.3 seems to have yet been found is the following.

Theorem 4.5 ([50]). Let V and W be pseudovarieties of semigroups and let gV = [[Σ]]. Then V∗W

is defined by all pseudoidentities of the form tu = tv over finite alphabets A such that, for each

A-generated semigroup T ∈ W, there exist (π = ρ; Γ) ∈ Σ, ��������p

π
**

ρ

44 ��������q , and a labeling γ : Γ → ΩAS

such that γ(p) = t, γ̂(π) = u, γ̂(ρ) = v, and T |= γ(α(e))γ(e) = γ(ω(e) for every edge e ∈ Γ.

5. Tameness

To obtain actual algorithms for hyperdecidability is usually a very hard task. Steinberg and the
author [16, 17] suggested a different approach, namely to prove a stronger property! Indeed, the
difficulty in a brute force approach is that there are too many (uncountably many) candidates for
solutions modulo V of a given system of equations. Suppose that if there is a solution modulo V of
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a given finite system of equations in ΩAS, then there is also one in Ωσ
AS, where σ is some count-

able implicit signature, meaning a set of implicit operations which includes binary multiplication.
Then at least the above difficulty disappears. And indeed one obtains a stronger property than
hyperdecidability.

We say that a pseudovariety V is (σ-)tame with respect to a class C of systems of equations if
the following conditions hold:

• (σ-reducibility) for every system in C, over a finite set X of variables, and associated clopen
constraints Kx ⊆ ΩAS (x ∈ X), if there is a solution X → ΩAS modulo V, then there is a
solution X → Ωσ

AS modulo V;
• V is recursively enumerable, meaning that there is some Turing machine which outputs

successively all representatives of the isomorphism classes of members of V and nothing
else;

• the word problem for Ωσ
AV is algorithmically solvable.

We say that V is completely (σ-)tame if V is σ-tame with respect to the class of all finite systems
of equations in the signature σ.

Among the properties that compose tameness, reducibility is often the most difficult to prove
although sometimes the word problem is also quite complicated. It is out of the scope of this
survey to give a precise idea of any nontrivial proof of tameness. We proceed rather to mention
some important tameness resullts.

• The pseudovariety G is κ-tame with respect to systems of equations associated with finite
digraphs. This is a reformulation [16] of a celebrated theorem of Ash [22] which has already
been mentioned several times in this survey. It follows from results of Coulbois and Khélif
[27] that G is not completely κ-tame.

• The pseudovariety J is completely κ-tame. This is trivial since J is κ-full (see Section 6)
and ΩAJ = Ωκ

AJ. A proof of hyperdecidability of J which does not depend on this fact and
which actually tries to exhibit a reasonable algorithm turns out to be rather complicated
[21].

• The pseudovariety Gp is tame but not κ-tame [8]. The author’s proof of this result, based
on several other works [53, 39, 57], led him to explore connections with dynamical systems,
the suitable signature that has been found being a countably infinite signature which is
constructed by iteration of implicit operations.

• The pseudovariety LSl of all finite semigroups S whose subsemigroups of the form eSe, with
e ∈ S idempotent, are commutative and consist only of idempotents, is κ-tame [26].

• The pseudovariety R is completely κ-tame [13].

It remains as open problems to find a signature with respect to which G is completely tame, and
to determine whether A is completely κ-tame (the word problem for Ωκ

AA has been solved by
McCammond [41] and κ-tameness for A has been announced by J. Rhodes in the late 1990’s but
remains unpublished). A more general question is whether V and W both tame (with respect
to some suitable signatures and classes of systems of equations) implies that V ∗ W is also tame.
Note that, since tameness, even with respect to the single equation x = y, implies decidability,
an affirmative answer to this question would provide a solution to the Krohn-Rhodes complexity
problem, provided A and G do have the suitable tameness properties.

6. Computing closures of rational languages

We introduce in this section another related problem.
One can easily show that the induced topology on Ωσ

AV, as a subspace of ΩAV, is its pro-V
topology, that is the smallest topology which renders continuous all homomorphisms of σ-algebras
Ωσ

AV → S with S ∈ V. Given L ⊆ Ωσ
AV, denote by clσ,V(L) its closure in the pro-V topology of Ωσ

AV.
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A general problem which has shown to be rather important in some instances is the following: given
a rational subset L ⊆ Ωκ

AV, compute clσ,V(L), or at least decide whether a given w ∈ Ωσ
AV belongs

to clσ,V(L). Often, A+ →֒ Ωκ
AV and L is just a rational language of A+.

The historical source of this question is the following. Given a finite semigroup S and an onto
homomorphism ϕ : A+ → S, consider the set KG(S) of all s ∈ S such that, for every homomorphism
ψ : A+ → G into a finite group G, s ∈ ϕ(ψ−1(1)). Then it is easy to show that S ∈ V©m G if and
only if KG(S) ∈ V. An alternative characterization has been noted by Pin [45]:

KG(S) = {s ∈ S : 1 ∈ clG
(

ψ(ϕ−1(s))
)

⊆ Ωκ
AG}.

The Rhodes “type II” conjecture stated that KG(S) ∪ {1} is the smallest subsemigroup of S1

which contains the idempotents and, if it contains s and aba = a or bab = b, then it also contains
asb. The conjecture was the motivation for Ash’s work and in fact it is proved in [22], that is, it is
a (simple) consequence (in a sense a particular case) of the tameness of G. Pin and Reutenauer [47]
proved that it suffices to establish that the product of finitely many finitely generated subgroups
of the free group is closed in the pro-G topology. In fact, it turns out that this property is formally
equivalent to the type II conjecture [30]. It was proved directly and independently in this form by
Ribes and Zalesskĭı [52] using profinite group theory.

Consider now the natural projection

pV : ΩAS → ΩAV

a ∈ A 7→ a

We say that a pseudovariety V is σ-full if, for every finite set A and for every rational language
L ⊆ A+, the set pV(clS(L)) is closed in Ωσ

AV. For example, G [28], J (this is an exercise, taking

into account knowledge of ΩAJ), R and A (recently proved by the author with J. C. Costa and M.
Zeitoun) are all κ-full.

The property of σ-fullness allows us to obtain a simplified formulation of σ-reducibility which we
proceed to present. Consider a system Σ of equations over a finite setX of variables with constraints
of the form Lx (x ∈ X), where each Lx is a rational language. We say that ϕ : X → ΩAV is a
solution (of the system satisfying the constraints) if

• ϕ(x) ∈ Lx (∀x ∈ X)
• ϕ̂(u) = ϕ̂(v) (∀(u = v) ∈ Σ)

If a pseudovariety V is σ-full then it is σ-reducible for a system of equations over a finite set X of
variables if and only if, for every choice Lx (x ∈ X) of rational languages, if the system with the
Lx as constraints admits a solution ϕ : X → ΩAV then it also admits a solution ψ : X → Ωσ

AV. In

particular, if V is σ-full and ΩAV = Ωσ
AV, then V is trivially σ-reducible.

It is thus worthwhile to understand the topological closure operation, at least for rational lan-
guages, within structures of the form Ωσ

AV. We proceed to describe a natural procedure for com-
puting closures of rational languages.

Suppose that A+ ⊆ Ωσ
AV. It is easy to see that, for L,K ⊆ A+:

(1) if L is finite, then clσ,V(L) = L;
(2) clσ,V(L ∪K) = clσ,V(L) ∪ clσ,V(K);
(3) clσ,V(L) clσ,V(K) ⊆ clσ,V(LK);
(4) 〈clσ,V(L)〉σ ⊆ clσ,V(L+),

where 〈X〉σ denotes the σ-subalgebra of Ωσ
AV generated by X. If both inclusions (3) and (4) turn

out to be always equalities, then we have a natural procedure to “compute” clσ,V(L) in case L ⊆ A+

is rational: we successively commute the topological closure operation with the rational operations
using the equality versions of the above formulas.

Here are some examples for which the natural procedure works.
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• It follows from [47, 52] that the natural procedure works for G with respect to the signature κ.
• It is easy to see that the natural procedure works for J, κ.
• Together with J. C. Costa and M. Zeitoun, the author has recently shown that the natural

procedure works for both R and A over κ.
• Ribes and Zalesskĭı [53] also gave an algorithm to compute the pro-Gp closure of a rational

language in the free group Ωκ
AGp = Ωκ

AG. See also [39] for complexity issues. These results
had a strong influence in the eventual proof that Gp is tame [8].

In general, one may ask for which pseudovarieties does the natural procedure work for the signature
κ. This remains an open problem.

7. Connection with Model Theory

We conclude this survey with a connection with a remarkable result in Model Theory, where an
equivalent form of Ash’s tameness theorem was discovered independently of semigroup theory.

We say that a class R of relational structures of the same type has the finite extension property for
partial automorphisms (FEPPA) if for every finite R ∈ R and every set P of partial automorphisms
of R, if there exists an extension S ∈ R of R for which every f ∈ P extends to a total automorphism
of S, then there exists such an extension S ∈ R which is finite.

By a homomorphism of relational structures of the same type we mean a function that preserves
the given structures’ relations in the forward direction. For a class R of relational structures, let
ExclR denote the class of all structures S for which there is no homomorphism R→ S with R ∈ R.

Theorem 7.1 ([32]). For every finite set R of finite structures of a finite relational language, ExclR
satisfies the FEPPA.

Herwig and Lascar also showed that this property is formally equivalent to the following property
of free groups. For a subgroupH of a free group F and elements x, y ∈ F , write x ≡H y if xH = yH.

Theorem 7.2 ([32]). Consider a finite system of equations of one of the following forms

X ≡H Y g and X ≡H g,

where X and Y are variables, the H are finitely generated subgroups of the free group F , and the g
are elements of F . If the system has no solution in F , then one may replace each subgroup H by a
subgroup of F of finite index containing H such that the system remains without solution.

By suitably encoding one problem into the other, Delgado and the author [14, 15] have shown
that Theorem 7.2 is formally equivalent to the tameness of G, thus deriving also Theorem 7.1 from
the tameness of G.
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