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Abstract
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connection over a smooth manifold and consider their two-dimensional parallel transport with the aim
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1 Introduction

The aim of this paper is to address the differential geometry of (categorical group) 2-bundles over a smooth
manifold M and their two dimensional parallel transport with a minimal use of two dimensional category
theory, the ultimate goal being to define Wilson surface observables. The only categorical notion needed is
that of an (edge symmetric, strict) double groupoid (with thin structure), which is equivalent to a crossed
module or to a categorical group; see [BH1, BHS, BH6, BL, BS]. We also use the concept of a cubical set
[BH2, J1, GM], a cubical analogue of a simplicial set, familiar in algebraic topology; see for example [Ma].

Our definition of a 2-bundle with connection will be given in the framework of cubical sets. Given a
crossed module of Lie groups G = (9: E — G,>), where > is a left action of G on E by automorphisms, the
definition of a cubical G-2-bundle with connection B over a manifold M is an almost exact cubical analogue
of the simplicial version considered in [H, BS1, BS2, BrMe|. Following [H, MP], we will consider a coordinate
neighbourhood description of 2-bundles with connection. For a discussion of the total space of a 2-bundle
see [RS, Bar].

We also define the thin homotopy double groupoid of a smooth manifold M. An advantage of the
cubical setting over the simplicial setting is that subdivision is very easy to understand. In a 2-bundle
with connection, all connection forms are in principle only locally defined. Therefore, given a smooth map
[0,1]> — M, to define its holonomy (for brevity we will use the term holonomy, instead of the more accurate
term, parallel transport), one needs to subdivide [0, 1] into smaller squares, consider all the locally defined
holonomies (which we will define and analyse carefully) and patch it all together by using the 1- and 2-
transition functions of the 2-bundle, and the transition data of the connection. A double groupoid provides



a convenient context for doing this type of calculations, and is easier to handle than the decomposition of
[0,1]? into regions by means of a trivalent embedded graph of [P]. Citing [BHS, BH1], double groupoids
trivially have an algebraic inverse to subdivision. This was the motivation for our cubical set approach to
2-bundles with connection and their holonomy.

Let G = (0: E — G,>) be a Lie crossed module. The G-2-bundle holonomy which we define can
be associated to oriented embedded 2-spheres ¥ C M yielding an element W(B,%) € kerd C E (the
Wilson sphere observable) independent of the parametrisation of the sphere and the chosen coordinate
neighbourhoods, up to acting by elements of G. This follows from the invariance of 2-bundle holonomy
under thin homotopy and the fact that the mapping class group of the sphere S? is {£1}. This Wilson
sphere observable depends only on the equivalence class of the 2-bundle with connection B. For surfaces
other than the sphere embedded in M, a holonomy can still be defined but it will a priori (since the mapping
class group is more complicated) depend on the isotopy type of the parametrisation. We will illustrate this
point with the case of Wilson tori.

An important problem that follows on from this construction is the definition of a gauge invariant action
in the space of all 2-bundles with connection over a smooth closed 4-dimensional manifold, analogous to
the Chern-Simons action for principal bundles with connection over a 3-dimensional closed manifold - see
[B]. Given that a gauge invariant sphere holonomy was defined, this would permit a physical definition of
invariants of knotted spheres in S* analogue to the Jones polynomial; see for example [W, Ko, AF].
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2 Preliminaries

2.1 The Box Category and cubical sets
2.1.1 Cubical sets

The box category B, see [J1, BH2, BH3, BHS, GM], is defined as the category whose set of objects is the
set of standard n-cubes D™ = I, where I = [0, 1], and whose set of morphisms is the set of maps generated
by the cellular maps (5;[71: D" — D" wherei=1,...,n+1and 0;,: D" = D" i=1,....n+1. We
have put:

55n(x1,...,xi,l,le,...,xn) = (xl,...,xi,l,O,le,...,xn)
5:n(331,---,$¢—17$i+17---,$n) = (@1, i1, Lwig, . @)
0'7;7n+1($1, e 7$n+1) = (1‘1, ey L=, L1y e e - ,Jtn).

We will usually abbreviate §; , = §; and o, = 0;.

Definition 1 (Cubical set) A cubical set K is a functor B°P — Sets, the category of sets; see [BH3, J1,
GM]. Here B°P is the opposite category of the box category B.

Unpacking this definition, we can see that a cubical set K is defined as being an assignment of a set K, (the set
of n-cubes) to each n € N, together with face maps 8}: K,, — K,_1 and degeneracy maps €¢;: K,,_1 — K,,
where i € {1,...,n} satisfying the cubical relations:

ej,lﬁf‘ (Z < J)

0c0) =0 00 (i<j) L
o 0%c;={ ;0% , (i > j) (1)

€i€j = €j41€; (i <7) id (i = 5)

Here o, 3 € {—,+}. A degenerate cube is a cube in the image of some degeneracy map. A cubical set K
for which K; consists only of degenerate cubes if ¢ > n will be called n-truncated.



If a cubical set K has an action of the group of symmetries of the n-cube (the n-hyperoctahedral group) in
each set K, compatible with the faces and degeneracies in the obvious way, it will be called a dihedral cubical
set. These are called cubical sets with reversions and interchanges in [GM]. Note that the hyperoctahedral
group is generated by reflections and interchanges of coordinates, and is therefore isomorphic to Z5 x S,,.

Example 2 Let M be a manifold. The smooth singular cubical set C(M) of M is given by all smooth maps
D™ — M, where D™ = [0,1]" is the n-cube, with the obvious faces and degeneracies. This is a dihedral
cubical set in the obvious way.

Example 3 Analogously, given a smooth manifold M, the restricted smooth singular cubical set C,.(M) of
M is given by all smooth maps f: D™ — M for which there exists an € > 0 such that f(x1,x2,...2y,) =
f(0,za,...x,) if 11 <€, and analogously for any other face of D™, of any dimension. We will abbreviate this
condition by saying that f has a product structure close to the boundary of the n-cube. This condition allows
the composition of n-cubes to be defined, which we will be needing shortly. In the terminology of [BHS3], this
example is a cubical set with connections and compositions.

2.2 Lie crossed modules

All Lie groups and Lie algebras are taken to be finite-dimensional. For details on (Lie) crossed modules see,
for example, [B1, BM, FM, FMP, B, BL], and references therein.

Definition 4 (Lie crossed module) A crossed module (of groups) G = (0: E — G, ) is given by a group
morphism 0: . — G together with a left action > of G on E by automorphisms, such that:

1. 9(Xpre)=X0(e)X 1;,VX € G,Ve € E,
2. 0(e)> f =efe Ve, f € E.

If both G and E are Lie groups, 0: EE— G is a smooth morphism, and the left action of G on E is smooth
then G will be called a Lie crossed module.

A morphism G — G’ between the Lie crossed modules G = (9: E — G,>) and ¢’ = (0': B/ — G',p') is
given by a pair of smooth morphisms ¢: G — G’ and ¢: E — E’ making the diagram:

EL»G

o e
/ o' !
rF — G
commutative. In addition we must have (X >e) = ¢(X) >’ ¥(e) for each e € F and each X € G.
Given a Lie crossed module G = (9: E — G, ), then the induced Lie algebra map 0: ¢ — g, together
with the derived action of g on ¢ (also denoted by ») is a differential crossed module, in the sense of the
following definition - see [BS1, BS2, B, BC].

Definition 5 (Differential crossed module) A differential crossed module & = (9: ¢ — g,1>) is given by
a Lie algebra morphism 0: ¢ — g together with a left action of g on the underlying vector space of e, such
that:

1. For any X € g the map e € e — X >e € ¢ is a derivation of ¢, in other words

Xpole,fl=Xve fl+[e, X f;VX €g,Ve, f €.

2. The map g — Der(e) from g into the derivation algebra of ¢ induced by the action of g on e is a Lie
algebra morphism. In other words:

[X,)Y]pe=Xp>(Ypre) =Y (Xpe);VX,Y € g,Ve€ce.

3. (X p>e)=1[X,0(e);VX € g,Ve € e.



4. 0(e)> f=le fl;Ve, f €e.

Note that the map (X,e) € g x ¢ — X > e € ¢ is necessarily bilinear.
A very useful identity satisfied in any differential crossed module is the following;:

8(e)l>f=[e,f]:—[f,e]:—8(f)l>e,Ve,f€e. (2)

This will be used several times in this paper.

Given a Lie crossed module G = (0: E — G,>), we will also denote the induced action of G on e by .
Finally, given a differential crossed module, & = (9: ¢ — g,1>) there exists a unique crossed module of simply
connected Lie groups G = (0: E — G, ) whose differential form is &, up to isomorphism. The proof of this
result is standard Lie theory, together with the lift of the Lie algebra action to a Lie group action, which
can be found in [K], Thm 1.102.

2.2.1 The edge symmetric double groupoid D(G) where G is a crossed module

The definition of an edge symmetric (strict) double groupoid K (with thin structure) can be found for
example in [BH1, BHS, BHKP, BS]. These are 2-truncated cubical sets for which the set of 1-cubes K; is
a groupoid, with set of objects given by the set of 0-cubes, and also with two partial compositions, vertical
and horizontal, in the set Iy of 2-cubes (squares), each defining groupoid structures for which the set of
objects is the set of 1-cubes. These horizontal and vertical compositions should verify the interchange law:

(k1k2) k1\ (k2
- )Vk17k2)k3)k4EK27
(kska) k3/) \k4

familiar in 2-dimensional category theory, and be compatible with faces and degeneracies, in the obvious
way. In particular, the identity maps of the vertical and horizontal compositions are given by degenerate
squares.

There is also an extra condition that should be verified, which is the existence of a thin structure, meaning
that there exist, among the squares of I, special elements called thin such that:

1. Degenerate squares are thin.

2. Given a,b,c,d € K1 with ab = cd, there exists a unique thin square k£ whose boundary is:

T

* — %
a

in other words such that d4(k) = a,0,(k) = b,0,(k) = d and 9;(k) = ¢, where we have put d; =
0y ,0p = 01,0, = 05 and 0, = 0y .

3. Any composition of thin squares is thin.

Let G = (0: E — G,p) be a crossed module. Given that the categories of crossed modules, categorical
groups and double groupoids with a unique object * are equivalent (see [BH1, BH6, BHS, BS, BL]), we can
construct a double groupoid D(G) out of G. The 1-cubes D(G) of D(G) are given by all elements of G, with
product as composition, and the unique source and target maps to the set {*}. The 2-cubes D?(G) of D(G),
which we will also call squares in G, have the form:



where X, Y, Z,W € G and e € E is such that d(e)"1XY = ZW. The horizontal and vertical compositions
are:

W/
—_— %
! ’ !’
w W/ WW/ ZT € TY W’
*k — Xk *k — Xk *k — Xk ¥ — k
—_— Xk
ZT e TY YT e TY’ = ZT (Xve')e TY’ and % = ZZ’T eZre TYY’
* —
*k — Xk *k — Xk k — Xk ¥ — k
X X/ XX’ T T X
Z e Y
—

X

The thin structure on D(G) is given by: a square is thin if the element of E assigned to it is 1g.

Alternatively the thin structure can be given by introducing the following special degeneracies, usually
called connection maps (not to be confused with differential geometric connections) ™, ., 7, 5: D(G) — D?(G),
whose images are thin:

la X
k — X *k —
X X
'—(*—>>k) = 1GT 1g TX* , \_(*—>*) = 1GT 1e TX
k — Xk k — Xk
X 1g

la X
X — X

*

7(*£>*) = XT 1g TlG , J(*L*) = X‘lT 1g Tlc
* — % * — Xk
X la
Here we are using results of [BHS, BH1, BH2, BH3, Hi], where it is shown that the existence of special
degeneracies, satisfying a set of axioms, is equivalent to the existence of a thin structure. Then an element of
D?(G) is thin if and only if it is the composition of degenerate squares and the images of special degeneracies;
see [Hi, BHS].

The set D?(G) is actually a Dy-space, where Dy is the dihedral group of symmetries of the square.
This can be inferred from the existence of a thin structure. Consider the following representative elements
Prj2, Tz, Ty and rzy of Dy, where pr /o denotes anticlockwise rotation by 90 degrees, and 7,7y, r:y denote
reflection in the y = 0, z = 0 and = = y axis (recall that these last three elements are generators of
Dy = 73 % S5). Under the action of these elements of Dy, the square (3) is transformed into, respectively:

y~! X wt Y
* ——— % * ——— % ¥ —— ok * —— %
WT Z 'pe TX, z*lT Zpe ! Tyfl , YT Xpe™! Tz, XT et TW
* —— % * ——— % * —— % * —— %
zZ-1 w X1 V4

In fact each element of D4 acts on D?(G) by automorphisms, though some times permuting the horizontal
and vertical multiplications, or the order of multiplications.

The horizontal and vertical inverses e and e~V of an element e € D?(G) are given by e " = r,(e) and
e™V = r,(e); we will often identify an element of D?(G) with the element of E assigned to it, whenever there
is no ambiguity.

There are two particular maps ®, @, : D*(G) — D*(G), where g € G, called folding maps, which we would
like to make explicit. These are defined as:

w ZWY “tx—1 w ZWYy “tx~t
* — % * — 5 % * — % % —
i) ZT e TY :14 e Tlc and @ ZT e TY = gT goe Tg
ko % _ * x ————— % _ *
X 1la X la



There also exists an action of G on D?(G), which has the form:

X gXg~1

2.2.2 Flat G-colourings, the edge symmetric triple groupoid T(G) and the nerve N(G) of the
crossed module §

Going one dimension up, following [BHS, BH1, BH2, BH3, BH6|, we can analogously define an edge sym-
metric triple groupoid T(G) of thin 3-cubes in G, from the crossed module G = (9: E — G,>).

The 1- and 2-cubes of T(G) are already defined, being T7'(G) = D'(G) and T?(G) = D*(G), so let us define
the set of thin 3-cubes T3(G) of T(G). Consider the set of assignments (G-colourings of D?) of an element
of G to each edge of the standard cube D3 = [0,1]® in R3 and of an element of E to each face of D®. Each
of these assignments can be mapped to the set of G-colourings of D2, i.e. assignments of elements of G to
the set of edges of the standard square D? in R?, and an element of E to its unique face in several different
ways, by using the maps 5?,1’ =1,2,3 of 2.1

Given a G-colouring co of D2, we put X(co) = 9F(ca) € G as being cy 0 65 (D') where i = 1,2. We
also put e(cy) = cz(D?). Analogously, if c3 is a G-colouring of D?, we put e(c3) = 85 (c3) as being the
colouring of D? given by c3 o 5? where ¢ = 1,2, 3.

Definition 6 (Flat G-colouring) A G-colouring ca of D? is said to be flat if it yields an element of D*(G),
in the obvious way, in other words if

d(e(c2)) ™ X5 (e2) X (c2) = X7 (e2) X5 (c2).
Analogously, a G-colouring cs of D? is said to be flat if:
1. Each restriction af(c;g) of ¢z is a flat G-colouring of D?.

2. The following holds:
"(0307 (c3))  e3(cs) (9505 (c3))

€3 (C3) = prjaler (c3))  ez(cs)  raylef(cs)) - (4)

(05 0y (c3)) ry(eg (e3)) (05 0 (es))
We will call this the homotopy addition equation, following the terminology adopted in [BH5].

The set T3(G) of (thin) 3-cubes in G is given by the set of flat G-colourings of the 3-cube.

The set T2(G) of thin 3-cubes in G has three interchangeable associative compositions (horizontal, vertical
and upwards), as well as boundary maps, 8f,i = 1,2,3. These compositions are induced by the horizontal
and vertical composition of squares in G in the unique way such that the boundary maps 8} in the transverse
directions are groupoid morphisms. By considering the obvious degeneracies ¢': DY(G) — D?(G),i = 1,2
and €¢': D?(G) — T3(G),i = 1,2, 3, obtained by projecting in the i*? direction (see 2.1.1), we can see that we
obtain a 3-truncated cubical set T(G), which is a strict triple groupoid.

By continuing this process, one gets a cubical set N(G), the cubical nerve of G, whose geometric realisation
is the cubical classifying space of G; see [BHS, BH4] and [BH5] for the simplicial version. The n-cubes of
N(G) are given by all G-colourings of the n-cube D™ such that for each 2- and 3-dimensional face of D™ the
restriction of the colouring to it is flat. In fact N(G) is an w-groupoid; see [BH4, BH5, BHS].

Note that the homotopy addition equation (4) can be expressed in several different ways by using the
D4-symmetry, and applying the maps @, <I>;. In particular, we get the equivalent equation:

i(ea) ef(en) ralef(e) rules(ea)
Vrporlef e = )
€3 (C3



2.3 Construction of the thin fundamental double groupoid of a smooth manifold

Let M be a smooth manifold. We now construct the thin fundamental double groupoid Sa(M) of M. For
the analogous construction of the fundamental thin categorical group of a smooth manifold see [FMP].

2.3.1 1-paths, 2-paths and 1-tracks

Definition 7 (1-path) A 1-path is given by a smooth map ~: [0,1] — M such that there exists an € > 0
such that v is constant in [0,€] U [1 — €, 1]; in the terminology of [CP], this can be abbreviated by saying that
each end point of v has a sitting instant. Given a 1-path v, define the source and target or initial and end
point of v as o(v) = v(0) and 7(v) = v(1), respectively.

Given two 1-paths v and ¢ with 7(y) = o(¢), their concatenation v¢ is defined in the usual way:

~(2t), if t € ]0,1/2]

(vo)(t) = { .
B2t —1), if t € [1/2,1]

Note that the concatenation of two 1-paths is also a 1-path, and in particular is smooth due to the sitting
instant condition.

Definition 8 (2-paths) A 2-path T' is given by a smooth map T': [0,1]> — M such that there evists an
€ > 0 for which:

1. T(t,s) =T(0,8) if 0 <t <eands € [0,1],
2. T(t,s)=T(1,s) if 1—e<t<1andsel01],
3. T(t,s) =T(t,0) if0<s<eandte|0,1],
4. T(t,s)=T(t,1) if 1 —e<s<1andtel01].

We abbreviate this by saying that T has a product structure close to the boundary of [0,1]2.

Given a 2-path I'; define the following 1-paths:

a(T)(s)
9a(I')(t)

1(0,s),s € [0,1], o-(T)(s) =T(1,s),s € [0,1],
I'(¢,0),t € [0,1], 0. () (t) =T(t,1),t € [0,1].

If T and TV are 2-paths such that 9,(T") = 9;(I") their horizontal concatenation T'opI” is defined in the
obvious way, in other words:

I'(2t,s), if t € [0,1/2] and s € [0,1]

(Fth/) (t,s) = {

Similarly, if 9, (") = 94(I"") we can define a vertical concatenation I'o, I as:

I'(2t—1,s), ift € [1/2,1] and s € [0, 1]

I'(t,2s5), if s € [0,1/2] and ¢ € [0,1]
(FOVF/) (t,s) =
I'(t,2s — 1), if s € [1/2,1] and ¢ € [0, 1]
Note that again both concatenations are smooth due to the product structure condition.

Definition 9 Two 1-paths ¢ and ~ are said to be rank-1 homotopic (and we write ¢ =1 ) if there exists a
2-path T' such that:

1. 9(T") and 9,(T") are constant.
2. 9u(T) =~ and 94(T) = ¢.
3. Rank(D,T") < 1,Vv € [0,1]%

Here D denotes the derivative.



Thus if v and ¢ are rank-1 homotopic, they have the same initial and end-points. Note also that rank-1
homotopy is an equivalence relation. Given a 1-path -, the equivalence class to which it belongs is denoted
by [v]. Rank-1 homotopy is one of a number of notions of “thin” equivalence between paths or loops, and
was introduced in [CP], following a suggestion by A. Machado.

We denote the set of 1-paths of M by S1(M). The quotient of Sy (M) by the relation of thin homotopy
is denoted by 81(M). We call the elements of 8; (M) 1-tracks. The concatenation of 1-tracks together with
the source and target maps o, 7: 81 (M) — M, defines a groupoid S; (M) whose set of morphisms is 81 (M)
and whose set of objects is M.

2.3.2 2-Tracks
We recall the notation of 2.1.1.

Definition 10 Two 2-paths T’ and T are said to be rank-2 homotopic (and we write T' =5 T ) if there exists
a smooth map J: [0,1]> — M such that:

1. J(t,5,0) =T(t,s), J(t,s,1) =T"(t,s) for s,t € [0,1]. In other words Joé; =T and Jods =T".

2. Jo 5? is a rank-1 homotopy from I o 6? to I 0 6F, where i = 1,2.

7 7

3. There exists an € > 0 such that J(t,s,x) = J(t,s,0) if © < € and s,t € [0,1], and analogously for all
the other faces of [0,1]%. We will describe this condition by saying that J has a product structure close
to the boundary of [0,1]3.

4. Rank(D,J) <2 for any v € [0, 1]3.

Note that rank-2 homotopy is an equivalence relation. To prove transitivity we need to use the penulti-
mate condition of the previous definition. We denote by Sa(M) the set of all 2-paths of M. The quotient of
Sa(M) by the relation of rank-2 homotopy is denoted by 82 (M). We call the elements of 8o(M) 2-tracks. If
I' € S3(M), we denote the equivalence class in 82(M) to which I' belongs by [I].

2.3.3 Horizontal and vertical compositions of 2-tracks

Suppose that I" and I are 2-paths with 9,,(I") 21 94(I"”). Choose a rank-1 homotopy J connecting 9, (I") and
94(T"). Then [I'] oy [I'] is defined as [(T'oyJ)oy,I"]. The fact that this composition is well defined in 82(M)
is not tautological (and was left as an open problem in [MP]). However this follows immediately from the
following lemma proved in [FMP].

Lemma 11 Let f: 9(D3) — M be a smooth map such that Rank(D, f) < 1,Vv € 9(D?). Here D3 = [0,1]3.
Suppose that f is constant in a neighbourhood of each vertex of O(D?). In addition, suppose also that in a
neighbourhood I x [—e, €] of each edge I of d(D?), f(x,t) = ¢(x), where (z,t) € I x [—¢,¢] and ¢p: I — M
is smooth. Then f can be extended to a smooth map F: D3> — M such that Rank(D,F) < 2,Vw € D3.
Moreover we can choose F so that it has a product structure close to the boundary of D3.

Remark 12 This basically says that any smooth map f: S? — M for which the rank of the derivative is
less than or equal to 1, for each point in S2, can be extended to all of the unit 3-ball, in such a way that the
rank of the derivative of the resulting map at each point is less than or equal to 2.

Analogously the horizontal composition of 2-paths descends to 83(M). These compositions are obviously
associative, and admit units and inverses. Note that the interchange law is also verified.

Finally, a 2-track [I'] is thin if it admits a representative which is a thin map, in other words for which
Rank(D,I') < 1,Vz € [0,1]%. Lemma 11 implies that if a,b,c,d: [0,1] — M are 1-paths with [ab] = [ed] then
there exists a unique 2-track [I'] for which dy([I']) = [a], 0,-([T]) = [b], A([[']) = [¢] and I, ([T]) = [d].

Therefore the following theorem holds:

Theorem 13 Let M be a smooth manifold. The horizontal and vertical compositions in So(M) together
with the boundary maps Oy, 04, O, Op: So(M) — 81(M) define a double groupoid So(M), whose set of objects
is given by all points of M, set of 1-morphisms by the set 81(M) of 1-tracks on M, and set of 2-morphisms
by all 2-tracks in 82(M). In addition, So(M) admits a thin structure given by: a 2-track is thin if it admits
a representative whose derivative has rank less than or equal to 1 (in other words if it is thin as a smooth

map).



Remark 14 Another possible argument to prove that the compositions of 2-tracks are well defined is to
adapt the arguments in [BH1, BHS, BH2, BH3, BHKP], which lead to the construction of the fundamental
double groupoid of a triple of spaces and of a Hausdorff space (and can be continued to define the homotopy
w-groupoid of a filtered space). The same technique therefore leads to the construction of the fundamental
w-groupoid of a smooth manifold. Details will appear elsewhere.

This construction should be compared with [HKK, BHKP], where the thin strict 2-groupoid of a Hausdorff
space was defined, using a different notion of thin equivalence (factoring through a graph). For analogous
non-strict constructions see [M, BS1, MP].

2.4 Connections and categorical connections in principal fibre bundles

To approach non-abelian integral calculus based on a crossed module, it is convenient (since the proofs are
slightly easier) to consider categorical connections in principal fibre bundles. For details of this approach see
[FMP]. For a treatment of non-abelian integral calculus based on a crossed module, using forms on the base
space of the principal bundle, see [SW1, SW2, SW3].

2.4.1 Differential crossed module valued forms

Let M be a smooth manifold with its Lie algebra of vector fields denoted by X(Af). Consider also a differential
crossed module & = (9: ¢ — g,>). In particular the map (X,e) € g x e — X >e € e is bilinear.

Let a € A™(M,g) and b € A™(M,¢) be g- and e-valued (respectively) differential forms on M. We define
a ®” b as being the e-valued covariant tensor field on M such that

(a®”b)(Ay,...,Ap,B1,...By) =a(A1,...,4,)>b(B,...,By); Ai, B; € X(M).
We also define an alternating tensor field a A b € A"T™ (M, ¢), being given by

(n+m)

|
aN” b= ~Alt(a ®@" b).

nlm!

Here Alt denotes the natural projection from the vector space of e-valued covariant tensor fields on M onto
the vector space of e-valued differential forms on M. For example, if a € A'(M,g) and b € A*(M,¢), then
a A" b satisfies:

(a A" B)(X,Y, Z) = a(X) > b(Y, Z) + a(Y) > b(Z, X) + a(Z) > b(X,Y), (6)
where X,Y, Z € X(M).

2.4.2 Categorical connections in principal fibre bundles

Let M be a smooth manifold and G a Lie group with Lie algebra g. Let also m: P — M be a smooth
principal G-bundle over M. Denote the fibre at each point x € M as P, = 7~ 1(x).

Let G = (0: E — G,>) be a Lie crossed module, where > is a Lie group left action of G on E by
automorphisms. Let also & = (9: ¢ — g,>) be the associated differential crossed module. A G-categorical
connection on P is a pair (w,m), where w is a connection 1-form on P, i.e. w € A'(P,g) is a 1-form on P
with values in g (the Lie algebra of G) such that:

o R(w) = g lwg,Vg € G, (i.e. wis G-equivariant)
o W(A#*) = A VA € g;
and m € A?(P,e) is a 2-form on P with values in e, the Lie algebra of E, such that:
e m is G-equivariant, in the sense that R}(m)=g~">m for each g € G.
e m is horizontal, in other words:
m(X,Y) =m(X? YY) for each X,Y € X(P).

In particular m(X,,Y,) = 0 if either of the vectors X,,,Y,, € T, P is vertical, where u € P. Here the
map X € X(P) — X" € X(P) denotes the horizontal projection of vector fields on P with respect to
the connection 1-form w.

10



Finally we require the “vanishing of the fake curvature condition” [BS1, BS2, BrMe]:
d(m) =, (7)

where Q = dw + 3w A* w € A?(P, g) is the curvature 2-form of w.

2.4.3 The categorical curvature 3-form of a G-categorical connection

Let P be a principal G-bundle over M. Let w € A!(P,g) be a connection 1-form on P. Given an n-form a
on P, the exterior covariant derivative of a is given by

Da=dao(H x H...x H).

Let Q € A%(P,g) be the (G-equivariant) curvature 2-form of the connection w. It can be defined as the
exterior covariant derivative Dw of the connection 1-form w and also by the Cartan structure equation
Q=dw+ %w A . Tt is therefore natural to define:

Definition 15 (Categorical curvature) Let G = (0: E — G,>) be a Lie crossed module, and let P — M
be a smooth principal G-bundle. The categorical curvature 3-form or 2-curvature 3-form of a G-categorical
connection (w,m) on P is defined as M = Dm, where the exterior covariant derivative D is taken with
respect to w.

The following equation is an analogue of Cartan’s structure equation.

Proposition 16 (Categorical structure equation) We have: M = dm+w A" m. In particular the 2-
curvature 3-form M is G-equivariant, in other words: Rj(M) = g > M, for each g € G.

The categorical-structure equation follows directly from the following natural lemma, easy to prove; see
[FMP]:

Lemma 17 Let a be a G-equivariant horizontal n-form in P. Then Da = da + w A” a.

Recall that the usual Bianchi identity can be written as D) = 0, which is the same as saying that
dQ 4+ w A Q= 0.

Corollary 18 The 2-curvature 3-form of a categorical connection is €-valued, where ¥ is the Lie algebra of
K = ker(0).

Proof. We have 9(M) = d(dm + w A” m) = dQ + w A Q = 0, by the Bianchi identity. m
The 2-curvature 3-form of a categorical connections satisfies the following.

Proposition 19 (2-Bianchi identity) Let M € A3(P,¢) be the 2-curvature 3-form of (w,m). Then the
exterior covariant derivative DM of M wvanishes, which by lemma 17 is the same as: dM + w A" M = 0.

2.4.4 Local form

Let P — M be a G-principal fibre bundle with a categorical connection (w,m). Let {U;} be an open
cover of M, with local sections o;: U; — P of P. The local form of (w,m) is given by the forms (w;, m;),
where w; = o} (w) and m; = o}(m), and we have 9(m;) = dw; + tw; A* w; = Q; = 07(Q), and also
wj = g&lwigij + g&ldgij and m; = gigl >m;. Here 0;g;; = 0;. Conversely, given forms {(w;, m;)} satisfying
these conditions then there exists a unique categorical connection (w, m) in P whose local form (with respect
to the given sections o;) is (w;, m;).

Note that locally the 2-curvature 3-form of a categorical connection reads M; = dm; + w; A m;, with
M; = g%l >M; and the 2-Bianchi identity is dM; + w; A> M; = 0.

11



2.5 Holonomy and categorical holonomy in a principal fibre bundle

Let P be a principal G-bundle over the manifold M. Let w € A(P,g) be a connection on P. Recall
that w determines a parallel transport along smooth curves. Specifically, given x € M and a smooth curve
~v:10,1] — M, with v(0) = z, then there exists a smooth map:

(t,u) €[0,1] x Py +— Hy(y,t,u) € P,

uniquely defined by the conditions:

—~

Lo LM, (y,t,u) = <%’y(t)> : ;Vt € [0,1], Vu € P, where ™ denotes the horizontal lift,
He (7,tu

2. Hou(7,0,u) = u;Vu € Py.

In particular this implies that H.(v,t), given by u +— H,(7,t,u), maps P, bijectively into P, ), for any
t € [0,1]. We will also use the notation H,, (v, 1,u) = uy. Therefore if v and 4" are such that (1) = +/(0)
we have: (uvy)y' = u(vy7’). Recall that the parallel transport is G-equivariant, in other words:

Heo (v, t,ug) = Hu(v,t,u)g,Yg € G,Vu € P,.

2.5.1 A form of the Ambrose-Singer Theorem

Let M be a smooth manifold. Let D™ = [0,1]™ be the n-cube, where n € N. A map f: D" — M is said to
be smooth if its partial derivatives of any order exist and are continuous as maps D" — M.

The well known relation between curvature and parallel transport can be summarised in the following
lemma, proved for instance in [FMP, SW2].

Lemma 20 Let G be a Lie group with Lie algebra g. Let P be a smooth principal G-bundle over the manifold
M. Consider a smooth map T': [0,1]> — M. For each s,t € [0,1], define the curves vs,v*: [0,1] — M as
Ys(t) = ~'(s) = T(t,s). Consider a connection w € A*(P,g). Choose u € Pyo), and let us = Hy,(7°, s, u),
and analogously u' = Hy, (Yo, t,u) where s,t € [0,1]. The following holds for each s,t € [0,1]:

5 N2 i |
o (et ) = | Q<Ws<t>,&%<t )) a. ®

Heo (Vs 5t us)

and by reversing the roles of s and t we also have:

O st = — [ 0 Lty Lant :
o (grattsan) == Q(ans/(t), as,%f(w)H(t o o)
w(vt,s’ ut

Continuing the notation of the previous lemma, define the elements ﬁp(u, t,s) by the rule:

Ho(7', 5,u8) I (u, b, 8) = Ho (Ve £, 1)

Therefore "
udr(u,t,s) = Hy, (¥, 1,u)

where 4 is the curve 4 = 9I", starting in I'(0,0) and oriented clockwise, and T" is the truncation of I' such
that T/(t', ") = T'(t't, s's), for 0 < &', ¢’ < 1.
By using the fact that %Hw (7s,t, us) is horizontal it follows that:

0 w
wl= (Hw('yt, s,u")9r(u,t, s)) =0.
ot
Thus, by using the Leibniz rule together with the fact that w is a connection 1-form,

w o w w 0w
(Ir(u,t,s))'w <§’Hw(’yt, s, ut)) 9r(u,t,s)+ (9r(u,t, s))flaglﬂ(u,t, 5) = 0.
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Therefore:

0w s (o o w

— t,s) = Q| =~y (t), ==~y (¢ ds’ ,t,8). 1

vt = (| (M 0.2 ()) ¢ ) et (10)

He (vt,8",ut)
Analogously we have (since 2H,, (7!, s,u’) is horizontal):
8 w o t (o 0
— t,s) = t Q| ==, (t), =4 (t dt'. 11
88gF(U7 ;3) gF('Lln ;3)‘/0 <at/’y( ) 857 ( ))H o : ( )
w Vsl Us

2.5.2 Categorical holonomy in a principal fibre bundle

Let P be a principal fibre bundle with a G-categorical connection (w,m). Here G = (E 2 q, >) is a Lie
crossed module, where > is a Lie group left action of G on E by automorphisms. Let also & = (9: ¢ — g,1)
be the associated differential crossed module.

As before, for each smooth map I': [0,1]2 — M, let v5(t) = ~!(s) = I'(t,s). Let a = I'(0,0). Let also

u € Pu, us = H(7°, s,u) and u' = H(yo,t,u). Define the function (wé;n): P, x [0,1]> — E as being the
solution of the differential equation:

D6yt ) = o

Os

) T ,
(u,t,s)/o m <%75(t ), %'ys(t )) dt’, (12)

He ('Ys ,t ;us)

with initial condition (wé;n)(u,t,O) = 1g, for each t € [0,1]. Let (wé;n)(u) = (wé;n)(u, 1,1). Compare with

equations (10) and (11). The apparently non-symmetric way the horizontal and vertical directions are
treated will be dealt with later.
Given a smooth map I': [0,1]2> — M, define:

Xr=v, Yr=° Zr=9" and Wr=n.
Theorem 21 (Non-abelian Green theorem, bundle form) For any u € P, we have:

(w,m)

Ho(e e, Lupd (e () = Ho(Z0Wr, 1),

or, in the other notation of section 2.5,
u X yrd o () = uZrWr.

Proof. Let k, = H, (v}, z,u!) and I, = H,(vs,1,us). Let 2 +— g, € G be defined as k,g, = l,. We have,
since (d%k‘T)gT is horizontal:

d B d B 4 d o d
w <%(kmgm)) =w (kx%ﬂm) =w (kmgmgm dmgm) =9: 9o

On the other hand:

d d ! 0 0
Heo (Va 5t uz)

—~—

d (e d
Egm - gmA Q (a%(t)y %’YJE(Q) dt. (13)

He (Va ot uz)

Therefore

This is a differential equation satisfied also by = — 8((%;” )(u, x,1)), by the vanishing of the fake curvature
condition d(m) = €, and both have the same initial conditions. m
Note that it follows from the non-abelian Green theorem that:

Heo (7 s, ut)ﬁ((wé;n) (u,t, s)) = H,(vs,t,us), for each t, s € [0, 1]. (14)
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Lemma 22 (Vertical multiplication) We have
m)

(w,m) (w,m) (w,
= er (u) er (uZr).

ero v (u) =
Here T,1": 0,12 — M are smooth maps such that 9,(I') = 04(T") and moreover T'o I is smooth.

Proof. Obvious from the definition. =

Lemma 23 (Vertical inversion) We have
(w,m), | (w,m)
er (u) ep— (uZr) =1g.

0,12 - M.

Here TV denotes the obvious vertical reversion of T': |

Proof. Obvious from the definition. =

Lemma 24 (Horizontal multiplication) We have
(w,m) (w,m) ()

€ao v (u) = ev’ (uda) es (u).

01 (V) and moreover ®o, ¥ is smooth.

[0,1]2 — M are smooth maps such that 0,.(®)
s). We have:

Here &, 0
= B(t,s) and ,(t) = P'(s) = W,

Proof. Let I' = ®0,U. As before put ¢4(t) = ¢'(s)

2 <(w 7 (U'Xq)517s)( 2 (’U,,l,S))

0Os
(w m) (w,m)
= (uXp,1,s) ep (u,l,s) (t) dt
He (s tius)
(w,m) 1 8 (w,m)
+ 0 (o1, 2 a(t), 20 at | 6 (w1,
He (d’sv :(UXi))s)
Q+W.
Here (uXp)s = Hw(Z2w, s,uXs). Let us analyse each term separately. We have
N N I
Q =40 (uXw,1,) 68" (u, 1, 5) / m [ L), Zra(t) dt
0 ot Os Mo (e t)
w VslUs

where v4(t) = ®o, U(t, s). On the other hand:

1
( Gl (w,1,8) [ 0C4n” (u,1,8) s /m
0

o o b
W = 6\11) (uXs,1,5) e (azﬂs(ﬂ, giﬁs(t)) dt
He (st (uXe)s)

dt

(w,m) (w,m) ! 0 0
= ey (uXs,l,s) €a (u,l,s) / m(a—ws(t),—ws(t)>
0 t 85 (w,m)
Hw("bs’t;(u-){d) 8( ep (u,l,s)))

—_—~

1
= m) (u)dp,ls)( )(u,l,s) /m(gws(t),gws(t)> dt
0 8t 85
Hw(d’svt:us‘i’s)

(w;m) (wm) RN
= Xy, 1 1 (1), —s(t dt
o (0t 1) w1) | [ m ((%v (0), 5o ))
2 He (757t1u3)
Therefore both sides of the equation of the lemma satisfy the same differential equation, and they have the

same initial condition. m
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Lemma 25 (Horizontal inversion) We have:

(w,m) (w,m)
er-n (uXr) er (u) =1g,

where '™ denotes the obvious horizontal reversion of T': [0,1]% — M.
Proof. Analogous to the proof of the previous result. m

Lemma 26 (Gauge transformations) We have:

(w,m) (w,m)

er (ug) =g 'v er (u).

Proof. Analogous to the proof of the previous result. m

2.5.3 The Non-Abelian Fubini Theorem
We continue with the notation of 2.5.2. Again let I': [0,1]*> — M be a smooth map, a =T'(0,0) and u € P,.

(va)
Define fr (u,t,s) by the differential equation:
(w,m) (w,m) s T S
% fr (u,t,s)= fr (u,t, s)/o m <% t(s’),%’ﬁ(s’))ﬁ{ ( )ds', (15)
w 'Ytys/,ut

(w,m)

(w,m)
with initial condition fr (u,0,s) = 1g, for each s € [0,1]. Note that the differential equation for fpr

is obtained from the differential equation for (We’;n ), equation (12), by reversing the roles of s and ¢. Let
(wvm) (va)

fr (u,1,1)= fr (u). The following holds.

Theorem 27 (Non-abelian Fubini Theorem, bundle form)

(w,m) (w,m)

er (u) fr (u)=1.
Proof. In fact we show for every ¢, s € [0, 1]:

(w,m) (wym)

er (u,t,s) fr (u,t,s)=1. (16)

In the following put (wé;n )(u,t, s) = e(t,s). Let 0 be the canonical left invariant 1-form in E (the Maurer-
Cartan 1-form); see 2.6.1. Taking the ¢ derivative of (12), we obtain:

%9 <%e(t,s)) =m <%’Ys(t)7 %’Ys(ﬂ)

By (14) and the G-equivariance of m:

8(€(t, S)) > &9 <&€(t, S)) =m <E’Yg(t>, &’}/g(t)>ﬁ » 1) .
w(7"s,u”

Hw('Ysyt;us)

We also have:

8 o (G -t (oo ()0 )



The second equation follows from the definition of a differential crossed module, and the third from
the fact df(X,Y) = —[X,Y] for each X,Y € e. Combining the two equations and integrating in s, with

(w,m)

er (u,t,0) = 1g, we obtain:

0 (wom) (0 a8 J\ @m)
5 T (u,t,s) = /0 m (&%/(t%@%/(t)) ds' | “er (u,t,s),

Hau(yt,s' ut)

with initial condition (wé;n)(u,o,s) = 1pg, (set t = 0 in (12)), from which (16) follows as an immediate
consequence. M

Note that by using the non-abelian Fubini theorem, lemmas 24 and 25 follow directly from lemmas 22
and 23.

2.6 Dependence of the categorical holonomy on a smooth family of squares

In this subsection we prove a fundamental result giving the variation of the 2-holonomy of a smooth family
of 2-paths in terms of the 2-curvature, analogous to equation (13) for the variation of the 1-holonomy of a
smooth family of 1-paths in terms of the curvature. Let P — M be a principal G-bundle over the smooth
manifold M with a G-categorical connection (w, m). Here G = (E 2, G, ) is a Lie crossed module, where >
is a Lie group left action of G on E by automorphisms. Let & = (9: ¢ — g,>) be the associated differential
crossed module.

Consider a smooth map J: [0,1]> — M. Put J(¢,s,2) = I'*(¢,s), where x,t,s € [0,1]. Define g(z) =
J(0,0,z), for each x € [0,1]. Choose u € Py and let u(z) = H,(¢,z,u). We want to analyse the

dependence on z of the categorical holonomy (ng)(u(x), t,s), see equation (12). To this end, we now prove

the following well known technical lemma, also appearing in [FMP].

2.6.1 A well-known lemma

Let G be a Lie group. Consider a g-valued smooth function V (s, z) defined on [0, 1]2. Consider the following
differential equation in G:

0
550(5.2) = a(s, 1)V (5,2),

with initial condition a(0,z) = 1¢,Vz € [0, 1]. We want to know %a(s,x).
Let 6 be the canonical g-valued 1-form on G. Thus 6 is left invariant and satisfies §(A) = A,VA € g,
being defined uniquely by these properties. Also df(A, B) = —0([A, B]), where A, B € g. We have:

8%:9 <%a(s,x)) = %H(a(s,x)V(s,x)) = %V(s,x).

On the other hand:

ay <§<x>) = da* (0) ( ;

Q3|Q3
QJ|Q7
N———
_|_
Pl
g*
=3
o
N———
_|_
Q*
=
VRS
| —
T
Pl
| I
N————

Therefore:

0 ((,%a(s,a:)) - /0 (-da (%a(s/,x), %a(s',x)) +8%V(s',x)> ds' + 0 ((,%a(o,x)) .

Since %a(o, x) = 0 (due to the initial conditions) we have the following:

Lemma 28

9 _ (99 0 /
%a(s,x) = a(s,x)/o ( do (8xa(8 L), 8s’a(s ,x)) —|—axV(s ,a:)) ds’,

for each x,s € [0,1].
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2.6.2 The relation between 2-curvature and categorical holonomy

The following main theorem is more general than the analogous result in [FMP, SW2]| since it is valid for
any smooth homotopy J connecting two 2-paths I' and I”, and in particular the basepoints of the 2-paths
may vary with the parameter x. For this reason the proof is considerably longer, forcing several integrations
by parts.

Theorem 29 Let M be a smooth manifold. Let G = (0: E — G,») be a Lie crossed module. Let P — M

be a principal G-bundle over M. Consider a G-categorical connection (w,m) on P. Let J:[0,1]> — M be

a smooth map. Let J(t,s,x) = [7(t,s) = v2(t) = v*(s);Vt, s,z € [0,1]. Define q(x) = I'*(0,0). Choose

u € Py, the fibre of P at q(0). Let u(x) = Hu(q, z,u) and u(z,s) = Hy,(v*0, s,u(x)), where s,z € [0,1].
C’onszder the map (s,z) € [0,1]? — er«(s) € E defined by:

—~—

1
ser(s) =ee(s) [ m <%v§(t%%v§(ﬂ> , a7)

He (v, tu(z,s))

with initial condition:
erz (0) =1g,Vx € [O, 1], (18)

Let er= = ep=(1). For each z € [0, 1], we have:

8/'\.—/ 8/'\.—/
den=ere [ [ (—% atv;ﬂ(t),%vg(t)) dtds

Heo (vEtu(w,s))

o0
+erm/0 m(@ “(n ),%7 (n)) A dn,
Heo (5% ,n,u(x))

where 4% = 0T, starting at I'°(0,0) and oriented clockwise. Here M € A3(P,¢) is the categorical curvature
3-form of (w,m); see 2.4.35.

Proof. Consider the smooth map f: [0,1]*> — P such that f(x,s,t) = Ho(v%,t,u(z,s)), for each

x,8,t € [0,1]. By definition we have: %f(a:, s,t) = %yg(t)ﬁ . S)) and therefore w(gtf(a:, s,t)) = 0.

—~

(D H _ & 2 i
We also have: (& f(z,s,1)) = 52 (t)Hw(7§7t71L(m7S)) and ( ~f(x,s t)) = 572 (t)Hw(7§7t71L(m7S)). Note also
that m(X,Y), Q(X,Y) and M(X,Y, Z) vanish if either X, Y or Z is vertical.
By the 2-structure equation, see Proposition 16, and equation (6) it follows that (since M is horizontal):

/ / < 5;:) 5:7;;?0 dtds

Hw(’vatyu(%S))

11 P 5 5
:/0 /0 M<%f(w787t)aaf(x,s,t),af(x,&todtds
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Using lemma 20 and integration by parts, we rewrite the integral in the last term:

1
/ w (88 flz,s t)) (aatf(x s, 1), aaxf(x,s,t)) dt
/ / <8t’ (x,s,t), aasf(x,s,t’)) dt'>m (%f(x,s,t),%f(x,s,t)) dt
0 0 e 0
:/ Q(@t’f(x s,t'), 8Sf(;v,s,t')) dt'b/o m(%f(x,s,t'),%f(x,s,t')) dt’
1 t
_/ Q (gtf(:r s, t), ;)Sf(x,s,t)) > (/ <88t’f(x s,t'), aaa:f(x’s’t/)> dt’) dt.
Using 9(m) = Q and d(e)> f = le, f] = —[f,e] = —0(f) > e; Ve, f € ¢, we have for the final term:
/19 <§tf(a: s, 1), gsf(x,s,t)> > </t (glf(x s,t'), aif(ggg)ﬂ)) dt’) dt
/ / <8t’ x,8,t), ;xf(x,s,t’)) dt’bm(%f(x,s,t),%f(x,s,t)) dt
1
/0 w(aifx s t))bm(if(x s, t), gf(a: s t))dt
1 s
—|—/0 /0 Q( (x,8,0), aif(a:,s,())) ds’ Dm(gtf(a:,s,t),%f(x,s,t)) dt
/ <§fxst)l>m<%f(x,s,t),%f(x,s,t)>dt
—|—/ (8 f(a:80))Dm(%f(x,s,t),%f(x,s,t)) dt.

where we have used Lemma 20 twice. Combining the previous equations, two terms cancel and we obtain:

/ / < 8871), %)) dtds

Ho (42 tu(z,5))
z/ / dm (2 x,8,t), (,if(a:,s,t),%f(x,s,t)) dtds
/ / <8t’ (x,5,t"), if(x,s,t')) dt'>/1m<aalf(a: s,t), gxf(x,s,t')) dt'ds
/ / ( (x,s O)) <§tf(a: s, 1), gsf(a:,s,t)> dtds. (19)

For the second term on the right hand side in the theorem, we obtain:

Cr—
/ m<w (), o <n>> o
Ho (57 nyu(=))
Yoo 0 Lo 0
= [P (st 0 g sts0 s+ [ (st axﬂx,l,t)) @

—g(z, 1) > (/01m (%f’(x,s,l),%f’(m,s,l)) ds—/1 <§tf(x 0,1), (z,0,t ) dt),
))-
0

where we have introduced g(z, s) = d(er=(s)), as well as f'(z,s,t) = H, (v*, s, Ho (Y&, t,u(x))). Therefore
flx,s,1) = f'(x,s,1)0(er=(s)) by the non-abelian Green theorem. Note that f (a: 0,t) = f(x,0,t). We will
be using the function f’ again shortly.

Thus it remains to prove that e, ‘e« is equal to the sum of the right hand sides of (19) and (20).
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By lemma 28, we have

d
%el—‘m = @Fm (AT —_ BT)7 (21)
where
/ / I dtd
oz aﬂs Bs ° 8
Heo (72, t,u(x,s))

! 0 9
B, = /0 de (%em (s), &epm(s)> ds.

Let us analyse A, and B, separately. Using the well known equation:
do(X,)Y,Z)=Xa(Y, Z)+Ya(Z,X)+ Za(X,Y) + (X, [Y, Z]) + a(Y, [ Z, X]) + a(Z, [ X,Y]),

valid for any smooth 2-form « in a manifold, and any three vector fields X,Y, Z in M, we obtain for A,:

A, _/ / ( F(x,8,1), aasf(x,s,t)) dtds
/ / dm< (z,5,1), gtf(x,s,t),%f(x,s,t)) dtds

//at <—S x, )88fxst>dtds—// ( x,s,t),%f(x,s,t))dtds

= / dm <%f(x, s, 1), aatf(x,s,t), %f(x, s,t)) dtds

o Jo
o 0 Lo 0

—l—/o m<%f(x,s,0),%f(x,s,0)> ds—i—/o m(af(x,l,t),%f(x,l,to dt
boro 0 Lo 0

—/0 m<§f(x,0,t),%f(x,0,t)> dt—/o m(af(x,s,l),%f(x,s,l)) ds. (22)

Recall from before the definitions g(x,s) = d(er=(s)) and f'(z,s,t) = Ho (V" 8, Ho (78, t, u(z))), and the
relation f(z,s,1) = f'(x,s,1)0(er=(s)). We thus have:

W (%f’(x,s, 1)> =w (% (f(z,s, 1)91(%8))) ,

which since % f'(x,s,1) is horizontal implies, by using the Leibniz rule and the fact that w is a connection
1-form, that:

olo5)e a5 1)) 740 + gl 5) 5107 5) =0

Analogously (this will be used later):

5750 5 (MU sae) ) olo.9) =~ 0) o) + o o (ulo o) ).
which is the same as:

%g(x, 5) = gz, s)w (a%f(a:, s, 1)) —w (a%f’(x,s, 1)) g(z, 5).
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The very last term of (22) can be simplified as follows (since m is horizontal and G-equivariant):
Yo 0
_A m(af(x,s,l),%f(x,s,l)) ds
' 0 0

_ —1 o Yo

—— [ s (o) s s ) ) ds

=—g Yz 1)>/1m gf'(xsl) 2f'(;vsl) ds

- g ) o 85 )9 781‘ y 9y

1 s
g -1 i ’ ’ 2 / ’ /
+/0 /0 539 (x,s)bm(as/f(x,s,l),axf(x,s,l) ds'ds
1
o o . D,
=—g Yz, 1)> / m(@sf (x,s,l),axf (x,s,l)) ds

// < x51)> e, )>m(aalf(x,sgl),a%f(x,s',l)>ds’ds. (23)

The penultimate equation follows from integrating by parts.
We now analyse B,, for each x € [0, 1]. We have:

B = (e (5)gmere (s)y e (6) e <s>)

1,4, 0 1,9
— [erﬂ(s)%erm (s), erzl( )—€FT

0 0
—— (@ a9 > (( ) 5eere(s))
=—w ((,%f(x,s, 1)) D/Olm (%f(a:,s,t), %f(x,s,t)) dt
+ <g_1(x,s)w ((,%f’(x,s, 1)) g(x,s)) > /01 m <%f(x,s,t), %f(a:, s,t)) dt.
By using lemma 20, this may be rewritten:
! 0 0 ! 0 0
B, = —/0 Q <§f(a:,s,t), %f(x,s,t)> dtl>/0 m (Ef(a:,s,t), &f(x,s,t)> dt
_ /SQ (aalf(x s',0), 88xf(x,s',0) ds’l>/01m <%f(x,s,t),%f(x,s,t)) dt
+ (g_l(x,s) (/OSQ <@f'(x,s', 1), gf’(a:, s, 1)) ds’) g(x, s)) l>/01 m <%f(a:, s,t), %f(x,s,t)) dt
1 1
+ <g—1(x,s) (/ ) (gtf(x 0.1), 88 f(x,O,t)) dt) g(x,s)) >/ (gtf(a: 5,1), gsf(a:,s,t)> dt,

Again using d(m) = Q and d(e) > f = [e, f] = —[f,e] = —0(f) > e; Ve, f € ¢, together with d(m) = Q and
lemma 20, for all but the second term of the right hand side of the previous equation, we obtain:

B, = 1 1(2 if(a:st) if(x,s,t) dt > 1m %f(x,s,t),%f(x,s,t) dt | ds.
0 0 ) 0 ) 9
/ / ( (a5 O)) (gtf(ﬂ? s,t), if(x,s,t)) dtds
/ / ( (z,s 1))9 1(x,8)>m(%f’(x,s’,l),a%f’(x,s"n) ds'ds

/ / (gf @ 8,1)) g~z s)>m (gtf(x 0,1), 88:Ef(x,0,t)) dtds (24)
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Finally, since (given that w is a connection 1-form):

the last term of the previous expression is rewritten as follows:

ot 0 0 0
_/0 /0 w <%f(x,s,1)) gz, 8)>m <§f(x,0,t),%f(x,0,t)) dsdt

1 1 8 B 8 8
:/0 /0 559 1(w,8)>m(af(x,O,t),%f(x,O,tO dsdt
! 1
:g—l(x,1)>/0 m(%f(x,o,tx%f(x,o,t)) dt—/o m<%f(x,0,t),%f(x,0,t)> dt.  (25)

Combining A, — B, from equations (22), (23), (24), (25), four terms cancel and the remaining terms are
equal to the sum of the right hand sides of (19) and (20). m

2.6.3 Invariance under thin homotopy

From theorem 29 and the fact that the horizontal lift X — X of vector fields on M defines a linear map
X (M) — X(P) we obtain the following:

Corollary 30 Let M be a smooth manifold. Let also G = (0: E — G,>) be a Lie crossed module. Let

P — M be a principal G-bundle over M, and consider a G-categorical connection (w,m) on P. IfT" and T”
(w7m)

are rank-2 homotopic (see definition 10) 2-paths [0,1]*> — M then (%;n) (u,t,s) = e (u,t,s), whenever
u € Pro,0), the fibre of P at I'(0,0) = I7(0,0), and for each t,s € [0,1].

2.6.4 A (dihedral) double groupoid map

Let P be a principal G bundle over M. We define a double groupoid D?(P) whose set of objects is M, and
whose set of morphisms z — y is given by all right G-equivariant maps a: P, — P,. A 2-morphism is given
by a square of the form:

P, L’ P,

cT f Tb (26)
P, T> Py

where x,y,z,w € M and a,b,c,d are right G-equivariant maps. Finally f: P, — E is a smooth map such
that f(ug) = g~ ' f(u) for each u € P, and g € G, satisfying (boa)(u)d(f(u)) = (doc)(u), for each u € P,.
The horizontal and vertical compositions are as in 2.5.2. We also have an action of the dihedral group of the
2-cube D, given by the horizontal and vertical reversions, and such that the interchange of coordinates is
accomplished by the move f — f~!. As a corollary of the discussion in the last two subsections it follows:

Theorem 31 Whenever the principal G-bundle P — M is equipped with a categorical connection (w,m), the

w,m (w,m)
holonomy and categorical holonomy maps H,, and ( e ) define a double groupoid morphism H : 8a(M) —
D2(P), where 83(M) is the thin fundamental double groupoid of M. Given a dihedral group element r € Dy

we have o) o)
i e = (W m).
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3 Cubical 2-bundles with connection

3.1 Definition of a cubical G-2-bundle

Recall the conventions introduced in 2.1.1 and 2.2.2.

Let M be a smooth manifold. Let U = {U, };c5 be an open cover of M. From this we can define a cubical
set C(M,U). For each positive integer n the set C™ (M, U) of n-cubes of C(M,U) is given by all pairs (z, R),
where R is an assignment of an element U* € U to each vertex of v of D", such that the intersection

vt= ()} Ul

vertices v of D™

is non-empty, and = € U, The face maps 9:: C™*(M,U) — O™ (M, U) where i € {1,...,n} and n =
1,2,..., are defined by
F(x,R) = (z, Ro 6F).

Analogously, the degeneracies are given by:
611(337 R) = (J?, Ro U?)

Given an x € M, the cubical set C(M,U, x) is given by all the cubes of C'(M,U) whose associated element
of M is x.

Definition 32 (Cubical G-2-bundle) Let G = (0: E — G,) be a Lie crossed module. Let N(G) be the
cubical nerve of G; see 2.2.2. Let M be a smooth manifold and U = {U;},c5 be an open cover of M. A
cubical G-2-bundle over (M,U) is given by a cubical map C(M,U) — N(G) such that all the maps involved
are smooth.

Unpacking this definition, we see that a cubical 2-bundle is specified by smooth maps ¢;5: U NU; — G,
where U;,U; € U have a non-empty intersection, and also by smooth maps Vi : U NU; NU,NU — E,
where Uy, U;, Uy, Uy € U have a non-empty intersection, such that:

1. We have d(WYiji) *¢ijdji = Gindr in Ui = U; NU; N U, NU;. In other words, putting ¢;; =
X5 (c2), i = X{ (c2), o = X;(CQ), oj = Xfr(cQ) and e(c2) = i yields a flat G-colouring
c2 = (¢, 9)iji of D?, for each x € Uijp.

2. Given i*, i k* 1% € T with Ui j- - N Uptjeperr # 0, and putting e (c3) = (U, @)it jipsi+,
6;(03) = (wvfb)rlrﬁkh €f(03) = (Wfb)jfzfjﬂh 65(03) = (wvﬁb)i*j*ﬁj*a 63(03) = (wvﬁb)k*lﬂﬁﬁ
yields a flat G-colouring c3 of D3 in Ui—j—k-1- N Uit jrpri+-

3. ¢y =1g i U; for all i €.

4. Wiijj = Viji; = 1p in Uy

See figure 1 for our conventions in labelling the vertices of D? and D3.

The previous definition is therefore a cubical version of the simplicial version of a G-2-bundle (and non-
abelian gerbe) appearing for example in [BrMe, ACG, BS1, BS2, SW3].

Definition 33 (Dihedral G-2-bundles, and multiplicative G-2-bundles) Recall that the cubical sets
C(M,U) and N(G) have a lot of extra structure, namely inversions and interchanges (therefore an action
of the hyperoctahedral group), and also w-groupoid structures. Therefore we can restrict our definition of a
cubical G-2-bundle and only allow cubical maps C(M,U) — N(G) preserving the structures above, therefore
defining (respectively) dihedral G-2-bundles and multiplicative G-2-bundles.

Explicitly, a cubical G-2-bundle is said to be dihedral if the maps ¢;;: Uj; — G and Vijp: Usyjrg — E
satisfy the following extra conditions:

1. We have ¢j; = ¢,

ijl in Uy foralli,j €.

-1 -1 -1
2. We have Yigji = i1, Yjitk = Gij > Vi and iz = Gin > Uy i Ui -
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it J

Figure 1: Label conventions in definition 32.

3.2 Connections in cubical G-2-bundles

Let G = (0: E — G,>) be a Lie crossed module, where > is a Lie group left action of G on E by automor-
phisms. Let also & = (0: ¢ — g,>) be the associated differential crossed module.

Definition 34 (Connection in a cubical G-2-bundle) Let M be a smooth manifold with an open cover
U ={U;}icg. A connection in a cubical G-2-bundle over (M,U) is given by:

e For any i € J a local connection pair (A;, B;) defined in U;; in other words A; € A'(Uj,g), B
AQ(UZ‘, e) and 6(Bl) =dA; + %Al Nad A; = QAW

o For any ordered pair (i, j) an e-valued 1-form n;; in Us;.
The conditions that should hold are:
1. For any i € J we have n;; = 0.

2. For any i,j € J we have:

¢ (Ai + 3(%)) $ij + &3 doij,
= < i +dnij + 77”/\ m]+A/\ m]).
3. For any1,j,k,l € J we have:
Nik + Gik > Tkt — GikGridy, Bt — Gikradyy byt D iy = gy Wit + Uiy (Ai A Pijra) -
The equivalence of G-2-bundles with connection will be dealt with in subsection 4.3.

Definition 35 (Dihedral connection) If a G-2-bundle is dihedral, then a connection in it is said to be
dihedral if the following extra condition holds:

Nji = —gb%l >, for eachi,j € J;
therefore, condition 3 of the previous definition can be written as:

Nik + Qike > Nkt + GikOrt > Nij + PikPri @iy > 0ji= %};ﬁld%g‘kl + %}b (Ai A Yijia) -
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4 Non-abelian integral calculus based on a crossed module

4.1 Path-ordered exponential and surface-ordered exponential

We continue with the notation and results of subsections 2.5 and 2.6. Alternative direct derivations of some
of the following results appear in [BS1, SW1, SW2, SW3].

Let M be a manifold, and let G be a Lie group with Lie algebra g. Let v: [0,1] — M be a piecewise
smooth map. Let A € A'(M,g) be a g-valued 1-form in M. We define, as is usual, the path ordered

A
exponential gy(t) = Pexp (f(f A (L)) dt') to be the solution of the differential equation:
t) = g t)A d 4
7910 =9y A{ () ),

A A A
with initial condition 9v(0) = 1¢g; see [Ch]. Put 9y = gv(1) = Pexp (fol A (%fy(t)) dt). We immediately

A A A A A
get that 9, = 9,9, and also 9.,-1 = (9,)~". Here v and » are piecewise smooth maps with (1) = +/(0).
Consider the trivial bundle P = M x G over M. Given A € A'(M,g) there exists a unique connection
1-form wy in the trivial bundle P for which A = (*(wa), where {(z) = (x,1¢) for each x € M. We then
have that:

C00) = Hus st ONPesp ([ A () ar).

Let G = (0: E — G,») be a Lie crossed module and let & = (9: ¢ — g,>) be the associated differential
crossed module. As before, if we have B € A?(M,¢) with 9(B) = Q4 = dA+ $AA* A we define

(A B (t s) = 8exp (/ / (atlf}/g , ai/fysf (t/)> dt/ds/)

as being the solution of the differential equation:

9 (A,B) (AB) tra A 0 0
52 0 = 09 [ (Rl o8 (@ @) ar

with initial conditions
(A B)
(t,0) = 1g,Vt € 0,1].

A,B) (A, B
Put (61" )—( ) (1,1). We can equivalently define the surface ordered exponential by the differential equa-

tion:
0 (A B) /A A 0 0 (A, B)
% ¢ (t,s) = (/0 (%«t)%t(g)) > B (&%'(tL @%/(t)> dS’) (t,s)

with initial conditions
A B
D (0,5) = 15, Vs € [0, 1];
see the proof of Theorem 27 and below.
As before, there exists a unique categorical connection (w4, ma, p) in the trivial bundle P = M x G for
(A,B) (wa,ma,B)

which A = (*(wa) and B = (*(m4, g)). We have that er (t,s) = ~er  (¢(I'(0,0)),t,s), see 2.5.3. The
following follows immediately from the non-abelian Green theorem 21.

Theorem 36 (Non-abelian Green Theorem, elementary form) Let I': [0,1]> — M be a 2-square.

A A A A A A A A
Put Xe=9x., Yr=9y., Zr=9z. and Wr=9w,.; see 2.5.2 for this notation. We have that:

(A,B)\—1 A A A A
8( er ) XFYF:ZFWF.

The following follows from theorems 22 and 24. See 2.1.1 and subsection 2.3.
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(A,B)
Theorem 37 Consider the map H : C*(M) — D?*(G) such that:

. T
(A,B)
A (A,B) A
H I)= ZFT er TYF
* —
A
Xr

(A,B) (A,B) (A,B) (A,B) (A,B) (A,B)
Then H ([T opT') = H [Toy, H [T) and H ([To,T') = H (T)oy KH (IV), whenever the

compositions of T,T": [0,1]*> — M are well defined.

Passing to the quotient 82(M) of C?(M) under thin homotopy it follows, by using theorem 29 and
corollary 30, that:

(A,B) (A,B)
Theorem 38 The map H of the previous theorem yields a morphism H : So(M) — D2(G) of double

groupoids with thin structure.

The following result is a consequence of theorem 31.

(A,B)
Theorem 39 (Non-abelian Fubini Theorem) The multiplicative map H : C?*(M) — D?(G) preserves
the action of the dihedral group Dy of the square. Concretely for any element r of D4 we have

(A,B) (A,B)
g (Tor ) =r( 3¢ (),

for each smooth map T': [0,1]* — M.
(A,B)
This ultimately is a consequence of the fact that J{ preserves horizontal and vertical reversions and
moreover interchanges of coordinates, which generate the dihedral group Dy =2 Z3 x Sy of the square.
We finish this subsection with the following important theorem:

Theorem 40 Let (A, B) be a local connection pair in M, by which as usual we mean A € A'(M,g),
B € A*(M,e) and O(B) = Qa =dA+ SAN* Y A. Let C = dB + A N\” B be the 2-curvature 3-form of (A, B)
as in 2.4.83 and 2.4.4. Let J: [0,1]> — M be a smooth map such that J*(C) = 0. Then the colouring T of
D3 such that: )
B
TodF = 9¢ (0F))
is flat; see 2.2.2 and 2.1.1.

Proof. This follows from the construction in this subsection and theorem 29. Note the form (5) for the
homotopy addition equation (4). m

4.2 1-Gauge transformations

Let M be a smooth manifold. Let (A4, B) and (A’, B’) be local connection pairs defined in M. For the time
being we will drop the index i for the open cover and take A and B to be globally defined on M. We will
return to the general case in the next section. In other words A, A’ € AY(M,g) and B, B’ € A%(M,e¢) are
such that d(B) = Q4 = dA + 3AN** A and 9(B') = Qar. Let n € A'(M, ¢) be such that:

A=A+ 9(n)

and 1
B’zB—i—dn—i—En/\adn—i—A/\Dn.
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Given a smooth path ~v: [0,1] — M, define the following 2-square in G:

Al Al
9~ 9~
*k — Xk k — %
1 (A,m) . (Ap,Bn)
TiG’n) (’}/) = 1GT fvy Tlc = 1GT et lg
k — Xk *k — X
A A
9~ 9~

Here A, = A+ 29(n) € AY(M x I,g) and

1
B, =B + zdn + §zznAadn+zA/\>77+dz/\n € A%(M x I,e),
where [ = [0,1], with coordinate z. It is an easy calculation to prove that 9(B,) = Q4,. In addition,
v x I1:]0,1]> — M x I is the map (v x I)(t,s) = (y(t), s), where s,t € [0,1]. We will see below (Remark 41)

A7 A7 )BT
that (e,yn)z(efyxf) depends only on A, and 7.

Let h: M — G be a smooth map. It is well known (and easy to prove) that if A” = h=1A’h + h~='dh
then

Al

9~
*k — X

)= noo] 1 [rean

* — %
A/
9~

is a 2-square in G. We also define the 2-squares:

Al

« I
h
TA'('Y)
T}ghm)(v); = h('y(O))T G Th(v(l))

797 ()

9~
and
h(v(1))
* — " 5 %
~(h, h, s -t "
7.151 ) (7) = Ty (7',51 ) (’Y)) _ g/:/T ((2;7)) T?H
¢ — 5 %

h(~(0))
see 2.2.1. Put also 1
B"=h7'o(B+dn+ AN+ §nA"‘dn).
We then say that (A”, B”) and (A, B) are related by the 1-gauge transformation (h, 7).
(Ay,By)  (Ay,By) Bn)

Ay,
Remark 41 By the non-abelian Fubini’s theorem, e~yxr = eyxr (1,1), where (ezxf
by either of the following differential equations:

(t,z) can be defined

0 (Ay,By) (An,By)

b AL 0
& EyxI (tvz) = — €EyxI (t’Z)/O 9~ (t/)'>77 (@W(t/)> dtlv
where A, = A+ 20(n) € AY (M, g), or
8 (Anan) A 8 (A7]7B77)
5 G 0 = (< e (50)) G o)

with initial conditions:

A, ,B A, B
(ez’xf}) (£,0)=1g or (ezxf) (0,¢) = 1g, where £ €]0,1],
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A,,B,
in the first and second case, respectively. Therefore it follows that (ezxf) depends only on A,n and 7y, thus

. , , (Am)
it can be written simply as e .

There is another setting for the 2-cubes T and T introduced here, which will be needed when we return to
considering local connection pairs (A;, B;) (definition 34), namely

Tquzij Mij) ()

where 7 is a 1-path whose image is contained in U;j. We will refer to this 2-cube as a transition 2-cube for
the 1-path ~. Note that the relation between A; and A; is identical to that between A and A", replacing h by

Gij and 1 by ni;.

4.2.1 The group of 1-gauge transformations

Let M be a smooth manifold. Let also G = (0: E — G, ) be a Lie crossed module with associated differential
crossed module & = (9: ¢ — g,>).

The group of 1-gauge transformations in M is the group of pairs (h,7), where h: M — G is smooth,
and 7 is an e-valued 1-form in M. The product law will be given by the semidirect product: (h,n)(h',n’) =
(hh/,h>n' + 7).

Recall that a local connection pair in M is given by a pair of forms A € A'(M, g) and B € A?(M,¢) with
9(B) =04 =dA+ 1A N A Then defining (as above):

1
(A,B) < (h,n) = (h_lAh +0h™ o)+ h7dh,h s (B+dnp+ AN+ 37 A2 77))
defines a right action of the group of 1-gauge transformations on the set of local connection pairs.

4.2.2 The coherence law for 1-gauge transformations

The following theorem expresses how the holonomy of a local connection pair changes under the group of
1-gauge transformations. We recall the notation of 2.1.1, 2.2.2 and 4.2.1. The notion of a flat G-colouring
appears in 2.2.2.

Theorem 42 (Coherence law for 1-gauge transformations) Let M be a smooth manifold with a local
connection pair (A, B). Let also (h,n) be a 1-gauge transformation, and let (A", B") = (A, B) < (h,n). Let
I':[0,1)2 — M be a smooth map. Define 7 T = T gs being the G-colouring of the 3-cube D3 such

(4,B) (4,B)
that:
. B (AB) . (AN7BN)
T ods = H (D), Thpesi="H (D)
and

T 0 6F =7 GFT), i=1,2.

(Note that the colourings of the edges of D are determined from the colourings of the faces of it, given that

they coincide in their intersections.) Then T((Z:%)) is flat.

Proof. The colouring T((Z}?])S,)(F) is flat by lemma 26; here (A’, B") = (A, B)<(1¢,n). Let us prove that the

colouring T(}%" (I') is flat. This follows from theorems 29 or 40 and the fact that if M, = dB, + A, \” B, €
A3(M x {z,z € R},e) is the 2-curvature 3-form of (4,, B,) then the contraction of M, with the vector field
% vanishes. A more intricate calculation of this type appears in the proof of Theorem 54. The theorem
follows from the fact that 7(G), the set of flat G-colourings of the 3-cube D3, is a (strict) triple groupoid
(see 2.2.2) and T((Z:%)) = T&‘fé;’) 03 T((Z}%,), where o3 denotes upwards composition. m

From remark 41 it follows:

Corollary 43 Suppose I': [0,1]> — M is such that T'(9]0,1]?)) = =, where x € M. Given a local connection
pair (A, B) in M and a 1-gauge transformation (h,n) we then have:

(A,B)a(h.m) (A,B)
er

=h Y 2)> er
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By construction we have:

Corollary 44 Given a local connection pair (A, B) in M and a 1-gauge transformation (h,0) we then have
for any smooth map T': [0,1]> — M:

(A,B)

RO =110, 0))s Cer

Theorem 42 may also be interpreted in a different way to give a relation between the holonomies for
a 2-path I' with image contained in Uj;, using local connection pairs (A;, B;) and (A4;, Bj). Note that
(45, B;) = (Ai, Bi) < (i mij)-
Theorem 45 (Transition 3-cube for a 2-path) Given a connection on a cubical G-2-bundle over a pair
(M,U), let T': [0,1]> — M be a smooth 2-path with image contained in U;;. Define T((jjgf)(F) = T((j:'f;ijj)
as being the G-colouring of the 8-cube D? such that:

(Ai,By)

TG ooy = 1), TR 0sf =

and
Ty o 6F = rPo M GET), k=12

Then T((If;'f]’;ijj) is flat.

4.2.3 Dihedral symmetry for 1-gauge transformations

Let M be a manifold with a local connection pair (A, B) and a 1-gauge transformation (h,n). Let v: [0,1] —
M be a smooth map.

Theorem 46 We have:
h, _ h, _
Lo () = o ()

-V

2. If (A", B") = (A, B) < (h,n) then 70" (7) = (77 ()

Recall e™ = r,(e) and e™¥ = ry(e), where e € D*(G), denote the horizontal and vertical inversions of
squares in G.

Proof. The first statement is immediate. Let hg = h(v(0)), h1 = h(y(1)) and ' = —h~' > 7. Let also
(A", B") = (A, B) <(0,7n). The second statement follows from:

A A
G~ 9~
- - e
_ Al ! _ A !
holT A" Thll 1GT pe A TlG
— % -
(hom) ™" Al Al
Tar () . 9y o 9
(hym) 47 &
Ta (’Y) * L) * * 9~
A A
hOT am Thl 1‘4 am TIG
—_— % —_—
A A
G~ 9~

Now note .
(A”m') (A=) ((Am)) N
ho> ey "= ey = ey ;

the last equation can be inferred for example from the first equation of remark 41. m
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4.3 Equivalence of cubical 2-bundles with connection

Let M be a smooth manifold. Let G = (0: E — G,>) be a Lie crossed module and let & = (0: ¢ — g,>) be
the associated differential crossed module. We freely use the material of section 3.

4.3.1 A crossed module of groupoids of gauge transformations

We define a groupoid Mé, whose set of objects Mg is given by the set of local connection pairs (A, B) in M,
in other words A € A'(M,g) and B € A*(M,e) are smooth forms such that 9(B) = Q4 = dA+ AN A,
The set of morphisms of Mé is given by all quadruples of the form (A, B, ¢,n) where A and B are as above,
¢: M — G is a smooth map and ) € A'(M, e) is an e-valued smooth 1-form in M. The source of (A, B, ¢,n)
is (A, B) and its target is (A, B)<(¢,n). The composition is given by the product of 1-gauge transformations;
see 4.2.1. We also define a totally intransitive groupoid MS, consisting of all triples of the form (A4, B, ),
where (A, B) is a local connection pair in M and v is a smooth map M — E. The source and target of
(A, B, ) each are given by (A, B), and we define (A, B,v¥)(A, B,v’') = (A, B,yy’).

The following lemma states that this gives rise to a crossed module of groupoids, a notion defined in
[BH1, BHS, B1], for example. We follow the conventions of [FMPo].

Lemma 47 The map 0: MS — Mé such that (A, B,) — (A, B, o, (dyp~1) + d)(ADdJ‘l)) s a groupoid
morphism, and together with the left action:

(4,B,¢,n) > (A, B',9) = (A, B,¢> ),

where (A’, B") = (A, B)<(¢,n), of the groupoid Mé on the totally intransitive groupoid Mé defines a crossed
module of groupoids Mg.

Proof. Much of this is straightforward calculations. One complicated bit is to prove that:
(A, B) > (9, p(d ™) + (Ap Y1) = (4, B)

It is easy to see that this is true at the level of 1-forms. At the level of the 2-forms we need to prove:

B=(0y)""» (B +d(d™h) +dW(A>PTh) + AN (P(dY™) + AN (P(AsyTh)

(Y(dyp~Y) A (p(dypt) | (W(A>~h) A (Y(Avyt))

+ . + . (W) A (A (27)

We can eliminate two terms by using:

(W(dy~") A (Y(dy)
2

d(y(dy™)) + =0,

which follows from the fact df = %9 A1 9, where € is the Maurer-Cartan form. By using the Leibnitz rule
it follows that:

—1 ad -1 ad

2 2
Also we have
dW(A> Y™ + AN (Ydy™)) +(d ™) A (Y(Ap ) = Y(dAs YY),

using (A 1) = —(Ab )y and (dp)y = —pdypT.
Putting everything together, formula (27) reduces to:

oo (B ((“;d 2)eut) s v ) ) =o7te (B4 v 0(8) 0 )

=¢ '>(B+vBy ' - B)
= B.
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We have used the identity 9(V)>e = Ve — eV for each V' € ¢ and for each ¢ € E. This follows from the
definition of a Lie crossed module.
We now prove the other difficult condition, namely:

9((A, B, ¢, m) > (A", B, ) = (A, B,¢,m)I((A', B, 9)(A", B, ¢~ —¢~ ' b)

or

(4, B,0(¢>9), (6> 9)d(¢> )" + (o> ¥)Ar (ppy7))
= (A4, B,pvo~ " n+ (¢ 9) (¢ dd ™) + (9> 9)(9A" > ™) — 90() ™" b n)  (28)

Now use the fact that A’ = ¢~ 1 A¢ + ¢~ 1dp 4+ d(¢p~! >7), and the terms involving 7 on the right hand side
cancel. m

Definition 48 The crossed module of groupoids Mg of the previous lemma will be called the crossed module
of gauge transformations in M.

A very similar construction appears in [SW2].

4.3.2 Equivalence of 2-bundles with connection over a pair (M, U)

Definition 49 Given a point © € M, the crossed module Mg(x) of germs of gauge transformations is
constructed in the following obvious way from Mg. The set of objects Mg(x) of Mg(x) is given by the set
of all triples (A, B,U) where U is open and x € U, with the equivalence relation (A, B,U) = (A, B",U’) if
A= A" and B = B’ in some open neighbourhood of x. One proceeds analogously to define the morphisms
Mg (x) and the 2-morphisms Mg (x) of Mg(x).

Theorem 50 Let U be an open cover of M. A cubical G-2-bundle with connection over (M, W) is given by
a cubical map C(M,U,x) — N(Mg(x)), the cubical nerve of the crossed module of groupoids Mg(x) (see
2.2.2), for each x € M, such that all involved maps are smooth (a more precise statement can be made in
the language of sheaves).

Proof. Easy calculations. m

Definition 51 We say that two cubical 2-bundles with connection B and B’ over a pair (M,U), say
(Pijs Yijkis Aiy Biymij) and (@5, ;jkl,AQ,Bg,m’;j), are equivalent (and we write B = B’) if the associated
cubical maps C(M, U, x) — N(Mg(x)), where x € M, are homotopic, through a smooth homotopy.

Since the nerve of a crossed module is a Kan cubical set, this is an equivalence relation.
Explicitly, B = B’ if there exist smooth maps ®;: U; — G and ¥U;;: U;; — E, as well as smooth forms
& € AY(U;, ¢) such that:

1. We have
O(Ai, B, V) (A, Bi, @i, E)(A7, B, ¢, 1mi5) = (A, Biy dig, i) (Aj, By, 5, E5),
where we suppose (A}, Bl) = (A;, B;) < (®;,&;) and (A}, B;) = (Ai, Bi) < (¢ij,1ij)-
2. The colouring 7' of D3 such that 95 (T) = (¢,%)ijrt, O3 (T) = (¢',1" )ik (see subsection 4.4), and

¢"ij ¢;s',l, ¢;,k ¢3’l
k — X k — Xk X — X — Xk
Tl_ = (I:'iT 27 T@Jﬁ T1+ = q>""T Wy anw T2_ = q)'iT Vi an‘w T2+ = (bjT Vs Tq)l
k — X k — X *k — X k — X
bij bt bik @i

is flat for each = € U;; and any 4, j; see 2.2.2. We have put TijE =To 5?: = 8?(T)
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4.3.3 Subdivisions of covers and the equivalence of cubical 2-bundles over a manifold

Let W = {U;}ieg be an open cover of M. A subdivision V of U is a map ¢ € J — S;, where S; is a set,
together with open sets V,, C U;, where a; € S; such that U; = Uy, es, Va,. If we are given a cubical 2-bundle
with connection B over C'(M,U), we immediately have another one, By over V = {V,,}, provided by the
obvious cubical map C(M,V) — C(M,U). Its structure maps are such that ¢q,5, = ¢;;, and analogously for
all the remaining information needed to specify a cubical 2-bundle with connection. For the same reason, it
is easy to see that if B =y B’ then By =y B, for any subdivision V of U.

If U = {Ui}icg and W = {W;} g are open covers of M, then UNW is the open cover {U; NW;}(; jyeaxg-
It is a subdivision of both U and W in the obvious way.

Definition 52 (Equivalence of cubical 2-bundles with connection) Two cubical 2-bundles with con-
nection B and B’ over the open covers U = {U;}icg and W = {W,},cg of M, respectively, are called
equivalent if

Bunw Zunw Bunw
The following follows from the previous discussion.

Theorem 53 FEquivalence of cubical 2-bundles with connection is an equivalence relation.

4.4 Coherence law for transition 2-cubes

Let B be a cubical G-2-bundle with connection over (M,U) (definition 34). Suppose 7 is a 1-path whose
image is contained in the overlap Uj;i;. Recall the notation in 2.2.1, 2.2.2 and subsection 4.2, in particular
the notion of transition 2-cube for the path v. Let (¢, ¢),;;, be the 2-cube (for each x € M):

DKl

kX — X

(W, Diju = ‘i”?kT Yijkt Tqul

kX — X

¢'ij

Theorem 54 (Coherence law for transition 2-cubes) Lety: [0,1] — Ujju C M be a smooth map. We
have:

it Mik NCIT (b)) 0 C(bigmig)) "
f_qujzk,n k)(,y) 7_[(44:1 nkl)(,y) (T,SXQ: 11 l)) () (T,Slq? i, )) () o (.9 ) (29)
A » ¥ igkl )
(¢, 0) 4 (7(0))) »
and therefore the G-colouring T of D? such that:

Tody = (1,0);;u(1(0), Tody =(1,0);;,(¥(1))

and
Tos; = Tlgfikvn'ik)(,y)y To 5; _ 7A_1(4¢;km7kl)(,y)’
To 5fr _ Tlg(ij'"nj")(’y), Tody = %éfi-j’ni-j)(fy),
is flat.

Proof. By theorem 46, the left hand side F(v) of (29) is (we omit the ~):

A (Birsmin)  ~(kir)  A(Bimin) T a(Gignig) T
TA,; TAk- TAl TAj

(¢, 0) 15 (1(0))
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which can also be written as:

7A_(l,mk) 7A_(l,qb,ikbnkl) A(17_¢ik¢kl¢;11>"7jl) 7A_(17—¢ik¢m¢;ll¢fjl>mj)
A Pik>Ag ik PrI>A ¢ikq5qu5]fl1>Aj on
id
-1 —1
~Pik 72¢kl 7A.¢jl 7A.¢i.7‘
bindridy ¢ 0 A T dd) oAl et e AL g A,

(¢, 0) 15 (1(0))

Here we have put ¢> A = A<1¢~! = pAd~! + ¢pdp—!. Let v4: [0,1] — M be the path v, (t') = v(¢'t), where
t,t’ € [0,1]. Let also F'(v) € F be the element assigned to the square F(v;). We then have (by using
remark 41):

d Ay _ 1 ,—
aF/(%) = F'(%) gy, > (nik + Qi > Mt — ¢ik¢kl¢jll > N1 — ¢ik¢kl¢jll¢ij1 > mj) Lot
dt

A; _ _
= F'(%) g, (%ﬁld%g‘kl + Y (Ai> d)ijkl)) ,
2e7(t)

On the other hand:
d

= (93 v (1))

A,
2e7(t)
A

i A
v Ai B Yijrr + gy, dwijkl) ,

(4
i A; _ A; A
(9% > dh‘jkz) (9% > 1%-1161) (9%141‘ > Yijer + Gry, > d¢ijkl) Loy
dt

A

; A _ _
Gy, P wijkl) Gy, P (%ﬁﬂ%‘jkl + 1%‘111 (A;i> wijkl))

ant)

This proves that F'(y;) = gA{; > ik (7(t)), which by taking ¢ = 1 finishes the proof. m

5 Wilson spheres and tori

5.1 Holonomy for an arbitrary 2-path in a smooth manifold

We recall the notation of subsections 4.1, 4.2 and 4.4.

5.1.1 Patching together local holonomies and transition functions

Let M be a smooth manifold. Let also G = (9: E — G, >) be a Lie crossed module with associated differential
crossed module = (9: ¢ — g,>). Let U = {U, }icg be an open cover of M. Let B: C(M,U) — N(G) be a
cubical G-2-bundle over (M, U). We therefore have maps ¢;;: U;; — G and ;g : Usjiw — E satisfying the
conditions of definition 32.

Fix a connection {4;, B;,n;;} on B, definition 34. Let I': [0,1]> — M be a 2-path. We want to define
the holonomy

{Ai,Bi,mij } .
H (D) =H(I) € D*(G),

living in the set of squares of the double groupoid D?(G); see 2.2.1.

We can use the Lebesgue covering lemma to break the unit square @ = [0, 1]? into r? rectangles {Qus},
where a,b=1,...,r, so that

QITQQT ) er

Q= (30)
Q12Q22 oo Qr2
QllQ?l s er

with T'(Qap) C U,,,, where a,b € {1,...,r} and i € J.
For each a,b € {1,...7r}, let T'yp: [0,1]2 — M be the restriction of I' to Qgp, rescaled and reparametrized
to be a 2-path [0,1]% — M.
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Remark 55 We require the reparametrization (defined up to thin homotopy), so as to be able to use the
framework of 2-paths of Definition 8. The € in that definition can be made arbitrarily small by using ap-
propriate smooth bump functions in the reparametrization. Note that, had we chosen to work with piecewise
smooth n-paths, instead of n-paths with sitting instants or with a product structure close to their boundary,
we would not have had to deal with this minor technical issue. Henceforth, when it is necessary to subdivide
n-paths, we will assume without further comment that the necessary reparametrizations have been made, so
that the subdivided n-path can be regarded as a product of smaller n-paths.

Put X, = ( ) Y = T( ab) (91( ab) and Wy, = 81L(F(Lb)' Let also

w::f;f: = (0. 0);, 00 i iy Var(1)) € D2(G)

(see section 4.2), whenever it makes sense. Finally let

Tcg _ T1(4¢‘ab‘rd’n‘ab‘rd)(wab) c DQ(g) and 7 Tab _ A(¢‘ab1rd’n‘ab‘rd)(yab) c @2(g)

Then H(T) € D?(G) is defined as:

H(Ty,) 720 H(Tay) 730 ... #10, H(Dy)

13 13,23 93 22,32 (r—1)3,73 3
Ty V1222 Taz Yailsi-- -w(rq)z,m T3
HT) = 222 232 A2 ’ (31)
H(Flg) T19 H(Fgg) T35 - T(r 1)2 H(FTQ)
r12 12,22 92 22,32 (r—1)2,72 2
Tii Y1121 Tar Yailzi-- 'w(rfl)l,rl Tri

H(Tu) 71 HT21) 731 ... 75y H(Te)

iap Bigy

where we have put H(Tup) =( H (Tap). This is well defined due to the interchange law, and the
associativity of the horizontal and vertical multiplications, which hold in a double-groupoid.

Let us look at the simple case when 7 = 2. Divide Q = [0,1]? as Q = Q’“Q’ Set I'; to be the restriction of
I to Q; re-scaled to be a map I';: [0,1]> — M, and analogously for j, k, [. Let also X; = 04(Ty), Vi = 0-(T),
Z; = 9(I;) and W; = 9,(T;), and analogously for j, k,I. Suppose that T'(Q;) C U;, and analogously for
J.k,1. Let p’ be the central point of @, the intersection of Q;,Q;, Q) and @, and p = I'(p’). We will then
have:

W, V(1) B
9wy, aw
k « D1 (Ve " 1
A (Ag:Br) A (Ao 71 Ay (Ay,By) Ay
9zy, Tk A Vg AU Ty 9y
*
A A
L pu(e) A
A;m; (Aj.m41)
n(8:8) = saowion| g Joutd  viuw  onw)] 4t Jewowsan
1]
A Aj
9w, ®i;(p) 9w,
* * *
A (A;,B;) A (Aimij) Aj (Aj,Bj) Aj
9z, er; 9y, €Y gy, °r; 9y,
* *
A $i5 (Vi (0)) Aj
gx; gx;

Note that we took the number of rows of the chosen partition of @ to coincide with its number of columns.
However, we can obviously choose these to be different.

Of course, H(I") will a priori depend on the partition {Qqs} of @ and the open sets {U;,, } chosen so that
I'(Qup») C Ui,,. However, as in the case of principal bundles, this dependence is easy to control.
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5.1.2 Independence under subdividing partitions

Suppose we subdivide one of the lines of (30). For instance put

! / !
laQQa o ra

QlaQQa cee Qra = ) (32)

1 " 1
la¥2a " ¥ra

and take I'(Q}.,), T(Q7%,) C Ui,,. From conditions 3 and 4 of the definition of a cubical G-2-bundle (definition
32) and condition 1 of the definition of a connection in a cubical G-2-bundle (definition 34), it thus follows

that:
1a®@% - Qra
X (QlaQ?a cee Qra) =X .

1 1 1
la%2a " ¥ra

The same holds if we subdivide one of the columns of (30).

5.1.3 The case of paths

Let «: [0,1] — M be a smooth path. Choose partitions {I,}._; and {I/,}’,_, of I = [0,1] together with
elements i4,4,, € J such that v(I,) C U;, and v(I’,) C Uir,. Let 74 be the restriction of v to I, rescaled to
be a map [0,1] — M. Let z, = v,(1).
Considering the partition {I,} of I, we define the holonomy H(y) € G = D'(G) in the following usual
way:
Aiy Aiy Ai,
H(’Y) =9m Giris (xl) G2 Gisis (:Eg) s Gy
and analogously for the partition {I/,} of I.
To compare the holonomies H(v) and H'(y) constructed from these two partitions of I, note that by
condition 3 of the definition of a cubical 2-bundle, we can subdivide these partitions of I without affecting

the value of the holonomy. Therefore we can suppose that the two partitions of I coincide, and that we took
v(Ia) C Ui, and y(I,) C Uy, where i, need not coincide with i,.

Theorem 56 (Coherence law for 1-holonomy) Define:

-/

() = T (1) (@, ), igir i, (21)712 (12) (8 D)y (22) 717 (),

where

-/

¢i il o Tig il
T,za — 7—1(4%‘1 oMia a) c DQ(Q),

thus h
dat(y) = H(v) and d,7(v) = H' (7).

Then 7(7y) is a square in G.

Proof. This is tautological and follows directly from the definitions; see subsections 4.2 and 4.4. Note that
the set of squares in G forms a double groupoid, and therefore the horizontal composition of squares in G
yields a square in G. =

5.1.4 The dependence of the holonomy on the chosen partition of Q = [0, 1]?

Continuing the notation of 5.1.1, suppose that we choose a different partition {Q'a,b,}gi!b,:l of Q' = 10,12,
with the restriction of T' to @/, verifying I'(Q?,,,) C Ui,  for each a v e {1,...,7"}. We want to relate
the holonomies H(I") and H’'(T") obtained from these two partitions of [0, 1]?. Note that by using 5.1.2, we
can suppose that the two partitions of [0, 1] coincide, in other words Qq, = Q' for each a and b. However,

iqp need not coincide with ¢/,.
We have:

Theorem 57 (Coherence law for 2-holonomy) Consider the colouring of T of D?® such that:
Toéy =H() and T od5 = H'(T)

and
Too =707 (), i=1,2

see 5.1.8. This colouring is flat.
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Proof. The proof is a three-dimensional analogue of the proof of theorem 56, making use of the fact that the
set T3(G) of flat colourings of D3 (i.e. cubes in G) is a strict triple groupoid; see 2.2.2. Specifically, looking
at equation (31), each of its individual squares should be thickened to a cube in G such that the bottom
face coincides with the square, and the top face with the corresponding square appearing in the calculation
of H'(I"). All these cubes can be chosen so that the lateral faces match. This follows from the transition
3-cubes for 2-paths I', subsection 4.2, the coherence law for transition 2-cubes for 1-paths, subsection 4.4,
and condition 2 of the definition of a cubical G-2-bundle, definition 32. =
The following two corollaries follow immediately:

Corollary 58 Let I': [0,1]> — M be a smooth map. Choose a partition of {Qup} of @ = [0,1]* along
with elements iq, € J such that T'(Qau) C Us,,. Suppose that we choose another set of elements i/, € J with
[(Qab) C Uy, , such that iqp = ig,, on the boundary 0Q of Q. Then the holonomies H(I') and H'(T") coincide.

Proof. This follows from the previous theorem and the definition of 7(7); theorem 56. We also need
conditions 3 and 4 of the definition of a cubical G-2-bundle and condition 1 of the definition of a connection
in a cubical G-2-bundle. =

Corollary 59 Let I': Q — M be a smooth map, where Q = [0,1]2. Suppose I'(0Q) = x, where x € M.
Choose some partition of Q, such that I'(Qup) C Us,, for each a,b. Suppose that we choose these iq, € I so
that iqp = iy on the boundary of Q; here x € U;,. Then, given any other partition {Q!., } of Q such that
Q.L,) C Ui;/u for each &',V and, moreover, i,,,, =i’ on the boundary of Q, we have:

H(T) = (¢,00 ()" > H(D).

5.1.5 Invariance under (free) thin homotopy
Let M be a manifold with a local connection pair (A4, B). It follows from theorem 40 that the two dimensional

holonomy (AHB) (T'), where I': Q — M is a smooth path (Q = [0,1]?), is invariant under thin homotopy.
Suppose that M is equipped with a cubical G-2-bundle connection. Let us see how H(T") varies under thin
homotopy. We will consider a slightly more general definition of thin homotopy (a generality that is needed
to define Wilson spheres).

Definition 60 Two smooth maps I',T": [0,1]> — M are said to be freely thin homotopic if there exists a
smooth map L: [0,1]? x [0,1] — M such that Rank(D,L) < 2,Yv € [0,1]*, and so that Ly 249 = I and
L[O,1]2><1 - FI.

Note that L is, in general, not a rank-2 homotopy since it lacks the conditions 1 and 2 of its definition; see
2.3.2.

Theorem 61 (Invariance under free thin homotopy) Let J: W — M, where W = [0,1]3, be a free
thin homotopy connecting the smooth maps I': Q — M and T': Q' — M, where Q,Q" = [0,1]%. Choose
partitions {Qap} and {Q',,,} of [0,1)? together with elements iq, and il.,, of J such that T'(Qup) C Ui, and
I'(QL.,) C Ui;/b/ for each a,b,a’,b'. By subdividing if necessary (see 5.1.2) we can suppose that the two
partitions coincide. In addition, we can suppose that they extend to a partition {Wapc}i, , .—y of W = [0, 13
such that J(Qabe) C Us,,,, and, moreover, igp = tqp and iqpr = ., for each a,b.

The colouring T of D> such that

Tods =HOFW); i=1,2,3
is flat.
Proof. The proof is analogous to the proof of theorem 57. The colouring T" of D3 is an upwards composition
of the form T\T7,T5135... T, where T7 ;) are the elements of T3(G) considered in theorem 57. On the

other hand the T; € T3(G) are obtained by looking at equation (31), where I' is substituted by the j-th

slice J7 of J, and thickening each individual element by using the homotopy .J. In particular H(J(Zb) will

(Aigy; Bigys)
be thickened to the colouring bH ' (0FWap;) of D3, which is flat by the following lemma. We can

then thicken all the other elements of (31) to flat colourings of the 3-cube by using the transition 3-cubes
for 2-paths I" and the coherence law for transition 2-cubes for 1-paths, theorems 45 and 54 m
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Lemma 62 Let M be a manifold with a local connection pair (A, B). Let L:[0,1]> — M be a map such
that Rank(D, L) < 2,Vv € [0,1]3. Then the colouring T of D3 such that

(A,B)
Tos = H (0FL); i=1.2,3

is flat.

Proof. Follows directly from theorem 40. m
The following analogue of corollary 59 holds.

Corollary 63 Let I': Q — M and I': Q' — M be smooth maps, where Q, Q" = [0,1]2. Suppose I'(0Q) = =
and T7(0Q) = a', where x,2’ € M. Suppose that J: Q x[0,1] — M is a free thin homotopy connecting I' and
I, such that J(0Q x {t}) = q(t), for some smooth map q: [0,1] — M, thus ¢(0) = x and q(1) = 2’. Choose
partitions {Qaup} and {Q’,} (which we can suppose to coincide) of Q and Q' along with elements iqp, 1), €J
(which need not coincide) such that I'(Qay) C Us,, and I'(Qap) C Uir, for each a,b. Suppose that we choose
these iap,ily, € J so that iq, = i, and iy, = i, on the boundary of Q and Q'; here x € U, and ' € Uy .
Then ’
H(I') = (H(q)) "' > H(I),

where H(q) is constructed in 5.1.3.

Proof. By subdividing if necessary (see 5.1.2) we can suppose that the two partitions extend to a partition
{Wabc}z,b,c:1 of W = [0,1]? such that J(Wape) C Uiy, iab1 = iap and iqp. = i’ and moreover, for fixed c
we have igp. = j. in the boundary of @ (in other words if @ € {1,7} or b € {1,r}.) Therefore by the previous
theorem it follows that H(I") = (H(q))” ' >H(T), by using the obvious partition I, of ¢, with ¢(I.) C Uj,. m

5.1.6 Dihedral symmetry for the holonomy of general squares

Suppose that the G-2-bundle B: C(M,U) — N(G) is a dihedral cubical 2-bundle over (M,U), and that it is
provided with a dihedral cubical connection. Let I': Q — M be a smooth map. Let r» be some element of
the dihedral group Dy of the square. Suppose we have a partition {Qus} of @ = [0,1]?, along with elements
iqp € J satisfying I'(Qap) C U;,,. Consider the obvious partition {Q’,} of T or~1.

Theorem 64 We have:
H(T or™t) =r(H(T)).

Proof. This follows from theorems 39 and 46 and the definition of a dihedral cubical G-2-bundle with a
dihedral connection; definitions 33 and 35. Note that the action of 7 in D?(G) is a double-groupoid morphism;
see 2.2.1. m

5.1.7 Dependence of the surface holonomy on the 2-bundle with connection equivalence class

We will now need the discussion in subsection 4.3. Suppose that U is an open cover of M. Let V =
{Vi, }ier.t;es, be a subdivision of U. Let B be a cubical G-2-bundle with connection over C(M,U), say
(Gijs Vijiis Aiy Biynij). Let T': [0,1]2 — M be a smooth map. Let us choose a partition Qg of @ = [0,1]?,
together with elements t® € S; ,, where i,, € J, such that T'(Qu) C ‘/;?bb for each a,b. It is immediate

tab
that the value of the holonomy H(I') does not depend on whether it is calculated by using B or By.
Therefore, to analyse the dependence of 2-bundle holonomy on the equivalence class of the cubical G-2-bundle
with connection, it suffices to compare the holonomies H and H' of B and B', say (¢};, ;jkl,A;,B;,ngj),
equivalent over C'(M,U), with the equivalence given by smooth maps ®;: U; — G and VU;;: U;; — E, and
smooth forms & € A'(Uj,e) - see subsection 4.3.2.  Given a 7: [0,1] — M, choose a partition {I,}"_; of
I =[0,1], together with elements i, € J, such that v(I,) C U;,. Let 7, be the restriction of v to I,, rescaled
to be a map [0,1] — M. Let x, = v4(1).
We define the square s(v) in G in the following way:

D, ,E; D4y ,Ei
s(7) = T ()W ()7 ) () W ().

Here Wi, = T ; see 4.3.2.
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Suppose that we choose a partition {Qus} of @ = [0,1]?, with the restriction of I' to Qg satisfying
T'(Qu) C Ui, for each a,b. Let H(T') and H'(T") be the holonomies calculated in the equivalent 2-bundles
with connection B and B’ over C(M,U). By using exactly the same argument as in the proof of theorem 57
we obtain the following:

Theorem 65 (Behaviour under G-2-bundle equivalences) Consider the colouring T of D? such that:
Tod; =H(T) and T o 55 = H'(T")
and
TodE =s(0E()), i=1,2.
This colouring is flat.
The following follows immediately.

Corollary 66 Let I': Q — M be a smooth map, where Q = [0,1]2. Suppose I'(0Q) = x, where x € M.
Choose some partition of Q, such that T'(Qa) C U,,, for each a,b. Suppose that we choose these iqy € J s0
that iqp = iz on the boundary of Q; here x € U;,. We have

H'(T) = (P4, (x) ' > H(T).

5.2 Associating holonomies to embedded surfaces

Let M be a smooth manifold. Let also G = (0: E — G, ) be a Lie crossed module with associated differential
crossed module & = (9: ¢ — g,>). Let U = {U, }icg be an open cover of M. Let B: C(M,U) — N(G) be a
cubical G-2-bundle over (M, U). Fix a cubical G-2-bundle connection {4;, B;,n;;} on B, definition 34. Let
Y be an orientable surface embedded in M. Let us analyse how to define the holonomy H(X) of ¥. The
construction will be a non-abelian analogue of [P].

5.2.1 The case of Wilson spheres

Suppose that ¥ C M is diffeomorphic to S2. Choose an orientation of 3. Consider an orientation preserving
parametrisation f: S? = D?/0D? — ¥ C M. We define the Wilson Sphere Functional as:

W(B,X) =H(f) € kerd C E,
where a partition of D? is chosen as in corollary 59. Notice that the full form of H(f) € D?*(G) is:

le
* — %

H(f) = 1GT W(B,Y) Tm

* —— ¥
la

Theorem 67 The Wilson sphere functional W(B,X) of an oriented embedded 2-sphere ¥ C M is inde-

pendent of the parametrisation f: S? — X chosen, up to acting by elements of G, and is in particular

independent of the chosen partition {Qau} of Q = [0,1]? and the chosen elements iq, € J. If the cubical

G-2-bundle and connection used are each dihedral then

W(sz*) = (W('sz))il )

where ¥* is obtained by reversing the orientation of X. If B and B’ are equivalent G-2-bundles with connection
then W(B', %) coincides with W(B, ), up to acting by elements of G.

Proof. Let f': S? = D?/0D? — ¥ C M be another orientation preserving parametrisation. Since the
mapping class group of S? is {£1} there exists a smooth map J: [0,1]? x [0,1] — ¥ C M such that
Jio,12x0 = f and Jjg 1251 = [, and moreover J((0D?) x {z}) = h(z), where z € [0,1], for some smooth
map h: [0,1] — M. Certainly J is a free thin homotopy of the type appearing in corollary 63, which finishes
the proof of the first statement. The second statement follows from theorem 64. The last statement follows
from the discussion in 5.1.7. =

Problem: Extend the previous theorem to immersed 2-spheres.
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5.2.2 The case of tori with parametrisation

Suppose that the oriented surface ¥ C M is diffeomorphic to the torus 7?2 = S! x S' = R?/Z%. Let
f: D?> — ¥ be an orientation preserving parametrisation of ¥. In other words f is the restriction to [0, 1]?
of an orientation preserving diffeomorphism f’: R?/Z? — 3. Choose a partition {Qav}y p=1 of @ = [0, 1)
as in subsection 5.1, and so that iy, = i, and i,1 = 74, for each a,b. Then the Wilson Torus Functional is
defined as:

W(E, f) =H(f) €071 (GY) C B

here G is the commutator subgroup of G. Note that the full form of H(f) is

H(Ouf)
— %

H(f) = H(azf)T W(,f) TH(arf)

¥ —— %
H(0a f)

Since 7;117 = irb7 7;(11 = iar for each a, b and 8u(f) = 8d(f)7 al(f)
Given that the mapping class group of the torus is GL(2
tori. However the same argument will give:

= 0,(f) we can see that W(X, f) € -1 (GW).
,Z), theorem 67 does not hold for embedded

Theorem 68 The Wilson torus functional W(X, f) depends only on the isotopy type of the parametrisation
f: D?> — X and the equivalence class of the G-2-bundle with connection up to changes of the form of the
following simultaneous horizontal and vertical conjugation:

r 62_v il
H(f) = e H(f) el_h 5
L €9 _

where O, (e1) = O(H(f)) and Oy(e2) = da(H(f)) and moreover dy(er) = Oi(ea) = Or-(e2) = Ou(er).
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