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Abstract

Let us consider a Fredholm integral operator and the corresponding
invariant subspace basis problem. The spectral elements of the integral
operator will be computed by a projection method on a subspace of di-
mension n followed by an iterative refinement method based on defect
correction. The test problem to be used is the integral formulation of
the transfer problem that represents the restriction of a strongly coupled
system of nonlinear equations dealing with radiative transfer in stellar
atmospheres. This restriction comes from considering that the tempera-
ture and the pressure are given and makes the problem a linear one. We
will describe and compare two versions for the matrix implementation of
the iterative refinement method based on projection methods and defect
correction. These versions differ in the basis functions considered in the
discretization of the problem.
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1 Projection methods for integral problems.

Let us consider the invariant subspace basis problem

TΦ = ΦΘ (1)

where Φ ∈ Xµ, the product space having µ factors equal to X,

ΦΘ =

 µ∑
j=1

Θ(j, 1)Φ(j), . . . ,
µ∑
j=1

Θ(j, µ)Φ(j)


for Φ = [Φ(1), . . . ,Φ(µ)] and Θ a complex matrix of order µ. T denotes the
operator that applies to each element of an ordered family of µ elements of X,
the operator T . The Fredholm integral operator will be treated in X = L1 (I)
and is given by T : X → X,

(Tx)(τ) =
∫
I

g(|τ − τ ′|)x(τ ′)dτ ′, τ ∈ I. (2)

Integral operators of this type are usually discretized, for instance, by pro-
jection methods, onto a finite dimensional subspace. The operator T is thus
approximated by its projection onto the finite dimensional subspace Xn =
span{en,j , j = 1..n} and this approximation is denoted by Tn. In this case
we will consider in Xn the basis of piecewise constant functions on each subin-
terval of I determined by a grid of n+ 1 points τn,0 < τn,1 < . . . < τn,n.

Definition 1. (see [2]) For x ∈ X the projection approximation Tn is defined
by

Tnx = πnTx =
n∑
j=1

〈Tx, e∗n,j〉en,j , (3)

where 〈x, e∗n,j〉 = 1
hn,j

τn,j∫
τn,j−1

x(τ)dτ , hn,j = τn,j−τn,j−1 and πnx =
n∑
j=1

〈x, e∗n,j〉en,j.

Hence Tn is a bounded finite rank operator in X such that for all x ∈ X,

Tnx =
n∑
j=1

〈x, `n,j〉en,j , (4)

where `n,j = T ∗ne
∗
n,j is a basis of X∗ the Hilbert-adjoint space of the Banach

space X.
The projection approximation to problem (1) is

TnΦn = ΦnΘn. (5)

Definition 2. The adjoint evaluation 〈ϕ, `〉 = `(ϕ), ϕ ∈ X, ` ∈ X∗ is ex-
tended to the notion of a Gram matrix with p rows and q columns :

G = 〈[ϕ(1), . . . , ϕ(q)], [`(1), . . . , `(p)]〉,
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defined by
G(i, j) := 〈ϕ(j), `(i)〉 = `(i)(ϕ(j)),

where ϕ(j) ∈ X for each j and `(i) ∈ X∗ for each i.

Proposition 3. The approximation problem (5) is solved by means of the matrix
eigenvalue problem Anun = unΘn.

Proof. If we take the adjoint evaluation of `n,i for all i = 1, ..., n at both sides
of (5)

〈TnΦn, `n,i〉 = 〈Φn, `n,i〉Θn

n∑
j=1

〈en,j , `n,i〉〈Φn, `n,j〉 = 〈Φn, `n,i〉Θn

Anun = unΘn,

with un(i) = 〈Φn, `n,i〉 ∈ C1×µ, i = 1, ..., n and An(i, j) = 〈en,j , `n,i〉.

The eigenvalues of Θn are considered here as approximations to those of Θ.
The accuracy of the solution of (5) as approximation to the solution of (1) is
given by the following theorem :

Theorem 4. For n large enough, there exists a basis Φ(n) of the maximal
invariant subspace of T associated to the spectrum of Θ such that∣∣∣λ̂n − λ̂∣∣∣+

∥∥∥Φn − Φ(n)
∥∥∥ ≤ ∥∥(I − πn)T 2

∥∥ ,
where

λ̂n =
1
µ
tr(Θn), λ̂ =

1
µ
tr(Θ),

and Φn contains µ elements of X which form a basis of the maximal invariant
subspace of Tn associated to the spectrum of Θn.

Proof. see [4].

If, for a given n, the accuracy of the approximate Φn and Θn is not sufficient
we apply iterative refinement to improve it.

A finer grid of m + 1 points 0 = τm,0 < τm,1 < . . . < τm,m = τ∗ is set
to obtain a projection operator Tm which is only used to replace the operator
T in the refinement scheme (and not to solve the corresponding approximate
equation (6) with dimension m). The accuracy of the refined solution is the
same that would be obtained by applying the projection method directly to this
fine grid operator (for instance, see [4]).
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2 Iterative refinement.

Let Ψn be a basis of the invariant subspace of T ∗n corresponding to the spectrum
of Θ∗n. In other words, the initial data satisfies (5) and

T ∗nΨn = ΨnΘ∗n, 〈Φn,Ψn〉 = Iµ. (6)

Definition 5. The natural extension Pn of the spectral projection Pn corre-
sponding to the spectrum of Θn is

∀x ∈ Xµ, Pn(x) = Φn 〈x,Ψn〉 .

Definition 6. The block reduced resolvent Σn of Tn corresponding to the spec-
trum of Θn is defined by :

For all y ∈ Xµ, x = Σny ∈ Xµ is the solution of the Sylvester equation

Tn(I − Pn)x− xΘn = (I − Pn)y. (7)

Proposition 7. The computation of x = Σny ∈ Xµ for a given y ∈ Xµ is
represented by

An (In − pn)xn − xnΘn = (In − pn) yn (8)

for xn = 〈x, `n,j〉, yn = 〈y, `n,j〉 and the projection pn = unΘ−1
n v∗n in the basis

`n,j , j = 1, ..., n.
The solution of (7) can be done on a subspace of dimension m, yielding

xm =
(
Dxn + umΘ−1

n v∗nyn − ym
)

Θ−1
n . (9)

Proof. Tn(I − Pn)x− xΘn = (I − Pn)y is equivalent to

en,j 〈x, `n,j〉 − en,j
〈
Pnx, `n,j

〉
− xΘn = y − Φn 〈x,Ψn〉

en,j 〈x, `n,j〉 − en,j 〈Φn 〈x,Ψn〉 , `n,j〉 − xΘn = y − Φn 〈x,Ψn〉 ,

by the definitions of Tn and Pn.
We get for the l.h.s., by applying 〈·, `n,i〉, j = 1, ..., n,

〈en,j 〈x, `n,j〉 , `n,i〉 −
〈
en,j 〈Φn 〈x,Ψn〉 , `n,j〉 , `n,i

〉
− 〈xΘn, `n,i〉 =

= 〈en,j , `n,i〉 〈x, `n,j〉 − 〈en,j , `n,i〉 〈Φn, `n,j〉 〈x,Ψn〉 − 〈x, `n,i〉Θn

and for the r.h.s.

〈y, `n,i〉 − 〈Φn 〈y,Ψn〉 , `n,i〉 = 〈y, `n,i〉 − 〈Φn, `n,i〉 〈y,Ψn〉 =

= 〈y, `n,i〉 − 〈Φn, `n,i〉Θ−1
n 〈en,j ,Ψn〉 〈y, `n,j〉

because 〈y,Ψn〉 = Θ−1
n 〈en,j ,Ψn〉 〈y, `n,j〉 (as we can see from (6)).

Finally, by equating both sides, we obtain

Anxn −AnunΘ−1
n v∗nxn − xnΘn = yn − unΘ−1

n v∗nyn
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An (In − pn)xn − xnΘn = (In − pn) yn

for xn = 〈x, `n,j〉, yn = 〈y, `n,j〉 and pn = unΘ−1
n v∗n.

To obtain xm we need to apply 〈·, `m,i〉, i = 1, ...,m, to (7) :

en,j 〈x, `n,j〉 − xΘn = y − Φn 〈y,Ψn〉

x = (en,j 〈x, `n,j〉+ Φn 〈y,Ψn〉 − y) Θ−1
n

〈x, `m,i〉 = (〈en,j 〈x, `n,j〉 , `m,i〉+ 〈Φn 〈y,Ψn〉 , `m,i〉 − 〈y, `m,i〉) Θ−1
n

xm =
(
Dxn + umΘ−1

n v∗nyn − ym
)

Θ−1
n .

Let F : Xµ → Xµ defined by

F (x) = Tx− x〈Tx,Ψn〉. (10)

The iterative refinement formula of the initial solution in (5) is obtained by
solving (10) by defect correction ([5], [4] and [9]) where we use operator Σn as
local approximate inverse of F .

Algorithm 1: Φ(0)
n = Φn

for k = 1, 2, ...
Φ(k)
n = Φ(k−1)

n − Σn(F (Φ(k−1)
n )).

To improve the rate of convergence at each iteration an intermediate step of
fixed point iteration is added.

Algorithm 2: Φ(0)
n = Φn

for k = 1, 2, ...
Θ(k−1)
n = 〈TΦ(k−1)

n ,Ψ(0)
n 〉

H(k) = TΦ(k−1)
n

(
Θ(k−1)
n

)−1

Φ(k)
n = H(k) − Σn(F (H(k))).

Theorem 8. There is a positive integer n1 such that for each fixed n ≥ n1, all
the iterates of Algorithm 2 are well defined; and for all k = 0, 1, 2, . . .

max{|λ̂(k)
n − λ̂|, ‖Φ(k)

n − Φ(n)‖} ≤ (β‖(I − πn)T 2‖)k+1,

where β is a constant, independent of n and k and

λ̂(k)
n =

1
µ
tr(〈TΦ(k−1)

n ,Ψ(0)
n 〉).

Proof. Details of the proof can be found in [5] and [4].
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The iterative refinement method requires two operators Tn and Tm corre-
sponding to the projections onto Xn and Xm respectively. The functional basis
in Xn is {en,j}j=1,...,n and in Xm it is {em,j}j=1,...,m, and the matrices repre-
senting the operators Tn and Tm restricted to Xn and Xm are respectively An
and Am. The matrix that represents Tm in Xn will be denoted by C and the
representation of Tn in Xm will be D. To compute the coefficient elements of
matrices Am and An one needs to define first the kernel g. After it is easy to
obtain the coefficient elements of matrices C and D (see for instance [2]).

In [3] we developed the matrix relationships and expressions used in this
algorithm by using the canonical basis (en,j), j = 1, ..., n in Xn and (e∗n,j), j =
1, ..., n in X∗n. Now we will consider the basis (en,j), j = 1, ..., n in Xn and
(`∗n,j), j = 1, ..., n in X∗n.

In order to implement the algorithms we need to relate un with um using
um = DunΘ−1

n .
From (5)

Φn = TnΦnΘ−1
n =

n∑
j=1

〈Φn, `n,j〉 en,jΘ−1
n ,

and taking adjoint evaluation by `m,i, i = 1, ...,m yields

〈Φn, `m,i〉 =
n∑
j=1

〈en,j , `m,i〉 〈Φn, `n,j〉Θ−1
n

um = DunΘ−1
n .

Proposition 9. The approximation problem (6) is solved by means of the ma-
trix eigenvalue problem A∗nvn = vnΘ∗n. It can be done also on the subspace of
dimension m, yielding vm = C∗vn (Θ∗n)−1.

Proof. Let us now consider expression (6). Knowing that for f ∈ X∗ and for
x ∈ X (

T ∗nf
)
x = f

(
Tnx

)
=

= f

 n∑
j=1

〈x, `n,j〉 en,j

 =

=
n∑
j=1

〈x, `n,j〉f (en,j) =

=
n∑
j=1

〈x, `n,j〉〈en,j , f〉,

then from (6) and by taking the adjoint evaluation at en,i, i = 1, ..., n we have(
T ∗nΨn

)
en,i = Ψn (en,i) Θ∗n
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n∑
j=1

〈en,i, `n,j〉〈en,j ,Ψn〉 = 〈en,i,Ψn〉Θ∗n

A∗nvn = vnΘ∗n,

with vn(i) = 〈en,i,Ψn〉 ∈ C1×µ, i = 1, ..., n.
From (6)

Ψn = T ∗nΨn (Θ∗n)−1
,

and taking the adjoint evaluation by em,i, i = 1, ...,m yields

Ψn (em,i) = T ∗nΨn (em,i) (Θ∗n)−1

〈em,i,Ψn〉 =
n∑
j=1

〈em,i, `n,j〉〈en,j ,Ψn〉 (Θ∗n)−1

vm = C∗vn (Θ∗n)−1
.

3 Numerical results.

To test the previous approaches, we consider an integral formulation of a transfer
problem that represents the restriction of a strongly coupled system of nonlinear
equations modeling the radiative transfer in stellar atmospheres. This restriction
comes from considering that the temperature and the pressure are given (see [2]
and [8] for details). Problem (2) takes the form

(Tx)(τ) =
∫ τ∗

0

g(|τ − τ ′|)x(τ ′)dτ ′, 0 ≤ τ ≤ τ∗, (11)

where I = [0, τ∗], τ? is the optical depth of the stellar atmosphere, $ ∈ ]0, 1[ is
the albedo (assumed to be constant). The kernel g is defined by g(τ) = $

2 E1(τ),
where E1(τ) =

∫∞
1

exp(−τµ)
µ dµ, τ > 0. This is the first of the sequence of

functions

Eν(τ) =
∫ ∞

1

exp(−τµ)
µν

dµ, τ > 0, ν ≥ 1, (12)

which has the following property: E
′

ν+1 = −Eν and Eν(0) = 1
ν−1 , ν > 1 (see

[1]). E1 has a logarithmic singularity at τ = 0.
We consider for the equation modeling the radiative transfer problem of the

absorption of photons due to internal sources in the stellar atmospheres the
albedo to be $ = 0.75. The interval I = [0, τ∗] is divided into four zones
where we consider different regular grids. In our tests, τ∗ is taken as 4000. The
computations were done on a personal computer.

The coefficient elements of matrices Am and An can be obtained, using the
properties of the family of exponential-integrals (12). For An we obtain (see [2]
and [3]) (similarly for Am):
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Table 1: Number of iterations for a residual tolerance of 1e− 6.

eig e-basis `-basis gain
1 49 39 26 %
2 43 37 16 %
3 70 57 23 %
4 106 87 22 %

Table 2: CPU time (seconds) for a residual tolerance of 1e− 6.

eig e-basis `-basis gain
1 125.8 110.0 14 %
2 118.5 107.8 10 %
3 151.1 130.3 16 %
4 194.0 163.8 18 %

An(i, j) =
$

2hn,i
(−E3(|τn,i − τn,j |) + E3(|τn,i−1 − τn,j |)+

+E3(|τn,i − τn,j−1|)− E3(|τn,i−1 − τn,j−1|))

if i 6= j and

An(i, i) = $[1 +
1

2hn,i
(2E3 (hn,i)− 1)].

The computations were carried out by implementing the series developments in
[1].

The number of iterations and CPU time in seconds, for the computation of
the largests eigenpairs of the problem for τ∗ = 4000, are shown in Tables 1 and
2 respectively, for a tolerance of 10−6 and in Tables 3 and 4 for a tolerance of
10−12.

We can see that the method shows a good performance for both tolerances
and both basis. As expected, the number of iterations grows with the required
precision and it is larger for lower order eigenpairs. The method can profit by
computing a set of the largest eigenpairs since the computation of the initial
approximate eigenpairs can be reused for the refinement process.

In terms of CPU time, the `-basis approach allows a gain between 10 and
18% for a tolerance of 10−6 and a gain between 15 and 18% for a tolerance of
10−12. In regard to the number of iterations, the use of `-basis carries out a
reduction of about 16-23% for a tolerance of 10−6 and of about 10% for 10−12.
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Table 3: Number of iterations for a residual tolerance of 1e− 12.

eig e-basis `-basis gain
1 348 318 9 %
2 411 375 10 %
3 492 443 11 %
4 628 566 11 %

Table 4: CPU time (seconds) for a residual tolerance of 1e− 12.

eig e-basis `-basis gain
1 483.6 422.2 15 %
2 557.9 486.5 15 %
3 659.2 564.1 17 %
4 823.7 700.0 18 %

In conclusion, solving the eigenvalue problem in a low dimensional discretiza-
tion space and then refining iteratively the previous approximation to the spec-
tral elements of T is an effective approach to solve integral eigenvalue problems.
We developed an alternative approach to the discretization of the refinement
method by using the `-basis and we proved, in this paper, that it is better in
number of iterations and CPU time than the one that uses basis (en) (devel-
oped in [3]). Those valuable gains were achieved without changing the way
data is generated and by only taking into account a new basis where the finite
dimensional approximate solutions are projected.
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